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ABSTRACT We propose a novel Mean-Shift method for data clustering, called Robust Mean-Shift (RMS).
A new update equation for point iterates is proposed, mixing the ones of the standard Mean-Shift (MS) and
the Blurring Mean-Shift (BMS). Despite its simplicity, the proposed method has not been studied so far.
RMS can be set up in both a kernel-based and a nearest-neighbor (NN)-based fashion. Since the update
rule of RMS is closer to BMS, the convergence of point iterates is conjectured based on the Chen’s BMS
convergence theorem. Experimental results on synthetic and real datasets show that RMS in several cases
outperforms MS and BMS in the clustering task. In addition, RMS exhibits larger attraction basins than MS
and BMS for identical parametrization; consequently, its kernel variant requires a lower aperture of the kernel
function, and its NN variant a lower number of nearest neighbors compared toMS or BMS, to achieve optimal
clustering results. In addition, the NN version of RMS does not need to specify a convergence threshold to
stop the iterations, contrarily to the NN-BMS algorithm.

INDEX TERMS Data mining, data clustering, mean-shift, kernel-based method, nearest neighbors.

I. INTRODUCTION
Data clustering is a type of unsupervised learning which
consists of automatically grouping data points having similar
characteristics into identified clusters without training sam-
ple points. It is a central task in various application fields
such as medicine, genomics, content-based image and video
indexing, and Big Data mining to cite a few. Clustering is
also increasingly relevant in the context of Artificial Intelli-
gence, in order to unveil the existence of underlying complex
structures in datasets [2], and especially in applications where
little or no training data is available. Despite several decades
of research, clustering remains a challenging task for many
applications because of the increasing size (number of data
points) and dimensionality (number of features) of modern
datasets. This is particularly true for applications that require
on-the-fly data partitioning [3].

Clustering methods can be broadly categorized into
several families, comprising centroid clustering [4]–[6], hier-
archical clustering [7], [8], density-based [9], [10], Mean-
Shift and mode seeking [11]–[14], clustering based on
mixture resolving [15]–[17], and, more recently, affinity
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propagation (AP) [18], information theoretic clustering [19],
and convex clustering [20].

From a general viewpoint, clustering remains an ill-posed
problem [21] because, depending on the partitioning process,
several legitimate solutions can be obtained which are all
acceptable [22], [23]. In fact, most popular methods claimed
as unsupervised require a significant prior knowledge about
the data structure, i.e. the number of clusters to be found. This
is particularly true for centroid clustering, mixture resolv-
ing, and spectral clustering in their baseline implementation.
However, while some of their parameters are necessary and
can be difficult to tune, several other approaches do not
require to specify the number of clusters. For instance, among
them are hierarchical methods, as well as DBSCAN [9],
AP [18], convex clustering [20], nearest-neighbor density-
based (NN-DB) methods [24] and Mean-Shift based meth-
ods. In this work, we focus on the latter.

Mean-Shift (MS) was originally proposed by Fuku-
naga and Hostetler in 1975 [11] essentially as a means
to provide the modes of an unknown probability density
function (p.d.f.). MS relies on kernel density estimation
(KDE), a non-parametric way to estimate a p.d.f. from data
samples [25], [26]. In MS, each point of the dataset is moved
iteratively by a small amount (the so-called mean shift) until
convergence to some stationary point, i.e. a local mode of
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the estimated p.d.f.. MS has first been used as an unsuper-
vised data clustering method, for which the retained local
modes after convergence of the point iterates serve as clus-
ter representatives (or exemplars). A connected component
post-processing stage [26] is therefore necessary after the
convergence is achieved to assign a cluster label to each of
the original data points.

A number of studies have followed the seminal work
of Fukunaga and Hostetler [12], [25], [27]–[31], and sev-
eral proofs pertaining to convergence and p.d.f. estima-
tion have been proposed [1], [12], [25]–[28], [32]–[34].
In [26], Carreira-Perpiñán provides a comprehensive review
of MS-based methods and their application to data clustering
and data denoising. Mean-Shift has also been successfully
applied to image filtering and segmentation in [25].

In the present work, we propose a novel approach to the
classical Mean-Shift algorithm focusing data clustering; the
KDE problem is not investigated herein. To the best of our
knowledge, the proposed approach has not been published.
Despite relying on a modification of the original MS algo-
rithm, we demonstrate that our method leads to significantly
different features. This method, which we name Robust
Mean-Shift (RMS) is a hybridization of the standard Mean-
Shift (MS) algorithm [25], and of the so-called Blurring
Mean-Shift (BMS) method [27]. It is worth recalling that
BMS was actually first proposed in [11], as pointed out
in [26]. Our algorithm is based on iteratively moving updates
of initial data points, similar to MS and BMS, but the update
equation of RMS fundamentally differs from both methods.

The proposed RMS approach proposed in this work has
several valuable properties:
• Wefind experimentally that RMS requires a lower band-
width parameter (in the kernel-based variant) and a
lower number of nearest neighbors (in the NN variant)
than MS and BMS to achieve comparable or even better
results in the clustering task; this is especially interesting
to speed up the computation of point iterates, and in the
case of theNN-RMSvariant, to reduce the size of theNN
graph compared to the ones required by the NN variants
of MS and BMS;

• Compared to MS and BMS, RMS generally performs
better, as evidenced experimentally through the analysis
of various datasets;

• In most experiments, RMS converges faster than BMS,
the latter being proved to converge faster than MS [35];

• The (classical) kernel-based RMS can be easily turned
to a K -nearest neighbor (KNN) algorithm, similarly to
MS and BMS [30], [31];

• The NN variant of RMS does not require a termination
threshold, unlike the NN variant of BMS.

The paper is organized as follows. Section II provides a
brief overview of related works, including kernel-based and
KNN-based Mean-Shift (MS) approaches published so far.
In Section III, we introduce the proposed clustering method
and explain how it relates to MS and BMS. The convergence
of RMS in the kernel-based framework is then discussed

in Section IV. Section V describes the NN-based variant
of RMS. An experimental study of RMS and its comparison
with other similar clustering approaches on various datasets
is provided in Section VI. Conclusions and perspectives of
this work are given in Section VII.

II. NOTATIONS AND RELATION TO PRIOR WORKS
Let X = {xi} , xi ∈ Rn, i = 1, . . . ,N the set of data points
to classify. Let f : Rn

×Rn
→ R+ a kernel function such that

(u, v) 7→ f (u, v) ≥ 0, and f (u, v) decreases monotonically
with ‖u − v‖. Kernel density functions are generally tuned
with a bandwidth parameter, and they can follow several
models; flat, Epanechnikov, biweight, and especially Gaus-
sian kernels are commonly used [27]. However, it is well
established that the shape of the kernel has very little effect
on the results in comparison to the bandwidth parameter.With
that in mind, Gaussian kernels are most commonly used for
their convenience.

MS and BMS aim at estimating a p.d.f. and finding its local
modes from the observations X . This is done by moving the
initial data points {xi}i=1,...,N iteratively until convergence to
stationary points, which are the estimated local modes of the
true p.d.f.. Let

{
y(t)i
}
i=1,...,N

be the set of moved points at

iteration t , and assume y(0)i = xi ∀i.
We briefly recall below the original MS and BMS update

rules, i.e. the operation applied to the data points at each
iteration.

A. MEAN-SHIFT (MS)
MS can be used to partition a dataset by assigning each data
point a label corresponding to the unique point it converges to
after some (expected) finite number of iterations of an update
equation.More precisely, with the above notations, the update
equation of MS writes, ∀i:

y(t+1)i =

∑N
k=1 f

(
xk , y

(t)
i

)
. xk∑N

j=1 f
(
xj, y

(t)
i

) . (1)

With the above assumption on the kernel function f , the
updated points {y(t+1)i }i=1,...,N are obtained as a convex linear
combination (i.e. with non-negative coefficients summing up
to unity) of the initial data points {xi}i=1,...,N .

B. BLURRING MEAN-SHIFT (BMS)
The update rule for BMS is different from MS since it is
based on a convex linear combination of the previously moved
data points (hence the so-called blurring effect, as coined by
Cheng in [27]), i.e. ∀i:

y(t+1)i =

∑N
k=1 f

(
y(t)k , y

(t)
i

)
. y(t)k∑N

j=1 f
(
y(t)j , y

(t)
i

) . (2)

It can be noticed that, over the iterations, this update rule
progressively ‘forgets’ the initial data points inX , contrarily
to MS.
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C. DISCUSSION
1) MAIN ADVANTAGES AND DRAWBACKS
As pointed out in [26] MS and BMS algorithms have several
advantages compared to other clustering techniques, among
which:
• their parametrization is limited to the choice of an
appropriate kernel function, and a single bandwidth
(or aperture) parameter for this kernel function;

• they allow to discover non-convex clusters;
• they can automatically determine the number of clusters,
depending on the chosen bandwidth parameter;

• the algorithms are totally deterministic.
These advantages make a significant difference with respect
to classical clusteringmethods like k-means or fuzzy c-means
for which none of the last three items above is ensured. How-
ever, MS-based methods have two main drawbacks which are
the lack of scalability to large datasets, and a high sensitiv-
ity of clustering performances for high-dimensional datasets
with respect to the bandwidth parameter [26]. The latter is
a consequence of the so-called curse of dimensionality [36]
and the fact that distances tend to be less meaningful in high
dimensions.

2) CONVERGENCE OF MS-BASED METHODS
Since the early works on MS-based clustering, and until very
recently, the convergence of MS and BMS has been studied.
A comprehensive study of the convergence of both MS and
BMS algorithms is summarized in [26], but specific results
were provided for MS in [25], [35], and for BMS in [1], [27].

For MS, the convergence of moved points to local modes
is ensured theoretically and practically in the general case.
However the situation may vary from one kernel to another as
for the number of iterations required to convergence: the latter
is proven in a finite number of steps for the Epanechnikov
kernel [25], but infinite for the Gaussian kernel, moreover
with a linear convergence rate [37].

For BMS, the convergence issue depends on the ker-
nel aperture: for large ones which encompass the whole
datasetX , convergence is ensured to a uniquemode, whereas
for narrower ones with finite support, the BMS update rule
allows the iterates to converge quickly to well-separated
distinct modes during the first steps. However, pursuing the
iterations can eventually lead to the merging of these modes
into a single one. Therefore BMSmust be stopped before this
case occurs [29]. The convergence rate of Gaussian BMS has
been proven cubic [35], hencemuch faster than GaussianMS.

3) KNN-MS BASED METHODS
Choosing the optimal set of hyperparameters (kernel function
and bandwidth) for a specific task can become very challeng-
ing. This is why, since the early works on Mean-Shift-based
density estimation and data clustering [11], [12], the use of
nearest neighbors as an alternative to the standard kernel
approach has been proposed by many researchers. Indeed,
the NN approach (i) does not require to specify an underlying
parametric function, so that only one parameterK is required;

and (ii) the KNN principle makes it possible to maintain the
relationship between data points located far from each other,
especially on the external border of clusters. In this sense,
the NN-based framework is data-adaptive, contrarily to the
kernel-based one. In [11], a mean-shift estimate calculated
from K nearest neighbors was proposed as a natural way
to automatically adapt the density estimation to its local
variations. The nearest neighbor paradigm can also be used
to estimate the bandwidth parameter of kernel-based MS,
for instance as the average distance of each point to its
KNNs [26].

Koontz et al. [12] adopted a graph-based clustering
approach which enables the assignment of any data point
(or node) to a parent node, using the number of neighbors
found within the constant radius ball centered on it. The
clustering result is then produced via a directed tree traver-
sal [38]. In [29], Grillenzoni proposed a Gaussian BMS based
on KNNs, which provides a data-driven technique to select
the bandwidth and is shown to have low sensitivity to K .
Duong et al. [30] also provided a data-driven closed-form
solution to estimate the optimal number of NNs in NN-MS.
Recently, Beck et al. [31] proposed an extension of the Near-
est Neighbor Gradient Ascent (NNGA) method (which is in
fact a KNN version of MS) incorporating Locality Sensi-
tivity Hashing (LSH) to approximate nearest neighbors and
ε-proximity cluster labeling rule into NNGA, and renamed
this method NNGA+. NNGA and NNGA+ have the advan-
tage of being scalable for large datasets.

4) IMPLEMENTATION ISSUES
An important issue of MS-based methods is related to their
practical implementation. Actually, there is a major differ-
ence between MS and BMS in this regard. Indeed, Eq. (1)
shows that each point can be treated independently from
others because, as soon as kernel evaluations are computed,
the update y(t+1)i is a linear combination of the original data
points. In contrast, BMS in Eq. (2) requires the whole set of

current iterates to calculate y(t+1)i . Therefore, BMS cannot
be parallelized, whereas MS can be parallelized efficiently.
For both approaches and for arbitrary data, the complexity is
quadratic in the number of points [26].

III. ROBUST MEAN-SHIFT
In this section, we propose another MS-like clustering
approach, which we name Robust Mean-Shift (RMS). The
rationale behind RMS is to combine MS and BMS, so that
the next iterate remains a convex linear combination of the
current ones, like BMS in Eq. (2), whereas the kernel weight-
ing is kept identical to the MS update in Eq. (1). Therefore,
the proposed update equation writes:

y(t+1)i =

∑N
k=1 f

(
xk , y

(t)
i

)
. y(t)k∑N

j=1 f
(
xj, y

(t)
i

) . (3)

The main idea of RMS is based on the following
expectations:
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• Since the next iterate is a combination of the current
ones, a behavior similar to BMS can be anticipated,
especially in terms of faster convergence with respect
to MS;

• Since the kernel weights remain dependent on the ini-
tial data points {xk}k=1,...,N , it is expected that iterates
remain ‘bound’ to the initial data points, therefore avoid-
ing convergence to a unique mode for broad kernels,
which is a known drawback of BMS [35];

• The kernel-based update rule in Eq. (3) can be eas-
ily modified to involve nearest neighbors, similarly to
NNGA [31] and the graph-theoretic approach in [12].

Surprisingly, this update equation has not been reported so
far in the literature to the best of our knowledge.

Figure 1 illustrates with a simple example the differences
betweenMS, BMS andRMS. For the threemethods, the same
kernel parametrization is used, i.e.

f (u, v) = exp
(
−
‖u− v‖2

σ 2

)
, (4)

with bandwidth parameter σ = 0.15. The dataset is drawn
randomly from three 2-D normal distributions with identical
diagonal covariance matrices, centered at [0, 0], [0, 1], [1, 1].
One can see that the modes of these distributions are hardly
distinguishable on Figure 1-(a). Figures 1-(b-d) display the
evolution of each data point to its corresponding mode for
the three methods.

In this example, RMS is able to recover the three
components of the original distribution, as well as tiny
modes or single outliers, whereas MS and BMS identify a
higher number of local modes after convergence. Moreover,
RMS requires less iterations to converge (9 iterations) than
MS (96 iterations) and BMS (33 iterations).

IV. CONVERGENCE OF RMS
In this section, we discuss the convergence property of RMS.
Though it is not fully theoretically established here, the con-
vergence of RMS is conjectured, based on the adaptation of
the BMS convergence theorem of Chen [1]. This theorem
states that there exists {y∗1, . . . , y

∗
N } s.t. limt→∞ y(t)i = y∗i .

This theorem is based on three lemmas:
• The convex hull of all updated data points along the
iterations are nested and converge to a limiting convex
hull (Lemma 1);

• For each vertex of the converged convex hull, at least
one sequence of the data points converge to this vertex
(Lemma 2);

• The influence of the vertices of one converging convex
hull to other data points outside this convex hull vanishes
along the iterations (Lemma 3).

Based on these partial results, we discuss below the con-
vergence of RMS under the same assumptions on f .
First, it is easy to show that Lemma 1 in [1] still holds

for RMS. Let C (t)
1 be the convex hull of the set of data

points {y(t)1 , . . . , y
(t)
N } at iteration t . Since y

(t+1)
i in the updat-

ing equation (3) is still a convex linear combination of

FIGURE 1. Illustration of the differences between MS, BMS and RMS
mode seeking algorithms, for a Gaussian kernel with bandwidth
parameter σ = 0.15. (a) 300 2-D data points drawn randomly from three
normal distributions N ([0,0],0.09I),N ([0,1],0.09I),N ([1,1],0.09I).
Successive moves of iterates towards their corresponding mode
with (b) the MS algorithm (14 modes); (c) the BMS algorithm (14 modes);
(d) the RMS algorithm (5 modes). RMS recovers the main three modes,
and two extra modes due to outliers. Final modes are displayed as green
dots, and the convex hull of the original points belonging to a same final
cluster is drawn in blue.

{y(t+1)k }k∈{1,...,N } (though different from the one in BMS),

then y(t+1)i ∈ C (t)
1 . The same is true ∀i, which implies:

C (t)
1 ⊇ C (t+1)

1 ∀t.

The proof of Lemma 2 in [1] requires showing that, for a
large enough t , no exchange can happen at iteration (t + 1)
between a point y(t)j′ in the interior of the convex hull C (t)

1

and one of its vertices y(t)j , i.e. y(t+1)j′ cannot ‘pass’ y(t+1)j

to become a new vertex of C (t+1)
1 . The transposition of this

lemma to the RMS update equation remains to be formally
proven, but our computer simulations indicate that the same
lemma can be conjectured.

The Lemma 3 of Chen can also be transposed to RMS.
More precisely, the adaptation of Eq. (6) in [1] writes:∑
k 6=i

f
(
xk , y

(t)
i

)
.
(
y(t)k −y

(t+1)
i

)
= f

(
xi, y

(t)
i

)
.
(
y(t+1)i − y(t)i

)
(5)

where without loss of generality y(t)i is assumed being the
only point converging to a vertex of C (t)

1 . For large enough t ,
since y(t+1)i − y(t)i vanishes to zero from the above adapted

Lemma 1, then depending on k , either f
(
xk , y

(t)
i

)
or y(t)k −

y(t+1)i go down to zero. In the first case, y(t)i is no longer
influenced by xk , and y

(t)
k will converge to another limit point,

whereas in the second case, y(t)k will converge to the same
limit point as y(t)i . Note that this only sketches the proof of
the third Lemma.
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In summary, convergence of RMS can be conjectured at
this point, but further investigations would be necessary to
thoroughly prove it. In addition, why RMS provides larger
attraction basins thanMS andBMS remains an open question.

V. NEAREST-NEIGHBOR RMS
Similarly to MS and BMS, the kernel-based RMS algorithm
can be cast to a nearest-neighbor-based algorithm, by set-
ting f as a variable-radius flat kernel based on the KNNs:

fKNN (x, y) =
{
1 if x ∈ KNN(y)
0 else

. (6)

This yields the following nearest-neighbor robust Mean-Shift
(NN-RMS) update rule:

y(t+1)i =

∑N
k=1 fKNN

(
xk , y

(t)
i

)
. y(t)k∑N

j=1 fKNN
(
xj, y

(t)
i

)
=

1
K

∑
k:xk∈KNN(y

(t)
i )

y(t)k (7)

The corresponding algorithm is detailed in Algorithm 1.
Notice that, contrarily to the kernel-based RMS approach,

the new one is point-wise (local), i.e. its radius around one
data point yj is equal to the distance to its K th NN in X .
By doing so, one can expect that NN-RMS better captures
the local complexity of the data distribution, compared to the
kernel-based version.

Algorithm 1 NN-RMS
Input:

X = {xm} , xm ∈ Rn,m = 1, . . . ,N ; the dataset
K , the number of NNs;

Output: The vector of points’ labels c = [c1, . . . , cN ]t ;
the set of cluster exemplars E ;

1) Initialize Y (0)
=

{
y(0)m

}
= {xm} ,m = 1, . . . ,N ;

t = 1;
{
y(1)m

}
=

{
y(0)m

}
;

2) Core loop
while t = 1 ∨

{
y(t)m
}
6=

{
y(t−1)m

}
do

for m = 1 : N do
j = [j1, j2, . . . jK ] = KNN(X , y(t)m );
y(t+1)m =

1
K

∑K
k=1 y

(t)
jk ;

c(t+1)m = j1;
t ← t + 1;

end for
end while
3) Set E as the set of unique indices in c(t);
4) Remap E to cluster labels in [1 . . .C], C = |E |;

Contrarily to NN-BMS, NN-RMS does not update any-
more after a small number of iterations. This can be explained
easily: the KNN search in NN-RMS operates so as to find
the NNs of the current updates within the set of original data
points, which remain static. On the one hand, this is different

from NN-BMS in which the KNN search is performed within
the set of current updates, which do continuously move along
the iterations. On the other hand, the KNN search is similar to
NN-MS (or NNGA [31]), but since NN-RMS is essentially a
BMS algorithm (because next updates are weighted sums of
the current moving points), its convergence is faster than MS.
Indeed, NN-RMS stops if all the moving points have reached
the condition that they share the sameNNswithin the original
dataset, even if the last current iterates are close to each other,
but distinct.

Figure 2 exemplifies the differences between three
NN-basedMS algorithms for mode seeking, namely Nearest-
Neighbor Mean-Shift (NN-MS), Nearest-Neighbor Blur-
ring Mean-Shift (NN-BMS), and NN-RMS. The dataset
is randomly drawn from three 2-D normal distributions
with identical diagonal covariance matrices, and centered at
[0, 0], [0, 1], [1, 1]. This dataset is challenging for the clus-
tering task, the modes of the mixture distribution being hard
to distinguish on Figure 2-(a). Figures 2-(b-d) display the
evolution of each data point to its corresponding mode for the
three methods. Notice that NN-RMS is run until strict fixed-
point convergence, whereas NN-MS and NN-BMS must be
stopped as soon as the mean squared difference between suc-
cessive iterates Y (t) and Y (t−1) is below some threshold ε.
In this experiment, we set ε = 10−8. It can be seen that
NN-RMS again creates larger attraction basins than its MS
and BMS counterparts. NN-RMS is able to recover the exact
number of components in the actual distribution, whereas
NN-MS and NN-BMS still identify a much higher num-
ber of local modes after convergence. Moreover, NN-RMS
requires less iterations to converge (14 iterations) than
NN-MS (16 iterations) and NN-BMS (55 iterations),
as shown in Figure 3.

VI. EXPERIMENTS
In this section, we provide experimental results obtained with
several datasets, both synthetic and real, in order to assess the
performance of the proposed RMS approach for clustering,
and to compare it with the state-of-the-art MS and BMS,
in both configurations, i.e. kernel-based and KNN-based.

A. DATASETS
1) SYNTHETIC DATASETS
To perform the experiments and compare our approach with
other clustering algorithms, we have selected a number of
publicly available synthetic and real datasets. The synthetic
datasets are displayed in Figure 4 with their actual (ground
truth) label shown in specific colors. These datasets show
diverse configurations, from well separated to highly over-
lapped clusters, from convex to non-convex and highly intri-
cate clusters, and from balanced to unbalanced clusters.

2) REAL DATASETS
The real datasets used in the experiments are summarized
in Table 1. They show different configurations, from low to
moderate dimensionality, and various number of instances
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FIGURE 2. Illustration of the differences between NN-MS, NN-BMS and
NN-RMS mode seeking algorithms, for K = 17. (a) 300 2-D data points
drawn randomly from 3 normal distributions N ([0,0],0.16I),N ([0,1],
0.16I),N ([1,1],0.16I). Successive moves of iterates towards their
corresponding mode with (b) the NN-MS algorithm (56 distinct modes);
(c) the NN-BMS algorithm (11 distinct modes); (d) the NN-RMS algorithm.
NN-RMS recovers the exact number of 3 modes. The final modes are
displayed as green dots, and the convex hull of the original points
belonging to a same final cluster is drawn in blue.

FIGURE 3. Evolution of the mean squared error (in log scale) between
successive iterates for NN-MS, NN-BMS and NN-RMS for the dataset
shown in Figure 2. Notice that NN-RMS is stopped at iteration 14 with
zero mean squared error.

and number of clusters. All these datasets have been used
without any pre-processing, except the AttFace dataset for
which the original dimension n = 4096 has been reduced
to n = 20 by means of principal component analysis (PCA).

B. SELECTED METHODS
With regard to similar methods based on theMS principle and
their NN variants, we have compared both the NN-based and
the kernel-based RMS proposed method to their equivalent
MS and BMS counterparts. For comparison, we selected the

FIGURE 4. Various 2D synthetic datasets used in experiments. All but the
DataS1 dataset (available at https://www.science.org/doi/10.1126/
science.1242072) can be downloaded from http://cs.joensuu.fi/
sipu/datasets/.

TABLE 1. Real datasets.

MedoidShift method proposed in [38], which was adapted to
the KNN case, as suggested by the authors. We also com-
pared our approach with two nearest-neighbor density-based
clustering methods, namely kNN-DPC, and GWENN. These
methods were recently improved and compared in [24] for
their applicability to pixel clustering in hyperspectral images.
Theywere chosen because they require the same input param-
eter K as the NN-based MS methods. Also, due to the spe-
cific convergence of NN-BMS as illustrated in Figure 3,
an additional parameter ε was used to stop the algorithm.
In all our experiments, we set ε = 10−6. For kernel-based
MS methods, we have chosen the Gaussian kernel detailed
in Eq. (4).

C. SELECTED VALIDATION CRITERIA
To allow the comparison of different results, we used the
following cluster validation criteria:
• Since all the datasets include a ground truth labeling as
an external data for cluster assessment, the overall accu-
racy (OA), average accuracy (AA), kappa index, can
be obtained after optimal pairing of cluster labels with
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the actual ground truth classes owing to the Munkres
assignment algorithm [39];

• The purity and normalized mutual information (NMI)
indices [40] are also based on the relationship between
the ground truth and the predicted labels, but do not
require label reassignment;

• The consistency violation ration (CVR) [41] is a clus-
tering index based on an information-theoretic concept,
which is also fitted to non-convex clusters; a lower CVR
indicates a better clustering result. Contrarily to the
previous criteria, the CVR index does not require
the ground truth labels, which makes it useful to assess
the results of unsupervised classification.

In Figure 5, we illustrate the evaluation of the results
obtained by applying NN-MS, NN-BMS, NN-RMS, and
NN-MedoidShift to the Flame dataset, as a function of the
number of NNs K in the range [6, 50]. The results clearly
show that NN-RMS provides an estimation of the correct
number of clusters close to the actual one for a much lower
number of NNs K . In comparison, NN-MS gives a very
high number of clusters, as well as NN-BMS and NN-
MedoidShift. The latter reaches the correct number of clusters
for a higher number of NNs than NN-RMS, and for NN-BMS
even higher. The OA index shown on Figure 5-(b) reveals the
potential of NN-RMS to quickly approach the ideal partition
for very low K . On Figure 5-(c), the low CVR indices within
a large range of K confirms the robustness of NN-RMS with
respect to the selection of the parameter K .

D. RESULTS
1) SYNTHETIC DATA
The results obtained on synthetic datasets are given in Table 2.
In addition to the cluster indices mentioned above, we also
added the number of output clusters, the computation time
and the number of iterations for each method used for com-
parison. For each dataset, the clustering task was performed
with two groups of methods, namely NN-based and kernel-
based methods. The values displayed in Table 2 correspond
to the specific values of K (for NN-based methods) or
σ (for the kernel-based methods) providing the best kappa
index.

Concerning the NN-based methods, it can be seen that
NN-RMS provided the best kappa indices on five over
the nine datasets (Aggregation, DataS1, S4, Unbalance and
Worms2d). Furthermore, NN-RMS provided the second best
kappa on three other datasets (Flame, Spiral and Birch1). One
important issue of this comparison is that these best kappa
results for NN-RMS were obtained for the lowest number of
NNs among all the compared methods on eight over the nine
datasets. This result can be considered as significant since
most of the optimal values of K for the other methods are
often more than twice the optimal values for NN-RMS. It is
also noticeable that NN-RMS found the correct number of
clusters in seven over nine datasets, and that this number is
very close to the actual one in the remaining cases.

FIGURE 5. Clustering results for the Flame dataset for various methods,
as a function of the number of neighbors K . (a) Number of clusters;
(b) Overall Accuracy; (c) Consistency Violation Ratio (CVR).

With regard to kernel-based Mean-Shift methods, over the
nine datasets, G-RMS again outperforms G-MS and G-BMS
on six datasets (Flame, Spiral, Aggregation, DataS1, S4 and
Worms2d). Also, in all cases, G-RMS never requires a higher
Gaussian kernel aperture than G-MS and G-BMS to achieve
the results with the best kappa indices, and for most datasets
the optimal aperture is well below the ones provided byG-MS
and G-BMS. This finding is in accordance with the results of
the NN-based MS methods.

Note that for the R15 dataset, all methods (NN- or
kernel-based) perform equally well, except NN-MS and
NN-MedShift with lower kappa, NMI and purity, and
higher CVR.
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TABLE 2. Comparison of clustering methods for various synthetic datasets.
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TABLE 3. Comparison of clustering methods for various real datasets.

2) REAL DATA
Table 3 provides the clustering results obtained on the real
datasets described above. Here, only NN-based MS methods
were considered, as well as kNNDPC, GWENN and NN-
MedShift. Again, these results correspond to the optimal
parameter K in terms of output kappa index. The variety
in data size (from N = 150 to 2310), dimensionality (up
to n = 20), and cluster shape makes it difficult to draw
clear conclusions from these observations. Here, over the six
datasets, in terms of kappa index, NN-RMS performs better
than the other methods in two cases (Banknote and Segment),
whereas NN-BMS is better for three others (Iris, Ecoli and
Attface). However, NN-RMS was able to provide the correct
number of clusters in all cases, except for the Ecoli dataset
for which all the methods failed. This is particularly true for
the Attface dataset, despite the relative high dimensionality
(n = 20) and low populated classes (only 10 data points per
class) which makes it a challenging clustering problem.

Finally, similarly as above for the synthetic datasets, the
best results in terms of kappa index reported for NN-RMS
in all cases correspond to lower values of K than that of the
other methods.

3) APPLICATION TO PIXEL CLUSTERING IN HYPERSPECTRAL
IMAGES
We provide here early experimental results of the applica-
tion of NN-RMS to hyperspectral image pixel clustering.
Hyperspectral images are composed of hundreds of spectral

bands covering a specific spectral range, generally includ-
ing the visible range, the near-infrared range and some-
times the short-wave infrared range. Each pixel can be
viewed as a high-dimensional vector of spectral radiances
(or reflectances) from which a high amount of valuable infor-
mation can be extracted to remotely identify objects or land
cover types when the hyperspectral camera is operated on
board an aerial platform (aircraft of UAV). We have selected
a publicly available hyperspectral image [42]. It comprises
86 × 83 pixels, has 204 spectral bands (n = 204) and
includes six classes of vegetation cover. Figure 6-(a) and (b)
show respectively a color composite of the hyperspectral
image and the corresponding ground truth map used for
clustering assessment. In this experiment, we applied the
same protocol as above, i.e. we applied several nearest-
neighbor-based clustering method with K varying in the
range from 100 to 400 by steps of 20. Four methods were
compared: kNNDPC and GWENN as density-based cluster-
ingmethods, andNN-MedShift andNN-RMS asMean-Shift-
type methods. For each method, we retained the best result as
the onemaximizing the kappa index, because this indexmixes
both the OA and the AA issued from the confusion matrix
(after label reassignment) and generally better represents the
clustering quality. Figure 6-(c)-(f) displays the corresponding
clustering maps with an effort to keep the same color scale
than the ground truth. It is interesting to notice that all four
methods can discover two additional clusters with respect
to the available ground truth. These clusters are visually
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FIGURE 6. Comparison of the best results in hyperspectral image pixel
clustering with NN-density based methods and NN-MS methods.
(a) Salinas-A hyperspectral image, color composite of spectral bands
(R: band 30; G: band 20; B: band 10) (b) Ground truth map (white pixels
are unlabeled); (c) kNNDPC (K = 240, C = 12, kappa = 0.666); (d) GWENN
(K = 280, C = 9, kappa = 0.663); (e) NN-MedShift (K = 380, C = 8,
kappa = 0.658); (f) NN-RMS (K = 200, C = 8, kappa = 0.701).

coherent both from the spectral viewpoint as can be seen from
the composite image, and from the spatial viewpoint since the
additional segments in the maroon and light blue regions of
the ground truth map follow the same spatial structure as the
labeled ones. Despite the high dimensionality of the dataset,
here again, NN-RMS provides the best overall clustering
result among the four methods, still with the lowest number
of nearest neighbors K .

VII. CONCLUSION AND PERSPECTIVES
In this paper, we have proposed a novel Mean-Shift-like
method to data clustering, called Robust Mean-Shift (RMS).
This approach differs from the standard Mean-Shift (MS)
and Blurring Mean-Shift (BMS) ones by its update equation.
More precisely, RMS uses a linear combination of the current
point iterates (similarly to BMS) with weights depending on
the similarity (or distance) of these iterates to the original
data points (similarly to MS). Surprisingly, the proposed
method does not seem to have been studied so far despite its
simplicity.

The RMS update equation has been set up in both a
kernel-based and a nearest-neighbor-based version. In the
kernel-based case, the convergence of point iterates has
been conjectured based on the BMS convergence theorem
of Chen [1].

RMS has several advantages over MS and BMS:

• For a same kernel bandwidth (in the kernel-based imple-
mentation) or number of NNs (in nearest-neighbor-
based implementation), RMS shows larger basins of
attraction than MS and BMS. One consequence is that
the size of the NN graph required to achieve the same
number of clusters is smaller for NN-RMS than for
NN-MS and NN-BMS.

• Experimental results on synthetic and real datasets show
that RMS in most cases outperformsMS and BMS in the
clustering task.

• Though the RMS update equation is closer in spirit to
BMS, their NN-based versions have different behaviors
when the iterates get close to their fixed-point limit:
whereas NN-BMS iterates continue to evolve until the
mean squared error between the current and the previous
iterates reach a specified small value, NN-RMS stops as
soon as all iterates share the same set of NNs within the
original dataset. This property is also valid for NN-MS
(or NNGA).

Perspectives of this work are two-fold, and will concern (i)
the optimization of RMS parametrization (kernel definition,
kernel aperture, and number of NNs), and (ii) theoretical
proofs of RMS convergence properties, especiallywith regard
to convergence rate and larger attraction basins with respect
to the standard MS and BMS clustering methods.
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