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Cyber-Physical Systems (CPS) is the amalgamation of highly sophisticated sensors with
physical spaces. These close conjunctions of sensors with communication infrastructure
intrinsically linking to society’s Critical Infrastructures (C.I.) are being witnessed more often
in the context of Smart Grid (SG). As a backbone of C.I., Smart Grid demonstrates ability to
precisely monitor large scale energy systems and designed in order to achieve complex
local and global objectives. Being capable of performing such sophisticated operation it
also bears the vulnerability of being exposed for cyber-physical co-ordinated attack that
may lead to catastrophic effect. Many researchers have analyze the different stages of
cyber-physical co-ordinated attacks like attack detection, prevention, impact analysis and
recovery plans but there exist a research gap to address all the issues under single
framework. Through this paper, we propose a novel Cyber Physical Defense Framework
(CPDF) based on National Institute of Standards and Technology (NIST) guidelines to
address the cyber attack on SG. Our work addresses the pre and post attack scenario,
attack vector formulation through hierarchical PetriNet modeling and recovery mechanism.
We have performed experiment for Distributed Denial of Service (DDoS) and False Data
Injection attack (FDI) to validate our framework effectiveness and established the efficacy of
proposedmodel. In the end, we have presented a case study of FDI attack detection using
machine learning technique on IEEE 9-bus and 14-bus system.

Keywords: cyber-physical security, smart grid architecture model, NIST–National Institute of Standards and
Technology, attack vector formulation, risk assesment, DDoS atacks, FDI attack

INTRODUCTION

Smart cities can be defined as cities that incorporate information and communication technology in
order to provide benefits such as efficiency, reduced cost, convenience and higher quality of life. For
the successful functioning of a smart city the energy infrastructure must also integrate information
and communication technology appropriately. This energy infrastructure network, referred to as a
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smart grid, is drawing attention for its safe and smooth
functioning. The conventional centralized electric grid
architecture that dominated in the 20th century can no longer
keep up with the technological advancements being made in the
present world. The centralized conventional architecture leads to
high costs as users are unaware of the sudden fluctuations in cost
due to increased demand during peak hours, and wastage of
energy when the demand is low as the centralized source may be
generating electricity in excess. Traditional centralized energy
resources cannot incorporate Distributed Energy Resources
(DERs) into their framework, which could have provided
some level of reliability and energy efficiency. A smart grid on
the other hand communicates relevant information across the
grid and makes use of resources like DERs, thereby increasing
awareness and resulting in a more transparent, energy efficient,
cost effective and reliable system [4]. A smart grid is highly
susceptible to both cyber and physical attacks. Cyber-attacks
involve attacks on the communication network such as DDoS
attack, malware and more. Physical attacks aim at disabling the
hardware of the smart grid, such as breaking the smart meter, or
cutting communication lines. In a smart grid we can use
intelligent methods to detect possible attacks. Physical
tampering can be detected through the use of sensors that give
updates on the status of the physical infrastructure.

LITERATURE SURVEY

This section covers the exiting architecture or framework
proposed by researchers for the effective management and risk
mitigation for the smart grid infrastructure. However through the
literature review, we could see that every framework tried to
address a few challenges of the different important constituents of
the smart grid infrastructure framework. The Smart Grid
Architecture Model CEN-CENELEC-ETSI (2012), which is
shown in Figure 1, was developed under the European
Commission’s Standardization Mandate M/490 and is a widely
used reference framework. This framework is a three dimensional
reference architecture that can be used as a basis for the design of
a modern smart grid system. This framework consists of
Interoperability Layers, Domains and Zones. There are five
Interoperability layers which covers the smart grid that
consists of five domains which represent the various parts of
the electrical energy conversion and transmission chain, and six
zones which represent hierarchical levels of power system
management. The different Layers, Domains and Zones are
mentioned in Figure 1. This architecture provides a basic
outline of a smart grid which provides the possibilities for
other concepts and ideas to be superimposed over it.

To explore the possibility of Big Data analytics Zhang et al. (2018)
in the domain of smart grid, researchers gave SGAM-based
explanation of Smart Grids. This is the extension of SGAM model
to effectively handle the large amount of data generated through
smart grid infrastructure. The Rise of AGILE Demand Response
Babar et al. (2016) emphasizes the need tomove beyond conventional
grid and market dynamics. This involves applying the concept of
Demand Response to the existing ICT infrastructure, i.e., by shifting

the loads during peak (high demand) hours. The term agile refers to
the ability to adapt and respond to changes in a prompt and cost-
effective manner. In Analyzing an agile solution for intelligent
distribution grid development: A smart grid architecture method
Babar and Nguyen (2018), the agile DR concept has been applied to
the SGAM reference architecture. In this approach agents are present
at each interoperability layer to perform the required tasks. These
agents help achieve the three goals of agility-improved
responsiveness, product adaptability and customer enabling. An
Open Source Modeling Framework for Interdependent Energy-
Transportation Communication Infrastructure in Smart and
Connected Communities Lu et al. (2019) describes a multi-layer,
multi-block, multi-agent approach for an Energy-Transportation-
Communication infrastructure in a smart city. The multi-layer
represents three layers-the community layer where each
community is divided into a set of functional blocks, the block
layer where each block has three system agents for communication,
transportation and energy respectively, and a system agent layer
which consists of sub-agents to perform the tasks of a
particular agent.

The above mentioned research works address various aspects
of the smart grid architecture. It is necessary to incorporate
several such aspects together in order to design an ideal smart
grid reference architecture that can be used for the construction
of smart cities.

Cyber Security Requirement for Smart City—Model
Framework (Ministry of Housing and Urban Affairs) f is a
framework developed by the Government of India which
identifies the various security requirements that should be
considered when implementing smart city architectures. This
framework contains information about the exchange of data in
the smart grid. IEC 61850 IEC (2003) is a global standard for
communication of intelligent devices at electrical substations. It
provides several requirements and protocols that facilitate the
communication in a smart grid. In Cyber-Physical Security of a
Smart Grid Infrastructure Mo et al. (2011), the main security
requirements of general information security, namely
confidentiality, integrity and availability (the CIA triad) He
and Yan (2016), were used to identify specific security
requirements for a smart grid. Due to large scale complex
network, it is still challenging for researchers to mimic all
attack category. As Distributed Denial of Service (DDoS) is
considered as a major one, Ma et al. Ma et al. (2013) handle
the modeling of this attack as a Markov game between attackers
and service provider and tries to investigate the optimal strategies
for both. It also identifies various attacks and entry points and the
resulting consequences on the grid and provides certain
countermeasures to combat the same. Authors presented a
Tri-level optimal hardening plan for a resilient distribution
system considering reconfiguration and DG islanding Lin and
Bie (2018) as a Defender-Attacker-Defender approach to increase
the resilience of the smart grid by reconfiguration. It works by
first hardening the lines so as to minimize the DG islanding, then
applying the worst case attack on the system, and finally re
configuring the network to again minimize DG islanding.
Communication Architecture for Smart Grid Applications
Emmanuel et al. (2018) identifies that a general smart grid
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infrastructure generally contains three tiers of networks- WAN,
NAN and HAN, and also specifies certain infrastructures for both
wired and wireless communication in this network. AMulti-Level
Communication Architecture of Smart Grid Based on
Congestion Aware Wireless Mesh Network Zhang et al. (2011)
identifies several control and processing devices associated with
each of the above mentioned tiers. This includes the Smart Meter
Data Controller (SMDC), Central Access Controller (CAC) and
the EDS (Energy Distribution System).

The NIST Guidelines for Smart Grid NIST (2010) defines the
cyber security requirements of a smart grid as confidentiality,
integrity and availability. It also provides details as to what each
of these requirements entail. In Petri Net Modeling of Cyber-
Physical Attacks on Smart Grid Chen et al. (2011) the need to
account for coordinated attacks in a smart grid is emphasized
and a hierarchical Petri net (Scholarpedia, 2008) is suggested as
a suitable modeling method for the same. It consists of one high
level PetriNet that consists of most of the critical places (states
of the system) and several low level Petri nets that contain
details of the attack vectors. An aggregation method has also
been suggested. However, this research work does not include
any details of major attack vectors such as DDoS and FDI. It also
does not provide an efficient data storage method. Toward
modeling the impact of cyber-attacks on a smart grid,
Kundur et al. (2011) provides a graph based impact analysis
method. This involves modeling the energy infrastructure of the
smart grid using a directed graph and then performing attacks

on the same to identify the expected impact in the grid. This
work gives an example of how to model a sensor tampering
attack using such a directed graph system. A Cyber Physical
Modeling and Assessment Framework for Power Grid
Infrastructures Davis et al. (2015) provides the architecture
for a CPMA framework which makes use of a threat model
(attack tree), cyber topology and power topology to synthesize a
Markov Decision Process analysis model for attacker
infiltration in the network.

Machine learning in cyber security: A review Handa et al.
(2019) describes several machine learning techniques that can be
used for intrusion detection. In the case of SCADA systems one of
the suggested methods of intrusion detection is by using a
combination of k-means clustering and OC-SVM to identify
anomalies in the system. This method is described to have
good performance, low overhead and high accuracy. Another
work in Anwar and Mahmood (2014) has analyzed how the
storage security of Smart grid data storage can be compromised
through malicious codes and unauthorized access. Zahid et al.
(2019) propose a risk mitigation framework for Cyber physical
systems with major focus on data integrity, authentication,
nonrepudiation and confidentiality. Some of the methods of
Intrusion Detection in a smart grid are Anomaly based and
Signature based Ullah and Mahmoud (2017). In Association
for Computing Machinery, a security framework is proposed
based on Public Key Infrastructure (PKI) and asymmetric key
encryption algorithms like RSA and El Gamal.

FIGURE 1 | SGAM architecture CEN-CENELEC-ETSI (2012).
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Through this literature review, we could see that researchers
have analyze the different stages of cyber-physical coordinated
attacks like attack detection, prevention, risk and impact analysis
and recovery plans for the smart grid but there exist a research
gap to address all the issues under a single framework.

OBJECTIVES AND CHALLENGES

The aim of this work is design a Cyber-Physical Defense
Framework with a focus on communication layer and
Distribution segment of smart grid infrastructure and to
design a Cyber-Physical Defense Framework for the same.
This framework is being proposed to model the cyber-physical
coordinated attacks, perform impact and attack propagation
analysis and map the security state of the system with
mitigation and resilience plans that may involve self-
organization of the system architecture so as to reduce the
attack impact in the grid. This architecture would support
renewable distributed energy resources (DERs) and migration
from the existing traditional grid architecture. It must also
integrate the multiple micro grids in the network and focus on
how an aggregator can coordinate these multiple grids. This
smart grid reference architecture would satisfy the following
3S conditions-

• Self Protect: This refers to protection of the smart grid from
various attacks.

• Self Heal: This refers to ability of the smart grid to recover
from an attack

• Self Optimize: This refers to the capability of the smart grid
to increase efficiency and reduce wastage

Through this work, we focus on self-protection and a bit
toward self-healing functionalities of the smart grid infra-
structure. The Self-Optimization vertical is reserve as a future
scope of this work.

MATERIALS AND METHODS

Smart Grid Architecture Based on SGAM
Framework
The legacy grid architecture makes use of non-renewable sources
for the purpose of energy generation (CEN-CENELEC-ETSI,
2012). It also deals only with concentrated or centralized
elements and structures and can only handle flexible
generation and flexible loads. This smart grid architecture
aims to encompass distributed elements such as Distributed
Generators in order to progress from these conventional
models. There is also a push toward more sustainable
renewable sources of energy such as solar power and wind
power. The model also deals with intermittent generation and
inflexible loads such as hospitals. The proposed framework for
achieving the various requirements will be based on certain
aspects of the SGAM architecture. The focus will be on the
Communication, Informational and Functional layers. The
structure of these layers will be analyzed in the Domains of
DER and Distribution, and the Process, Field and Station Zones.
The functions that will be performed within the DER and
Distribution domains have to first be identified. Based on this
the information requirements necessary for this functionality can
be determined and the relevant communication protocols can be
allotted.

Component Layer
The component layer consists of the various components of the
smart grid architecture. The Power Generation Unit (PGU) of the
smart grid will consist of the power sources (renewable and non-
renewable) and Intelligent Electronic Device (IED) units. In this
reference architecture emphasis is placed on the need to move
toward sustainable forms of energy generation through renewable
resources such as wind and solar power. The Energy Control and
Distribution Center is used to obtain consumption data from the
various neighborhood of the smart grid and analyze the
information before communicating with the PGU so as to
generate the ideal amount of power as per demand. Each
neighborhood will have its own control center for collection
and processing data from individual homes. The individual
homes will have a smart meter for collection of power
consumption of data and a service interface that provides real
time pricing details.

Functional Layer
The functional layer describes all the functions that have to be
performed in the architecture. It should support the migration of
existing legacy architecture to the new proposed reference
architecture for smart grid. It should also contain functions
that enable optimization, such as load forecasting for demand
response, and should describe adequate methods for security and
recovery purposes. For intelligently identifying the required
energy that should be generated and distributed in an agile
manner, with respect to the demand response of the grid,
some type of machine learning algorithm can be used.

FIGURE 2 | Different communication networks in the smart grid.
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Information Layer
The informational layer deals with the data that has to be
exchanged between the various components in order for the
various functions at the functional layer to be performed. An
example could be information related to the demand at a
particular location that has to be sent so that the response can
be adjusted accordingly. At this layer the data models for
information transmission have to be determined. The data
exchanged must be encrypted and authenticated to prevent
misuse. In the proposed architecture this layer will be mapped
to the Cyber Security Requirement for Smart City Model
Framework, which is a framework concerning security
requirements of data transfer in a smart city.

Communication Layer
The communication layer deals with the protocols used for
transfer of data. Figure 2 shows the different networks
required in the smart grid. Each of these layers will have
corresponding agents to perform the necessary tasks and these
layers will work together to ensure the proper working of the
entire smart grid.

The domains dealt with are Distributed Energy Resources
(DER) and Distribution. Here Distribution refers to the
infrastructure that deals with distribution of electricity to the
customer premises and DER refers to the small scale energy
resources that are directly connected to the public grid. These
energy re-sources are usually renewable forms of energy such as

solar and wind. The zones present in the SGAM architecture
describe functional partitions. The process zone involves all the
functions related to the physical, chemical and spatial
transformation of energy. The field zone involves the
protection, control and monitoring of the energy system. The
station zone involves features such as station automation and data
concentration.

Smart Grid Communication Layer
Framework
As we have covered the proposed structure to cover the 3S
milestone of the CPDF. This section covers the HAN, NAN,
and WAN component of the communication layer and the
present state of the art about their inter communication.

In Figure 2, the overall communication framework is shown
which is further explained in Figure 3, we can see the various
components present in the WAN network. The NAN control
center communicates information about each neighborhood to
the Energy Control and Distribution Center, which in turn
aggregates this data and communicates it to the Power
Generation Unit. Using this data the power generation can be
varied as per demand. The WAN network involves two-way
communication across large distances (10–100 km).
Communication can be through wired or wireless channels.
For wired communication, fiber optics are a suitable option as
they are more secure than other forms of communication and are

FIGURE 3 | WAN, HAN and NAN layout.

FIGURE 4 | Sample cyber-physical topology.
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not affected by electromagnetic interference. Installation of fiber
optic lines is however an expensive task and hence we can instead
make use of either Power Line Communication (PLC), which
transfers data using the already existing power lines, or through
some wireless means such as WiMAX Emmanuel et al. (2018),
Zaballos et al. (2011), Zhang et al. (2011). The Data Aggregation
Unit (DAU) of the Energy Control and Distribution Center
aggregates data from the various neighborhood control centers.
This data is then analyzed by the SCADAcontroller and the required
information is passed on to the IEDs of the Power Generation Unit.
In Figure 3, we can also see the structure of the NAN network,
which involves communication between the NAN control center,
the HAN, and the DERs. We can also see the internal HAN
structure, which involves communication between the smart
meter and the smart devices and interfaces present in the user’s

home. TheNANnetwork canmake use of the same communication
technology options that can be used in the WAN. In the HAN,
communication between smart devices and the smart meter can be
achieved through wireless communication methods in order to
ensure mobility of the smart devices. ZigBee is a low cost, low
power protocol that can be used. ZigBee is based on the IEEE
802.15.4 standard Zafar et al. (2015). It also uses Advanced
Encryption Standard (AES) to ensure security. Authors in Garg
et al. (2020) proposed a key agreement protocol based on mutual
authentication. This protocol works for the communication between
Smart Meter (SM) and the NAN gateway in bidirectional manner.
Authors established that this is light weight, less energy consuming
and successful in preventing most of the common attack like FDI,
Replay and DoS. In another work, authors Aghapour et al. (2020)
proposes a more secure protocol for broadcast authentication on the
basis of hash function (one way). This protocol is shown of being
capable to block some common attack scenario and also
computationally and storage wise less expensive.

PROPOSED METHODOLOGY

This section would cover our proposed cyber physical defense
framework (CPDF) and the modeling of cyber physical co-
ordinated attack as well as the impact analysis of the post
attack scenario adhering to the NIST guidelines Barrett (2018).

Cyber Physical Defense Framework (CPDF)
The list shows the components of the Cyber Security Defense
Framework. The Petri net attack modeling consists of the
previously mentioned hierarchical Petri nets consisting of
identifiable and commonly occurring attacks in the smart grid.

1. State Estimator (Detection)
2. Protection Mechanism
3. Petri-Net Attack modeling
4. Cyber Physical Topology
5. MDP for System Control Properties
6. Response and Recovery Mechanism

The Cyber Physical Topology of the system can be constructed
in a graphical form Kundur et al. (2011) so that simulations and
attack impacts can be analyzed. The attack vectors can be
obtained from the Petri-net and can be followed for impact
analysis. A sample of such a cyber-physical topology is shown
in Figure 4, where the rectangular nodes represent the cyber
components such as Control Center (CC) and Smart Meter (SM),
the circles represents the physical power components such as
Generator (G) and Distributor (D), and the dashed rounded
rectangle indicates the attacker.

The system designer can make use of the Cyber-Physical
Topology to estimate the amount of damage that an attacker
can cause if they have control over a particular system. In
Figure 5 we can see the flow chart containing the steps
involved in the construction of the CPDF for the complete
control propagation of the attacker and how the system will
respond and recover itself once the attack happen.

FIGURE 5 | Flow chart for cyber physical defense framework.
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Attack Detection and Mapping
In Figure 6 we can see the flow chart for attack detection and
mapping. Here the state estimator, which consists of IDS and
malware detectors will identify if an attack is taking place or if
some node is compromised. The IDS can initially consist of
anomaly based intrusion detection systems and when a confirmed
attack has occurred, signature based schemes can also be
incorporated for common attacks.

If an attack is taking place then the Petri-net is used to identify
the next steps the attacker will take and other concurrent attacks
that may be possible. If a compromised node has been detected
then the MDP is used to identify the most vulnerable systems that
the attacker may choose to attack. Based on the Petri-net place
and MDP state a mapping to the Protection, Response and
Recovery mechanisms is present in order to mitigate the attack.

EVALUATION OF CPDF AGAINST DDOS
AND FDI ATTACK DETECTION AND
MITIGATION
This section represents the evaluation of or proposed framework for
the two attack categories as DDoS and FDI. Both of the attack
categories have been analyzed through each phases of the NIST
framework NIST (2010) i.e., identify, protect, detect, response and

recover (Table 1). For the sake of simplicity, we have implemented
DDoS using Botnet and spoofed IP and FDI using variation in power
consumption values either too low or too high. To show the
effectiveness of framework, we have also taken case study on
IEEE 9-bus and 14-bus system. On both the simulations, we
performed FDI attack by altering the voltage and phase angle
values and detect attack using machine learning algorithm.

DDoS Detection and Mitigation
DoS and DDoS are the attack category that significantly attract
researchers attention due to it’s service impacting behavior. Some
researcher likeVijayanand et al., investigate this attack by analyzing
the traffic generated from Smart Meter (SM) Vijayanand et al.
(2019). However the current research trend is shifted more toward
machine learning based detection techniques for example, Prasad
et al., proposed multi-SVM Prasad et al. (2019) and Musleh et al.,
presented data driven approachMusleh et al. (2019). Inspired from
these work, we are focusing on OC-SVM as an techniques that is a
variant of SVM for the detection of this attack.

Identify
ADDoS attack is an attack where the attacker makes use of multiple
sources to render the host network unavailable, thereby disrupting
service for regular users. Over 65% of DDoS attacks are volumetric
attacks which are performed by overloading the target with

FIGURE 6 | Flow chart for attack detection and mapping.

FIGURE 7 | DoS Attack Vector using Petri Net.
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unnecessary requests Cao et al. (2018). The PetriNet modeling of
this attack is represented by Figure 7. In a smart grid the availability
of information and power is critical for proper functioning.
Outdated information can adversely affect the demand and can
even lead to legal implications Mo et al. (2011). If the information
flow is completely blocked then the power generation station will
not have access to the power needs, thus resulting in either blackouts
or excessive power generation. This model will deal with only
volumetric DDoS attacks. Two of the many ways in which this
can be implemented are using Botnets and Spoofed IP addresses.

Protect
We can make use of some of the previously mentioned protective
methods to ensure protection.

1. Restricting Size of Data:

To prevent attackers using reflection attacks or botnets from
requesting or sending unreasonably large amounts of data,
such as historic power consumption data from smart meters,
restrictions on the size of data requests and responses can be
imposed in the smart grid communication network.

2. Load Balancing of Servers:

In the event of a DDoS attack load balancing can be used to
reduce the impact on both the NAN center server and the
WAN center server. Specht and Lee (2003).

3. Channel hopping on wireless network:

This is a security measure to prevent jamming from occurring
on any particular wireless frequency channel. By channel
hopping the connectivity in the network can be maintained
and regular communication can take place.

4. Security measures to ensure that an attacker cannot gain
control of a smart meter, NAN Center or WAN Center:

This includes the previously mentioned encryption,
authentication, integrity and key exchange methods.

5. Ingress Filtering:

Ingress filters are used to ensure that the packets are actually
originating from the network that they claim to be
coming from.

6. Firewalls:

Firewalls can be used to filter the packet flow of the network
and prevent unauthorized access from outside.

Detect
To detect a DDoS attack in a network we can make use of
anomaly based machine learning techniques. This means that the
training data used can be of normal network traffic data and the
classification model is built on this. If any input does not conform
to this model it is considered an anomaly. We use One Class
Support Vector Machine (OC-SVM) for this purpose (PLOS;
Gawande, 2018; Handa et al., 2019).

A Support Vector Machine (SVM) is a classification tool that
constructs multidimensional hyperplanes to classify labeled data.
Let the training data be the set {X, Y}. Here X is the data used for
training and Y is the label denoting the class that the particular
entry belongs to. In certain cases it may be possible to linearly
separate the data into two classes, however in more complex cases
it is necessary to transform this data to a higher dimension in
order to separate it. This can be performed by using the kernel
trick technique Φ: x→ φ(x). The separating hyperplane can thus
be represented as wTφ(x) + b � 0.

OC-SVM is a variation of SVMwhich is used to detect anomalies.
The training data consists of only one class of data, and the model is
created based on this. Any input that does not fit this model is
considered an anomaly. To determine the separating hyperplane we
need to solve the following quadratic programming problem:

min
w,ρ,ζ i

‖w‖2
2

+ 1
vm

∑
m

i�1
ζ i − ρ

subject to[w ϕ(xi)] ≥ ρ − ζ i, for all i � 1 . . .m

ζ i ≥ 0, for all i � 1 . . .m

(1)

On solving this the separating hyperplane will be obtained and
anomalies can be identified using the same.

In the smart grid if we take the NAN into account, packets will
either be sent from the control center to any of the smart meters,
or from any smart meter to the control center. The pattern based
on the number of packets and the size of each packet in both of
these flows may vary a lot. Hence it is recommended that two
SVMmodels are generated, one for all network flow to the control
center and one for all network flow to the smart meters.

For the training of the OC-SVM we will need training data
from the smart grid over several periods of time. Let the collection
time period be tp and the total number of such periods required
be Np. This means that each entry in the training data table is a
compilation of certain features of the network traffic in time tp.
Np is the number of entries in the training data table.

Response
Once a possible attack has been detected using the earlier
mentioned OC-SVM method, measures must be taken to stop
the attack. This involves identifying the packets of malicious origin
and blocking the senders of the same. We are taking into account
attacks using both spoofed IP addresses as well as botnets.

The firewall parsing rules will prevent certain IP addresses from
accessing the servers which could reduce the impact of spoofed IP
address attacks. We can also make use of ingress filtering Mahajan
and Sachdeva (2013) to ensure that packets are actually coming
from the network that they claim to be coming from.

If the DDoS attack is being caused by botnets present in the smart
grid network then we can again make use of an anomaly detection
algorithm like OC-SVM to detect which IP addresses are sending
unusually high data. The difference between this and the previously
mentioned detection method is that here we consider each individual
sender’s flow data separately and determine whether it is an anomaly
or not. Once the anomalies have been detected these IP addresses can
be temporarily blocked to try and restore the functioning of the grid.
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This method however will not work in largely distributed
attacks as individual source IP addresses will not send an
unusually high number of packets. Hence, we need to modify
the network architecture in order to establish communication
throughout the smart grid. This can be done by incorporating a
self organizing architecture Cameron et al. (2019) into the smart
grid. This involves identifying substitute aggregation units or
NAN control centers for the smart meters in advance, having
dormant NAN control centers that can be used in the event of a
DDoS attack, and upgrading some smart meters to aggregation
units that can communicate with the central control center.

Recover
While attackmitigation is in place it is necessary tomaintain power
generation and distribution as well as price estimation. Since
during a DDoS attack the power generation unit will not be
able to obtain usage information it will have to base the power
generation rates on the average power generation at that particular
time over the past week. This provides a rough estimate of how
much power should be generated. And since the electricity price
cannot be transmitted through the network to the customers, we
make use of the fact that initially when joining the smart grid the
customer would have registered their details with the smart grid.

These details would include the customers mobile number.
Hence the pricing information can be calculated using the average
of the previous week and this information can be sent to the
customer through an SMS. This method is a temporary bypass to
the regular functioning of the smart grid and is only implemented
when communication is not possible due to a DDoS attack.

However, if this is also not possible due to congestion in the
distribution systems or due to some concurrent physical attack that
cuts some power flow lines then we can make use of Distributed
Generators formaintaining the power flow. This requiresminimizing
the islanding in the grid and this can be determined in advance by
making use of some method similar to the Tri-level optimal
hardening plan Lin and Bie (2018). This is a generalized recovery
method that can be used in the event of any attack as it provides
temporary independence to different parts of the grid so that they can
self-recover even when the grid is not functioning properly.

FDI Detection and Mitigation
FDI attack is generated in SG system by means of altering the
values relate to voltage, phase angle or power corresponding to
one or more buses. Researchers tried different way of creation and
later on detection techniques for the FDI attack. Nawaz et al.
generated a Logical Regression based FDI attack for the state
estimation mechanism of the SG. The model is implemented
using IEEE 5-bus system Haque et al. (2020). Another work given
by Ahmadian et al. generate false data using a Generative
adversarial Network in Ahmadian et al. (2018). In this work,
Generator Network (GN) is responsible for creating the data
analogous to real situation (attacker) and Discriminator Network
(DN) is used to check the generated data is fake or not.

Identify
FDI attacks involve the injection of false data through the use of a
compromised sensor in order to manipulate the functioning of the
smart grid. Such false data could cause either surges or reductions
in power output, each of which poses a problem to the entire
system. The compromised node could be a smart device, a smart
meter, a NAN control center or any other component of the smart
grid that either collects or processes data. The easiest target would
be components in the HAN, with components in the WAN being
the hardest for an attacker to take control of. The PetriNet
modeling of this attack can be as Figure 8. As an example we
can consider two possible methods of manipulation of the data, the
first would be when the attackers send a much smaller sensor value
than the actual value, and the other would be where the attackers
send a much higher value than the actual sensor value.

Protect
In order to protect the smart grid system from a potential FDI
attack it is necessary to improve the protective measures on
individual components of the system. This involves making use of
the previously mentioned protective measures, such as ensuring
that sensitive data is encrypted using a cryptographically secure
method, and utilizing secure key exchange methods in order to
enable decryption of this data. Physical security measures to
prevent tampering of the components should also be ensured.

FIGURE 8 | FDI attack aector using Petri Net.
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In addition to this, best practice measures such as frequently
changing passwords on smart devices and smartmeters, and keeping
anti-virus softwares updated on all these devices should be followed
by all the consumers. These protectivemeasures should already be in
place as a first line of defense in the event of a cyber attack. The
detection, response and recovery measures can be utilized in the
event that the attacker is able to bypass the protective measures.

Detect
For the detection of an FDI attack we need to identify anomalous
surges or reductions in power consumption requests. Since the average
power consumptionmay vary based on factors such as location (urban/
rural) and type (Residential/Commercial), we cannot use just one
anomaly detection model for all consumers. Hence we need to first
classify consumers into groups based on their average consumption.
We can make use of k-means clustering to classify consumers on the
basis of their consumption pattern Damström and Gerlitz (2016). This
iterative algorithm is used to classify the data into k distinct subgroups
in an unsupervized manner. The aim of this algorithm is to minimize
the pairwise squared deviation of points in a cluster, i.e., the objective
function is the following (K-Means Clustering, 2021):

J(V) � ∑
k

i�1
∑
ki

j�1
(
����xj − μi

����)
2

(2)

Here, k is the number of clusters, ki is the number of points in
cluster i, µi is the mean of points in cluster i and xj is the jth point
in cluster i. Once we cluster the consumers, we can again make
use of anomaly detection techniques such as OC-SVM to identify
potential attacks. In the overall smart grid network this anomaly
detection approach can be applied on individual NAN control
centers instead of the WAN control centers in order to provide a
more distributed detection measure Xue et al. (2019).

Response
The ideal response to an FDI attack is to identify the node where
the falsified data is originating from. Once the attack is detected
using anomaly detection algorithms we can narrow down on the
source of the attack, be it an individual smart meter, or a control
center. In the case of individual smart meters, an e-notice could
initially be sent to the corresponding consumer raising an alarm
and requiring them to confirm this usage using their smart meter
password. In the complex situation like coordinated cyber
physical attack, Tian et al., proposed countermeasures in SG
based on Multilevel Programming Tian et al. (2019).

Recover
Once it has been identified that a certain NAN Control Center or
Smart Meter has been compromised then it is essential to estimate
the consumption levels and accordingly generate power. The

FIGURE 9 | Low, high and aggregated petri nets.
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previous modeling of consumption levels can be utilized for this
estimationXue et al. (2019).Meanwhile appropriate resets of security
features must be done in order to revoke the access that the attacker
has to a component in the network. This includes resetting any keys
that are used for the secure transportation of information.

EXPERIMENTS AND RESULTS

The implementation of the aggregation algorithm for Petri nets,
DDoS IDS using OC-SVM and FDI IDS using k-means and OC-
SVM have been performed to highlight the benefits of the
Framework.

Hierarchical Petri Net
Figure 9 shows two low level Petrinets, one high level Petri net
and the aggregated Petri-net. The numbering on the 2 low level
Petri-nets, the high level Petri-nets and the aggregated Petri-net
do not necessarily match. This is due to the fact that different
domain experts may make use of different numbering
mechanisms. To represent the state of a place in the Petri-
network make use of individual characters.

So we can represent (Power � On)∧(CryptographicKeys �
Secure) as ’00’, (Power � On)∧(CryptographicKeys � Insecure)
as ’01’ and so on. This is so that the amount of storage required is
minimum and the places of different Petri-nets can easily be
mapped with each other. This method of storing the states as a
stream of characters is a modification to the original work by T.
Chen et al.

Chen et al. (2011), which involved storing the variable values
in an array. Thus the aggregation method presented in this work
is more optimal in terms of storage.

FIGURE 10 | Output plot for OC-SVM.

FIGURE 11 | K-means clustering on sample data.
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DDoS Detection Using OC-SVM
In Figure 10 we can see the resulting hyperplane obtained after using
the training data, which consists of no. of packets per minute on the
X-axis and average size of packet in that minute on the Y-axis. The
data was obtained by taking into account the averagemessage size in a
smart gridAndreadou et al. (2018) and regular network traffic (Kaggle
IPNetworkTraffic Flows Labeledwith 75Apps). The datawas trained
using the OC-SVM algorithm in the Python sklearn library. The
kernel used was Radial Basis Function (RBF) which is given by Eq. 3.

K(x(i), x(j)) � exp( − c
�����x(i), x(j)

�����
2
), c> 0 (3)

The RBF kernel is the default kernel used in the python sklearn
library. The γ value was set to “scale” for training and testing, which
is the default value of γ. γ determines how far the influence of a
single training example reaches, i.e., if it is a low value it reaches quite
far RBF (Scikit-Learn). The nu value passed to the OC-SVM is 0.05.
This provides a bound on the percentage of outliers that are not
taken into account. This means that very large values of nu can lead
to overfitting of data.

FDI Detection Using K-Means and OC-SVM
FDI detection using k-means and OC-SVM has also been
implemented as part of the state estimator in the Cyber Physical
Defense Framework.

Here we take the hourly power consumption (Kaggle) of
various households into account and check to see if any

anomalous consumption is present. Since different households
(or industries) may on average use drastically different amounts
of power we should first apply the k-means algorithm to the
training data in order to cluster users with similar consumption
patterns together. This is depicted in Figure 11. The x-axis and
y-axis show the energy consumption of the user and the time (in
24 h format). Once we have clustered these users we can create an
OC-SVM for each cluster and identify anomalies in the same way
we identified them in the above mentioned DDoS detection
method. The γ value used for training and testing purposes is
0.000001. The nu value passed to the OC-SVM is 0.1.

As we can see in Figure 12 and Figure 13, the resulting
hyperplane encapsulates the normal test data with a 96.7 and
93.1% accuracy respectively. The abnormal power rates have also
been identified correctly with 96.9 and 99.7% accuracy. Here the
anomalous data is generally power consumption rates that are
higher than the normal rates, and the normal rates included in the
hyperplane are fairly low. Hence this is comparable to residential
areas where consumption is generally low, but an attacker may
inject fake high consumption data in order to disrupt the system.

In Figure 14 the training and regular test power consumption
values are relatively high. Hence this is comparable to industries
that have huge power consumption rates. Here the regular test
observations have been correctly predicted with a 93.8% accuracy
and the abnormal test cases have been predicted with a 95.2%
accuracy. Here the attacker may inject false data claiming that the
required power is much lower than the actual power consumption

FIGURE 12 | OC-SVM on first cluster.
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level. Here, hourly data has been taken into account due to the fact
that this affects consumption levels by a lot. For example in certain
industries the power consumption levels may drop significantly at
night, while remaining high during the day.

Case Study for FDI Attack on IEEE 9-Bus
and 14-Bus
FDI attack can pe performed on different domains of SG, e.g.,
advanced metering infrastructure, distribution systems,
transmission systems, etc., Liu and Li (2017). In the present case
study, we performed FDI attack on the voltage and phase angle values
in the IEEE-9, 14 bus system as in Figure 15. The attack model has
pre assumption that a malicious activity is performed to change
physical data, e.g., currents, voltages and phase angles, as an
information flow by the SCADA and therefore inject FDI attack.
In order to do so, it is assumed that adversary has prior knowledge of
the partial topology so the either attacker hacked the control databases
or may be a trusted insider. Attack scenario also assumes that while
performing the attack simulation throughout, the same two buses are
targeted, implies the situation as a targeted attack in contrast to a
random attack. The FDI attack may also be performed through
compromising the communication channels to decipher and alter the
network packets but this is out of scope of the present case study.We
have taken IEEE 14-bus standard simulation with 11 loads and five
generators (UWEE) as a use case to test the proposed framework. The

simulation is performed using MATPOWER Zimmerman et al.
(2010) toolbox. The faulty data (measurement vector) is generated
at 10 s intervals.We have performed the attack on for example, at Bus
5 (on line 5->4 and 7->5) and records the measured magnitudes and
phase angles of the voltage phasor v5 and the current phasors i75 and
i54. For each measurement vector, 28 electrical measurements such as
the magnitudes related to voltage and current are recorded. This
simulation generates around 12,000 groups of measurement vectors,
which contains about 3,300 of those contingency values. The result in
term of FPR and FNR metric can be seen as represented in Table 2.

DISCUSSION AND FUTURE DIRECTIONS

The framework and architecture given in this work provides a
standardized method of designing a smart grid. However since
the broader details had to be taken into account some of the
smaller scale optimizations could not be analyzed. Hence to take
this research work to the next level it would be ideal to optimize
these aspects and identify more suitable measures at an
individual attack level rather than at a broad attack
prevention/detection level.

This work provides an analysis of the individual cyber security
framework steps. In the future, in order to expand the
understanding of how the different aspects work together in a
practical manner, all the components can be tested together using

FIGURE 13 | OC-SVM on second cluster.
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a simulated smart grid environment. In continuation to this, to
focus more on the self heal property of SG, we will try to work and
explore the efficient use of reinforcement learning methods.

Through this technique, we will train an agent to detect the
attacks as soon as they start (not later, not earlier) to avoid
significant damage to the grid. For this to happen, we have four

FIGURE 14 | OC-SVM on third cluster.

FIGURE 15 | FDI attack on Bus 5,7 on IEEE 14-bus.
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possible scenarios that are the consequences of our agents’
actions.

1. The agent stops the simulation before the attack begins
2. The agent stops the simulation after the attack begins
3. The agent does not stop the simulation after the attack begins
4. The agent does not stop the simulation before the attack begins

In the above 4 consequences, 2 and 4 are the intended actions
and 1 and 3 are the unintended ones.

CONCLUSION

In this work, a basic architecture has been identified for the smart
grid infrastructure, which takes into account some of the most
optimal existing architectures such as SGAM CEN-
CENELEC-ETSI (2012) and 3M Lu et al. (2019), and
determines how these can be incorporated to provide a better
smart grid architecture that takes into account a wider variety of
needs. With a heavy focus on certain layers or levels of these
architectures, this work presents a more detailed look at the
communication and security methods that can be used to provide
a safer, secure and more efficient architecture. By combining
various architectures we obtained the best aspects of each of them.

The Cyber Security Defense Framework that has been designed in
this work is a one of a kind framework that identifies the different
mechanisms that have to be in place in order to take into account all
steps of the NIST NIST (2010) Framework, namely-Identify, Protect,
Detect, Response and Recover. The CSDF provides broad modeling
methods that can be used to safeguard against potential cyber attacks.
It makes use of features such as Petri Nets and Cyber-Physical
Topology to provide a mapping of the system state to the
required defense mechanisms. These methods used have been
selected by analyzing research works specific to each of these
NIST steps and identifying the best approach at each step. Thus a
combination of these individual best approaches will provide an
appropriate and optimal overall framework. This framework can then
be personalized based on the specifics of the smart grid infrastructure

it is aiming to protect. The working of this framework has been
highlighted through two attacks-DDoS and FDI.
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TABLE 1 | NIST phases for DDoS and FDI attack category.

NIST
phases

DDoS FDI

Identify Volumetric DDoS category using botnets and spoofed IP Cao et al. (2018),
Mo et al. (2011)

Injection of false data may be either surges or reductions in power output

Protect Server load balancing Specht and Lee (2003), ingress filtering and restricted
size of data

Secure key exchange, prevent tempering and frequently changing password of
light weight devices like PLC and smart meters

Detect Anomaly based machine learning techniques as fil Gawande (2018), Handa
et al. (2019)

k-means clustering Damström and Gerlitz (2016), kme and anomaly detection
techniques such as OC-SVM fil on individual NAN control centers Xue et al.
(2019)

Response Self organizing architecture for large distributed SG Cameron et al. (2019)
and ingress filtering to ensure data source Mahajan and Sachdeva (2013)

Narrow down on the source of the attack, an individual smart meter, control
center, countermeasures in smart grid based on multilevel programming Tian
et al. (2019)

Recover Minimizing the islanding in the grid using tri-level optimal hardening plan Lin
and Bie (2018) and machine learning based accurate load forecasting for
power generation companies Eapen and Simon (2019)

Revoke the access, ensure secure transportation of information flow and use
recovery technique as Lin and Bie (2018)

TABLE 2 | Performance of One Class Support Vector machines on Data-set (IEEE
9-bus and 14-bus).

Iterations 10 150 300 600 850 999

IEEE_9 bus
FPR 16.64 13.26 12.33 10.20 8.68 6.62
FNR 17.28 13.64 12.63 8.86 7.25 6.54

IEEE_14 bus
FPR 17.25 15.20 14.23 13.78 10.56 7.03
FNR 18.26 16.45 12.77 8.06 6.59 6.75
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