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Abstract: Optical 3D printer models characterize multimaterial 3D printers by predicting
optical or visual quantities from material arrangements or tonal values. Their accuracy and
robustness to noisy training data are crucial for 3D printed appearance reproduction. In our
recent paper [Opt. Express 29, 615 (2021) ], we have proposed a pure deep learning (PDL)
optical model and a training strategy achieving high accuracy with a moderate number of
training samples. Since the PDL model is essentially a black-box without considering any
physical grounding, it is sensitive to outliers or noise of the training data and tends to create
physically-implausible tonal-to-optical relationships. In this paper, we propose a methodology to
narrow down the degrees-of-freedom of deep-learning based optical printer models by inducing
physically plausible constraints and smoothness. Our methodology does not need any additional
printed samples for training. We use this approach to introduce the robust plausible deep learning
(RPDL) optical printer model enhancing robustness to erroneous and noisy training data as well
as physical plausibility of the PDL model for selected tonal-to-optical monotonicity relationships.
Our experiments on four state-of-the-art multimaterial 3D printers show that the RPDL model
not only almost always corrects implausible tonal-to-optical relationships, but also ensures
significantly smoother predictions, without sacrificing accuracy. On small training data, it even
outperforms the PDL model in accuracy by up to 8% indicating a better generalization ability.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Optical printer models are functions that predict a print’s optical properties given the arrangement
or ratio of printing materials. They are the prerequisite to accurately reproduce color [1–3],
translucency [4,5] or joint color and translucency [6] in multi-material 3D printing employing
materials colored in Cyan (C), Magenta (M), Yellow (Y), Black (K), White (W), and a fully
Transparent (T) material.

Proposed optical printer models can be classified into phenomenological models [7–22],
models based on the Radiative Transfer Equation (RTE) or its simplifications [23–28] and
neural-network-based models [29–32]. We refer to our previous paper [33] for a discussion of
these models.

Our previous paper [33] has proposed two deep-learning models to optically characterize
multimaterial 3D printing systems: First, the Pure Deep Learning (PDL) model that does not
rely on any physical grounding; Second, the Deep-Learning-Linearized Cellular Neugebauer
(DLLCN) model that uses deep learning to multi-dimensionally linearize the tonal-value-space
of a cellular Neugebauer model. Both models achieve high accuracy with a moderate number of
training prints. Due to larger degrees-of-freedom combined with learning strategies reducing
overfitting, the PDL model is more accurate than the DLLCN model w.r.t. spectral, color and
translucency errors.

However, a shortcoming of a purely empirical deep-learning-based approach is that it does not
consider physical/perceptual knowledge of relationships between material ratios (i.e. tonals) and
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the resulting optical/visual properties. This results in implausible tonal-to-optical predictions.
One way to ensure physical plausibility is using a deep learning model to adjust the parameters
of a physical or partly physical model such as proposed for the DLLCN model. Unfortunately,
physical models may lack the degrees-of-freedom to accurately consider all influencing factors,
such as complex physical material mixing (e.g. between support and build materials at the object’s
surface) or post-process treatment, which likely adversely impact their prediction performance.

In this paper, we show how to induce physically-based heuristics into purely empirical models.
A plausible heuristic is, for instance, that the print’s reflectance factor (or lightness) does not
increase with an increasing fraction of black material assuming that the black material has the
maximum absorption of all available printing materials. Such monotonicity relationship between
material ratios and measurable optical quantities applies also for translucency: Increasing the
fraction of transparent material (a material with negligible absorption and scattering) in the
material mixture does not decrease the translucency α-value [34] of the resulting print.

Another issue of any optical characterization process is the quality and plausibility of the
data to fit or train the model. Printing and measurement errors may cause implausible training
data violating the heuristics mentioned above. Figure 1 shows an example where the training
data has errors leading to violations in the monotonic relationship between lightness and black
material usage. Printer variability (spatial, temporal) also induces noise into the training data,
aggravating the challenge of noisy predictions from optical printer models. Figure 2 shows
an example where a purely empirical PDL model [33] has bumpy and implausible predictions.
For reproducing a distinct optical quantity, an optical printer model needs to be inverted using
constraint optimization to obtain the corresponding material ratios or tonals [35–38] – this process
is called separation. Due to local non-monotonicity caused by noisy training data, such inversions
will cause banding artifacts in gradients [39] reducing the print quality [40]. A relatively simple
solution to reduce noise and outliers in the training data is printing and measuring the same
sample multiple times and only consider the median for training. This reduces data noise but
increases data collection efforts by a multiple.

Fig. 1. Lightness L∗ as a function of black material K with other materials fixed on a tonal
case of the Mimaki 2 dataset (the fixed tonal values are shown at the lower left of the figure),
and the resulting colors. The L∗ values are shown as white numerical text, with italic font
indicating L∗-vs-K monotonicity violations. The PDL/RPDL prediction in this figure is from
a single PDL/RPDL model respectively. The figure shows that the training data itself has
errors leading to monotonicity violations, and that the PDL model overfits to the erroneous
data without considering monotonicity. In contrast, the proposed RPDL model ensures
monotonicity despite the data outlier, indicating better robustness against errors in training
data.

Figure 3 shows a smooth C,M,Y,K separation example, which would result in an artifact-free
physical printout. In contrast, the PDL prediction shows banding artifacts that would not appear
in the physical printout. This indicates that a separation (i.e. inversion) based on the PDL model
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Fig. 2. The 3D plot and contour plot of L∗ as a function of Y and K with other materials
fixed on a tonal case of the "Mimaki 2" dataset (The fixed values are shown at the upper left
corner). The first row corresponds to the PDL model [33] and the second to the proposed
RPDL model. Notice the skewed curves and isolated "islands" in the contour plot for the
PDL predictions. Drawing a profile across such a contour island along the K direction will
result in a bumpy L∗-vs-K curve violating monotonicity. In contrast, the RPDL predictions
do not possess such islands and show much smoother contour curves ensuring monotonicity,
indicating better robustness and plausibility.

possesses such artifacts as well, which will be reflected in physical printouts and is unacceptable
for color critical applications in which texture detail preservation is crucial.

In this paper, we propose a methodology to narrow down the degrees-of-freedom of deep-
learning based optical printer models by inducing physically plausible constraints and smoothness.
Our methodology does not need any additional printed samples for training. We use this approach
to introduce the Robust Plausible Deep Learning (RPDL) optical printer model enhancing
robustness to erroneous and noisy training data as well as physical plausibility of the PDL model
for selected tonal-to-optical relationships. In particular, we make the following contributions:

1. We introduce a learning strategy to induce monotonicity heuristics into the PDL model by
proposing a new derivative-based loss function that is evaluated in the training process by
random tonal value re-sampling.

2. We select physical plausible monotonicity relationships between lightness (CIE L∗) and
black material as well as between translucency (α-value) and transparent material.

3. To make the PDL model more robust to noisy input data, we induce a smoothness heuristic
of the tonal-to-optical relationship by a new second-derivative-based loss function that is
evaluated during training by random tonal value re-sampling.
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Fig. 3. C,M,Y, and K separations of the gamut mapped CIE-a∗b∗ plain for CIE-L∗ = 20 for
the Mimaki 3DUJ-553 3D printer based on the RPDL model and the color predictions of the
PDL and RPDL models.

4. We propose an automatic hyper-parameter optimization strategy to combine the new loss
functions and PDL’s original loss functions considering an upper threshold for color
accuracy losses.

We show on four datasets from state-of-the-art multimaterial 3D printers that the proposed
strategy improves model plausibility and robustness without sacrificing accuracy. In our
experiments, the RPDL models almost always do not show violations of the two induced
monotonicity constraints, which is a prerequisite for banding artifact-free separations and as a
consequence also artifact-free physical printouts. This is crucial for color critical applications in
which preserving texture details is important.

2. Pure deep learning (PDL) optical printer model

The PDL model [33] operates not directly on material ratios but in a tonal space. In the next
section we describe the transformation from tonals to material ratios.

2.1. Tonal to material mixture transformation

A 3D printing system with k materials can be controlled by a tonal space of m = k− 1 dimensions
since material ratios must sum up to one in 3D printing (unity condition) and the fraction of one
material is implicitly defined by the sum of the other material fractions. In this paper, the material
not explicitly connected to tonals is white. We aim to allow all values in the hypercube [0, 1]m to
be valid inputs of the PDL or RPDL model. We denote T = [0, 1]m to be the tonal space. It
does not directly represent material ratios but needs to be converted to material ratios ensuring
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the unity condition by a transform H : T ↦→ [0, 1]m, with ∥H(t)∥1 ≤ 1,∀t ∈ T from which the
fraction of the white material can be computed as follows tw(t) = 1 − ∥H(t)∥1. H is part of the
3D printing pipeline before 3D halftoning (see Fig. 4) and is a function concatenation H = P ◦Q,
where P(t) = (t1/max{∥t∥1, 1}, . . . , tm/max{∥t∥1, 1}) is a projection of the tonals to ensure the
unity condition. Q : [0, 1]m ↦→ [0, 1]m is an invertible transform similar to the transforms from
nominal to effective tonals (e.g. 1D-per-tonal curves as described in [41]). This supports the
selection of printing patches corresponding to a more uniform distribution of optical quantities to
fit/train the PDL model.

Tonals Material ra os Material arrangements Print3D Hal oningH

Fig. 4. Tonal to print workflow [33].

2.2. Structure of the PDL model

The PDL model is a function PDL : T ↦→ S ×A predicting spectral reflectances r ∈ S = [0, 1]N
and translucency α ∈ A = [0, 1] from tonal values t ∈ T . Here N is the number of considered
wavelengths that is set to N = 31 assuming a uniform sampling of the visible wavelength range
[400nm, 700nm] in 10nm steps.

The PDL model is a multi-path, fully-connected neural network (see Fig. 5) with two paths, one
for predicting reflectance and one for translucency. Built upon the tonal input layer is the trunk
consisting of several hidden layers to learn generic features across tasks (marked as shared layers
in Fig. 5). It splits into two branches one for predicting reflectance/color and one for translucency
to learn task-specific features via extra hidden branch-layers followed by the branch’s output
layer.

Tonal

Shared 
layers

Spectra Alpha

CIELAB

Translucency-
specific 
layers

Color-specific
layers

Neural
network

Fig. 5. PDL model’s neural network structure [33] is also used by the RPDL model.

Specifically, the trunk has 4 hidden layers each has 200, 1500, 1500 and 1500 neurons
respectively. The reflectance branch has one hidden layer with 200 neurons and an output
layer with N neurons corresponding to N-dimensional reflectance that is then converted to
3-dimensional CIELAB, and the translucency branch has one hidden layer with 30 neurons and
an output layer with 1 neuron corresponding to the α value.

All hidden layers use the leaky Rectified Linear Unit (leaky-ReLU) activation function [42]
and the two output layers use a variant of sigmoid activation function introduced in the PDL work
[33].
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2.3. Loss function of the PDL model

The loss function EPDL of the PDL model consists of three parts: the spectral Root-Mean-
Square Error (RMSE) Eref, the CIEDE2000 error Ecol computed for specific viewing conditions
(illuminant, observer), and the α-based translucency error Etra. The final loss function is a
weighted average of these three loss functions:

EPDL = Ecol + aEref + bEtra, with (1)

Eref(rp, rm) =

√︃
1
N
∥rp − rm∥

2
2 (2)

Ecol(rp, rm) = ∆E00(LAB(rp), LAB(rm)) (3)

Etra(αp,αm) = |αp − αm |. (4)

where rp, rm ∈ S are predicted and measured reflectances, LAB : S ↦→ CIELAB is the
function that computes CIELAB values from reflectances assuming specified viewing conditions,
αp,αm ∈ A are predicted and measured translucency α-values [34]. The weights a, b ∈ R are
hyper-parameters and are set as a = 50 and b = 10 according to the relative magnitudes and
importance of the loss functions as described in [33].

As our core contribution, we show the methodology of how to inject prior knowledge of
tonal-to-optical monotonicity relationships and smoothness into the PDL model by introducing
extra losses. We do this with two examples of monotonicity constraints that a model should
satisfy to avoid banding artifacts in separations.

3. Injecting prior knowledge of monotonic relationships

We propose injecting monotonicity constraints of tonal-optical relationships into the model by
adding an extra loss that we refer to as monotonicity loss, to penalize positive derivatives. This
was inspired by Liu et al. [43] who proposed a derivative-based approach to inject monotonicity
to arbitrary neural networks. They considered monotonicity only in one dependent variable
w.r.t. multiple independent variables, and applied equivalent loss-weights across all mapping
relationships. Furthermore, they used a derivative normalization that causes the loss to vanish
when a small number of violations remain in the model training. In contrast, our strategy considers
multiple dependent variables w.r.t. multiple independent variables, automatically adjusts loss-
weights for different mapping relationships, and uses a different derivative normalization to
address the described issue of vanishing loss. We refer to the supplemental document for an
experimental comparison between Liu et al. and our approach.

Note that monotonicity loss is calculated based on derivatives thus groundtruth data is not
required. This allows calculating monotonicity loss on any training samples that are sampled from
the whole input space. To enlarge data coverage, the samples can be re-sampled differently at each
training iteration thus vary from iteration to iteration. This has an advantage that theoretically we
have an infinite data pool for sampling and training, aiding model generalization.

In this paper, we propose injecting two monotonic relationships between tonal values and
resulting visual quantities: 1. Increasing the fraction of black material in a material mixture does
not increase lightness CIE-L∗ , 2. Increasing the fraction of transparent material (a material with
almost zero absorption and scattering) in a material mixture does not increase the translucency
parameter α, where α = 0 corresponds to a transparent material and α ≈ 1 to an opaque material
[34]. Note that the proposed concept can be also used for other monotonic relationships between
printing materials and optical/visual quantities identified a priori.

Specifically, to calculate the monotonicity loss for lightness CIE-L∗ w.r.t. black material K, at
each training iteration we select a random set of tonals M ⊂ T and extract the subset MLK with
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positive derivatives of CIE-L∗ w.r.t. the black material, i.e.

MLK =

{︃
τ ∈ M|

∂L (PDL(t))
∂tK

|︁|︁|︁|︁
t=τ
>0

}︃
(5)

where t ∈ T , tK is the element of t corresponding to the black material, and L : S×A ↦→ [0, 100]
extracts lightness CIE-L∗ from model predictions, i.e. it uses the predicted reflectance and
computes lightness for a given viewing condition (illuminant, observer). In this paper, we use
CIED50 as illuminant and the CIE1936 color matching functions as observer.

The monotonicity relationship between the black tonal tK and lightness CIE-L∗ is violated
by the model for positive derivatives. Thus, only positive derivatives are considered in the loss
function:

Emono_LK(MLK) =
1

|MLK |

∑︂
τ∈MLK

∂L (PDL(t))
∂tK

|︁|︁|︁|︁
t=τ

(6)

where |MLK | is the cardinality of MLK, i.e. the number of elements in the set.
Similarly, we induce the monotonic relationship between the transparent material and the

translucency parameter α:

MAT =

{︃
τ ∈ M |

∂A (PDL(t))
∂tT

|︁|︁|︁|︁
t=τ
>0

}︃
(7)

where t ∈ T , tT is the element of t corresponding to the transparent material, and A : S×A ↦→ A

extracts translucency α-values from model predictions. The loss is then computed as follows

Emono_AT(MAT) =
1

|MAT |

∑︂
τ∈MAT

∂A (PDL(t))
∂tT

|︁|︁|︁|︁
t=τ

(8)

Modern deep learning tools allow conveniently computing derivatives of a neural network’s
output w.r.t. its input, e.g. via the tf.GradientTape API of TensorFlow [44].

4. Injecting smoothness heuristics

We assume that the printer’s optical transfer function describing the forward relationship between
tonal values and optical/visual quantities is smooth, i.e. it does not contain high-frequencies such
as edges or bumps. Observed high-frequencies are rather measurement or printing noise and
should not be considered by the optical printer model. Thus, our aim is to determine a model
with maximally smooth predictions without significantly sacrificing accuracy.

For this, we propose a second-order derivative-based smoothing loss that we refer to as
Laplacian loss because of its similarity with the Laplace operator. Even though this loss
could be considered for all output dimensions of the optical printer model, we restrict it to
operate on lightness CIE-L∗ only, which is computed from the predicted reflectance for a given
viewing condition. Considering just lightness minimizes computational effort and allows model
optimization w.r.t the perceptually most relevant contrast-related quantity, since the human visual
system’s sensitivity to high-frequency achromatic contrasts is larger than to high-frequency
chromatic contrasts [45,46].

The Laplacian loss is computed as:

Elap(M) =
1

m|M|

∑︂
τ∈M

m∑︂
i=1

log

(︄|︁|︁|︁|︁|︁ ∂L (PDL(t))
∂t2i

|︁|︁|︁|︁|︁
t=τ

|︁|︁|︁|︁|︁ + 1

)︄
(9)

where m is the dimension of the tonal space and t = (t1, . . . , tm)T ∈ T . Since the magnitude and
not the sign of second-order derivatives is a measure of smoothness, we use their absolute value.
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Very large second-order derivatives might impair learning by overshooting. Therefore, we take
the logarithm to reduce such overshooting risk. We constrain the lower-bound of the logarithm to
0 by adding 1, so that vanishing second-order derivatives do not contribute to the loss.

Similarly as for the monotonicity losses, the samples to compute the Laplacian loss can be
re-sampled differently at each training iteration.

5. Robust plausible deep learning (RPDL) optical printer model

5.1. Structure of the RPDL model

The RPDL model operates also on tonals and shares the basic structure with the PDL model [33]
described in section 2.2. In contrast to the original PDL model [33], the number of neurons is
smaller but sufficient to obtain similar results while reducing the network’s capacity to overfit.
Specifically, the trunk has 3 hidden layers each with 200, 300, and 300 neurons respectively. The
reflectance-predicting branch has one hidden layer with 100 neurons and an output layer with 31
neurons to predict spectral reflectances r ∈ S = [0, 1]31. The translucency-predicting branch
has one hidden layer with 30 neurons and an output layer with 1 neuron to predict translucency
α ∈ A = [0, 1]. The RPDL model uses the same activation functions as the PDL model. The
detailed network design is shown as a diagram in the supplemental document. Reducing the
network’s capacity was done as a hyper-parameter optimization on validation sets.

In our experiments this network capacity is also used for the PDL model because it does not
adversely impact the model’s prediction accuracy.

5.2. Loss function and hyper-parameter optimization

The loss function is a weighted average of PDL’s loss EPDL and the extra losses defined by
Eqs. (6), 8 and 9:

E = EPDL + c1Emono_LK + c2Emono_AT + c3Elap (10)

where weights c1, c2, c3 ∈ R are hyper-parameters that are adjusted to the printer as follows: The
weights are set to a very small value ϵ>0 (e.g. ϵ = 0.001), so that the prediction accuracy on
validation data is similar to the model that is just trained using EPDL [33]. Then, the weights are
increased until the accuracy of the model on validation data starts decreasing. Specifically, we
increase the weights by a factor of 3 until the average CIEDE2000 error between prediction and
ground truth of validation data increases by 5% of the minimum error achieved so far. We refer
to the supplemental document for more details on the optimization effort.

6. Experiments

6.1. Data sets

Our experiments use all the three datasets that were used in [33] to characterize state-of-the-art
material-jetting 3D-printers employing six materials (Cyan (C), Magenta (M), Yellow (Y),
Black(K), White(W), Clear(T)): One dataset to characterize a Stratasys J750 printer and two
datasets to characterize two Mimaki 3DUJ-553 printers. The datasets consist of reflectance
and α-measurements of printed flat targets with known tonal values, except for the "Mimaki
2" dataset where all samples are opaque and thus α-measurements were not collected and not
available for experiments. We refer to [33] for details on the set of sampled tonal values and
the measurement setup. We also collected a new dataset from a second Stratasys J750 printer
using the same measurement procedure. We denote the first Stratasys dataset as Stratasys 1 and
the newly collected dataset as Stratasys 2. These two Stratasys datasets are obtained from two
different J750 printers using the same materials. In addition to inter-machine variability the
datasets deviate also in the function H used to transform tonals to material ratios (see Sec. 2.1).
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Stratasys 2: We list the tonal values encoded in 8 bit. The dataset consists of a regular grid
{0, 85, 170, 255}5 ⊂ CMYKT of tonal values, 976 random CMYKT-samples, 1500 random
opaque CMYK-samples, i.e. T = 0, and 500 random CMYK-samples with T = 255. In total
there are 45 + 976 + 1500 + 500 = 4000 samples.

6.2. Computing and evaluating predictions

Similar to [33], 300 samples are held-out as the test set, and the remaining samples are split into a
validation and a training set: The validation set consists of 10% of these samples to fit the hyper-
and regularization parameters and the training set consists of the remaining 90% samples to fit the
neural network weights. We refer to the union of these training and validation sets as big data, to
distinguish from a much smaller data i.e. the small data described next. The small data consists
of only 10% of the big data, and is used to investigate the influence of the proposed approach on a
much smaller dataset. The training set always contains the Neugebauer primaries. Small and big
data for Mimaki 1, Mimaki 2 and Stratasys 1 were selected similarly as in [33]. In addition to the
Neugebauer primaries, small data for Stratasys 2 contains randomly-selected samples from the
aforementioned 976 random CMYKT-samples described in section 6.1. To compute predictions
for PDL or RPDL models, we averaged 10 predictions computed by respective models trained on
different decompositions in validation and training sets. We report in this paper these so-called
10-fold predictions, unless explicitly specify 1-fold. Note that for computing 10-fold predictions
all 10 models are trained on exactly the same training data.

6.3. Software and hardware setup

Our model is implemented with TensorFlow 2.2.0, and is trained on an NVIDIA GeForce RTX
2080 SUPER GPU and an NVIDIA GeForce RTX 3090 GPU. Training a RPDL model takes
approx. 420s on 2825 training samples and 170s on 282 samples. Predicting on 300 samples
takes approx. 0.005s.

6.4. Training method

The neural network structure described in section 2.2 is used for both the PDL and RPDL models,
but the proposed extra losses (i.e. monotonicity loss and Laplacian loss) are used only for the
RPDL models. The initial learning rate is 0.003, with the same learning rate decay used in
[33]. The original losses [33] are calculated on the fixed training samples for both models,
while the extra losses are calculated on extra training samples (without using the measurements).
These extra data is re-sampled randomly from the whole input space at each training iteration,
thus is varying from iteration to iteration. Specifically, at each iteration, 2000 samples are
uniformly randomly sampled from tonal space to compute the monotonicity losses, and similarly
another 2000 samples for the Laplacian loss. Early stopping [47] and dropout [48] regularization
strategies are employed to avoid overfitting as described in [33] for both approaches.

6.5. Similar accuracies of the PDL and RPDL models

Table 1 summarizes the accuracy comparison between the PDL approach [33] and the proposed
RPDL approach. We mark in bold face those model results that outperform the counterparts by
> 5 % w.r.t. color accuracy. The results show that the proposed RPDL approach leads to similar
accuracy on big data. For small data, RPDL results in an accuracy improvement of at least 5
% in all cases (about 8% smaller average CIEDE2000 errors for Stratasys 1, Stratasys 2, and
Mimaki 2) except for the Mimaki 1 average color error, for which we see still an improvement
but less than 5 %. Even though our objective is not to improve accuracy, but to achieve better
robustness and plausibility preserving accuracy, the improved accuracy on small data indicates
that the RPDL model has a better generalization ability than the PDL model. The 90th percentile
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Table 1. Model accuracy comparison between PDL and RPDL (A format like "0.44/0.79"
means average error is 0.44 and the 90-th percentile error is 0.79.)

Stratasys 1 Stratasys 2 Mimaki 1 Mimaki 2

big data small data big data small data big data small data big data small data

PDL

∆E00 ∆E00 ∆E00 ∆E00 ∆E00 ∆E00

0.437/0.785 2.26/4.02 1.16/2.00 2.04/3.71 0.794/1.40 2.85/6.07 ∆E00 ∆E00

∆α ∆α ∆α ∆α ∆α ∆α 1.17/2.37 1.90/3.73

0.0042/0.0090 0.0123/0.0291 0.0090/0.0183 0.0114/0.0234 0.0061/0.0118 0.0202/0.0486

RPDL

∆E00 ∆E00 ∆E00 ∆E00 ∆E00 ∆E00

0.452/0.805 2.07/3.83 1.10/1.90 1.89/3.30 0.810/1.38 2.81/5.73 ∆E00 ∆E00

∆α ∆α ∆α ∆α ∆α ∆α 1.18/2.38 1.75/3.51
0.0046/0.0104 0.0106/0.0236 0.0087/0.0175 0.0113/0.0261 0.0069/0.0142 0.0209/0.0480

Fig. 6. Bar plots of monotonicity violations (L∗-vs-K and α-vs-T) and average Laplacian
(original definition). Each quantitative result is shown above the corresponding bar. For
1-fold models, each shown quantitative result is the averaged performance through 10 models,
with a whisker to show the maximum and the minimum (Note for some bars for the 1-fold
RPDL, the minimum is zero thus can’t be displayed due to log scale in y-axis). Numerical
results larger than 1000 are rounded to integer.

α-errors of both strategies are below the just noticeable difference (approx. ∆α = 0.1 [34]) even
on small data, which means the α-accuracy is already sufficient for most applications.

6.6. Improvements in robustness and plausibility

We further evaluate the PDL and RPDL models with respect to violations in L∗-vs-K and α-vs-T
monotonicity, as well as smoothness. For this, we randomly selected one million samples from
the tonal space M ∈ T and compute MLK ⊂ M and MAT ⊂ M according to Eq. (5) and 7,
respectively. The number of violations are reported by the positive derivatives, i.e. the cardinality
of MLK and MAT, respectively. Smoothness is evaluated by computing the average magnitude
of the Laplacian for L∗ using the original definition, i.e. without the log-attenuation as in the
loss function (Eq. (9)). Figure 6 shows the quantitative results, and we make the following
observations:
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Fig. 7. RPDL model resolves L∗-vs-K violations in PDL model. A small black arrow is
used to indicate the violation’s location.

1. The models evaluated on the Stratasys datasets show many more monotonicity violations
in α-vs-T than in L∗-vs-K, while the models computed on the Mimaki datasets have a much
larger number of violations for both relationships.

2. Model averaging tends to reduce monotonicity violations but does not always work well:
e.g. for Mimaki 1, the PDL 10-fold model has a similarly large number of L∗-vs-K
violations compared to the PDL 1-fold model. On the other hand, the RPDL 1-fold model
already drastically reduces the number of L∗-vs-K violations to 11 which is a much bigger
reductions compared to that by model averaging. Furthermore, the 10-fold version of
RPDL completely removes violations in both L∗-vs-K and α-vs-T for all the 4 datasets,
except for in α-vs-T for Mimaki 1 where there are 2 violations. However, the 2 violations
have positive derivatives below 10−5 which is significantly smaller compared to up to 25
from the PDL 10-fold model.

3. RPDL always reduces the average Laplacian, e.g. by up to 16% compared to PDL for
Mimaki 2, indicating much smoother predictions than PDL.

Figure 7 shows three typical L∗-vs-K monotonicity violations for each of the four datasets
with the other tonals held constant. It shows the PDL has L∗-vs-K violations and bumpiness,
and model averaging reliefs the issues but fail to completely resolve them, while the RPDL fully
removes them all. Figure 8 shows a similar trend in α-vs-T (Note the Mimaki 2 dataset is not
available for the α-vs-T analysis since it only includes fully opaque prints). Note that the RPDL
achieves better robustness and plausibility without sacrificing accuracy as summarized in Table 1.

Figure 1 illustrates color ramps with L∗-vs-K violations predicted by PDL on the Mimaki 2
dataset. The figure shows that the PDL model overfits to the erroneous data violating monotonicity,
while despite the data outlier the RPDL model ensures monotonicity indicating better robustness.
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Fig. 8. RPDL model resolves α-vs-T violations in PDL model

Figure 9 shows a color ramp with L∗-vs-K monotonicity violations predicted by the 1-fold
PDL model on the Stratasys 1 dataset. It shows that the PDL-predicted ramp slightly increases in
L∗ for increasing K values in the range [0.9, 1.0], i.e. 10% of the K scale, and has a sharp turning
point at K = 0.9, while the 1-fold RPDL ensures monotonicity with improved smoothness.

Figure 2 visualizes predicted L∗ values as a function of K and Y tonals with other materials
constant. It shows that the PDL model has bumpy 3D surface and skewed contours violating L∗-vs-
K monotonicity, while the RPDL model has much smoother predictions ensuring monotonicity.



Research Article Vol. 30, No. 11 / 23 May 2022 / Optics Express 18131

Fig. 9. L∗ as a function of K with other materials fixed on a tonal case of the Stratasys 1
dataset, and the resulting colors corresponding to the K values.

7. Conclusion and future work

To address physically-implausible and noisy predictions from the Pure-Deep-Learning (PDL)
optical printer model [33], we propose a methodology to induce physical heuristics into the
model via new loss functions that do not rely on additional printed samples for training: a
derivative-based monotonicity loss to induce a priori knowledge of tonal-to-optical monotonicity
relationships, as well as a Laplacian-based smoothness loss to induce smoothness. For the
monotonicity relationships we select L∗-vs.-K and α-vs.-T. We introduce the Robust Plausible
Deep Learning (RPDL) optical model via a learning strategy by combining these loss functions
with PDL’s original loss functions using an automatic hyper-parameter optimization considering
an upper threshold for color accuracy losses. Our experiments on four state-of-the-art 6-material
3D printers show that the RPDL optical model is more robust to data outliers and creates much
smoother predictions ensuring monotonicity. The improvement in robustness and plausibility
does not sacrifice accuracy, and yields even up to 8% higher accuracy on small training data
indicating a better generalization ability.

This approach can be extended canonically to induce other tonal-optical monotonicity relation-
ships into the model. Future work shall focus on exploring new monotonicity relationships and
investigating how inducing such prior knowledge into the model can improve its generalization
ability to further reduce the number of training samples without worsening accuracy. For
instance, spectral monotonicity relationships can be explored: A printing material having the
smallest/biggest reflectance factor of all available printing materials for a distinct wavelength
must decrease/increase the reflectance factor for this wavelength if its fraction increases in the
material mixture (assuming non-fluorescent materials). This applies to colored printing materials
if the fractions of white and black materials in the material mixture are kept constant.
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