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Aims: Iron deficiency (ID) is linked to reduced aerobic exercise capacity and poor
prognosis in patients with heart failure (HF) with reduced ejection fraction (HFrEF);
however, data for HF with preserved ejection fraction (HFpEF) is scarce. We assessed
the relationship between iron status and diastolic dysfunction as well as aerobic exercise
capacity in HFpEF, and the contribution of iron status to patient phenotyping.

Methods and Results: Among 180 patients with HFpEF (66% women; median age,
71 years) recruited for the Optimizing Exercise Training in Prevention and Treatment
of Diastolic HF (OptimEx-Clin) trial, baseline iron status, including iron, ferritin, and
transferrin saturation, was analyzed (n = 169) in addition to exercise capacity (peak
oxygen uptake [peak V̇O2]) and diastolic function (E/e′). ID was present in 60% of
patients and was more common in women. In multivariable linear regression models,
we found that diastolic function and peak V̇O2 were independently related to iron
parameters; however, these relationships were present only in patients with HFpEF and
ID [E/e′ and iron: β −0.19 (95% confidence interval −0.32, −0.07), p = 0.003; E/e′

and transferrin saturation: β −0.16 (−0.28, −0.04), p = 0.011; peak V̇O2 and iron: β

3.76 (1.08, 6.44), p = 0.007; peak V̇O2 and transferrin saturation: β 3.58 (0.99, 6.16),
p = 0.007]. Applying machine learning, patients were classified into three phenogroups.
One phenogroup was predominantly characterized by the female sex and few HFpEF
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risk factors but a high prevalence of ID (86%, p < 0.001 vs. other phenogroups). When
excluding ID from the phenotyping analysis, results were negatively influenced.

Conclusion: Iron parameters are independently associated with impaired diastolic
function and low aerobic capacity in patients with HFpEF and ID. Patient phenotyping in
HFpEF is influenced by including ID.

Clinical Trial Registration: www.ClinicalTrials.gov, identifier NCT02078947.

Keywords: heart failure, echocardiography, machine learning, exercise testing, diastolic dysfunction, iron
deficiency, artificial intelligence, HFpEF

INTRODUCTION

In patients with heart failure (HF) and reduced ejection fraction
(HFrEF), iron deficiency (ID) is a known predictor of adverse
outcomes (Jankowska et al., 2010; Klip et al., 2013). As iron
is a key factor in erythropoiesis, energy metabolism, and
mitochondrial function, disturbances in iron metabolism also
impact functional status, including exercise capacity (Okonko
et al., 2011). The diagnosis of ID in HFrEF is crucial, since
intravenous correction of ID improves exercise performance,
symptoms, and quality of life and might reduce hospitalizations,
regardless of the presence of anemia (Anker et al., 2009;
Ponikowski et al., 2015, 2020).

Less is known about the influence of iron status on functional
status and myocardial performance in HF with preserved
ejection fraction (HFpEF). HFpEF accounts for half of the HF
hospital admissions, and its pathophysiology is characterized by
both cardiac (e.g., diastolic dysfunction) and non-cardiac (e.g.,
skeletal myopathy) abnormalities causing exercise intolerance
(Shimiaie et al., 2015; Gevaert et al., 2019; Pugliese et al.,
2019). Observational data show a strong relationship between
ID and a reduced aerobic exercise capacity, measured as peak
oxygen uptake (peak V̇O2), in patients with HFpEF (Beale et al.,
2019). In addition, ID affects immune responses and oxidative
stress mechanisms underlying these cardiac and non-cardiac
abnormalities (Macdougall et al., 2012; Paulus and Tschöpe,
2013). In vitro, ID is associated with impaired mitochondrial
respiration and reduced contractility and relaxation in human
cardiomyocytes (Hoes et al., 2018). However, a relationship of
ID to either exercise capacity or left ventricular (LV) stiffness
could not be found in a small study of patients with HFpEF
(Kasner et al., 2013).

While several drugs are able to reduce HF hospitalizations,
a therapy that improves mortality in HFpEF is still lacking
(Gevaert et al., 2022). A key reason for this could be the
underlying phenotypic heterogeneity of HFpEF (Shah et al.,
2016). Subdividing and classifying patients with HFpEF by
different disease phenotypes may increase our understanding of
HFpEF pathophysiology, simplify its diagnosis, and allow for
targeted management instead of a “one size fits all” approach
(Shah et al., 2016; Gevaert et al., 2020).

Artificial intelligence can aid in this classification by
recognizing patterns in large datasets. In unsupervised machine
learning, relationships are determined based on raw data,
independent of the existing classification. One approach is to find

“clusters” of similar data items: subjects in the same cluster are
similar to each other and dissimilar to subjects in other clusters.
Previously, machine learning has been able to identify clusters of
patients with different prognoses in patients with HFrEF and/or
HFpEF (Kao et al., 2015; Shah et al., 2015; Hedman et al., 2020).

In this study, we assessed the iron status of patients
with HFpEF included in the Optimizing Exercise Training in
Prevention and Treatment of Diastolic Heart Failure (OptimEx-
Clin) multicenter trial (Mueller et al., 2021). We aimed to
establish the relationship of iron parameters with diastolic
function and aerobic exercise capacity, and the contribution of
iron status to patient phenotyping using machine learning.

MATERIALS AND METHODS

Patients and Study Design
This is a subanalysis of the baseline data of the OptimEx-
Clin study, whose rationale, design, and primary outcomes have
been published previously (Suchy et al., 2014; Mueller et al.,
2021). Briefly, OptimEx-Clin was a randomized multicenter trial
assessing the effect of different training modalities on peak V̇O2
in patients with HFpEF. This study was conducted between
September 2014 and July 2018 at the Technical University of
Munich, Heart Center Leipzig, and Charité Universitätsmedizin
Berlin in Germany, and Antwerp University Hospital in Belgium.
Inclusion criteria were (i) signs and symptoms of HF using the
New York Heart Association classes II or III, (ii) LV ejection
fraction ≥ 50%, (iii) diastolic dysfunction defined as E/e′ > 15
or E/e′ > 8 + N-terminal pro-B-type natriuretic peptide (NT-
proBNP) > 220 pg/mL (Paulus et al., 2007), (iv) sedentary
lifestyle, and (v) optimal medical treatment and clinically stable
for ≥ 6 weeks.

This study complied with the Declaration of Helsinki and was
approved by local ethics committees at the participating centers.
We obtained written informed consent from each participant.

Laboratory Analysis and Definitions
Iron status (i.e., serum iron, ferritin, and total iron-binding
capacity) was assayed centrally at the Antwerp University
Hospital using a Dimension Vista 1,500 system (Siemens) and
could be determined in 169 of 180 patients randomized to
intervention. Hemoglobin (Hb) was assayed locally. NT-proBNP
was measured centrally at the Clinical Institute of Medical
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and Chemical Laboratory Diagnostics, Medical University of
Graz, Austria. Transferrin saturation was calculated as serum
iron/total iron-binding capacity. Absolute ID was defined as
ferritin < 100 µg/L. Functional ID was defined as ferritin 100–
299 µg/L with transferrin saturation < 20% (Anker et al.,
2009). Anemia was defined as Hb < 120 g/L in women and
Hb < 130 g/L in men.

Echocardiography and Cardiopulmonary
Exercise Testing
Echocardiography data were analyzed and blinded at the
echocardiography core lab (Berlin, Germany). Cardiopulmonary
exercise testing (CPET) data were analyzed and blinded at the
CPET core lab (Munich, Germany). Protocols were described
previously (Suchy et al., 2014; Mueller et al., 2021). Lean body
mass was calculated as total weight—(1/body fat), with body fat
calculated using the Gallagher formula (Gallagher et al., 2000).
Predicted peak heart rate was calculated according to the study by
Nes et al. (2013).

Unsupervised Machine Learning
For machine learning and statistical analysis, we used R software
(R Foundation for Statistical Computing) version 3.5.1. All
176 patients who met the inclusion criteria for OptimEx-
Clin were included for this analysis. First, we evaluated all
94 baseline clinical, echocardiographic, and CPET variables for
redundancy (Supplementary Table 1). We filtered variables that
had > 90% identical values, > 30% missing values, or correlated
at Spearman’s correlation coefficient of > 0.5, keeping the variable
that was most informative and had the least missingness. In
addition, variables that were used in the calculation of another
variable were filtered regardless of their correlation coefficient
[e.g., weight and height were filtered, and body mass index (BMI)
was retained] (Shah et al., 2015; Gevaert et al., 2021). Thus, we
retained 33 of 94 variables (Supplementary Table 1).

Next, a dissimilarity matrix was computed using the Gower
distance, which was chosen because it can handle categorical
variables and missing values (Kaufman and Rousseeuw, 1990).
For missing values, two cases were compared if there was at
least one variable where both had correct values. The optimal
algorithm for clustering was assessed by comparing multiple
internal validation and cluster stability statistics and 1,000-fold
bootstrap resampling (clValid and fpc packages) (Hennig, 2007).
The optimal number of clusters was assessed using the gap
statistics (cluster package) (Tibshirani et al., 2001). Agglomerative
hierarchical clustering with Ward linkage was superior to other
strategies. We then repeated the analysis excluding ID.

Statistical Analysis
Baseline characteristics were compared between patients with
ID vs. without ID, and between clusters found by unsupervised
machine learning. In normally distributed data (the Shapiro–
Wilk test) with equal variances (Levene’s test), we used a
one-way analysis of variance (ANOVA). In case of unequal
variances, we used a White-corrected one-way ANOVA instead
(car package). In non-normally distributed variables, we used the

Kruskal-Wallis test instead. For categorical variables, Pearson’s
chi-square test was used.

A logistic regression model was constructed for ID and
sex, and the odds ratio with 95% confidence interval (CI) was
computed. E/e′ septal ratio and peak V̇O2 were defined as
parameters of interest for linear models. For univariate analysis,
Pearson’s correlation coefficients were used. A multivariable
linear regression model was constructed for each significant
correlation between iron status (e.g., iron, ferritin, and transferrin
saturation) vs. the parameters of interest. Age and sex were
predefined as covariates and were added in one block to the
model. The population was then stratified by iron status, and
regressions were repeated.

Model diagnostics included residual distributions,
standardized residuals vs. fitted values plots, and quantile-
quantile plots (gvlma package). If anomalies were noted
on diagnostics, analysis was repeated after logarithmic
transformation of the outcome variable. A two-sided
p-value < 0.05 was considered significant. P-values were adjusted
for multiple comparisons according to the Holm method or
Dunn method after the Kruskal-Wallis test (multcomp package).

RESULTS

Patient characteristics
In OptimEx-Clin, 180 patients were randomized, of whom 4
were excluded after blinded review of eligibility (Mueller et al.,
2021). Clinical characteristics of 169 patients with available
iron measurements are shown in Table 1, stratified according
to iron status. For the total population, patients were elderly
[median age, 71 (65–76) years] and predominantly women
(66%). Typical comorbidities included hypertension (85%),
dyslipidemia (71%), obesity (44%), chronic kidney disease (39%),
coronary artery disease (CAD) (27%), and atrial fibrillation
(27%). Patients were treated with angiotensin-converting enzyme
inhibitors or angiotensin receptor blockers (71%), beta-blockers
(64%), diuretics (54%), and statins (53%). Patients were well-
compensated with a median NT-proBNP value of 299 (146–620)
pg/mL and 74% of patients were grouped in New York Heart
Association class II.

Iron Status in Patients With HF With
Preserved Ejection Fraction
ID was present in 101 (60%) patients at baseline. Of patients
with ID, 35 (34%) had transferrin saturation < 20% and 95
(94%) had ferritin < 100 mg/dl. Women were more prone to
have ID (women 69%, men 41%, odds ratio 3.21, CI 1.67–6.28,
p = 0.0005). Patients with ID had lower iron, ferritin, transferrin
saturation, and Hb (all p < 0.05, Table 1). Anemia was present in
36 (21%) patients, of whom 25 (69%) had concurrent ID.

There were no differences in the medical history or clinical
parameters between patients with and without ID (Table 1).
Patients without ID more frequently took angiotensin blockers,
calcium antagonists, and diuretics. Patterns of antiplatelet or
anticoagulant drug use did not differ between patients with and
without ID (Table 1).
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TABLE 1 | Characteristics of the study population, stratified according to the presence of iron deficiency.

Characteristic Iron deficient (n = 101) Normal iron status (n = 68) P-value

Age (years) 69 (64–76) 72 (68–76) 0.091

Sex (n,% female) 77 (76) 34 (50) < 0.001

Medical history

Atrial fibrillation 31 (31) 18 (26) 0.674

Cerebrovascular disease 16 (16) 4 (6) 0.085

Chronic kidney disease 35 (35) 26 (38) 0.755

Chronic obstructive pulmonary disease 5 (5) 7 (10) 0.307

Coronary heart disease 27 (28) 23 (34) 0.529

Diabetes 27 (27) 18 (27) 1.000

Family history of cardiovascular disease 27 (27) 12 (18) 0.254

Hypertension 84 (83) 63 (93) 0.118

Hyperlipidemia 75 (76) 44 (65) 0.169

Peripheral vascular disease 7 (7) 2 (3) 0.433

Sleep apnea 15 (15) 17 (26) 0.137

Smoking, current or previous 47 (47) 29 (43) 0.733

Valvular heart disease 6 (6) 3 (4) 0.932

Medication use

ACE inhibitor or ARB 66 (65) 60 (88) 0.002

Aldosterone antagonist 9 (9) 10 (15) 0.357

Anticoagulant 37 (37) 19 (28) 0.312

Antiplatelet 34 (34) 25 (37) 0.802

Beta-blocker 63 (62) 49 (72) 0.254

Calcium antagonist 28 (28) 34 (50) 0.005

Diuretic 51 (50) 47 (69) 0.025

Glucose lowering 24 (24) 15 (22) 0.943

Lipid lowering 54 (53) 50 (59) 0.596

Clinical examination

Blood pressure, systolic (mmHg) 128 ± 14 128 ± 14 0.951

Blood pressure, diastolic (mmHg) 75 ± 10 74 ±10 0.460

Body mass index (kg/m2) 29.1 (25.7–32.1) 29.9 (27.1–34.8) 0.060

KCCQ symptom score 70 (52–81) 75 (56–82) 0.449

NYHA class

II (n,%) 76 (75) 50 (74) 0.943

III (n,%) 25 (25) 18 (26)

Rest heart rate (bpm) 65 ± 11 64 ±9 0.490

Laboratory analysis

Iron (µmol/L) 15.2 (11.8–18.8) 17.5 (14.6–21.1) 0.003

Ferritin (µg/L) 49 (34–79) 476 (318–705) < 0.001

Transferrin saturation (%) 23.2 (17.6–29.5) 28.3 (24.0–35.2) < 0.001

Anemia* (n,%) 25 (25) 11 (16) 0.253

Hemoglobin (g/L) 133 ± 15 138 ± 14 0.030

EGFR (mL/min/1.73 m2) 70.8 (58.0–86.7) 71.9 (56.1–83.6) 0.831

NT-proBNP (pg/mL) 317 (150–604) 285 (122–629) 0.839

Cardiopulmonary exercise test

Peak heart rate (bpm) 124 ± 27 120 ± 24 0.313

Percent predicted peak heart rate (%) 74 ± 16 72 ±14 0.464

Peak V̇O2 (mL/kg/min) 18.6 ± 5.7 19.2 ± 4.8 0.476

Peak V̇O2 per lean body mass (mL/kg/min) 29.9 ± 8.8 30.6 ± 7.2 0.592

Percent predicted peak V̇O2 (%) 80.9 (66.7–99.1) 89.4 (70.2–105.9) 0.083

V̇O2 at the aerobic threshold (mL/min) 857 ± 208 1,025 ± 298 < 0.001

Peak VO2 pulse (mL/beat) 11.8 ± 3.3 14.2 ± 3.6 < 0.001

Peak workload (W) 93 (72–117) 100 (84–119) 0.093

V̇E/V̇CO2 slope 33.9 (29.4–39.3) 31.3 (28.5–35.4) 0.015

(Continued)
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TABLE 1 | (Continued)

Characteristic Iron deficient (n = 101) Normal iron status (n = 68) P-value

Echocardiography

E/A ratio 1.08 (0.85–1.40) 0.93 (0.79–1.20) 0.033

E/e’ ratio, septal 14.8 (13.1–17.0) 15.6 (12.5–18.1) 0.597

Left atrial volume index (mL/m2) 34.7 (29.5–45.0) 34.7 (29.3–44.3) 0.540

LV mass index (g/m2) 155 (132–203) 190 (166–230) 0.004

LV ejection fraction (%) 60 (55–64) 61 (55–64) 0.512

PAPs (mmHg) 30.4 ± 8.2 31.5 ± 7.6 0.403

TAPSE (mm) 21.3 ± 3.5 21.7 ± 3.7 0.518

Continuous variables with normal distribution: mean ± SD and t-test; continuous variables with skewed distribution: median (25th–75th percentile) and Wilcoxon’s rank
sum test; categorical variables: n (% of total) and chi-square test. *Anemia was defined as hemoglobin < 120 g/L in women and < 130 g/L in men.
ACE, angiotensin-converting enzyme, ARB, angiotensin receptor blocker; EGFR, estimated glomerular filtration rate (CKD-EPI formula); KCCQ, Kansas City
Cardiomyopathy Questionnaire; LV, left ventricular; NT-proBNP, N-terminal-pro-B-type natriuretic peptide; NYHA, New York Heart Association; PAPs, systolic pulmonary
artery pressure; TAPSE, tricuspid annular plane systolic excursion; V̇E, ventilation; V̇CO2, carbon dioxide production; V̇O2, oxygen uptake.

TABLE 2 | Associations of baseline iron status with cardiac function and aerobic exercise capacity.

Pearson correlation Multivariable linear regression

r p β 95% CI Adj. R2 p

All patients (n = 169)

E/e’ septal (ratio)

Iron (µmol/L) –0.163 0.035 –0.129 –0.244, –0.014 0.031 0.029

Transferrin saturation (%) –0.155 0.045 –0.113 –0.221, –0.006 0.027 0.039

Peak V̇O2 (mL/min/kg)

Iron (µmol/L) 0.186 0.015 2.629 0.526, 4.731 0.145 0.015

Transferrin saturation (%) 0.196 0.011 2.370 0.418, 4.323 0.144 0.018

Iron deficiency (n = 101)

E/e’ septal (ratio)

Iron (µmol/L) –0.253 0.012 –0.193 –0.318, –0.068 0.086 0.003

Transferrin saturation (%) –0.232 0.022 –0.161 –0.284, –0.039 0.064 0.011

Peak V̇O2 (mL/min/kg)

Iron (µmol/L) 0.269 0.006 3.758 1.075, 6.442 0.164 0.007

Transferrin saturation (%) 0.301 0.002 3.578 0.993, 6.163 0.164 0.007

No iron deficiency (n = 68)

E/e’ septal (ratio)

Iron (µmol/L) –0.021 0.866 0.005 –0.255, 0.265 –0.031 0.970

Transferrin saturation (%) –0.030 0.809 –0.040 –0.283, 0.203 –0.030 0.742

Peak V̇O2 (mL/min/kg)

Iron (µmol/L) –0.036 0.769 –0.419 –4.267, 3.428 0.111 0.828

Transferrin saturation (%) 0.067 0.586 –0.681 –4.272, 2.910 0.112 0.706

Multivariable linear regressions were adjusted for age and sex. All variables expect peak V̇O2 were log transformed before analysis. Adj, adjusted. Bold type: p < 0.05.

The CPET demonstrated a similar peak V̇O2 in patients with
or without ID; however, other parameters associated with the
prognosis of patients with HF were significantly worse in patients
with ID, including steeper ventilation/carbon dioxide production
(VE/VCO2) slope, lower peak O2 pulse, and lower V̇O2 at aerobic
threshold (Table 1). Echocardiography revealed a higher E/A
ratio, and lower LV mass, in patients with ID (Table 1).

Association With Cardiac Diastolic
Function and Aerobic Exercise Capacity
Patients with lower transferrin saturation or lower serum iron
had a higher E/e′ ratio (Table 2). There were no significant

correlations between iron status and systolic pulmonary artery
pressure, left atrial volume, or LV ejection fraction. Patients with
lower transferrin saturation or lower serum iron also had a lower
peak V̇O2 (Table 2). There were no significant correlations of
ferritin with either diastolic function or aerobic exercise capacity.

In multivariable linear regression models, the relationships
of lower iron parameters (e.g., iron, transferrin saturation) with
reduced E/e′ ratio and lower peak V̇O2 were confirmed to be
independent of age and sex (Table 2). However, the proportion
of variance in diastolic function or peak V̇O2 explained by iron
status was small (all adjusted R2 < 0.2).

We then stratified patients according to the presence of ID
and repeated the regression analyses. This demonstrated that the
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FIGURE 1 | Relationship of iron parameters to E/e′ septal ratio and peak V̇O2 in patients with HFpEF, stratified according to iron status. (A) Transferrin saturation and
E/e′ septal ratio, both log scale. (B) Transferrin saturation (log scale) and peak V̇O2. (C) Iron and E/e′ septal ratio, both log scale. (D) Iron (log scale) and peak V̇O2.
P-values from linear regression analyses in patients with ID and without ID. ID, iron deficiency; NID, no iron deficiency; peak V̇O2, peak oxygen uptake.

relationship between iron parameters and diastolic function or
peak V̇O2 only exists in patients with ID (Figure 1 and Table 2).
In patients without ID, there was no significant correlation
between iron parameters on the one hand, and diastolic function
or aerobic exercise capacity on the other hand (Figure 1). These
results were altered only marginally when including Hb as a
covariate (data not shown).

Iron Deficiency and HF With Preserved
Ejection Fraction Phenotypes
Unsupervised clustering using relevant baseline variables from
all 176 patients included in OptimEx-Clin resulted in three
distinct phenogroups (i.e., bootstrap Jaccard coefficients 0.68,
0.66, and 0.66; > 0.6 indicating stable clusters; gap statistics for
3 clusters = 0.378 ± 0.012, indicating 3 clusters as optimum;
Supplementary Figure 1). Figure 2 and Table 3 show baseline
variables stratified per phenogroup.

In phenogroup 1 (n = 47), patients were the youngest
(median age, 65 years) and predominantly women (77%), had
fewer comorbidities, and were least likely to use cardiovascular
drugs (Figures 2A,E,H). Their estimated glomerular filtration
rate was the highest, NT-proBNP levels were the lowest, and

CPET performance was the best (Figures 2D,F). In contrast, the
prevalence of ID was remarkably high in this phenogroup (86%,
Figure 2B).

In phenogroup 2 (n = 74), patients aged 72 years on
average and were predominantly women (91%). Cardiovascular
risk factors were highly prevalent, including hypertension (99%)
and hyperlipidemia (70%). This phenogroup had the highest
prevalence of atrial fibrillation (42%, Figure 2I) and chronic
kidney disease (43%).

In phenogroup 3 (n = 55), patients were predominantly
men (84%). Again, patients were elderly (median age, 74 years)
and > 90% had hypertension and hyperlipidemia. This
phenogroup has a remarkably high prevalence of coronary heart
disease (70%), clustering with diabetes, male sex, and sleep apnea
(Figure 2H). Patients in phenogroup 3 had a higher prevalence of
diabetes (47%).

Repeating the clustering analysis without including ID as a
variable resulted in 8 phenogroups that were significantly less
stable (patients more prone to be allocated to another cluster
when repeating the analysis) with a mean bootstrap Jaccard
coefficient of 0.48 ± 0.13, compared to 0.67 ± 0.01 in the
initial analysis (p = 0.005) (Supplementary Figures 2, 3 and
Supplementary Table 2).
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FIGURE 2 | Three phenogroups of patients with HFpEF identified through machine learning and their characteristics. Heatmap with columns representing individual
patients and rows representing individual characteristics, both grouped in clusters by unsupervised machine learning. Three phenogroups (numbers 1–3) and 9
characteristics clusters (letters A–I) were distinguished. ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; Clin, clinical examination; CVD,
cardiovascular disease; Echo, echocardiography; EGFR, estimated glomerular filtration rate; Hist, medical history; KCCQ, Kansas City Cardiomyopathy
Questionnaire; LAVi, left atrial volume index; LV, left ventricular; Med, current medication; NT-proBNP, N-terminal pro-B-type natriuretic peptide; NYHA, New York
Heart Association; TAPSE, tricuspid annular plane systolic excursion; TR, tricuspid regurgitation; V̇CO2, carbon dioxide production; V̇E, ventilation; V̇O2, oxygen
uptake.

DISCUSSION

We concluded that in patients with HFpEF, (i) ID is a very
frequent comorbidity, (ii) iron parameters relate to diastolic
function and aerobic exercise capacity only in patients with ID,
(iii) patient phenotyping is significantly impacted by including
ID, and (iv) a phenogroup of younger women with HFpEF has
a high prevalence of ID but a few other comorbidities. Together,
this forms evidence of a clinically important link between HFpEF
and ID in some but not all patients.

The guideline-recommended management of HFpEF is still
based on treating symptoms and controlling comorbidities
(Yancy et al., 2017). In this study, we confirmed that ID is
an important comorbidity in HFpEF. Affecting 59% of this

multicenter European HFpEF population, ID is more prevalent
than obesity, diabetes mellitus, CAD, chronic kidney disease, or
atrial fibrillation. Previous reports in smaller HFpEF populations
found a comparable prevalence of ID, ranging from 57 to 70%
(Kasner et al., 2013; Núñez et al., 2016; Martens et al., 2018). ID
seems more common in HFpEF than HFrEF, where a prevalence
of 37–50% is reported (Jankowska et al., 2010; Okonko et al.,
2011; Klip et al., 2013; Grote Beverborg et al., 2018). This could
be explained by the larger proportion of women among patients
with HFpEF, as female sex is also a known risk factor for ID
(Beale et al., 2018).

Indeed, in our study, women had a threefold higher risk
of ID compared to men. The cause of this sex difference is
not clear, as ID in women is traditionally attributed to blood
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TABLE 3 | Characteristics of the study population, stratified according to phenogroup.

Characteristic Phenogroup 1 (n = 47) Phenogroup 2 (n = 74) Phenogroup 3 (n = 55) P-value

Age (years) 65 (56–69)*† 72 (68–76) 74 (69–77) < 0.001

Sex (n,% female) 41 (77)† 67 (91)† 9 (16) < 0.001

Medical history

Atrial fibrillation 3 (6)*† 31 (42) 15 (27) < 0.001

Cerebrovascular disease 0 (0)* 13 (18) 7 (13) 0.010

Chronic kidney disease 11 (23) 32 (43) 21 (38) 0.090

Chronic obstructive pulmonary disease 0 (0) 5 (7) 8 (15) 0.012

Coronary heart disease 2 (4)† 10 (14)† 38 (70) < 0.001

Diabetes 7 (15)† 13 (18)† 26 (47) < 0.001

Family history of cardiovascular disease 10 (21) 16 (21) 13 (25) 0.917

Hypertension 25 (53)*† 73 (99) 52 (95) < 0.001

Hyperlipidemia 23 (50)*† 51 (70)† 49 (89) < 0.001

Peripheral vascular disease 1 (2) 1 (1) 7 (13) 0.008

Sleep apnea 4 (9)† 7 (9)† 22 (42) < 0.001

Smoking, current or previous 22 (47)*† 14 (19)† 43 (78) < 0.001

Valvular heart disease 2 (4) 3 (4) 4 (7) 0.677

Medication use

ACE inhibitor or ARB 14 (30)*† 66 (89) 49 (89) < 0.001

Aldosterone antagonist 0 (0)* 12 (16) 7 (13) 0.013

Anticoagulant 5 (11)* 34 (46) 17 (31) 0.001

Antiplatelet 9 (19)† 14 (19)† 38 (69) < 0.001

Beta-blocker 11 (23)*† 62 (84) 41 (75) < 0.001

Calcium antagonist 2 (4)*† 33 (45) 28 (51) < 0.001

Diuretic 5 (11)*† 60 (81) 37 (67) < 0.001

Glucose lowering 4 (9)† 10 (14)† 16 (29) 0.011

Lipid lowering 9 (19)*† 40 (54)† 47 (85) < 0.001

Clinical examination

Blood pressure, systolic (mmHg) 125 ± 14 126 ± 15 131 ± 12 0.114

Blood pressure, diastolic (mmHg) 77 ± 9 74 ±11 73 ± 10 0.072

Body mass index (kg/m2) 28.2 (24.4–31.3) 30.3 (27.0–33.5) 29.6 (27.0–33.2) 0.072

KCCQ symptom score 68 (46–81) 71 (54–80) 74 (55–84) 0.810

NYHA class

II (n,%) 42 (89) 52 (70) 36 (65) 0.013

III (n,%) 5 (11)† 22 (30) 19 (35)

Rest heart rate (bpm) 67 ± 10 63 ±11 64 ± 9 0.163

Laboratory analysis

Iron deficiency (n,%) 37 (86)*† 42 (58) 22 (42) <0.001

Iron (µmol/L) 15.0 (12.1–19.8) 16.7 (13.3–20.8) 16.6 (13.6–19.7) 0.506

Ferritin (µg/L) 66 (35–93)*† 91 (48–207) 141 (43–219) 0.002

Transferrin saturation (%) 24.9 (18.9–31.8) 25.8 (21.5–32.4) 24.7 (21.5–31.3) 0.660

Anemia (n,%) 7 (16) 13 (18) 16 (30) 0.149

Hemoglobin (g/L) 136 ± 15 133 ± 14 136 ± 16 0.497

EGFR (mL/min/1.73 m2) 85.6 (71.8–94.8)*† 67.8 (54.9–76.9) 69.0 (53.5–82.6) < 0.001

NT-proBNP (pg/mL) 153 (56–248)*† 379 (189–736) 332 (191–620) < 0.001

Cardiopulmonary exercise test

Peak heart rate (bpm) 141 ± 24*† 116 ± 24 117 ± 24 < 0.001

Percent predicted peak heart rate (%) 83 ± 13*†† 69 ±14 71 ± 14 < 0.001

Peak V̇O2 (mL/kg/min) 21.0 ± 5.7* 17.6 ± 4.9 18.7 ± 5.0 0.002

Peak V̇O2 per lean body mass (mL/kg/min) 34.0 ± 7.2*† 29.8 ± 8.1 27.8 ± 6.6 < 0.001

Percent predicted peak V̇O2 (%) 82.3 (70.0–98.5) 81.7 (66.9–96.6) 87.7 (70.0–113.4) 0.143

V̇O2 at aerobic threshold (mL/min) 918 ± 299 846 ± 208† 1,007 ± 260 0.002

Peak VO2 pulse (mL/beat) 11.2 ± 2.9† 12.2 ± 3.5† 14.4 ± 3.6 < 0.001

Peak workload (W) 107 (88–134)* 90 (69–107)† 105 (81–124) 0.002

V̇E/V̇CO2 slope 31.8 (28.7–36.0) 32.3 (28.6–35.5)† 34.5 (30.4–42.0) 0.028

(Continued)
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TABLE 3 | (Continued)

Characteristic Phenogroup 1 (n = 47) Phenogroup 2 (n = 74) Phenogroup 3 (n = 55) P-value

Echocardiography

E/A ratio 1.05 (0.83–1.22) 1.18 (0.84–1.58) 0.97 (0.79–1.16) 0.099

E/e’ ratio, septal 14.6 (13.7–16.1) 15.0 (11.9–17.5) 16.0 (13.5–18.5) 0.098

Left atrial volume index (mL/m2) 32.3 (27.4–36.2)* 40.1 (32.3–46.6)† 33.8 (27.1–40.5) 0.003

LV mass index (g/m2) 155 ± 43*† 178 ± 40† 217 ± 55 < 0.001

LV ejection fraction (%) 60 (58–63) 61 (56–64) 58 (55–65) 0.283

PAPs (mmHg) 28.3 (25.4–31.4) 30.3 (24.6–35.1) 31.0 (27.9–35.0) 0.145

TAPSE (mm) 22.1 ± 3.4 20.7 ± 3.7 22.0 ± 3.7 0.076

Normally distributed variables: mean ± SD and one-way ANOVA. Skewed variables: median (interquartile range) and Kruskal-Wallis test. Categorical variables: n (%) and
Pearson’s chi-square test.
ACE, angiotensin-converting enzyme; ARB, angiotensin receptor blocker; EGFR, estimated glomerular filtration rate; LV, left ventricular; NT-proBNP, N-terminal pro-B-type
natriuretic peptide; NYHA, New York Heart Association; PAPs, systolic pulmonary artery pressure; TAPSE, tricuspid annular plane systolic excursion; V̇CO2, carbon dioxide
production; V̇E, ventilation; V̇O2, oxygen uptake.
*Multiple comparisons-adjusted p < 0.05 vs. phenogroup 2. †Multiple comparisons-adjusted p < 0.05 vs. phenogroup 3.

loss during menstruation and higher iron requirements during
pregnancy (Beale et al., 2018), but all women in our study were
postmenopausal. Other risk factors shared by HFpEF and ID
(e.g., age, chronic kidney disease, and obesity) did not differ
between patients with and without ID in our study.

In multivariable regression, the relationship between iron
parameters and peak V̇O2 was minor. This confirms findings
from a recent analysis in 300 patients with HFpEF (Barandiarán
Aizpurua et al., 2021). Previously, smaller studies found more
important relationships between iron parameters and peak V̇O2
(Núñez et al., 2016; Martens et al., 2018). Patients in these
studies had a much lower exercise capacity than the current
population, so disease severity is possibly a factor to consider in
the relationship between iron status and aerobic exercise capacity.
However, several other CPET parameters showed unfavorable
changes in patients with ID: steeper VE/VCO2 slope, lower peak
O2 pulse, and lower V̇O2 at aerobic threshold (Table 1). These
parameters have all been associated with the prognosis of patients
with HF (Guazzi et al., 2012).

A possible explanation for these relations is the influence
of ID on the O2 cascade. The Fick principle states that V̇O2
is the product of maximal cardiac output and arteriovenous
oxygen extraction (Ca-vO2). Both were impaired in patients
with ID in a study combining CPET with echocardiography
(Martens et al., 2021). Ca-vO2 is determined by lung O2 diffusion,
peripheral oxygen extraction, and O2 carrying capacity of Hb
(Poole et al., 2018). Iron is also a crucial cofactor in mitochondrial
oxidative phosphorylation (Gevaert et al., 2019). Thus, ID
can reduce cardiac output through impaired mitochondrial
function in cardiac myocytes, as well as Ca-vO2 through reduced
O2 carrying capacity of Hb and impaired skeletal myocyte
mitochondrial function.

This is the first study to demonstrate a significant association
between iron parameters and diastolic function. In an
observational study including 15 patients with HFpEF and
ID, Kasner et al. (2013) could not find a relationship between
iron parameters and invasive diastolic function. In our study,
the relationship was weak after adjustment for age and sex in a
multivariable linear regression model. However, when stratifying

the population for the presence of ID, the relationship between
diastolic function and iron parameters proved to be stronger in
patients with ID.

From these data, it may be hypothesized that in patients
with ID, iron depletion directly or indirectly impairs diastolic
function. Mechanistic animal studies provide further insight in
this relationship. Inducing severe ID-anemia in healthy rats
directly caused diastolic dysfunction and HFpEF, associated
with cardiomyocyte hypertrophy and fibrosis, as well as lung
edema (Naito et al., 2009). In another study of the Dahl salt-
sensitive rats, animals fed on high-salt diet rats developed not
only HFpEF but also ID and mild anemia (Naito et al., 2011).
This was associated with a downregulation of hepcidin, but in
sharp contrast to ID without HFpEF induced by iron-depleted
chow with normal salt content, this was related to a reduced
duodenal iron absorption (Naito et al., 2011). Furthermore, iron-
depleted cardiomyocytes have reduced mitochondrial function,
causing a reduction in diastolic function (up to 85%) which is
more important than the reduction in systolic function (up to
64%) (Hoes et al., 2018). Combined with our observations that
ID relates to diastolic function and aerobic exercise capacity
in patients with ID, these findings suggest that ID could
play a more direct role in modulating diastolic function than
previously thought. However, the cross-sectional nature of our
study does not allow to separate cause and effect. Longitudinal
studies and intervention studies, such as the upcoming effect
of IV iron in patients with HFpEF (FAIR-HFpEF) randomized
clinical trial, will provide more insight in the putative causal
role of ID in HFpEF.

The cluster analysis provided another piece of this puzzle.
When machine learning categorized patients with HFpEF in
an unbiased way, three phenogroups were identified. The
comorbidity profile of two of these phenogroups is familiar
to many clinicians. The first can be summarized as atrial
fibrillation+ chronic kidney disease (AF-CKD) and the second as
male + coronary artery disease (M-CAD). Similar phenogroups
have been identified among other HFpEF populations subjected
to machine learning analysis. Kao et al. (2015) first applied
clustering in HFpEF using 11 features of patients in two
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randomized clinical trials. Six subgroups were discovered among
which the AF-CKD and M-CAD groups can be recognized
from this study. Shah et al. (2015) studied 46 features from
a single-center HFpEF population. They could discern three
phenogroups, including an AF-CKD population, whereas sex
and CAD were more evenly distributed across subgroups. More
recently, Hedman et al. (2020) found that mortality differed
between six phenogroups in a European HFpEF cohort.

We extended this existing literature by incorporating iron
parameters into a clustering analysis for the first time. This
resulted in a phenogroup of predominantly female patients, who
had a comparatively low prevalence of traditional HFpEF risk
factors, such as advanced age, hypertension, obesity, CAD, and
atrial fibrillation (phenogroup 1). These patients did have a
remarkably high prevalence of ID of 86% (p < 0.001 vs. other
phenogroups). Of note, Kao et al. (2015) and Shah et al. (2015)
previously found phenogroups with comparable low-risk profiles,
but could not link this to ID as iron status was not determined.

This low risk + iron deficiency (LR-ID) phenogroup shows a
significantly higher peak V̇O2 than the other phenogroups, which
seems to contradict the relationship of ID with worse peak V̇O2.
However, patients in the LR-ID phenogroup were also younger,
and the percentage of predicted peak V̇O2 (more suitable to
compare patients of different age distribution) was similar to
other phenogroups.

Our findings have important therapeutic implications, as
ID is readily treatable by oral or intravenous supplementation
(Jankowska et al., 2013). In patients with HFrEF, the latter is
preferred after randomized trials demonstrated that intravenous
ferric carboxymaltose improved aerobic exercise capacity,
symptoms, and quality of life in patients with HFrEF, whereas
oral iron failed to improve symptoms (Anker et al., 2009;
Ponikowski et al., 2015, 2020; Lewis et al., 2017). Mechanistic
studies showed that in HFrEF, ID manifests as both myocardial
and skeletal muscle iron depletion; however, only myocardial
iron was repleted by intravenous iron (Melenovsky et al., 2018;
Núñez et al., 2020). Hopes are high that future studies, such as
the ongoing FAIR-HFpEF trial, will demonstrate similar effects
of iron administration in HFpEF.

Our study has some limitations. The observational nature
of the study precludes definite conclusions about causation.
OptimEx-Clin was not powered for clinical outcomes, and
together with the cross-sectional design of our study, this
did not allow a prognostic assessment based on phenogroup
membership. The phenogroup analysis should be validated in an
external population before the clinical application of our findings.
Finally, the exercise intervention in OptimEx-Clin may have
induced a selection bias toward less symptomatic patients with
HFpEF, filtering out those who are unable to exercise.

CONCLUSION

ID is a frequent and important comorbidity in patients with
HFpEF. Lower iron parameters are associated with worse
diastolic function and worse aerobic exercise capacity but only
in patients with ID. Patient phenotyping by means of machine

learning is significantly impacted by including ID. We identified
a phenogroup of younger female patients with HFpEF with a high
prevalence of ID and a few other HFpEF risk factors. Therefore,
we suggest that iron status is routinely checked in all patients
with HFpEF, as those with ID should be counseled on possible
treatment options.
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