
ISBN 978-82-326-6061-2 (printed ver.)
ISBN 978-82-326-6679-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:11

Sergii Banin

Malware detection and
classification using low-level
featuresD

oc
to

ra
l t

he
si

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

D
octoral theses at N

TN
U

, 2023:11
Sergii Banin

Thesis for the Degree of Philosophiae Doctor

Gjøvik, January 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

Sergii Banin

Malware detection and
classification using low-level
features

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Dept. of Information Security and Communication Technology

© Sergii Banin

ISBN 978-82-326-6061-2 (printed ver.)
ISBN 978-82-326-6679-9 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:11

Printed by NTNU Grafisk senter

It is an unfortunate fact that the bulk of humanity is
too limited in its mental vision to weigh with patience
and intelligence those isolated phenomena, seen and
felt only by a psychologically sensitive few, which lie
outside its common experience.

— H. P. Lovecraft, The Tomb

iv

Abstract

Nowadays, computers and computer systems are involved in most areas of our
lives. Employees and users of manufacturing and transportation, banking and
healthcare, education, and entertainment rely on computers and networks which
allow for better, faster, and often remote control and access to various services. As
it often happens - commodity comes with unwanted side effects. The computers
can be misused by malicious actors which tend to disrupt operations, spoof, steal
or destroy sensitive data or gain remote control over the victim systems. These
and other malicious actions are often made using malicious software or malware.
Thereby, malware detection and analysis play a significant role in the Information
Security domain.

Various methods are used for malware analysis and detection. They can be
roughly divided into two major groups: static and dynamic. Static methods rely on
features derived from malware without it being launched: strings, section names,
entropy, etc. Dynamic methods rely on dynamic or behavioral features which
are extracted when malware is launched. Often, static features are easier to ex-
tract than behavioral properties. However, it is easier for malware authors to alter
static features in order to thwart static malware detection. Information Security
researchers have studied the applicability of different sources of behavioral fea-
tures: process activity, file activity, network activity, etc. Such behavioral features
can be called high-level features. Malware authors also tend to alter them: change
names of processes and dropped files, change IP addresses, and so on. However,
malware is always executed on the system’s hardware. Therefore, features that
emerge directly from hardware can also be used as a source of behavioral features.
Such features are called hardware-based or low-level features: memory activity,
executed opcodes, hardware-performance counters, etc. Since it is impossible for
malware to avoid execution on the system’s hardware, in this Thesis we focus on
the applicability of low-level features for malware detection.

v

vi

Researchers have already shown, that such low-level features as opcodes and
hardware performance counters can be used for malware detection. However, to
the author’s knowledge, no one has used memory access patterns for malware de-
tection prior to the beginning of our work. Thus, in this Thesis, we focus on the
applicability of memory access patterns for malware detection and analysis. In
our work, we present a methodology and experimental evaluation of malware de-
tection and classification using memory access patterns. We show that memory
access patterns can be used for malware detection and classification. Moreover,
during our research we found, that it is possible to detect and classify malware
based on the memory access patterns before launched malware reaches its Entry
Point. This means, that we found a way to stop malware that has been already
launched before it has a chance to conduct any malicious actions. We also show,
how low-level features can be correlated with their high-level counterparts. While
conducting our research, we extensively used Machine Learning (ML) methods.
In this Thesis, we use various methods to analyze the performance of ML models,
which can be helpful for other researchers.

Preamble

This thesis is submitted in partial fulfilment of the requirements for the degree of
Philosophiae Doctor (PhD) at the Norwegian University of Science and Techno-
logy (NTNU). This work has been performed at the faculty of information techno-
logy and electrical engineering, department of information security and commu-
nication technology at NTNU from 2016 until 2022.

This research was carried out under supervision from associate professor Geir
Olav Dyrkolbotn and professor Katrin Franke. The research leading to these results
has received funding from the Center for Cyber and Information Security, under
budget allocation from the Ministry of Justice and Public Security.

Sergii Banin

vii

viii

Acknowledgements

I took an overly long and weird path during the completion of my PhD. The Thesis
you are now holding in your hands was written during the most unforeseeable
global events that influenced everyone around including me. These events made
me become severely unproductive and incapable of focusing on writing. Neverthe-
less, along my path to completion, I was surrounded and influenced by wonderful
people who willingly or unwillingly helped me to get to the finish line.

First of all I’d like to thank my first supervisor Dr. Geir Olav Dyrkolbotn. It is
only now I understand how much courage it probably took to accept me as his PhD
candidate. The topic of my Thesis was completely new at that time, and thereby
no one could predict the probability of success in the end. I know, our collabora-
tion was not always productive. Especially toward the end. And it was completely
my fault. Nevertheless, it was an honor to work with him. By carefully placing
guardrails around he managed to keep me in the proximity of the right path and
directed me in the right direction. Secondly, I’d like to say a big thank you to my
second supervisor Dr. Katrin Franke. Even though we didn’t cooperate as often,
her common question "Why?" was always somewhere in my head contributing to
increased attention to the details. Moreover, it was she who caught me in the nets
of academia and I didn’t regret it a single time.

I also wish to thank my parents, my mother Yevheniia Andriienko, and father
Oleksandr Banin who supported my endeavours even being thousands of kilomet-
ers away. Even though I tried not to bother them too much, I always knew that I’ll
be supported and given advice no matter how I was doing in any given moment.
I am also grateful to my grandparents: grandmother Tetyana Andriienko who was
always happy just to see me, and grandfather Igor Andriienko, an engineer him-
self, who always encouraged me to push it through. I would also like to mention
my granduncle Dr. Valentyn Lobodyuk who served as an example of a Doctor in
the family.

ix

x

Moreover, it was a great pleasure to work with my colleagues Dr. Kyle Porter
and Dr. Jan William Johnsen. I appreciate the possibility to bounce some thoughts
and ideas off you. Special thank you goes to Dr. Andrii Shalaginov for useful
insights and advices as he was way ahead on his path to PhD.

Very special thank you goes to Dr. Olga Ogorodnyk. For inspiring to accept
the offer for the PhD candidate position. For pursuing your path to PhD together
with me. And for sharing the adventure times of your life with me.

I’d also wish to thank my friends Marina Shalaginova, Christoffer Vargtass
Hallstensen, Dr. Anastasiia Moldavska, Juan Victor Abreu-Peralta, and Dr. Radina
Stoykova. An additional thank you goes to Andrii Sukhanov, Oleksandr Bukalo,
and Dr. Kyrylo Kofonov for making my visits back home in Kyiv the way they
should have been. In these frightful times of war I cannot be more grateful to
Sergiy Chekmarev who voluntarily took arms and is defending our motherland
Ukraine: stay safe!

Finally I’d like to thank the Norwegian University of Science and Technology,
the NTNU in general, and its campus Gjovik in particular. I appreciate the oppor-
tunity to use the laboratory, cafeteria, coffee machine, and servers. I am grateful
to the administrative staff for helping me out with bureaucracy and formalities.
Also, I wish to say thank you to the IT and Digital Security divisions for keeping
the necessary infrastructure safe, up, and running. Special thank you goes to Lars
Erik Pedersen who is a true wizard of virtualization and Linux. I appreciate fixing
issues with the virtual server and provisioning extra terabytes on the go while I
was running out of storage space: three papers were made based on data stored in
that additional partition.

Contents

Abstract v

Preamble vii

Acknowledgements ix

Contents xv

Tables xviii

Figures xx

1 Introduction 3
1.1 Background and Motivation . 3
1.2 Aim and Scope . 8
1.3 Research questions . 8
1.4 Outline of the Thesis . 9

2 Theoretical Foundations 11
2.1 Basic Concepts . 11

2.1.1 General overview . 11
2.1.2 Computer operations . 12
2.1.3 Malware . 17
2.1.4 Dynamic Malware Analysis 19
2.1.5 Low-level behavior features 23
2.1.6 Machine learning . 24
2.1.7 Assessing the quality of ML aided malware detection . . . 27
2.1.8 Feature selection . 29

2.2 Related works . 32

3 Summary of published articles 35
3.1 General overview of the used datasets 36

xi

xii CONTENTS

3.2 Memory access patterns . 37
3.3 Malware classification . 38
3.4 Correlating high- and low-level features 39
3.5 Improved malware detection before the Entry Point 39
3.6 Intersection Subtraction feature selection 40
3.7 Detection of previously unseen malware 42
3.8 Survey paper on static analysis techniques 42

4 Contributions 43
4.1 Malware detection . 44
4.2 Improved detection capabilities 44
4.3 Feature selection . 45
4.4 Low-level features decoding . 46
4.5 Better possibilities for threat analysis 46
4.6 Better understanding of the phenomena 46

5 Discussion 49
5.1 Theoretical implications . 49
5.2 Practical considerations . 51
5.3 Ethical and Legal aspects . 54

5.3.1 Ethical aspects . 54
5.3.2 Legal aspects . 55

5.4 Limitations and Future work . 56
5.5 Bibliography . 58

6 P1: Memory access patterns for malware detection 63
6.1 Introduction . 64
6.2 Memory patterns in malware detection 65
6.3 Memtraces for malware detection 66

6.3.1 Collecting memory access 66
6.3.2 N-gram as feature extraction 68
6.3.3 Feature Selection . 69

6.4 Experiments & Results . 70
6.4.1 Computing Environment 70
6.4.2 Malware & data collection 70
6.4.3 Results . 71
6.4.4 Interpretation of achievend results and findings 74

6.5 Discussions & Conclusion . 76
6.6 Bibliography . 77

7 P2: Multinomial malware classification via low-level features 79

CONTENTS xiii

7.1 Introduction . 80
7.2 State of the art . 82
7.3 Methodology . 86

7.3.1 Dataset . 87
7.3.2 Feature construction and selection 88
7.3.3 Machine Learning algorithms 90
7.3.4 Analysis . 91

7.4 Results . 91
7.5 Analysis . 94

7.5.1 Statistical analysis . 94
7.5.2 Context analysis . 96
7.5.3 Classification performance comparison 99

7.6 Conclusion and Future Work . 100
7.7 Bibliography . 101

8 P3: Correlating High- and Low-Level Features: Increased Under-
standing of Malware Classification 105
8.1 Introduction . 106
8.2 Background . 108
8.3 Problem description . 111
8.4 Experimental design . 112

8.4.1 Terms, definitions and assumptions 112
8.4.2 Experimental flow . 113
8.4.3 Dataset . 114
8.4.4 Analysis environment . 115
8.4.5 Data collection . 115
8.4.6 Machine learning algorithms and feature selection 116
8.4.7 Correlating features derived from different sources 117

8.5 Results and analysis . 118
8.5.1 API call n-grams for malware classification 118
8.5.2 Correlating memory access and API call n-grams 119
8.5.3 Performance of integrated feature sets 119
8.5.4 Discussion and analysis of correlation findings 120

8.6 Conclusions . 122
8.7 Bibliography . 122
Appendix A Raw data sample . 124

9 P4: Detection of running malware before it becomes malicious 126
9.1 Introduction . 126
9.2 Related works . 129
9.3 Methodology . 131

xiv CONTENTS

9.3.1 General overview . 131
9.3.2 Data collection . 132
9.3.3 Feature construction and selection 132
9.3.4 Machine Learning methods and evaluation metrics 134

9.4 Experimental setup . 134
9.4.1 Dataset . 134
9.4.2 Experimental environment 135
9.4.3 Experimental flow . 135

9.5 Results and Analysis . 135
9.5.1 Classification performance 135
9.5.2 Analysis . 137

9.6 Discussion . 138
9.7 Conclusions . 139
9.8 Bibliography . 140
Appendix A Classification results: normalized dataset 143
Appendix B Classification results: combined feature set 144

10 P5: Fast and straightforward feature selection method: A case of
high dimensional low sample size dataset in malware analysis 145
10.1 Introduction . 146
10.2 Background . 148

10.2.1 Problem description . 148
10.2.2 Literature overview . 151

10.3 Intersection Subtraction selection method 153
10.3.1 The context . 154
10.3.2 Feature selection algorithm 154
10.3.3 Computational complexity 155
10.3.4 Theoretical assessment 156

10.4 Experimental evaluation . 157
10.4.1 Dataset . 157
10.4.2 Experimental environment 158
10.4.3 Memory access operations 159
10.4.4 Data collection . 159
10.4.5 Feature selection and machine learning algorithms 160
10.4.6 Time complexity . 161
10.4.7 Analysis of selected feature sets 161
10.4.8 Classification performance 162

10.5 Discussion and Future work . 163
10.6 Conclusions . 165
10.7 Bibliography . 165

CONTENTS xv

11 P6: Detection of Previously Unseen Malware using Memory Access
Patterns Recorded Before the Entry Point 169
11.1 Introduction . 169
11.2 Background . 171
11.3 Methodology . 172

11.3.1 Data collection . 172
11.3.2 Data preprocessing and feature selection 173
11.3.3 Splitting the dataset . 173
11.3.4 Evaluation . 174

11.4 Experimental setup . 174
11.4.1 Experimental environment 174
11.4.2 Dataset . 175
11.4.3 Experimental flow . 177

11.5 Results . 178
11.6 Analysis . 180

11.6.1 Influence of families . 180
11.6.2 Influence of features . 180
11.6.3 Influence of feature space 183

11.7 Additional evaluation . 186
11.8 Discussion and Conclusions . 188
11.9 Bibliography . 190
Appendix A Classification results achieved by RF 193
Appendix B Classification results achieved by J48 195
Appendix C Classification results achieved by LWL 197

12 S1: Machine Learning Aided Static Malware Analysis: A Survey
and Tutorial 199
12.1 Introduction . 200
12.2 An overview of Machine Learning-aided static malware detection 202

12.2.1 Static characteristics of PE files 202
12.2.2 Machine Learning methods used for static-based malware

detection . 205
12.3 Approaches for Malware Feature Construction 216
12.4 Experimental Design . 218
12.5 Results & Discussions . 221

12.5.1 Accuracy of ML-aided Malware Detection using Static Char-
acteristics . 222

12.6 Conclusion . 232
12.7 Bibliography . 233

xvi CONTENTS

Tables

6.1 Accuracy %, for 800 features . 72
6.2 Intersection size and ratio for unique benign and malicious n-grams

for 1,000,000 memtraces . 73

7.1 Classification performance for families and types datasets 92
7.2 Accuracy (acc.), unalikeability (unalike.), entropy and number of

subcategories (subN) for malware families (a) and types (b). On-
linega. stands for onlinegames, trojandr - for trojandropper, tro-
jando. - for trojandownloader. 96

7.3 Correlation between accuracy (acc.), unalikeability (unalike.), en-
tropy and number of subcategories (subN) for columns of Tables
7.2a (a) and 7.2b (b) . 97

7.4 Comparison of our results to the results from [38] 100

8.1 Classification accuracy for baseline feature set, API call n-grams
feature sets and combined feature sets. 119

9.1 Amount of samples that generated traces BEP and AEP. 135
9.2 Malicious vs Benign BEP classification performance. 136
9.3 Malicious vs Benign AEP classification performance. 136
9.4 10 Malicious families vs Benign BEP classification performance. . 137
9.5 10 Malicious families vs Benign AEP classification performance. . 137
9.6 Evaluation of Hypotheses after analyzing the results 138
7 Malicious vs Benign BEP classification performance on the nor-

malized dataset. 143
8 10 Malicious families vs Benign BEP classification performance

on the normalized dataset. 143
9 Malicious vs Benign classification performance on the normalized

dataset using combined feature set 144
10 10 Malicious families vs Benign classification performance on the

normalized dataset using combined feature set. 144

xvii

xviii TABLES

10.1 Sample dataset 1 . 157
10.2 Difference between feature sets selected by IS and IG. 162
10.3 Classification performance with a use of features selected by IG . 163
10.4 Classification performance with a use of features selected by IS . . 163

11.1 Distribution of malware families in the dataset 176
11.2 Amount of benign and malicious samples in bins. 176
11.3 Amount of features selected by CFS feature selection method for

all train sets . 181
11.4 Amount of common features between the feature sets. 182
11.5 Proportion of features that represent one class more than another. . 183
6 RF accuracy . 193
7 RF TPR . 193
8 RF FPR . 194
9 J48 accuracy . 195
10 J48 TPR . 195
11 J48 FPR . 196
12 LWL accuracy . 197
13 LWL TPR . 197
14 LWL FPR . 198

12.1 Analysis of ML methods applicability for different types of static
characteristics . 215

12.2 Characteristics of the dataset collected and used for our experi-
ments after filtering PE files . 220

12.3 Feature selection on PE32 features. Bold font denotes selected
features according to InfoGain method 223

12.4 Comparative classification accuracy based on features from PE32
header, in %. Bn, Ml_000 and Ml_207 are benign and two malaware
datasets respectively . 224

12.5 Classification accuracy based on features from bytes n-gram ran-
domness profiles, in % . 226

12.6 Feature selection on 3-gram opcode features. Bold font denotes
features that present in both datasets that include nenign samples . 227

12.7 Classification accuracy based on features from opcode 3-gram, in % 228
12.8 Feature selection on on 4-gram opcode features. Bold font denotes

features that present in both datasets that include nenign samples . 229
12.9 Classification accuracy based on features from opcode 4-gram, in % 230
12.10Classification accuracy based on API call 1-gram features, % . . . 231
12.11Classification accuracy based on API call 2-gram features, % . . . 231

Figures

1.1 Source of information . 6
1.2 Source of information . 8

2.1 von Neumann computer Arcitecture 13
2.2 Portable Executable file format 16
2.3 Windows process creation flow [14] (P4), inspired by [50] 16
2.4 Dynamic malware analysis cycle. Inspired by [7] 21
2.5 Description of behavior at the different granularity levels 23

5.1 Out-of- and in-VM sources of information 57

6.1 Automated malware analysis cycle using Intel Pin for metraces
sequences extraction . 71

6.2 Accuracy depending on n-gram size and number of features (200-
800) for all memtrace sequences lengths 73

6.3 Accuracy vs intersection ratio for 106 memtraces 74
6.4 Area under class-wise frequency chart for 200 features 75
6.5 Area under class-wise frequency chart for 800 features 76

7.1 Simplified experimental flow . 86
7.2 Detailed experimental flow . 86
7.3 Memory access operation numbers for families and types 88
7.4 Example of overlapping n-grams 89
7.5 Classification performance for families (a) and types (b) datasets . 93
7.6 Per-family (a) and per-type (b) entropy (left vertical axis), unalike-

ability and accuracy (right vertical axis) 98

8.1 Generalized problem description 107
8.2 Detailed experimental flow . 114
8.3 Correlation between API calls and memory access n-grams 118

9.1 Process creation flow [28] . 132

xix

xx FIGURES

10.1 The flow of data collection and feature selection 158

11.1 Distribution of malware families among the malware samples within
each of the 13 bins . 177

11.2 Distribution of malware families among the malware samples within
train sets . 177

11.3 Performance of RF algorithm . 179
11.3 Distance-preserving projection of train and test samples from mul-

tidimensional feature spaces into the two dimensional plane. . . . 184
11.4 Performance of J48 algorithm . 187
11.5 Performance of LWL algorithm 189

12.1 Timeline of works since 2009 that involved static analysis of Port-
able Executable files using method characteristics using also ML
method for binary malware classification 204

12.2 Bayesian network suitable for malware classification [58] 208
12.3 Maximum margin hyperplane for two class problem [32] 210
12.4 Artificial neural network [32] . 211
12.5 Taxonomy of common malware detection process based on static

characteristics and Machine Learning 213
12.6 Comparison of accuracy of various static characteristics with re-

spect to feature selection and machine learning methods. Colour
of the bubbles shows used characteristics for detection, while size
of the bubble denotes achieved accuracy 216

12.7 Log-scale histogram of compilation times for benign dataset . . . 222
12.8 Log-scale histogram of compilation times for malware_000 dataset 222
12.9 Log-scale histogram of compilation times for malware_207 dataset 223
12.10Sliding window algorithm [17] 225
12.11Distribution of file size values in Bytes for three classes 226
12.12Distribution of the frequencies of top 20 opcode 3-grams from be-

nign set in comparison to both malicious datasets 228
12.13Distribution of the frequencies of top 20 opcode 4-grams from be-

nign set in comparison to both malicious datasets 231
12.14frequencies of 20 most frequent API 1-grams for three different

datasets . 232

Part I
Introduction

Chapter 1

Introduction

Different electronic devices and computer systems are constantly involved in vari-
ous aspects of the life of modern society. Computers are used for control in trans-
portation, electricity production, manufacturing, and so on. People rely on com-
puters for storing, processing, and transmission of personal and sensitive informa-
tion. It is no surprise that criminals and malicious actors try to misuse computers
and systems to steal personal data or disrupt industry operations. Thereby, Inform-
ation Security gained an important role in the everyday life of digitized society. As
older vulnerabilities and attacks become obsolete thanks to Information Security
specialists, new attack vectors are being discovered by malicious actors. This race
of arms shows a need for constant improvement of existing and creation of new
security mechanisms. As malware is often involved in cyber-attacks, malware de-
tection and analysis is an important part of the Information Security domain. In
this Thesis, we present a novel approach for malware detection and analysis.

1.1 Background and Motivation
Malware is malicious software that was created in order to perform unwanted,

often illegal actions in computers and computer systems. Malware can be made in
the form of a standalone executable with only malicious functionality. It can also
be injected into the legitimate executables to perform a malicious activity in the
background while the user continues to use the "normal" application. Execution of
malware in the victim system can be a part of a cyber-attack. The effects of attacks
on computers and systems vary from simple unwanted ads in the browser of a
private person’s PC to the disruption in the electricity supply grids for hundreds of
thousands of people[38]. The field of Information Security defines and implements
various practices aimed at defending both private and corporate customers from
malicious actors. In order to develop appropriate defense mechanisms and tools,
it is important to understand which steps an adversary might take to achieve one’s

3

4 Introduction

goals. Attacks on systems and services can be divided into seven stages of a cyber-
attack kill chain[26]

1. Reconnaissance - adversary identifies a target and tries to obtain as much
knowledge about it as possible.

2. Weaponization - creation of malware that is tailored to the properties of the
victim system.

3. Delivery - transmission of malware into the victim system.

4. Exploitation - malware exploits a vulnerability in the system or user beha-
vior.

5. Installation - malware achieves persistence in the system if it is necessary.

6. Command and Control - malware gives the adversary an opportunity to ac-
cess the system remotely.

7. Actions on Objective - adversary performs malicious actions in the system.

Malware is often used in the victim systems on Stages 4 to 7 from the list above.
Moreover, Stage 3 (Delivery) might also involve malware that was already placed
in the system before the major attack will happen. Normally, it is desirable to not
let malware be placed in the system in the first place. Thereby, it is important
to detect malware in the system as soon as possible. This is often done through
various policies and tailored user privileges. For example, it may be forbidden to
use personal flash drives on the computers of the company, or a network firewall
may be set up to restrict connections to certain Internet addresses. However, both
users and system administrators are human beings, thus tend to make mistakes. If
malware made its way into the system, it is preferable to detect it before it becomes
active: before it is launched.

To identify malware that is stored in the system and not being launched, a set
of static malware detection techniques is used. Static malware detection relies on
static properties of the executable file[41]: hash sums, PE32 header, strings, byte
and opcode sequences, etc. Static properties or features emerge from the file itself
and are relatively easy to derive. Static malware detection techniques often rely
on databases of previously seen malware. However, various anti-detection tech-
niques such as obfuscation and encryption are used by malware authors to make
the same malicious executable (with the same functionality) have a different static
appearance. For example, a change in one bit in the malicious file will make its
hash sum completely different. Nevertheless, malware becomes malicious only
when it is executed. When a malicious executable is launched it reveals its func-
tionality. This makes it possible to collect a behavioral trace: a record of actions

1.1. Background and Motivation 5

performed by malware in the victim system. For example, API calls, opcode se-
quences, memory activity, dropped, read, and written files as well as launched
processes and accessed network resources can be used to describe the behavioral
properties of malware. Such properties are used by the dynamic malware detection
methods. Dynamic malware detection relies on these characteristics and may help
when static methods fail to identify a new variant of previously seen malware. Ob-
viously, malware authors try to make such detection harder as well. For example,
they can use different network addresses or drop files with randomly generated
names. Malware can also be made to detect anti-virus solutions and disrupt their
work first.

Both static and dynamic detection methods rely on features: properties of ex-
ecutables that allow to distinguish between malicious and benign software. It is
often the task of a malware analyst to decide which properties are better to use
for such a task. Often malware incorporates various anti-analysis techniques that
make analysis harder. For example, encryption and obfuscation make static ana-
lysis harder. In its turn, anti-debug and anti-VM techniques are aimed at making
dynamic analysis harder. Dynamic malware analysis is normally made inside an
isolated and controlled environment: often a Virtual Machine (VM) that has a set of
monitoring tools in place. Regardless of the anti-detection and anti-analysis tech-
niques malware is made to be executed. While everything that is executed in the
system is executed on the system’s hardware. Thus, analysis of the hardware activ-
ity produced by malware may be a reliable source of information and distinctive
properties. Hardware activity can be used to extract hardware-based or low-level
features. Low-level features consist of but are not limited to: CPU instructions
(opcodes), memory activity, disk activity, GPU activity, and so on. In this Thesis,
we split behavioral features into high- and low-level features. For example, API-
calls and file activity are the high-level features while CPU and memory activity
are the low-level features. In this Thesis, we study the applicability of low-level
features for malware detection and analysis and use hardware as a source of relev-
ant information as shown in Figure 1.1.

Malware analysis is a set of techniques aimed at revealing the goals of mal-
ware and the ways these goals are achieved. Based on the malware goals, or what
the malware does, malware samples can be divided into malware types. In its turn,
based on how the malware achieves its goals malware can be divided into malware
families[11]. The process of assigning malware into categories is called malware
classification. Malware classification is important for improvements of the security
mechanisms. For example, knowledge about malware types allows strengthening
security policies and pre-attack defense mechanisms. In its turn, knowledge about
malware families helps in post-attack actions as security specialists will have a bet-
ter understanding of what has been changed in the victim system. In this Thesis,

6 Introduction

Hardware

OS

Computer

Systems and
services

Source of information for
our approach

Source of information for
common anti-virus

solutions

Figure 1.1: Source of information

we also explore, how low-level features can be used for malware classification.
One of the problems of malware analysis and detection is large amounts of

malware in the wild. For example, the VirusShare [48] resource contains more
than 36.6M samples by the end of the year 2020. Every day hundreds of thou-
sands of new samples are discovered[8]. This makes manual analysis infeasible,
thus forcing analysts and information security companies to use machine learning.
Machine Learning (ML) is a set of statistical methods aimed at deriving know-
ledge from large amounts of data by finding common characteristics of analyzed
objects[29]. ML methods can be roughly divided into supervised and unsuper-
vised methods. The supervised methods can be divided into classification and
regression methods. In malware detection and analysis it is often important to per-
form classification: classify malware into categories (multinomial classification)
or distinguish between benign and malicious executables (binary classification).
ML methods rely on features, certain properties of the analyzed objects that the
user believes can carry information necessary for classification. When a type of
features is decided on, the values of such features are collected from samples of
the dataset: data collection. After the data has been collected an ML algorithm is
used to build a model: statistical representation of the dataset. We elaborate on the
topic of Machine Learning in the Section 2.1.6.

One of the problems with the utilization of low-level features is that it may be
challenging to extract and record low-level activity. This may be one of the reasons

1.1. Background and Motivation 7

why hardware-based features did not receive enough attention from the research
community by the beginning of our research. Moreover, a certain type of low-level
features such as memory access patterns has never been used for malware detec-
tion and analysis before the time research leading to this Thesis was started. These
factors motivated and shaped our research.

Originally, we were planning to explore the applicability of various low-level
features for malware detection and analysis. However, as we began our studies
we faced significant difficulties which made us narrow our focus to the study of
memory access patterns: a previously unexplored type of low-level features. First
of all, in this Thesis, we describe, how memory access patterns can be used for mal-
ware detection. We outline the necessary amount of memory accesses needed for
the analysis. Describe our ways of data preprocessing. We also show, which ML
algorithms trained on memory access patterns show the best performance in mal-
ware detection. Moreover, we elaborate on how one can deal with huge amounts of
unique memory access patterns with help of several different feature selection tech-
niques. The amounts of data needed to be processed forced us to develop and study
our own feature selection method which is described in paper P5[10]. Later, having
a basic understanding of memory access patterns in malware detection, we study
the applicability of those for malware classification. In our paper [11] we evalu-
ate the performance of ML models trained to distinguish between malware families
and types. In that work, we present a valuable way of analysis of classification per-
formance with help of subcategories. Moreover, there we present the definitions of
malware family and malware type, as such definitions were rarely present in relev-
ant literature at the time of writing. As we went deeper into the topic we realized,
that memory access patterns are not human-understandable. Thus, we performed
an attempt to correlate our low-level features with more human-understandable
API-calls - high-level features in P3 [12]. During that research stage, we found,
that API calls and memory access patterns allow for better classification perform-
ance if used together. Moreover, we discovered that most of the data we analyzed
emerged from before the Entry Point (BEP). Basically, this meant, that we were
able to detect and classify malware before it has any chance to perform any mali-
cious actions, as the logic of executable is executed after the Entry Point (AEP) as
shown in the Figure 1.2. We took this finding and developed a BEP-AEP approach
in malware analysis that is described in [14]. With this approach, we deliberately
differentiate between behavioral activity produced by launched malware BEP and
AEP. In that work we have shown, that malware detection is possible based solely
on memory access patterns produced BEP. This is one of our major contributions,
as we push the last line of defense and create an ability to stop launched malware
from doing any potential harm to the victim system. The last stage of our research
was aimed at the study of the applicability of BEP memory access patterns for

8 Introduction

Figure 1.2: Source of information

the detection of previously unseen malware. In P6 [13] we explored how models
trained on earlier malware samples are capable of detecting malware that was first
discovered months later after the model update.

1.2 Aim and Scope
The aim of this research is to explore the applicability of low-level features

for malware detection, classification, and analysis. Within our study, firstly, we
focus on the use of memory access patterns for malware detection. Specifically,
in several papers, we investigated which malware detection and classification per-
formance can be achieved using memory access patterns. One paper is dedicated
to investigating the possibility to detect a launched malware before the newly cre-
ated process reaches its main module. As low-level features are often meaningless
to human analysts we have also performed an attempt to build a semantic bridge
between low- and high-level features. Moreover, during our research, we show,
that combining memory access patterns with high-level features (API calls) al-
lows to improve the performance of ML models trained to classify malware into
categories and types.

1.3 Research questions
Execution of any executable results in the activity on the system’s hardware.

This activity may be a source of information relevant for the malware detection.
In this thesis we focus on the study of the applicability of low-level features for
malware detection and analysis and the main research question can be stated as
follows:

How can low-level features be used in malware detection and analysis?

While working to answer the main research question we outlined the following
subquestions:

1.4. Outline of the Thesis 9

1. What are the best practices of low-level features applications for malware
analysis?

2. How can low-level features be used for malware detection?

(a) What is the performance of our approach?

3. How can low-level features be used for malware classification?

(a) What is the performance of our approach?

4. How can malware detection and analysis be improved by the use of the low-
level features?:

(a) How low-level features can improve understanding of malware detec-
tion and analysis and contribute to better domain knowledge?

(b) How can low-level features improve malware detection capabilities?

(c) To what extent low-level features can improve malware classification
accuracy?

1.4 Outline of the Thesis
The remainder of the Thesis is arranged as follows. Part I consists of theoret-

ical background and a condensed description of our research and findings:

• In Section 2 we provide a theoretical background necessary for understand-
ing the contributions of the Thesis. First, we briefly describe computer op-
erations. Later, we elaborate on the concepts of malware and malware ana-
lysis. Then, we justify the importance of low-level features analysis. Later,
we elaborate on the topics of Machine Learning and its application in mal-
ware analysis. We conclude this section we an overview of the papers which
present research on the topic of the application of low-level features for mal-
ware analysis.

• In Section 3 we provide a brief description of the published articles. We
make a short description of each paper and its findings. We also show, how
papers help us to answer research questions from Section 1.3

• In Section 4 we outline our contributions. In this section, we describe our
most valuable findings and explain how they contribute to the knowledge
area.

10 Introduction

• In the Section 5 we describe theoretical implications and practical consider-
ations. There we justify important theory necessary for future research. We
also explain practical aspects of our research that might be useful in future
research as well. Later, we discuss ethical and legal aspects that may arise
in the research similar to ours. We conclude this section by outlining the
limitations of our research and possible directions for future research.

Part II consists of the papers that present details and results of our research.

Chapter 2

Theoretical Foundations

This chapter is dedicated for providing the reader with a theoretical background
necessary for an understanding of the rest of the Thesis. We begin with introdu-
cing the Basic Concepts where we elaborate on: general overview of the topic;
computer operations basics; malware; dynamic malware analysis; low-level beha-
vioral features; machine learning; assessing the quality of machine learning aided
malware detection; feature selection. We later provide an overview of the articles
related to the topic of low-level features utilization in malware detection and ana-
lysis.

2.1 Basic Concepts
In this section, we provide concepts that are necessary for the reader to under-

stand the remainder of the Thesis.

2.1.1 General overview

Before the thorough elaboration on the basic concepts, we present a general
overview of the necessary terms and their semantic connections. In the following
subsections, we extensively talk about malware. Malware or malware sample is
an executable file that is capable of performing malicious or unwanted activity or
actions. In this Thesis, we use the term malware as the opposite of goodware or
benign software: executables that don’t perform malicious activity or actions.

Malware analysis is a set of tools and methods aimed at understanding mal-
ware functionality and revealing properties or features common for many mal-
ware samples. Such features are then used in malware detection - methods aimed
at distinguishing between malicious and benign executables. Moreover, such fea-
tures can be used for malware classification - methods used to split malware into
different categories.

Malware analysis is usually divided into static and dynamic analysis. Static

11

12 Theoretical Foundations

analysis is done without launching the malware, while dynamic involves it. While
static analysis is relatively safe to perform without additional restriction, dynamic
malware analysis is normally done in a safe and controlled environment. Often
virtual machines or VMs are used to improve control and isolation of the analysis
process. A desired operating system - OS is normally installed on the VM. We
often refer to the OS as system and to the OS installed on the VM as guest system.
The system that runs the VM is referred to as host system.

In order to perform malware detection, it is important to find which features
can support the distinguishing between malware and goodware. For example, a
presence of a certain URL or IP address among the strings found in the execut-
able can be a sign of maliciousness of the file. For instance, a string KRAB-
DECRYPT.txt found in the file can be a sign of this file being from a malware
family GandCrab. To find the distinguishing features, they have to be extracted
from benign and malicious files. This can result in large quantities of data that are
not suitable for manual analysis. Thus, statistical methods such as machine learn-
ing (ML) are used to process and optimize such data for further use. ML methods
are used to find the most useful features and train ML models that are later used for
malware detection or classification. After the feature extraction and before ML
models training it is often necessary to reduce the number of features by utilizing
one of the feature selection methods. Selected features are then used as inputs for
the ML models. Trained ML models are assessed using various measures such as
true positive rate (TPR), false positive rate (FPR), accuracy and so on.

2.1.2 Computer operations

In this subsection, we describe the basic principles of computer operations.
The majority of modern computers are based on the von Neumann architecture[33]
and can be roughly depicted as shown in Figure 2.1. The von Neumann architec-
ture implies the presence of the following components: input and output devices;
processing unit with arithmetic logic unit and registers; control unit with instruc-
tion register and program counter; memory that stores data and instructions; ex-
ternal mass storage. These components are called hardware.

Nowadays, control and processing units are placed inside the CPU: Central
Processing Unit. The CPU is responsible for arithmetic, logical, and control op-
erations. Every CPU has a predefined set of operations that it can execute. These
operations are often referred to as CPU instructions or opcodes - operational com-
mands. In the CPU opcodes are stored in their binary representation which is often
referred to as machine code. However, they have more human-understandable text
representation: mnemonic codes or assembly instructions. The execution of op-
code often involves operations on data. The data is normally stored in the main
memory or CPU registers - special components of the processor used for data

2.1. Basic Concepts 13

Input
Device

Output
Device

Central Processing Unit

Control Unit

Arithmetic/Logic Unit

Memory Unit

Figure 2.1: von Neumann computer Arcitecture

storage.
Data stored in the CPU registers is the nearest to the processor’s control, arith-

metic, and logical units. It is directly accessible for operations with no access
latency[46]. The data in the registers can be either the result of the execution of
previous opcodes or loaded from the main memory. Nowadays computers (still)
have a dedicated hardware component that stores volatile data - Dynamic Random-
Access Memory (DRAM). The latency for accessing this data is higher than the
one in registers but faster than the one on the permanent storage components (SDD,
HDD). As registers often can’t store all the necessary data CPU often has to access
memory. Despite all the technological progress, DRAM units are not fast enough
to avoid performance bottlenecks. Therefore modern CPUs contain several levels
of cache - intermediate storage components in the CPU. Their task is to store parts
of the most accessed data from the main memory. The access latency of the cache
is tens of times lower than the one of main memory[19]. For simplicity, the au-
thor of the Thesis often addresses main memory as just memory. Instructions that
require interaction with memory are normally executed under the context of a cer-
tain process. A process has access to certain parts of the memory. These parts of
the memory might not necessarily have a continuous range of physical addresses.
To simplify the creation and execution of programs operating system provides a
process with a virtual memory: a mapping between real physical addresses and a
range of continuous range of virtual addresses. We briefly elaborate on the terms
such as operating system or process further in this section.

When an opcode is executed in the CPU, it is translated into the set of mi-
crooperations: basic CPU instructions that are responsible for loading and stor-
ing data, interaction with the arithmetic logical unit, memory address calculation,
and so on. Microoperations are executed on execution ports that are dedicated

14 Theoretical Foundations

to the previously mentioned functions of the microoperations. An opcode can
have zero or several arguments which are used for the opcode execution. Ar-
guments can contain data, registers, and memory addresses of where the data
is stored, as well as register or address of the result buffer: a place where the
result of the execution of opcode is stored. Malware, as well as any other ex-
ecutable file, contains binary representation of opcodes. Whenever an executable
is running in the system, opcodes are first loaded into the memory, and then,
in the order of execution, are loaded and executed in the CPU. Some opcodes
use only CPU registers e.g. XOR EBX,EBX , while others use memory e.g.
MOV [memory_address], EAX . Opcodes that operate with memory use load
and store microoperations. Execution of load microoperation will result in read
from the memory, while execution of store - write to the memory. For the reader of
this Thesis, it is important to understand, that presence of a cache is transparent to
the opcodes. Thereby if necessary data is not stored in the cache and the memory
management unit needs to access main memory, there will be still registered only
one read memory access operation.

CPUs are built based on different architectures such as x86, x86_64 ARM,
MIPS, PIC, and so on. An architecture, or Instruction Set Architecture (ISA), is a
model of an abstract processor used to implement a CPU in hardware. The ISA
describes various properties of a CPU such as: supported data types, available re-
gisters, input and output operations, memory management, and so on. Thereby,
processors built with different ISAs have different instruction sets. At the same
time, processors built with the same or compatible ISAs will have fully or partially
compatible instruction sets. For example, an old Intel Pentium 4 CPU built with
x86 Northwood architecture has its instruction set compatible with modern Intel
Core i9 CPU built with x86_64 Comet Lake architecture. In this Thesis, we run
our experiments on Intel x86_64 CPU.

The "basic" instruction set of a modern x86 compatible CPU contains differ-
ent types of instructions such as logical, control, data handling and mathematical.
Furthermore, modern x86 compatible CPU have various extensions of their "ba-
sic" instruction set which are used for specific tasks such as encryption, advanced
data and mathematical operations, vector operations, random number generation
and so on.

The opcodes, when executed sequentially for a specific task, form a computer
program. Computer programs are written using programming languages: formal
languages that contain various instructions or commands aimed to implement dif-
ferent algorithms or logic. Computer programs can be written directly in machine
codes. Such program can be directly loaded into the CPU for execution. However,
it is easier for human to use text representation of opcodes or assembly language.
Program written in the assembly language is passed to the assembler: another pro-

2.1. Basic Concepts 15

gram that, besides other tasks, translates assembly instructions into the machine
codes. Even though instructions allow to fully utilize capabilities of a CPU, it is
quite challenging to implement complex programs purely in assembly language.
For example, programming complex mathematical operations that are not imple-
mented in hardware will require big amounts of opcodes to be written by a human.
Assembly and machine codes are considered as low-level programming languages.
Low-level programming languages provide almost no abstraction over the instruc-
tion set of a CPU. Thereby, low-level code may be difficult to understand, hence
difficult to improve, modify or debug. That’s why it is often more convenient to
use high-level programming languages such as C, C++, C#, Java, Python, and so
on. Such languages provide a high level of abstraction over the CPU instruction
set. High-level programming languages provide a set of human-understandable
instructions. High-level instructions can substitute many low-level instructions.
Thereby, creation, modification, and debugging of high-level code is often faster
and easier.

When a program is written in a high-level language, its instructions can not be
loaded directly into the CPU. The program has to be compiled into the binary form
or executable: a file that contains machine codes. An executable contains the logic
conceived by the creator as well as some of the necessary resources and various
directives needed for the execution. However, in order to start the execution of
the compiled program, its instructions have to be loaded into the CPU. Nowadays,
computers are operated by operating systems (OS). OS is the intermediate soft-
ware that simplifies human interaction with hardware by providing various inter-
faces. The formats of executable files are often specific to the OS. Most of the
executable files used on Windows are of a Portable Executable (PE) format. Files
of PE format contain various headers and sections. Headers contain information
necessary for the OS to properly load executables before launch and information
about the sections. In their turn, sections contain binary machine codes, data, and
resources used by the machine codes during the execution. Machine codes are
normally stored in the executable section, while data and resources have separate
dedicated sections as shown in Figure 2.2.

When a user wants to execute a program it is the task of the OS to "feed" it to
the CPU. The part of the operating system responsible for this task is called loader.
For example, as shown in Figure 2.3, the loading of an executable on Windows
OS is a multistage process. First, the loader reads an executable file. There it finds
and interprets various directives that are used to create a process object. Later, the
loader fills the process object with data from an executable and prepares the execu-
tion environment. Sections of an executable are mapped into the virtual memory.
Necessary OS resources and libraries are also loaded into the memory, while links
to the respective memory regions are placed in the process object. Before launch-

16 Theoretical Foundations

DOS header

Executable

PE signature

COFF header

Optional header

Section table/
Section headers

Executable Section

Data Section

Resources Section

Headers

Sections

Figure 2.2: Portable Executable file format

Convert and Validate

Parameters and Flags

Open EXE and Create Sec�on

Object

Create Windows Process and

Thread Objects

Perform Windows Subsystem

Speci�c Process Ini�aliza�on

Start Execu�on of the Ini�al

Thread

Convert and Validate

Parameters and Flags

Final Process Ini�aliza�on

Start Execu�on of Entry Point

Done

Windows Susbsystem

New Process

Crea�ng Process

Stage 1

Stage 2

Stages 3+4

Stage 5

Stage 6

Stage 7

Figure 2.3: Windows process creation flow [14] (P4), inspired by [50]

2.1. Basic Concepts 17

ing a process, the loader creates and initializes a thread: the smallest object that
contains executable instructions and can be managed by OS. Then, when the initial
thread is initialized and necessary resources are loaded, a newly created process
object is launched creating a process: an instance of a program that can comprise
multiple threads. A new process performs final process initialization: e.g. loads
necessary libraries and performs various additional checks[50]. Up to this point,
none of the instructions from the executable were executed. In the end, the address
of the first instruction of an executable is loaded into the CPU, and execution of
the logic from an executable begins.

At this point CPU begins to execute instructions that represent the function-
ality of a computer program or software. Users of the computers mostly interact
with software as it helps to input data into the hardware and receive an output -
results of the hardware’s operations. Software allows to use computers for numer-
ous routine and sophisticated tasks such as text and image editing, solving math
equations, controlling power plants, and so on. However, some software is created
with malicious intentions: in the next subsection, we describe malware.

2.1.3 Malware

Computers are the pieces of complicated electronic hardware that are designed
to perform numerous logical and mathematical operations faster and more effi-
ciently than people. It is quite challenging for human to interact with hardware
directly. Thereby, computer programs or software are designed to make human
interaction with hardware simpler and more convenient. Most of the time software
is written using one of the human-understandable programming languages such
as C++, C#, Java, Python, and so on. By means of the programming language, a
programmer introduces a certain logic into the software or program that is being
created. The logic describes the behavior of software when it is launched. Each
program is created to serve a certain purpose: to execute a certain sequence of
operations and achieve certain results.

The functionality of the software can be differently assessed by people. When
exposed to the results of the execution of the same piece of software, different
people may perceive them as either malicious or benign. For example, when one
launches a tool to wipe a hard drive with the intention to delete all data - the result-
ing "clean" hard drive is perceived as wanted, thus, benign result. On the opposite,
if the software that wiped the hard drive was used to destroy important and sensit-
ive data it is perceived as unwanted or malicious. Software that produces malicious
and/or unwanted results is perceived as malicious software or malware and is such
that contains a malicious logic[44]. In contrast, software that does not produce
malicious or unwanted results is perceived as benign software or goodware.

Generally speaking, the software is perceived as malware if it performs certain

18 Theoretical Foundations

(unwanted by the user) actions without clearly notifying about them. Different
methods are used to protect users and computers from malware. For example, re-
strictions on the types of files which can be downloaded from the Internet may sig-
nificantly reduce the chance of malware appearing on the computer. However, such
policies can make regular operations more cumbersome. Hence, specialized anti-
malware software is nowadays used on most of the computers. Anti-malware, or
anti-virus, software is created and used in order to detect the presence of malware
in the system and limit the potential harm that it can cause. Anti-virus solutions
use different approaches to detect malware such as signature-based or heuristics-
based malware detection. The simpler and more straightforward one is signature
based malware detection. It relies on signatures of previously known malware to
find whether it is present in the system. Cryptographic hash functions are often
used to generate signatures. They are used to map malicious files of arbitrary size
to the unique fixed-size hash value or signature. For signature-based detection to
work, a database of previously known malware has to be created. Such databases
are essential parts of anti-virus vendors’ businesses. A piece of software is re-
gistered as malware in such database if community agrees about its maliciousness.
Here, by the community, we mean a collaboration between end-users and anti-
virus vendors.

The main drawback of signature-based malware detection is its inability to de-
tect previously unseen malware. Malware authors put significant effort into mak-
ing new variants of malware, thus making old signatures useless. Signatures or
hashes are generated based on the content of the entire malware sample and are de-
signed in a way that two files’, the contents of which are different by only one bit,
will have completely different signatures. Different obfuscation techniques, such
as polymorphism, metamorphism, or encryption are used to generate numerous
variants of malware with similar functionality but different signatures[40]. To deal
with this problem, anti-viruses incorporate heuristics malware detection. Heurist-
ics malware analysis is aimed at finding parts of malware that remain relatively
intact between the variants. For example, a newer variant of the same malware
may use the same URL for communication, hence contain it in the file. Such an
approach allows detecting of previously unseen variants of malware if they share
at least some characteristics similar to previously known malware variants. To
identify such characteristics and understand malware functionality one may per-
form malware analysis.

Malware analysis is the set of methods used to discover characteristics relev-
ant for malware detection and classification. The simplest approach to find such
characteristics rely on static malware analysis. Static characteristics or features
are those that emerge directly from the file and can be extracted without a need to
launch the potentially malicious executable. For example, such features as strings,

2.1. Basic Concepts 19

properties of Portable Executable (PE) header, names of sections, entropy, byte
sequences frequencies, and so on are considered static features. Static features can
be extracted from a file relatively easy and fast. However, the majority of them
can be altered using obfuscation techniques. To overcome these limitations, dy-
namic malware analysis focuses on the feature produced during the execution of
the malware. Moreover, malware becomes malicious only when it is executed[14]:
an executable reveals its functionality when was launched. Thereby, dynamic mal-
ware analysis is considered as a workaround for the aforementioned problems. It
is aimed at the discovery of the relevant features that emerge during the execution
of malware.

Both static and dynamic features can also be used for malware categorization
or classification. Malware classification is the task of attributing malware into
different classes based on the similarities of their characteristics. Malware classi-
fication can serve different purposes such as improvement of pre- and post-attack
actions[11], malware authorship attribution[6] and so on. For example, finding
malware samples that make use of the same network address may point to the
need of fine-tuning the settings of the firewall. Both malware detection and classi-
fication can be performed using dynamic characteristics[34]. As in this Thesis, we
utilize the behavioral characteristics, in the next subsection we focus on dynamic
malware analysis.

2.1.4 Dynamic Malware Analysis

Dynamic malware analysis is aimed at revealing and explaining the function-
ality of the malware[45]. The dynamic analysis allows to explain what malware
is doing (which goals it is made to achieve) and how it achieves its goals. During
the dynamic analysis, malware is launched in a controlled environment together
with various monitoring tools. These tools allow tracking changes and actions in
the system that occur during the execution of malware. For example, while ana-
lyzing a running malware it is common to track: file system, processes, memory,
CPU, and network activity[45]. Thus, a task of dynamic analysis is to describe
changes caused by malware in the system. Having such changes described, it is
now possible to find how changes introduced by malware are different from those
introduced by goodware. Thereby, dynamic analysis can be considered a source of
features for malware detection.

Dynamic analysis can also be used to find behavioral features similar to the
different malware samples. Such features may help to categorize malware based
on its functionality. For example, an unknown variant or category of malware that
achieves its goals similar to the known malware samples will be detected with
features found using the dynamic malware analysis. In contrast to static features,
dynamic features are more difficult to change. On a high level, the goals that

20 Theoretical Foundations

malware is made to achieve do not significantly change over time. Most of the
malware samples are aimed at achieving one or several of the following goals:
download and/or launch another executable, find and steal sensitive information,
open a remote network connection, achieve persistence in the system, encrypt or
destroy data. As operating systems do not significantly change over time, it means
that malware will achieve similar goals with the use of similar mechanisms. For
example, to achieve persistence on Windows systems, malware can use one of
the Autostart Extension Points such as Microsoft\Windows\CurrentVersion\Run
registry key. Thereby, tracking of certain activity patterns may help to detect po-
tential malware. In other words, the dynamic malware analysis involves inter-
preting the behavioral trace of malware: a sequence of events recorded during
the execution of malware. Behavioral trace represents events that occurred in the
system as the result of malware’s execution. For example, a behavioral trace may
include but is not limited to: a list of file operations performed by malware, a list
of launched processes and threads, and so on.

A process of the dynamic malware analysis can be described with the cycle
shown in Figure 2.4. First of all, it is important to create a baseline - a base state
of the guest OS. Once the analysis is done, it should be possible to restore the
system after the malware launch. It is made to ensure similar conditions for the
future runs of the same or different malware sample and avoid the influence of the
changes in the environment on the results of the analysis. Once the OS is in its
base state, we place a malware sample in the system. After that, we continue with
pre-execution tasks. They include but are not limited to: launching monitoring
tools, launch other software, etc. Later, we execute the malware sample. While it
is running, the monitoring tools record the behavioral trace. After the execution,
we perform post-execution tasks. They involve running analysis tools, dumping
memory, gathering various information from the system, and so on. A cycle is
repeated with each analysis to ensure consistency of the dynamic analysis results.

There are several challenges connected with dynamic malware analysis: ana-
lysis environment; type of events that has to be recorded; the amount of events that
have to be recorded. First of all, one has to choose the analysis environment. It
is necessary to decide in which environment analyzed malware sample has to be
launched and which resources it needs to fully reveal its functionality. For security
reasons, malware analysis is often performed in an isolated and controlled environ-
ment. It is highly not recommended to launch malware on live systems that contain
sensitive data and have a connection to real networks. The most straightforward
solution for malware analysis is to dedicate a separate computer where malware is
launched and monitored. This solution provides a realistic environment for mal-
ware. However, it might be challenging and time-consuming to restore the system
after the launch of malware. Thereby, malware analysts often utilize virtualization.

2.1. Basic Concepts 21

Reset or re-image
guest OS

Place malware

Pre-execution tasks
Malware execution

Post-execution tasks

Creating a baseline

Figure 2.4: Dynamic malware analysis cycle. Inspired by [7]

With virtualization it is possible to launch a virtual machine on top of the host
system. The VM is the virtualization or emulation of the computer system which
has a full-fledged operating system installed. It allows having multiple virtual ma-
chines running in the same host system. Moreover, VMs allow launching malware
in the different versions of OS, allowing for a more in-depth analysis of malware’s
capabilities under different conditions. Virtual machines provide the capability to
make snapshots: preserved states of the same virtual machine. It is thereby rel-
atively easy and fast to restore a VM to its baseline using a dedicated snapshot.
However, running analysis in VMs has its drawbacks. For example, it is pos-
sible for the malware to use one of the anti-VM techniques to detect that it was
launched in the VM and alter its behavior. To counteract such issues, analysts
create virtual machines that "look" as similar to the real machine as possible. For
example, emulating the network resources can make malware "believe" that it was
launched in the real system. Other methods involve installing certain software, re-
naming and configuring virtual hardware, and so on. It is important to justify, that
nowadays virtualized environments are more and more commonly used for normal
operations. Thereby, anti-VM techniques are not that common in malware, since
malware authors want their malware to be executed. Sometimes, malware requires
additional resources or user interaction in order to fully reveal its functionality.
Thus, it is the task of analysts to find out what kind of resources are missing (e.g.
certain library) and which user input is needed (e.g. keyboard strokes, or certain
mouse activity).

One of the crucial challenges is the amount and type of events that one is go-

22 Theoretical Foundations

ing to record and analyze. While performing dynamic analysis, it is important to
decide, how much data do we need to record. Generally speaking, one has to
decide how much time a certain sample will run during the analysis phase. The
time can be restricted directly, for example, 1 or 5 minutes. Furthermore, the time
can be restricted indirectly by setting the desired amount of certain events that
have to be tracked. For example, one can wait until a malware sample encrypts the
first hundred files. This is an open problem, as there is no correct answer due to
the nature of certain malware samples which can wait in idle mode for extended
periods of time. Thus, often it is the malware analyst who decides on the amount
of time needed to record a behavioral trace.

However, the types of events that have to be recorded also pose issues for the
dynamic analysis. As the task of dynamic analysis is to describe changes intro-
duced by malware to the system, one has to decide on the level of data granularity
used to create such a description. Before performing a dynamic analysis it is im-
portant to decide how precise a description of malware behavior should be.
Thus, by granularity, we mean the number of details used to describe malware’s
functionality. A more detailed - low-level - description of the malware’s behavior
requires the use of a higher level of data granularity. In contrast, higher levels of
the description require less data or lower level of data granularity. In Figure 2.5
we show an example of how the behavior of a malware sample can be described
at different levels of granularity. For example, at the lowest granularity level, we
can simply say that the malware sample is a Backdoor, and creates a remote con-
nection. On the next level, we can provide a description of the used vulnerability
and a particular exploitation technique implemented in the malware sample. At
the highest level of data granularity in this example, we can describe function
calls, network, and file activity caused by the execution of malware. We call the
above-mentioned variants of behavior description high-level. High-level descrip-
tion requires recording of high-level features. High-level features include, but are
not limited to: API and function calls, their arguments, file activity, network and
registry activity, and so on. High-level features are relatively good for the detailed
description of malware’s functionality and behavior. However, in order to record
such features, it is often necessary to have some sort of monitoring tools in the
victim system which can be tracked and disabled by malware. Moreover, mal-
ware authors may try to hide malicious activity by utilizing various anti-dynamic
analysis techniques such as anti-debug and anti-VM. Despite all the efforts, it is
impossible to avoid execution on the system’s hardware. Every action performed
by any executable running in the system will result in hardware activity. The
hardware activity is the source of low-level features - features that emerge directly
from the system’s hardware. Such features provide high granularity data about the
malware’s behaviour. In the next subsection, we describe hardware activity and

2.1. Basic Concepts 23

Amount of data

Granularity

General
functionality

This is a Backdoor. Allows to create remote connection. (Up
to hundreds of bytes)

General
functionality

This is a Backdoor. Allows to create remote connection. (Up
to hundreds of bytes)

General
functionality

This is a Backdoor. Allows to create remote connection. (Up
to hundreds of bytes)

Particular
functionality

Remote connection is created through the vulnerability (CVE-
####) in update module of legitimate software. A backdoor
causes an overflow and forces update module to initialize
malicious connection. (Up to Kbytes)

Particular
functionality

Remote connection is created through the vulnerability (CVE-
####) in update module of legitimate software. A backdoor
causes an overflow and forces update module to initialize
malicious connection. (Up to Kbytes)

Particular
functionality

Remote connection is created through the vulnerability (CVE-
####) in update module of legitimate software. A backdoor
causes an overflow and forces update module to initialize
malicious connection. (Up to Kbytes)

API/fuction calls, network
activity, crypto algorithms, file

system activity

{Sequence of function calls, accessed IP addresses, accessed
files}, description of cryptoroutines (Tens to hundreds of
Kbytes)

API/fuction calls, network
activity, crypto algorithms, file

system activity

{Sequence of function calls, accessed IP addresses, accessed
files}, description of cryptoroutines (Tens to hundreds of
Kbytes)

API/fuction calls, network
activity, crypto algorithms, file

system activity

{Sequence of function calls, accessed IP addresses, accessed
files}, description of cryptoroutines (Tens to hundreds of
Kbytes)

Figure 2.5: Description of behavior at the different granularity levels

low-level features in a more detailed manner.

2.1.5 Low-level behavior features

Execution of opcodes results in hardware activity: executed microoperations,
opcodes themselves as well as memory operations emerge directly from the hard-
ware. It means that with access to the hardware it is hypothetically possible to
record such activities without a need to install monitoring tools on the OS. In-
formation about executed opcodes and memory operations can be a rich source
of information about the running process. However, there are more sources of
information about the running process at the level of hardware. Modern CPUs
often incorporate hardware performance counters: special counters that allow
tracking of various events. For example, amounts of load, store, and branch retired
instructions, misinterpreted branch instructions, Translation Lookaside Buffer ac-
cesses, cache access operations, Page Table Walks, and so on. The other sources of
hardware activity can be a hard-disk activity, network card activity, GPU activity,
and so on. In this Thesis, we focus on the analysis of the memory activity produced
by malware.

There are several challenges linked to the study of low-level features in mal-
ware analysis. The first challenge is the difficulty of low-level feature extrac-
tion. Due to the nature of features, it is hypothetically possible to extract them
directly from the hardware (in the form of electrical signals). However, due to
the proprietary nature and simplified design of consumer-level computers, it is
extremely challenging for regular researchers to perform such studies. One of

24 Theoretical Foundations

the workarounds is the emulation[39][36][28] of necessary hardware in, for ex-
ample, Field-programmable gate array (FPGA). Such an approach allows, among
the other benefits, to evaluate the potential computational overhead of malware
detection caused by low-level detectors. However, such an approach requires ad-
ditional competence from the researchers. Moreover, the phase of prototyping may
require a significant amount of time since the architecture implemented in FPGA
will likely be re-developed multiple times. Thereby, especially in the phase of pro-
totyping, many researchers choose software-based methods of low-level feature
extraction. Most of the common malware analysis and reverse engineering tools
do not come with the functionality suitable for low-level feature extraction and
recording. Thereby, quite often, researches[39][36][5] that use low-level features
rely on dynamic binary instrumentation toolkits. Dynamic Binary Instrumentation
(DBI) is the set of methods aimed at tracing and analysis of the behavior of bin-
ary executables during runtime on the level of opcodes. It is implemented through
the injection of callbacks (instrumentation) and analysis instructions between the
instructions of the original code. The newly generated code ensures transparency
of the inserted instructions for the original code so that the functionality of inspec-
ted executable remains intact. DBI allows to inspect, record, and alter the state
of the executable at every moment of its runtime. Thereby, DBIs are very power-
ful tools when it comes to the extraction of low-level behavioral traces. Most of
the time, DBIs don’t come with the desired ready-to-use functionality. Instead,
they provide "basic" functionality such as: tracing of memory access operation,
tracing of branch instruction, tracing of call instruction etc. Often, such DBIs as
Intel Pin[4][31], Valgrind[32] or DynamoRio[20], come in the form of frameworks
where users are given an API that allows for building of arbitrary tools. Thereby,
DBIs provide enough flexibility for the instrumentation of executables and inspect-
ing their low-level behavior. The results presented in this Thesis are based on the
data recorded using the Intel Pin binary instrumentation framework.

2.1.6 Machine learning

Every day, thousands of new malware samples are detected. Thereby, malware
analysis involves the processing and analysis of large quantities of data. Perform-
ing such processing manually will require infeasible amounts of time and human
resources. Thus, Machine Learning methods are used to automate and speed up
the processing and analysis of large quantities of data. Machine Learning methods
are the computer algorithms that learn from data and improve their performance
without being initially created to act this way. Machine Learning is often used for
the knowledge discovery[29]. Knowledge discovery is the process of making new
knowledge (information) from the data that would otherwise not be found. New
knowledge can aid for a better understanding of data and therefore help to use it

2.1. Basic Concepts 25

more efficiently. Machine Learning involves learning: a process of improving the
performance based on the input data.

Machine Learning (ML) methods can be roughly divided into supervised and
unsupervised. Supervised methods include, but are not limited to, classification
and regression, while unsupervised - clustering and associations. Supervised meth-
ods require input data to provide some sort of background knowledge and learning
data. A supervised algorithm receives data, uses it to search a hypothesis space,
and presents a final hypothesis as an output. Such a hypothesis presents a more
efficient representation of the input data. For the supervised algorithm to work
an input data should incorporate the description (attributes or features) of learning
samples together with the supervising (target) variable. It is important to justify
the term feature the way it is used the most in this Thesis. As provided in [29],
a feature is a variable that can obtain a set of allowed values and represents a
certain property of a learning sample. In this Thesis, we record long sequences
(traces) of memory access operations performed by executables. Next, we split
these sequences into n-grams. In our research we use these n-grams as features.
The values of the features are either 1 or 0. Respectively, these values reflect the
fact of presence or absence of a certain n-gram in a certain trace. They reflect a
property of a memory access traces to contain a certain n-gram. This way, the data
that is used for training by the ML algorithm is essentially a matrix of zeros and
ones. We refer to it as bitmap of presence in P1[15]. Basically, we are using values
of the features to perform feature selection and to train ML models.

Target variable is unobservable in the real world and the task of the algorithm
is to learn to predict it based on the attributes. For example, after processing beha-
vioral traces of malicious and benign executables a Decision rules algorithm can
hypothetically generate a set of rules that would help to distinguish between mali-
cious and benign behavior. In this way, based on the behavior of a new executable
it might be possible to predict whether it is malicious or not. Prediction of the type
or class of the sample based on its features is called classification. It is important
for the reader to distinguish between classification as ML task, and malware clas-
sification. In order to perform classification, the ML algorithm learns on the data
with the target variable - class. As the result, a machine learning model is created
as output. Such a model is considered to be trained for a certain task. The task
of classifying a sample in one of the two classes is called two-class or binomial
classification. In malware analysis, binomial classification is used for the task of
malware detection. In this case, the ML model is trained to attribute samples into
either benign or malicious classes. The task of classifying a sample in one of more
than two classes is called multinomial classification. For example, malware classi-
fication involves the attribution of the malware in one of the many categories such
as malware families or malware types. Thereby, multinomial classification is used

26 Theoretical Foundations

for the task of malware classification.
Unsupervised methods receive input data without the target variable. Their

goal is to find relations and similarities among the learning samples. For example,
a clustering algorithm can find similarities between behavioral traces of malware
samples. This way, malware samples can be divided into subsets or clusters. Clus-
tering may aid in malware categorization: attributing malware samples to groups
based on their properties. With clustering it is possible to discover new categories
of malware, thereby improving malware classification. Clustering can also be used
to improve understanding of the relationship between existing malware categories.
For example, it is possible to perform clustering on the data from malware samples
where categories are previously known. Later, one may compare how previously
known categories fit into newly created clusters.

ML model has to be tested in order to determine its quality and understand
whether a certain type of features is suitable for the given task. The quality of
the model is assessed based on its ability to correctly classify samples that were
not used for training. In order to assess the quality of the model various quality
measures (see Section 2.1.7) are used. There are two main methods for testing the
ML model: k-fold cross-validation and percentage split. K-fold cross-validation is
based on splitting the dataset into k chunks, out of which k-1 are used for training
and the remaining one is used for testing. The values of k are often set to be 5 or
10[11][14]. Training and testing are performed k times and the quality measures
of the k ML models are averaged. Percentage split is based on splitting the dataset
into two chunks. One is used for training and the other for testing. Often the ratio
of a train to test set is 50/50, 60/40, or 70/30. One of the challenges in training the
ML model is data preprocessing. Often, the raw data has to be cleaned or normal-
ized. Moreover, the number of features of a chosen type can be too high which will
lead to overfitting and models of lower quality. In order to decrease the number of
features, reduce dimensionality, a set of methods called feature selection is used.
Feature selection is aimed at selecting the most relevant for a given task features.
Feature selection is normally done before training the ML model. The problem is
that when feature selection is performed on the full dataset, it takes into account
the properties of samples that are later used for testing. Thus, incorporating "the
knowledge from the future" into the model making its quality assessment doubt-
ful. We do not necessarily say, that performing the feature selection on the full
dataset is erroneous. This helps to understand the capabilities of a combination of
certain features and the ML method. However, as the amount of newly discovered
malware is huge, in malware analysis it is especially important to test ML models
against previously unseen samples: samples that did not contribute to the model
training and feature selection. In this Thesis, we study how low-level features can
be used to detect previously unseen malware.

2.1. Basic Concepts 27

In this thesis we utilize Machine Learning for binomial and multinomial clas-
sification. While using different ML methods to train models for different classi-
fication tasks it is important to assess the quality of trained models. This helps to
understand which methods and features are better suited for certain tasks. In the
next subsection, we discuss methods for assessing the quality of machine learning
methods.

2.1.7 Assessing the quality of ML aided malware detection

Classification ML models are created or trained on the labeled data. Data that
consists of information about the class of learning or train samples. The data used
for training is called training dataset. To test the performance of the trained ML
model a test dataset is used. It normally contains samples that were not used for
training. In order to assess the performance of the model various measures are
used for the assessment of the quality of ML models. Such measures are normally
a numerical representation of the certain quality of the machine learning model.
The numerical nature of the measures allows for a comparison of the quality of
the different machine learning models. We consider the machine learning models
different unless they were created by training the same ML algorithm on the same
data with the same parameters. In this Thesis, we utilize ML for classification
purposes. The quality measure of an ML model often represents the ability of
the ML model to correctly classify samples from the test dataset. Thereby, in this
subsection, we focus on several quality measures that are especially relevant for
malware detection and classification. Before describing the measures we have to
provide several basic values that are used to calculate the measure. These values
are normally used for binomial classification, where one class is considered as
True class while the other is False class:

• True Positive (TP) - the number of samples of the True class from the test
set that were correctly classified as True class.

• True Negative (TN) - the number of samples of the Negative class that were
correctly classified as Negative class.

• False Positive (FP) - the number of samples of the Negative class that were
incorrectly classified as True class.

• False Negative (FN) - the number of samples of the True class that were
incorrectly classified as Negative class.

These values can not be solely used for assessing the quality of ML models: the ab-
solute numbers of correctly or incorrectly classified samples can be barely used for
the comparison of different ML models e.g. due to different amounts of samples

28 Theoretical Foundations

in test datasets. Thereby, the following measures are used to provide normalized
values suitable for comparison of the different ML models. The first one is True
Positive Rate (TPR) is calculated as TPR = TP

TP+FN and can take values from 0
to 1. TPR is sometimes called sensitivity or recall[29] and represents the ability of
the model to correctly classify the sample of the True class. In malware analysis,
high TPR means the good ability of the model to detect malware. In other words,
the model with TPR = 1 is able to correctly classify all malware samples from the
test set in thereby considered as the model with a good detection rate. The second
quality measure is False Positive Rate (FPR) is calculated as FPR = FP

FP+TN and
can take values from 0 to 1. FPR reflects the tendency of the model to incorrectly
classify samples from the Negative class as samples from the Positive class. For
malware detection, a model with high FPR will generate a high amount of false
alarms by labeling benign executables as malicious. ML model trained for mal-
ware detection task is considered good if it has high TPR and low FPR. The next
quality measure is accuracy (ACC) and is calculated as ACC = TP+TN

TP+FP+TN+TF .
It takes values from 0 to 1 and represents the ability of the model to correctly clas-
sify samples from both classes. This measure can also be used for multinomial
classification by representing the fraction of correctly classified samples from all
classes to the overall number of samples. There is one problem linked to the use
of the aforementioned measures. They might not always correctly represent the
quality of the models trained on imbalanced dataset. The imbalanced dataset con-
tains different amounts of samples in different classes. For example, a dataset may
contain 1000 malware and 10 benign samples. Thereby, ML model trained on such
dataset might have difficulties to correctly predict a rare class. Furthermore, test-
ing on the imbalanced dataset may lead to an erroneous assessment of the model’s
quality. For example, if the test set contains 10 times more samples of one class
than of another, a model that will classify all samples from the test set to the major-
ity class will achieve an accuracy of 0.9. Thereby, when providing such a measure
it is important to provide the description of train and test datasets. However, there
are several ways of dealing with imbalanced datasets. First of all, it is possible to
apply sample weighting[29]. In this case, samples of a rare class receive higher
weights, while those of a majority class - lower. In such a scenario, the correct
classification of a sample from the rare class will contribute to the quality meas-
ure more than the correct classification of the majority class. Second of all, it is
possible to use specialized measures that are believed to overcome the problem of
imbalanced datasets. One such measure is F1-measure (F1M). It is calculated as
F1M = 2 × PPV ·TPR

PPV+TPR . Here PPV = TP
TP+FP is a positive predictive value or

precision that represents the proportion of correct positive classifications among
the samples classified to the positive class. F1M is the harmonic mean of preci-
sion and recall. It is believed to represent models’ accuracy while eliminating the

2.1. Basic Concepts 29

influence of TN, thereby contributing to better model assessment in the case of an
imbalanced dataset.

In order to properly use these measures it is important to understand several
basic principles. First of all, most of the quality measures have their limitation.
And it is thereby important to take them into account while assessing the model.
Next, while comparing two models it is important to understand what could lead
to the different performance of the models. For example, models created with the
same ML algorithm (e.g. Random Forest) can have different performances due to
different parameters used for training (e.g. number of trees in Random Forest).
Moreover, models trained or tested on different datasets may show different per-
formances due to the nature of the data. It is generally considered that the more
data is used for training the model - the better the performance of the model will be
achieved. For example, a model trained on the dataset that has 100 malicious and
100 benign samples can potentially have lower performance than one trained on
the dataset with 1000 malicious and 1000 benign samples. Furthermore, the same
samples can be described using different features. Thus, models can have different
performances because one type of features represents a target class better than the
other. Thereby, quality measures should not be used without a proper assessment
of their limitation.

2.1.8 Feature selection

In the previous subsection, we briefly mentioned the influence of the features
on the ML model’s performance. As we already mentioned, features carry in-
formation about certain properties of the samples. For example, the frequency of
appearance of a certain sequence of opcodes in the behavioral trace of an execut-
able can be potentially used to determine its maliciousness. The problem arises
from the fact that the number of potential features or feature space can be large.
For example, as described in article P2 [11] from Chapter 7, the amount of unique
memory access patterns produced by the malware samples was more than 15 mil-
lions. Such numbers of features may lead to various problems for training, us-
ing, and assessing the ML models. First of all, large amounts of features require
more time to process and thereby train, assess and use the ML models. Second, a
large number of features or high dimensionality of the data may lead to the model
overfitting the learning samples. For example, an ML algorithm trained on high-
dimensional data can create precise hypotheses that perfectly describe learning
samples. However, test samples may have slight variations of the feature values.
Therefore, the overfitting model may not be able to correctly classify test samples
and have lower classification performance. Lastly, even if the model trained on
high-dimensional data shows decent performance it might be challenging to inter-
pret the results of the classification. Interpreting or understanding the results of

30 Theoretical Foundations

classification is important in the various fields of ML applications. For example, it
might be crucial to understand why a certain malware sample was not detected by
the model. In order to interpret such an outcome, one may choose to analyse fea-
tures and their influence on the classification. Thereby, a high-dimensional dataset
can make such interpreting infeasible. Thus, in this subsection, we discuss Feature
selection: a set of statistical methods used for the reduction of feature space.

As features describe certain properties of samples, a reduction of their number
will likely lead to the loss of useful information. Thereby, the reduction of fea-
ture space may lead to the inability of ML methods to generalize over the data,
hence making the quality of potential ML models lower. In contrast, some of the
features may be irrelevant for the given task. Therefore, the process of feature se-
lection is aimed at selecting features that are the most relevant for a certain task.
For instance, the task of classification requires features that allow distinguishing
samples of different classes based on the values of those features. Various al-
gorithms can be used in order to select the most relevant features such as Inform-
ation Gain, Distance measure, Gini Index, Relief[29], Correlation-based Feature
selection (CFS)[23] and so on. Most of the feature selection algorithms utilize
some sort of feature quality measure: a measure that helps to evaluate and rank
the utility of the features for the given learning problem. Such methods are called
filter methods.

In the algorithms such as Information Gain or Distance measure feature quality
measures are calculated based on the information content: the amount of inform-
ation [43] about the target value (class in the classification problem) that certain
feature carries. Such methods are called myopic [29]. They do not take into ac-
count locality and the relationship between the features. Many of the feature se-
lection methods look only at the relation between the feature and a target variable.
During the feature selection process, such methods rank features based on their
quality measure. For example, in such methods, quality measures represent the
ability of a feature to describe a target variable. Later, a certain number of features
are presented as the result of the selection process. In such cases, the best number
of features to choose is normally decided on through a set of experiments. Differ-
ent numbers of features are selected and then used for the training of ML models.
Trained ML models are compared based on their performance measures and the
best one is normally considered to be trained using the best set of features.

Some feature selection methods do not use any feature quality measures: wrap-
per methods. They use a certain ML algorithm to train a model using a certain
subset of features. Basically, various combinations of features are used to train
models. These models are later compared based on their performance measures,
and the best one is considered to be trained with the best feature subset. Such
an approach allows finding the best feature set for a given ML algorithm. How-

2.1. Basic Concepts 31

ever, the number of possible feature combinations of various sizes may be large.
Thereby, wrapper methods are more computationally intense than filter methods.
Thus, in the case of large initial amounts of features, wrapper methods have lim-
ited usability.

As we already mentioned, some feature selection methods rely solely on the
information about the target variable that a certain feature carries. These meth-
ods tend to select features with the highest information value. However, features
that correlate the most with the target variable may also correlate with each other.
Thereby, the best features may not complement to each other. They will carry
redundant information which won’t improve the overall quality of the feature set
consequently decreasing the ability of the ML model to perform classification.
Thus, methods that aimed on overcoming this problem exist. For example, Re-
liefF ranks features based on locality: their ability to distinguish between learning
samples that lay close in the feature space. A feature that helps to distinguish
between close samples of the different classes gets its score increased. In its turn,
a feature that differentiates close samples of the same class gets its score decreased.
This way, ReliefF ranks features in the context of other features. However, it can
still select features that carry redundant information[47]. To overcome the problem
of redundancy a feature selection method should take into account dependency or
correlation between the features. Correlation-based feature selection method[23]
(CFS) was designed to deal with correlating features. It is important to note, that
CFS was originally designed to select a subset of features of user-defined size.
However, the current implementation in Weka[24] is made to gradually add fea-
tures to the feature sets until further improvement of the quality of the best feature
set is not possible. CFS calculates the correlation between all features (internal
correlation) and between features and a target variable (external correlation). It
later ranks subsets of features based on their average internal and external cor-
relation. Basically, a rank of a good feature subset has maximized the trade-off
between internal and external correlations. The more feature correlates with the
target variable the higher the rank of a subset, whilst the more features correlate
between each other the lower the rank of the subset. Even though CFS has great
capabilities to reduce feature space in several orders of magnitude [11][14][13]
(P2,P4,P6) it comes with its limitations. First of all, a need to compare all pos-
sible subsets of a size k from a full set of size n can result in high computational
costs as the number of combinations will be n!

k!(n−k)! . High ns can make search
very computationally complex. Moreover, the large size of the full feature set will
result in a need to calculate and store the values of n2 correlations. With feature
numbers that can reach millions, such a task will require a lot of computational
and memory resources. Therefore, when choosing CFS one has to take into con-
sideration its limitations.

32 Theoretical Foundations

As we said in the beginning, the reduction of feature set size reduces the
amount of information about the target variable that ML algorithm can use for
learning. Thereby, it sometimes happens (especially with myopic methods) that
a bigger feature set allows for achieving a better performance of the ML model.
However, lower number of features makes the analysis of the ML model perform-
ance simpler[11][12][14] (P2,P3,P4). Furthermore, a lower number of features
improves the interpretability of the model and helps in the explanation of found
phenomena. Thereby, especially for research purposes, it might be better to use a
smaller feature set even if ML models trained with it underperforms compared to
the bigger feature sets.

2.2 Related works
In this section, we provide an overview of the works that elaborate on the topic

of application of low-level features for malware analysis. Authors of [5] were one
of the first who proposed malware detection using DBI. In their work, they used
Intel Pin to record behavioral traces that contain: calls to and arguments of "exec"
function, system or library calls that involve any file system modification, calls to
functions that create hard and symbolic links as well as instructions that perform
memory read and write operations. They split the execution trace based on the ba-
sic blocks and store the aforementioned information for each executed basic block.
This data was later used to generate regular expressions which, on their turn, were
used to create policies necessary for malware detection. To evaluate their approach
they used "original" and intentionally obfuscated malware. After a set of experi-
ments on Windows and Linux OSes authors concluded, that their approach allows
to achieve 100% detection rate and low FN and FP rates. Even though authors of
[5] did not focus solely on low-level features, their experiments showed that the
application of DBI has potential in malware analysis.

The next paper where authors used DBI and low-level features for malware
detection is [28]. There authors used Intel Pin to track low-level behavior of ex-
ecutables. They utilized the following features: frequency and presence of opcode
in each of the Intel x86 architecture categories; memory reference distances; total
number of memory reads or writes; total number of unaligned memory accesses;
total number of immediate and taken branches. After a set of experiments they
showed, that their approach allows to achieve detection accuracy of more than 96%
for offline and 92% for online detection. Moreover, using FPGA they implemented
the proposed detector in hardware and evaluated its overhead. They showed, that
such detector causes up to 9.83% slowdown. They also made an important notice,
that collection of memory related behavioral events caused most of the slowdown:
when they did not collect memory related events the slowdown was under 2%.
The topic of hardware implementation of malware detectors were later expanded

2.2. Related works 33

in [35]. The authors proposed Malware Aware Processors (MAP). MAP is a "pro-
cessor augmented with a hardware-based online detector"[35]. They trained their
classifiers using low-level behavioral events recorded by Intel Pin. Authors recor-
ded features similar to the previously mentioned features from [28]. They showed,
that it is possible to have relatively low overhead and achieve good detection per-
formance at the same time.

Other authors suggest utilization of other low-level features for malware de-
tection and classification. For example, authors of [9] use hardware performance
counters to track branch, store and load instructions being retired and mispredicted
branch instructions. With their approach authors achieved detection rate of more
than 92% and accuracy of more than 96%. On their turn, authors of [17] suggested
the use of opcode sequences as a source of features for the prediction of mali-
ciousness of executable. They performed analysis of opcode frequencies within
behavioral traces of malicious and benign executables. Author of [17] concluded,
that difference in opcode frequencies between malware and goodware has a po-
tential to be used for malware detection. As it was previously mentioned, often
opcodes use CPU registers as input arguments. Thereby, authors of [30] proposed
a malware detection approach that uses general-purpose registers as a source of
information. They utilize spatial and temporal properties of eight registers and
compare their malware detection potential to other low-level features such as op-
code existence and frequency of opcodes. With such an approach they managed to
achieve an accuracy of more than 97%.

Papers that we mentioned so far either did not use low-level memory activity
or used only amounts or facts of presence of memory access operations in the com-
bination with other features. As to the author’s knowledge, the first paper where
memory accesses were solely used for malware detection was P1 [15] which is
presented in this Thesis in Chapter 3. Together with other papers of Banin et.al. it
presents a thorough evaluation of memory access patterns capabilities in malware
detection, classification, and analysis. In these papers authors utilized sequences
of memory read and write operations as features and achieved detection accuracy
of more than 99%[14] (P4). Other authors explored memory activity in a set of
different ways. For example, authors of [49] used memory access histograms and
achieved detection rate of more than 99%. Authors of [51] extended a technique
proposed in P1 [15]. They used memory address, address of executed operation,
its number in the sequence and the type of memory access operation. They suc-
cessfully used these features to find similarities between various malware samples.

34 Theoretical Foundations

Chapter 3

Summary of published articles

The main part of the research resulted in 6 research papers:

P1 S. Banin, A. Shalaginov, and K. Franke, "Memory access patterns for mal-
ware detection" Norsk informasjons sikkerhets konferanse (NISK), pp. 96-
107, 2016

P2 S. Banin and G. O. Dyrkolbotn, "Multinomial malware classification via
low-level features" Digital Investigation, vol. 26, pp. S107-S117, 2018

P3 S. Banin and G. O. Dyrkolbotn, "Correlating high-and low-level features,"
in International Workshop on Security, pp. 149-167, Springer, 2019

P4 S. Banin and G. O. Dyrkolbotn, "Detection of running malware before it be-
comes malicious" in International Workshop on Security, pp. 57-73, Springer,
2020

P5 S. Banin, Malware Analysis using Artificial Intelligence and Deep Learning:
"Fast and straightforward feature selection method: A case of high dimen-
sional low sample size dataset in malware analysis." Springer, 2020

P6 S. Banin and G. O. Dyrkolbotn, "Detection of previously unseen malware
using memory access patterns recorded before the entry point," The 4th In-
ternational Workshop on Big Data Analytic for Cyber Crime Investigation
and Prevention, 2020

The author of this Thesis was also involved in the writing of the following paper:

S1 A. Shalaginov, S. Banin, A. Dehghantanha, and K. Franke, "Machine learn-
ing aided static malware analysis: A survey and tutorial" in Cyber Threat
Intelligence, pp. 7-45, Springer, 2018

35

36 Summary of published articles

Research of the question RQ1 did not directly result in a publication of a
separate article. However, this research question was addressed in Section 2.2.
Moreover, it was necessary to have a good understanding of the best practices to
put the overview of the related works into papers P1-P6.

3.1 General overview of the used datasets
Before giving condensed descriptions of each of the papers we want to provide

a reader with a short overview of the datasets used in papers P1-P6. The follow-
ing list contains descriptions of the datasets, whilst more detailed descriptions are
present in the respective articles. In total, we have used three different datasets
D1-D3.

D1: Used in P1. In this paper, we use malicious PE32 executables found on
VirusShare [48], and benign PE32 executables found on clean installations
of Windows XP, 7, 8 and 10. We chose samples of the smallest file size that
contain GUI. We have not performed any other filtering. As in this Thesis,
we utilized dynamic malware analysis, the data used for training the ML
models obviously came only from samples that managed to start on our VM.
The main limitation of this dataset is that benign executables were created
by the same company which could have affected the validity of the results.
However, as we have later shown in P4 our approach works similarly well
on benign samples from different companies.

D2: Created for the use in P2 and reused in P3. The dataset used in these pa-
pers is a part of a larger dataset[42] created under the initiative of the Testi-
mon [22] research group. Malicious executables were collected from vari-
ous available collections available online. As we focused on multinomial
malware classification in P2 we chose files that belonged to the ten most
common families and ten most common types of that dataset. We also chose
the executables that have GUI and do not contain AntiDebug and AntiVM
techniques. Similarly to P1 we focused on the smallest files and did not per-
form any other filtering. The main limitations of this dataset might be the
number of samples in the categories as well as an unintentional selection of
the samples that are not representative of their category.

D3: Created for the use in P4, reused in P5 and P6. Malicious executables were
found in the VirusShare_00360 collection. We chose only executables that
were labeled as malicious by 20 or more AV engines on VirusTotal. The
only other filtering that was done is choosing only samples that belong to
the ten most common malware families present in the dataset. Benign ex-
ecutables were taken from the PortableApps: an online resource of free and

3.2. Memory access patterns 37

open source software. We chose only samples that were not labeled as ma-
licious by any of the VT engines present in VirusTotal at that moment. The
main limitation of this dataset is the number of samples in categories. As
it is hard to avoid the potential unintended selection of samples that are not
representative of their categories.

During our research, we did not take into consideration the presence or absence of
various packing and obfuscation techniques in both benign and malicious execut-
ables.

In order to record memory access traces, executables from D1,D2, and D3
were launched from the same folder on the virtual machine together with a spe-
cially crafted IntelPin-based tool. During the research presented in P1, all samples
were transferred to the VM before the baseline snapshot was made. This was
done because VirtualBox API at that time had bugs that made automated file trans-
fer impossible. Samples from dataset D2 were transferred separately before their
launch together with IntelPin tool. This became possible because VirtualBox API
has been fixed by the developers. Samples from D3 were also transferred to the
folder on the VM individually. There is a difference in the use of benign samples
between D3 and D1. Benign samples from D1 were copied by themselves without
their external resources if such were present. This partially lead to the fact that
most of the selected benign executables didn’t start. To eliminate this problem,
we decided to transfer executables from D3 together with their external resources.
One may assume, that benign executables accessing resources in its folder may
generate specific activity and make them more distinguishable from malware. On
the other hand, presence of these resources makes behaviour of benign executables
more realistic. As the absence of necessary files may lead to similar exceptions be-
ing thrown by executables. Which again may make benign executables stand out
from malicious ones.

Any research dependent on real-life samples is limited by the quality of the
dataset. The results present in this Thesis may have lesser validity, as any used
dataset can be criticized for not being representative if compared to the real-life
scenarios. Therefore, in future work, it is worth trying to construct a larger and
more thoroughly selected dataset.

3.2 Memory access patterns
Our first paper was aimed at answering the RQ2:

• How can low-level features be used for malware detection?

After a literature review we found that, despite several papers mentioning usage of
memory activity for malware detection, no one has used memory access patterns

38 Summary of published articles

for malware detection and analysis.
In the paper P1 we showed, that it is possible to distinguish between malware

and goodware using memory access patterns. In that paper, we explored basic
principles of malware detection using memory access patterns. We proposed to
record a sequence of all memory access operations from the launch of the process
and split it into a set of overlapping n-grams (patterns). These patterns were later
used as features for the training of ML models. In that work, we studied how long
the sequence of memory access operations needs to be in order to provide enough
information for the classification. We also explored how the size of the pattern
influences classification performance. In that paper, we found, that it is enough to
record 1M of memory access operations. We also found that such sequence has
to be split into the set of n-grams of the size 96. In the end, we concluded, that
800 of the best 96-grams selected from the sequences of the first 1M of memory
access operations produced by all samples in the dataset allow us to achieve binary
classification performance of more than 98%. In that paper, we also face a problem
of high dimensionality: the number of unique 96-grams was too high for common
ML packages. Thus, we had to implement a novel feature selection method. This
feature selection method is later explored in more detail in the paper P5.

3.3 Malware classification
As paper P1 showed that it is possible to detect malware using memory access
patterns we focused on answering the RQ3:

• How can low-level features be used for malware classification?

In our next paper P2 we studied how memory access patterns can be used for
multinomial malware classification. In that paper, we used an already known com-
bination of 1M of first memory access operations and n-grams of the size 96. We
trained ML models on two different datasets. The first one consisted of 10 mal-
ware types, while the second of 10 malware families. First of all, in this paper,
we had to give a definition of malware types and families as there were no con-
sistent definitions in the literature. Second, we found that it is easier to distinguish
between malware families than between malware types. This finding complied
with the proposed definitions of families and types. We achieved 84% classific-
ation accuracy for 10 malware families and 68% for 10 malware types. In this
paper, we first utilized the two-step feature selection method. On the first step,
we select 50K,30K,15K,10K, and 5K of the best features with Information Gain
feature selection. In the second step, we select the best feature subset from the 5K
IG selected features with Correlation-based Feature Selection (CFS) from Weka.
Such an approach allowed us to reduce feature space from millions of features to
just 29. In the end, we performed an analysis of the classification performance.

3.4. Correlating high- and low-level features 39

One of the valuable contributions of that paper was an analysis of subcategories.
For example, we looked at how samples that belong to a certain malware type are
labeled with malware families labels and vice versa. This allowed us to explain
why certain malware categories were more likely to be misclassified than others.

3.4 Correlating high- and low-level features
During the work on papers P1 and P2 we found, that memory access patterns are
not human-readable: it is hardly possible for a human analyst to understand what
exactly an executable was doing when produced a certain memory access pattern.
Thus, we focused on answering the RQ4a:

• How can low-level features improve understanding of malware detection
and analysis?

Our third paper P3 was dedicated to the attempt to correlate low-level features
(memory access patterns) and high-level features (API-calls). We used the best
memory access patterns and best API calls n-grams selected similarly to P2. Un-
der our experimental design, we were not able to find any significant correlation.
However, we showed, that multinomial malware classification can be improved,
if API calls and memory access patterns are combined. Thereby, in P3 we also
answered the RQ4c:

• To what extent low-level features can improve malware classification accur-
acy?

This showed that memory access patterns and API calls we used under our exper-
imental design did not correlate. Hence, did not bring the redundant information
that allowed to improve the classification performance. It is important to note, that
we did not use arguments passed to API functions in our research. The reason for
that was it was technically challenging way to locate and decode arguments passed
to the functions during dynamic analysis. But this is definitely worth looking into
in the future work. While analyzing the results of that paper we found, that most of
the memory access operations that we recorded originated from before the Entry
Point part of process execution. Basically, we discovered that we can potentially
detect and classify malware based on the activity produced by the process before
it has any chance to cause any harm to the victim system.

3.5 Improved malware detection before the Entry Point
In our next paper P4 we in detail studied the possibility of malware detection and
classification based on the activity that the process produces before the first instruc-
tion from the main module of an executable is executed. With P4 we answered
RQ4b:

40 Summary of published articles

• How can low-level features improve malware detection capabilities?

In that paper we proposed a novel approach in dynamic malware analysis: the
BEP-AEP approach. With this approach we separated behavioral activity pro-
duced by a process before it has reached an Entry Point and after. The Entry Point
drew our attention after analysing the results obtained in P3. We have chosen
Entry Point as a separation point due to its crucial meaning in the execution of a
newly created process. It separates memory activity generated during finalization
of process creation and memory activity generated by the logic that was put into an
executable by its creator. A more detailed description of the process creation flow
is provided in the paper P4. Thereby findings from P3 naturally drew our attention.
During our research, we did not consider studying the applicability of any other
possible milestones in process execution flow as separation points. In paper P4 we
found, that under our experimental design it is possible to detect malware based
on only the BEP memory access patterns with an accuracy of more than 99%.
We also found that a similar amount of memory access operations produce AEP
allows to derive enough information to detect malware with an accuracy of more
than 99%. We also discovered that it is easier to distinguish between malware fam-
ilies using the AEP memory access patterns than BEP. In that paper, we also found,
that most of the memory access patterns selected as best features originated from
RtlAllocateHeap routine of the ntdll.dll Windows library. Based on these findings
one may assume, that what and how is being allocated in the memory upon star-
tup of the process may depend on certain static properties of an executable. In
order to address this assumption one may need a better understanding of process
creation flow and specifically the RtlAllocateHeap function. Unfortunately non of
the sources available at the time of research provided a detailed description of the
aforementioned things. Without this knowledge, such study will be as limited as
the search for correlation between API calls and memory access patterns described
in P3. We, therefore, leave this part of the study for future work.

3.6 Intersection Subtraction feature selection
In our paper P5 we studied how well the feature selection method proposed in

P1 performs if compared to the more common IG feature selection method. Our
feature selection method is called Intersection Subtraction (IS) feature selection
method. The basic principle of the IS feature selection is the following.

1. First we decide on the desired amount of features m that we want to be
selected by the IS feature selection algorithm.

2. From the memory access trace of each sample in the dataset we construct a
set of unique memory access n-grams. Every n-gram found within a trace is
therefore recorded only once in this set.

3.6. Intersection Subtraction feature selection 41

3. For each of the classes (benign and malicious) we construct a vector of n-
grams which contain every unique n-gram found in all traces of all samples
of a particular class. Therefore, here every n-gram is also present only once.

4. For each of the vectors we calculate class-wise frequencies of the n-grams.
Basically, if an n-gram is found in 50% of the traces within a class its class-
wise frequency will be 0.5. For example, vectors of 3-grams can have the
following class-wise frequencies:
benign_3gram_vector=[[WWR,1.0], [WRW,0.87], [RRR,0.66],...]
malicious_3gram_vector=[[WWR,1.0], [RWR,0.92], [RRW,0.57],...]

5. With two vectors constructed from traces of benign and malicious samples
we remove those n-grams that are found in both vectors regardless of their
class-wise frequencies. We obtain two clean vectors by subtracting their
intersection from them. For example, the above-mentioned vectors contain
one 3-gram in their intersection. After removing it the vectors look like this:
benign_3gram_vector_clean=[[WRW,0.87], [RRR,0.66],...]
malicious_3gram_vector_clean=[[RWR,0.92], [RRW,0.57],...]

6. From both of the clean vectors we select m/2 n-grams with the high class-
wise frequencies. We use them to construct an n-grams vector of the length
m. Thereby the final feature set contains equal amount of n-grams unique to
each of the classes.

7. This vector becomes our feature set that is used in the training of the ML
model. It is important to note, that class-wise frequencies are used only
during the feature selection process and not used for training the ML model.
ML algorithm receives a "table" where rows represent samples, columns
represent n-grams from our newly constructed feature set and cells contain
values 1 or 0 depending on the fact of presence of a particular n-gram in the
particular sample.

In P5 we compare custom implementations of IS and IG methods by using them
to select features suitable for malware detection. First of all, we showed, that IS
worked at least 3.8 times faster than IG. Second, we showed, that features selected
by IG allow to train ML models that achieve almost the same classification per-
formance as those trained using features selected by IG. We also found that feature
sets selected by IS and IG we almost completely different. This provides a valu-
able finding in the field of machine learning and might serve as a stepping stone
for future research in the area of feature selection. In the end, we concluded, that
even though IS has its own disadvantages it can help researchers to use a faster
feature selection method on high-dimensional datasets in order to see whether a
certain classification problem can be solved with a certain type of features at all.

42 Summary of published articles

3.7 Detection of previously unseen malware
In our last paper P6 we continued to work on RQ4b and explored how the BEP

memory access patterns can be used to detect previously unseen malware. The cru-
cial difference between that paper and paper P4 is the following. We arrange our
dataset based on VirusTotal’s first submission dates of the samples. We then split
the original dataset into train and several test sets. In P4 we used cross-validation
in order to assess the quality of ML models after the feature selection was done. In
contrast, here samples from test sets were not used for feature selection and were
newer than those used for training. In that work we found, that models trained
on BEP memory access patterns are capable of detecting previously unseen mal-
ware with high detection rates. However, most of the models developed high FPR
as test sets became more distant in time from the train set. One of the valuable
contributions of P6 is the thorough analysis of the classification performance. We
explored, whether the following characteristics could explain the performance of
the models: distribution of malware families within the train and test sets, amount
of selected features, the novelty of features, the way features represent classes, and
feature space. Even though such an analysis approach did not help us to explain all
classification performance questions, we believe that it may help other researchers
to address their problems.

3.8 Survey paper on static analysis techniques
The paper S1 presents an overview of the static malware analysis techniques

and their comparison on two large malware datasets. In that work, we explored
how different static characteristics of malware can be used for malware detection.
There, we used the following static features: PE header, bytes n-grams, opcodes
n-grams and API calls n-grams. In that paper, we used two sets of malware with
roughly 41000 and 58000 samples in them and one set of benign executables with
roughly 16000 samples. The results of that work showed, that Decision Trees and
k-Nearest Neighbors algorithms perform better than the other methods.

It is important to outline, that the contribution of the author of this Thesis to the
paper S1 consists of writing the description of ML and feature selection methods;
conducting the experiments with byte and opcode n-grams. The S1 paper does
not contribute to the main research topic of this Thesis. However, it provides a
valuable example of a machine learning application in malware research.

Chapter 4

Contributions

This thesis contributes towards an improved understanding of the applicability of
low-level features for malware analysis. The following contributions are present
in this research:

• Malware detection: Contribution towards utilizing the memory access pat-
terns for malware detection[15] P1 . We have shown, how much low-level
data has to be collected to provide a decent detection rate. We also stud-
ied, how collected low-level data has to be preprocessed. This contribution
shows that it is possible to perform high-accuracy malware detection based
on memory access patterns.

• Novel and improved detection capabilities: Contribution towards utilizing
memory access patterns to detect malware on launch before the execution
reaches the main module[14] (P4). We have shown, that memory access
patterns allow to detect launched malware before the Entry Point. We also
contributed towards the understanding of how the performance of classifier
trained on older samples changes when given newer samples to classify[13]
(P6). Under our experimental design, we show, that it is possible to detect
previously unseen malware based on the BEP low-level activity for at least
11 months since the update of the model. We have also discovered, that com-
bining high- and low-level features improves classification performance.

• Feature selection: Contribution towards faster feature selection method for
high-dimensional datasets[10] (P5). We have created and tested a novel fea-
ture selection method: Intersection Subtraction feature selection. We have
shown, that it works faster than Information Gain. Also we have shown, that
under our experimental conditions IS performs similarly to the IG. Thereby,
we increased the speed of feature selection while maintaining its quality.

43

44 Contributions

• Low-level features decoding: Contribution towards methods for finding
the high-level counterparts of low-level activity patterns[12] (P3). We have
created a method to find which high-level events are related to a certain
low-level activity pattern. During our study, we discovered, that many of
the relevant memory access patterns originate from the same high-level API
call.

• Better possibilities for threat analysis: Novel malware classification cap-
abilities Contribution towards better threat analysis using memory access
patterns to classify malware into malware families and malware types[11]
[14][12] (P2,P3,P4). We have shown, that it is possible to classify malware
into families and types using low-level features.

• Better understanding of the phenomena: Contribution towards methods
for analysis of ML classification performance and feature selection results.
We showed how one can analyse the results and performance of ML-based
malware detection. We believe that our approach to the analysis of classific-
ation and feature selection results can help other researchers and contribute
to a more concise use of ML in malware-related research.

4.1 Malware detection
When an executable is launched in the system, it produces a set of behavioral

characteristics that can be used to identify the executable and its category. Some of
these characteristics are suitable for distinguishing between malicious and benign
executables. During our research, we have several times shown, that it is possible
to detect malware using only memory access patterns. This is a valuable achieve-
ment since malware executing on modern computers always invoke the inevitable
activity in the virtual memory. In our first work, it has been shown, that the first 1M
of memory access operations produced by an executable gives enough information
to distinguish between malware and goodware[15] P1. We have also found, that
the first 100K of memory access operations is not enough to achieve satisfactory
detection accuracy. In that paper we found, that splitting a sequence of memory
accesses into n-grams of a size 96 allows to detect malware with an accuracy of
more than 98%.

4.2 Improved detection capabilities
While analyzing the data we recorded for the study presented in P3 [12] we

found, that most of the recorded memory access patterns emerged before a newly
launched process begins to execute commands from its main module: before the

4.3. Feature selection 45

Entry Point (BEP). We used this finding to conduct a set of more detailed exper-
iments in P4 [14]. There we found, that using only the memory access patterns
produced BEP allows to achieve a detection accuracy of more than 99%. This
finding allows to stop malware upon startup: before it has a chance to perform
any malicious actions. We have also explored malware detection capabilities of
memory access patterns produced after the Entry Point (AEP). Counter-intuitively,
we found, that on our dataset memory access patterns produced BEP allows to
achieve slightly higher detection accuracy when compared to AEP. However, this
can be a result of certain properties of our dataset. We have also combined memory
access patterns produced BEP and AEP, which allowed for slightly higher detec-
tion accuracy. Moreover, during our research, we found that one may need only
9 memory access patterns to train the ML model capable of malware detection
with an accuracy of 99.7%.

When exploring the capabilities of a novel malware detection approach, it is
important to test it against "previously unseen" malware. As thousands of new
malware samples are discovered every day, it is important to understand the ro-
bustness of trained models against samples that did not contribute to the model
and features. In our paper, P6 [13] we shown, that models trained on older data
degrade over time. Detection accuracy drops, as test samples become more dis-
tant in time from train samples. However, even though the accuracy drops, TPR
remains quite stable and high. In other words, we show, that the ML model trained
on the samples from just the two first months can detect most of the unseen mal-
ware samples for at least 11 following months.

4.3 Feature selection

At the beginning of this research, we faced an unexpected problem. The num-
ber of unique features was very high making the use of commonly available ML
packages impossible. This forced the author to implement a fast, straightforward
but yet efficient feature selection method. In paper P5 [10] we describe an Intersec-
tion feature selection method (IS) that was first used in P1 [15]. It has been shown,
that this method allows to process millions of features faster than commonly used
Information Gain (IG). In our experiments, we show, that models trained on fea-
tures selected by IS perform slightly worse than those trained on features selected
by IG. However, this difference is very small. Thus, we have contributed towards
faster feature selection which can help other researchers to assess the quality of
their data faster.

46 Contributions

4.4 Low-level features decoding
A typical memory access pattern we use in our research can look in the follow-

ing way: [WWWRWRW...RRWRRR]. Such a pattern can be one of the few features
needed to detect malware with high accuracy. However, it might be important to
understand what exactly is happening when the process produces a certain pattern.
The aforementioned pattern can not be interpreted by a human analyst, thus, we
performed an attempt to correlate sequences of API calls and memory access pat-
terns. Unfortunately, under our approach, it was impossible to find any meaningful
correlation[12]. The approach published in P3 [12] is based on the assumption,
that the best low-level features should correlate with the best high-level features:
a best-to-best approach. In that paper, we have shown, that such an approach does
not work for our experimental conditions. After P3 [12] was published we made
an additional round of search utilizing best-to-all approach: we searched for the
correlation between best low-level features and all high-level features. During the
search we found, that a method for finding a correlation between high- and low-
level features is correct and provides consistent results. E.g. a certain memory
access pattern will always be found within the same or similar API-calls n-gram.

Nonetheless, suggested in P3 [12] method allowed us to make an important
finding later in P4 [14]: many of the features selected by feature selection methods
originated from RtlAllocateHeap routine from ntdll.dll standard Windows library.

4.5 Better possibilities for threat analysis
Often it is not only important to detect malware, but also to detect its category:

type and family. The knowledge about malware type allows to understand what
malware is doing and which measures should be taken to reduce threat brought
by such samples. In its turn, the knowledge about malware family allows to un-
derstand how malware achieves its goals and what has to be done to restore the
system after the attack[11] (P2). We have successfully shown, that memory ac-
cess patterns allow to distinguish between malware types and families. Moreover,
in P4[14] we show, that it is possible to train an ML model that can distinguish
between 10 malware families and goodware based on the memory access patterns
produced by BEP. Together with BEP malware detection, this finding creates a
basis for future research, where it is important to find what exactly makes BEP
behavior of malicious and benign processes different.

4.6 Better understanding of the phenomena
During the work on this Thesis, we heavily utilized various Machine Learning

techniques. Often, the results we found contained various phenomena that had to
be explored in a more thorough manner. While performing the analysis of these

4.6. Better understanding of the phenomena 47

phenomena we often had to use analysis approaches that, to the author’s know-
ledge, are unique to our work. Sometimes (like in P6) our analysis did not support
the hypotheses. However, they showed that the real reason for specific classifica-
tion performance has to be explained with a different cause. For example, in order
to explain classification performance from P1 we had to analyse intersections of
feature vectors, the sparseness of data, and Area under Feature Class-wise fre-
quency charts. The analysis of intersections of feature vectors was also applied
in P5 and P6. Later, we analyzed the influence of "hidden" subcategories within
classes to explain results obtained in P2 and P6. For the comparison of differ-
ent feature selection methods, we used Difference ratio - a measure that shows
how different are the feature sets selected by different methods. Properties of fea-
ture sets were also used in an attempt to explain classification performance from
P6. There we showed, that number of selected features, the relative placement of
samples in feature space, or feature-class representation imbalance can not explain
several classification phenomena. We believe, that analysis methods of ML per-
formance presented in our papers can help other researchers to achieve a better
understanding of their results.

48 Contributions

Chapter 5

Discussion

In this section, we elaborate on the theoretical and practical implications made in
this thesis. We also outline potential limitations of the results and provide sugges-
tions for future research.

5.1 Theoretical implications
Dynamic malware analysis is based on the study of the execution trace pro-

duced by executables. A perfect execution trace will incorporate all changes in the
system caused by running an executable. However, it is barely feasible to trace
and process all changes in the system. Instead, it is a common practice in malware
analysis research to focus on one or few activity types. Fewer types and sources
of activity may help to create malware detection models that are simpler, faster,
and less susceptible to noise. However, deliberate reduction of the amount of data
used to record an execution trace reduces the accuracy of this trace. Thus, simpler
execution traces may result in weaker results in malware analysis and detection.
In this Thesis, we show the capabilities of a relatively simple execution trace in
malware detection and classification.

Malware analysis using low-level features may require the application of ap-
propriate methods suitable for such task. The development of such methods re-
quires a fundamental understanding of underlying processes and objects. It is ne-
cessary to utilize the knowledge of Portable Executable format, Windows process
model, and computer architecture in order to fully leverage the advantages of low-
level features in malware analysis. In this Thesis, we focus on the analysis of
memory access traces generated by running Windows executables.

An executable running on the computer generates large amounts of various
high- and low-level activity. In order to analyze such activity, one has to record
or describe it. From the theoretical studies, it is possible to understand, that the
description of a hardware-based trace of an executable will take more space than

49

50 Discussion

that of a high-level. Execution of one API call involves the execution of hun-
dreds of opcodes on the CPU. In their turn, modern x86 compatible CPUs can
execute hundreds of different opcodes. From this, it is easy to derive, that the full
low-level description of an execution trace may present a significant complexity
for the analysis. In contrast, memory access operations have only two possible
values: read and write. Execution of some opcodes does not involve memory ac-
cess operations. Thus, using memory access patterns can decrease the accuracy
of an execution trace. Nevertheless, memory access sequence allows for relatively
simple analysis and provides great detection capabilities. In this Thesis, we show,
that patterns derived from memory access sequence can be successfully used for
malware detection and analysis. Moreover, a sequence of memory access opera-
tions can be considered as a binary sequence: elements of the sequence can take
only two possible values. This opens a possibility for the future implementation
of hardware-enabled malware detection, where all data is transformed into binary
form.

In this Thesis we analyze memory access sequences by splitting them into the
n-grams. In our first paper, we have shown, that increasing the size of n-gram res-
ults in higher classification accuracy. While increasing the size of an n-gram we
increased the potential feature space. As the n-gram size reached 96, potential fea-
ture space became as big as 296. This raised the problem of feature selection. Our
typical memory access sequence consists of around 1M of memory access opera-
tions. Under such conditions, each new trace added to the database can potentially
increase the feature space of the model on 1’000’000-95 new features. Thereby,
the simplicity of a trace came with a cost of the potential complexity of the feature
space. In order to show that memory access patterns can be realistically used in
malware detection, we had to utilize feature selection. This allowed us to create
models based on only tens of features instead of the millions from the potential
feature space. Thus, we showed that memory access operations can serve as a
source of information sufficient for malware detection.

Malware analysis based on the low-level features brings logical desire to build
a semantic gap between hardware and high-level activity. For example, it is natural
for a human analyst to try to understand when exactly a certain memory access se-
quence is generated during the execution of an executable. While analyzing our
traces we found, that most of the recorded data emerge before a newly launched
executable reaches its Entry Point. This means that we are capable of detecting
the running malware before it has a chance to perform any malicious actions in the
system. We made an attempt to understand this phenomenon with a help of Win-
dows documentation but found no good answers available in the available sources.
Therefore, it is important to find this explanation in future work.

Findings present in this thesis show that:

5.2. Practical considerations 51

1. simpler trace may result in bigger feature space;

2. it is possible to reduce a feature space from potentially millions of features
to only tens while keeping the quality of the model on the appropriate level;

3. it is important to have a full understanding of Windows process model;

4. execution trace generated before the Entry Point can be successfully used
for malware detection;

In summary, the theoretical implications of this thesis serve as a methodological
basis for hardware-based malware analysis and detection.

5.2 Practical considerations
In this section, we describe practical considerations that have to be taken into

account in order to perform research similar to the one described in this Thesis.
In order to perform research on the topic of malware analysis, it is, in the first
place, necessary to acquire malware samples. There are different ways of getting
the malware: free and open collections, online sandboxes, and anti-virus vendors.
There exist open repositories on Github or standalone websites (e.g. VirusShare)
where one can freely download batches of malicious executables. Such resources
may have different malware collections of different sizes. However, it might be
problematic to find a specific malware type or family, since free resources often
provide samples "as is" while malware-specific search capabilities are very lim-
ited. On the other hand, online sandboxes and malware analysis platforms (e.g.
VirusTotal, Hybrid Analysis) often allow downloading samples from their col-
lection. They also provide additional information about the samples that can be
useful for the researchers: upload date, results of detection from various anti-virus
vendors, results of basic static and dynamic analysis, etc. These systems normally
have advanced search capabilities making it easier to find samples from a spe-
cific malware category or with certain characteristics (e.g. samples that contain
certain strings). However, such systems often have download limitations for non-
commercial users. It is either only possible to download one sample at a time or
the number of downloads per day is very limited. The third option for getting the
malware samples is a collaboration with anti-virus vendors. Part of their business
is collecting the malicious executables which were found on the systems of their
clients. Thereby, such companies have extensive collections of malware. How-
ever, they might not want to share some parts of their collection. For example, for
security reasons they might not want to share the newest samples, as it might be
wise not to reveal that some malware samples were already detected[45]. Thereby,
the first step in malware-related research is obtaining the collection of malware of

52 Discussion

the desired size.
When studying novel malware detection methods it is also important to acquire

enough benign samples. It might come as a surprise, but getting enough goodware
might be more challenging than getting enough malware. First of all, since mal-
ware is not protected by intellectual property laws it is easier from a legal point of
view to share it. Furthermore, for some reason, there are very few places where
one can get a batch of benign executables in an easy and straightforward manner.
There are several options for getting benign Windows executables: open-source
software repositories, clean Windows installation, free or portable applications re-
positories. Some researchers get benign samples from Github. However, it might
be challenging to find repositories with executables (and not just a source code).
Moreover, to get an adequate number of goodware samples one has to clone many
repositories which have to be found in the first place. It is also important to check
whether the found executables are benign. Other researchers use executables found
in the clean installations of Windows. Windows comes with a variety of execut-
ables that are considered benign. However, getting many executables from one
software company might skew the results of the analysis: there might be similar-
ities between the samples introduced by coding and compiling practices used by
a company. It might also be challenging to publish all of the findings since it can
be considered as a violation of intellectual property laws. Another workaround for
getting benign samples is the repositories of free or portables applications (Port-
ableApps, portablefreeware, etc.). Some of them have tools that allow to download
many free applications in a fast and straightforward manner.

The amount of malicious and benign samples depends on the purpose. How-
ever, it is generally considered that more samples allow to train better ML models.
Thereby, it is recommended to acquire and use in the analysis as many samples
as possible. On the other hand, analysis time grows with the number of samples.
In the case of dynamic malware analysis, every sample requires a full cycle of
analysis in the controlled environment what significantly increases analysis time.
Thereby, it is important to adequately assess available resources (computing and
time) when making a decision on the number of samples to be used in the analysis.

Having enough samples is only the first step. As we trained ML models to dis-
tinguish between benign and malicious it is necessary to properly label samples.
For example, it is often necessary to check whether the free software that was
downloaded from one of the repositories is actually benign. For these purposes,
online sandboxes such as VirusTotal come into the serve. It might happen, that
some of the anti-virus engines will detect such executables as malicious. And it is
thereby important to decide whether to keep such sample as benign, drop it from
the dataset, or move it to the malicious category. Moreover, some of the malware
samples might be considered malicious by only a few anti-virus engines. Thereby,

5.2. Practical considerations 53

it is necessary to decide which samples should be considered as truly malicious or
truly benign. For example, to perform experiments presented in P4[14] we con-
sidered the sample as benign if none of the AV engines available at VirusTotal
detected them as malicious. There were no issues with our malware samples, but
we have anyway checked them for being labeled as malicious by at least 20 AV
engines from VirusTotal. When studying the possibility of malware classification
it is necessary to decide which AV engine will be used as a source of labels. It is
important to understand, that different AV vendors use different names and naming
schemes while arranging malware into categories. It often happens, that according
to different AV vendors the same sample can belong to the different malware fam-
ilies. Moreover, some vendors provide either the name of the malware family or
the name of the malware type. For our research, we decided to use labels assigned
by the Microsoft AV engine. They follow the CARO[1] naming scheme that in-
corporates information about malware type, platform, family, and variant.

In order to perform dynamic analysis of many executables, it is wise to have
a dedicated computer or server where one can automate data collection and pro-
cessing. We performed our experiments on the Virtual Dedicated Server with 4-
cores Intel Xeon CPU E5-2630 CPU running at 2.4GHz and 32GB of RAM with
Ubuntu 18.04 as a main operating system and 3TB of storage. Data collected dur-
ing dynamic analysis can require a significant amount of storage. For example,
behavioral traces collected for papers P4, P5, P6 [14][10][13] could take as much
as 1GB of storage per sample. This fact brings attention to another practical con-
sideration. Before running full-scale experiments one should decide on the amount
and type of events included in the behavioral trace. In our case, some of the data
that we collected was not used to obtain results. For example, we did not use
recorded opcodes, but they can be used in future research. In its turn, the data pro-
cessing might put additional requirements for the analysis platform. For example,
while performing feature selection we often used up all of the 32GB of RAM.
Thereby, it is recommended to have as much RAM as possible as the number of
unique low-level features generated by several thousand samples might be as big
as tens of millions.

To make a collection of low-level features possible it is necessary to use ap-
propriate tools. For our research, we used Intel Pin[27] DBI tool. It provides
extensive functionality for the control and analysis of the running executable. Intel
Pin provides an API that allows the creation of tools with the desired functionality
using the C++ programming language. The only problem with Intel Pin is that its
documentation is not detailed enough. Thereby, we recommend looking into the
open-source tools that come with the Intel Pin to make yourself familiar with the
usage of various Pin’s functions.

Studying low-level features enabled malware analysis requires a significant

54 Discussion

amount of preparations. For most of the papers presented in this Thesis prepara-
tions for data collection (finding benign and malicious samples, creating Intel Pin
tools), data collection (running samples in VM), and processing (feature selection)
took significantly more time than training ML models and analysis of the results.

5.3 Ethical and Legal aspects
Every research work involves using the methods that lead to the results. Both

methods and results can cause certain ethical and legal issues. For example, meth-
ods of obtaining experimental data can be both illegal and unethical. Furthermore,
information and knowledge presented as the results may in some cases be used for
malicious intentions. Thereby, it is considered a good practice to elaborate on such
issues. In this section, we elaborate on possible ethical and legal issues linked to
the research presented in this Thesis.

5.3.1 Ethical aspects

There are several ethical issues that are invoked by the mere fact of publishing
of our research. In our work, we disclose details of the novel malware detection
approach. The cybersecurity landscape is a continuous arms race. When the de-
fense against certain adversarial activity is created, adversaries try to invent new
methods to achieve their goals. For example, malware authors may investigate the
possibilities and limitations of anti-virus solutions in order to make new variants of
malware more detection-proof. Thereby, by showing a novel method for malware
detection we might unintentionally help malware authors to take it into account
while creating new variants of malware. However, we believe, that fine-tuning
memory access activity is too complicated for the majority of malware writers.

In each of the papers presented in this Thesis we use Machine Learning for
the analysis of our data. The ML algorithms and models have their weaknesses,
exploitation of which is called adversarial learning[25]. One of the tasks of ad-
versarial learning is to fit a certain input (e.g. malware) so that the ML model
will classify it as goodware. It is considered, that the more information about ML-
enabled system adversaries have - the easier it is to conduct adversarial learning[16].
As we disclose which ML algorithms and data we used for malware detection, a
potential adversary may use this information for malicious purposes. However, as
we are not presenting the implementation of the real malware detection system -
this issue should not be considered severe.

The last ethical issue arises from the general idea of this Thesis. We state,
that it is hypothetically possible to detect malware based on its hardware activity.
Thus, in the future, it might be possible to implement specialized hardware module
capable of malware detection. However, we have to inform the reader that even
existing hardware-based security solutions (e.g. Trusted Platform Modules, Intel

5.3. Ethical and Legal aspects 55

Software Guard Extensions) are known to have their own vulnerabilities and be
susceptible to the attacks[18]. Thereby, it is important to understand that hardware
may have its own security flaws.

5.3.2 Legal aspects

In this Thesis, we use reverse engineering methods in order to get the neces-
sary data from benign and malicious executables. Reverse engineering is aimed
at revealing the internal structure of the software and presenting it in high levels
of abstraction. While analysing benign executables it is possible to stumble upon
proprietary software which is often protected by various intellectual property laws
and regulations. Thus, revealing the results of reverse engineering can be poten-
tially seen as a violation of intellectual property[21]. From one point of view, it
might be possible for the researchers to use only open-source and free software
where reverse engineering is not forbidden by laws. However, this can result in
a less valid result of the research, since the datasets will be less real-life ones.
Moreover, in our research, we present findings of the dynamic analysis of standard
Windows libraries. When an executable is launched on Windows, it is impossible
to avoid the execution of the binary code from libraries responsible for process
creation and its launch. Thereby, as we published memory access patterns that
emerged from windows libraries one may consider this as a violation of intellec-
tual property. However, there are several arguments on our side. First of all, the
amount of published memory access patterns is relatively small and can’t be used
for the disclosure of the internal structure of proprietary libraries. Moreover, spe-
cific patterns may be specific to the systems with Intel CPUs, thereby different on
systems with different CPUs. Furthermore, reverse engineering made on fair use
principles is allowed under various circumstances[2][3][37]. Among the others,
fair use principles include: reverse engineering for research purposes; avoiding
unnecessary reverse engineering of the whole product; impossibility to obtain in-
formation by means other than reverse engineering. This thesis complies with all
of the above-mentioned principles of fair use.

The real-world implementation of the system that utilizes methods proposed
in this Thesis can be potentially seen as a system capable of data interception.
Potentially, memory access patterns can be used to detect malicious activity from
outside of the VM where the web application is running. Thereby, an Internet
hosting provider that monitors memory activity on the user servers for security
purposes may reveal sensitive and confidential information. However, such issues
should be solved at the stage of the agreement between the user and provider.

56 Discussion

5.4 Limitations and Future work
In this section, we describe the limitations present in our methodologies and

results. First of all, as in any research that utilizes Machine Learning methods,
it is important to understand that classification performance and results of feature
selection might be influenced by our datasets. For example, it might be possible to
find a dataset on which the malware against goodware classification performance
will be significantly worse than in paper P1[15]. In contrast, it can be possible to
create a dataset that will allow achieving 100% multinomial classification accur-
acy using the approach presented in P2[11]. Thereby, to eliminate potential flaws
in the validity of the results it might be necessary to conduct large-scale testing of
the proposed methods.

The other limitation is brought by the design of the experiment presented in
P3[12]. There we had a hypothesis, that best memory access patterns have to cor-
relate with best API calls n-grams: we called it best-to-best approach. However,
we proved this hypothesis wrong. In P3 we outlined, that it might be necessary to
repeat the study, but using a best-to-all approach, where one would explore poten-
tial correlations between best memory access patterns and all API calls n-grams.
Such a search is quite time-consuming, thus we were not able to finish it by the
time of writing the P3 paper. However, we performed that search for parts of our
data later and found, that memory access patterns appear within certain API call
sequences in a quite consistent manner. Thus, in future work, it is important to
find all consistent correlations between low- and high-level features. It is also
important to take into consideration the BEP-AEP approach. So that a potential
correlation between memory access patterns and API call sequence is presented
under the context of either BEP or AEP behavioral activity.

One of the biggest limitations in the analysis of memory access patterns is the
amount of data that has to be processed. As we used only the type of memory ac-
cess operation, the number of features often reached millions. Thereby, we had to
perform feature selection in order to make training of ML models possible. How-
ever, we often had to perform a two-stage feature selection process: first, go down
to 50K of features with IG and later use CFS to decrease the number of features
to several dozens. Unfortunately, we could not use CFS on the full feature sets
since it would require an infeasible amount of computational resources. Thus, we
might have missed some of the good combinations of features that could help us
to improve the classification performance of ML models.

We performed all our experiments on Windows operating system. Thereby,
our conclusions are limited to this system. In the future, it is necessary to test
our approach on operating systems other than Windows. We also used the same
server with the same Intel CPU. It is hypothetically possible, that running similar
experiments on systems with different CPUs (AMD, ARM, etc.) can show results

5.4. Limitations and Future work 57

V
M

M

H
o

st O
S

H
a

rd
w

a
re

V
M

G
u

est O
S

out-of-VM in-VM

Figure 5.1: Out-of- and in-VM sources of information

different from those presented in this Thesis. Thus, in the future, it is important to
test our approach on systems with CPUs other than Intel.

In this Thesis we collected low-level or hardware-based features using soft-
ware tools launched in the same VM as samples from the dataset. As we stated
above, malware can have a functionality aimed at disrupting of the analysis and
detection mechanisms. Hypothetically, any monitoring tool that runs in the kernel
or user level in OS can be detected by malware. Thus, malware can try to disrupt
the operations of such tools thus thwarting protection and analysis. Moreover, the
detection of monitoring tools may be used by malware as a reason to stop run-
ning, hence not revealing functionality and thwarting analysis. We believe, that
low-level features have the potential to be used for out-of-VM malware analysis
and detection (see Figure 5.1), as it is very unlikely that out-of-VM tool can be
detected from inside the VM. Thereby, in the future it is necessary to: a) test the
possibility of out-of-VM malware detection based on low-level features; b) test
the possibility of a hardware-based solution that makes malware detection using
low-level features possible.

58 Bibliography

5.5 Bibliography
[1] A new virus naming convention. http://www.caro.org/articles/naming.html. ac-

cessed: 20.04.2021.

[2] European software directive, art. 6(2), 1991 o.j. (l 122) at 45, 1991.

[3] Limitations on exclusive rights: Fair use, 17 u.s.c. § 107 (2012), 2012.

[4] Pin 2.14 user guide 2016: Memory reference trace (instruction instrument-
ation). https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/
index.html#MAddressTrace, 2016. accessed: 2016-4-14.

[5] Najwa Aaraj, Anand Raghunathan, and Niraj K Jha. Dynamic binary
instrumentation-based framework for malware defense. In International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 64–87. Springer, 2008.

[6] Saed Alrabaee, Paria Shirani, Mourad Debbabi, and Lingyu Wang. On the
feasibility of malware authorship attribution. In International Symposium on
Foundations and Practice of Security, pages 256–272. Springer, 2016.

[7] AndyNor.net. Df2: Reverse engineering part 2. https://andynor.net/blog/471/,
2015. accessed:2016-4-15.

[8] AVTEST. The independent IT-Security Institute. Malware. https://www.
av-test.org/en/statistics/malware/, 2020.

[9] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. Hpcmal-
hunter: Behavioral malware detection using hardware performance counters
and singular value decomposition. In Computer and Knowledge Engineer-
ing (ICCKE), 2014 4th International eConference on, pages 703–708. IEEE,
2014.

[10] Sergii Banin. Malware Analysis using Artificial Intelligence and Deep Learn-
ing: Fast and straightforward feature selection method: A case of high di-
mensional low sample size dataset in malware analysis. Springer, 2020.

[11] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification
via low-level features. Digital Investigation, 26:S107–S117, 2018.

[12] Sergii Banin and Geir Olav Dyrkolbotn. Correlating high-and low-level fea-
tures. In International Workshop on Security, pages 149–167. Springer, 2019.

[13] Sergii Banin and Geir Olav Dyrkolbotn. Detection of previously unseen mal-
ware using memory access patterns recorded before the entry point. The 4th
International Workshop on Big Data Analytic for Cyber Crime Investigation
and Prevention, 2020.

http://www.caro.org/articles/naming.html
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html#MAddressTrace
https://software.intel.com/sites/landingpage/pintool/docs/71313/Pin/html/index.html#MAddressTrace
https://andynor.net/blog/471/
https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Bibliography 59

[14] Sergii Banin and Geir Olav Dyrkolbotn. Detection of running malware before
it becomes malicious. In International Workshop on Security, pages 57–73.
Springer, 2020.

[15] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[16] Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of
adversarial machine learning. Pattern Recognition, 84:317–331, 2018.

[17] Daniel Bilar. Opcodes as predictor for malware. International journal of
electronic security and digital forensics, 1(2):156–168, 2007.

[18] Ferdinand Brasser, Lucas Davi, Abhijitt Dhavlle, Tommaso Frassetto, Sai
Manoj Pudukotai Dinakarrao, Setareh Rafatirad, Ahmad-Reza Sadeghi,
Avesta Sasan, Hossein Sayadi, Shaza Zeitouni, et al. Advances and throw-
backs in hardware-assisted security: Special session. In Proceedings of the
International Conference on Compilers, Architecture and Synthesis for Em-
bedded Systems, pages 1–10, 2018.

[19] Bevin Brett. Memory performance in a nutshell. https://www.intel.com/content/
www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html.
accessed: 28.11.2022.

[20] Derek Bruening and Saman Amarasinghe. Efficient, transparent, and com-
prehensive runtime code manipulation. PhD thesis, Massachusetts Institute
of Technology, Department of Electrical Engineering . . . , 2004.

[21] Julie E Cohen. Lochner in cyberspace: The new economic orthodoxy of"
rights management". Michigan Law Review, 97(2):462–563, 1998.

[22] Testimon Research Group. Testimon research group. https://testimon.ccis.no/,
2017.

[23] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[24] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[25] Ling Huang, Anthony D Joseph, Blaine Nelson, Benjamin IP Rubinstein, and
J Doug Tygar. Adversarial machine learning. In Proceedings of the 4th ACM
workshop on Security and artificial intelligence, pages 43–58, 2011.

[26] Eric M Hutchins, Michael J Cloppert, Rohan M Amin, et al. Intelligence-
driven computer network defense informed by analysis of adversary cam-
paigns and intrusion kill chains. Leading Issues in Information Warfare &
Security Research, 1(1):80, 2011.

https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://www.intel.com/content/www/us/en/developer/articles/technical/memory-performance-in-a-nutshell.html
https://testimon.ccis.no/

60 Bibliography

[27] IntelPin. A dynamic binary instrumentation tool, 2017.

[28] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[29] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[30] Fang Li, Chao Yan, Ziyuan Zhu, and Dan Meng. A deep malware detection
method based on general-purpose register features. In International Confer-
ence on Computational Science, pages 221–235. Springer, 2019.

[31] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood.
Pin: building customized program analysis tools with dynamic instrumenta-
tion. Acm sigplan notices, 40(6):190–200, 2005.

[32] Nicholas Nethercote and Julian Seward. Valgrind: a framework for heavy-
weight dynamic binary instrumentation. ACM Sigplan notices, 42(6):89–100,
2007.

[33] John von Neumann. First draft of a report on the edvac. Technical report,
1945.

[34] Ori Or-Meir, Nir Nissim, Yuval Elovici, and Lior Rokach. Dynamic mal-
ware analysis in the modern era—a state of the art survey. ACM Computing
Surveys (CSUR), 52(5):1–48, 2019.

[35] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based malware detection
using low-level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

[36] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry V Ponomarev. Hardware-based malware detec-
tion using low level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

[37] Vinesh Raja and Kiran J Fernandes. Reverse engineering: an industrial per-
spective. Springer Science & Business Media, 2007.

[38] Reuters. Ukraine’s power outage was a cyber attack: Ukren-
ergo. https://www.reuters.com/article/us-ukraine-cyber-attack-energy/
ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA, 2017.

https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA

Bibliography 61

[39] Hossein Sayadi, Nisarg Patel, Sai Manoj PD, Avesta Sasan, Setareh Ra-
fatirad, and Houman Homayoun. Ensemble learning for effective run-time
hardware-based malware detection: A comprehensive analysis and classifica-
tion. In 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC),
pages 1–6. IEEE, 2018.

[40] Mike Schiffman. A brief history of malware obfuscation: Part 2 of 2, 2010.

[41] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. Ma-
chine learning aided static malware analysis: A survey and tutorial. In Cyber
Threat Intelligence, pages 7–45. Springer, 2018.

[42] Andrii Shalaginov, Lars Strande Grini, and Katrin Franke. Understanding
neuro-fuzzy on a class of multinomial malware detection problems. In Neural
Networks (IJCNN), 2016 International Joint Conference on, pages 684–691.
IEEE, 2016.

[43] Claude E Shannon. A mathematical theory of communication, part i, part ii.
Bell Syst. Tech. J., 27:623–656, 1948.

[44] R. Shirey. Internet security glossary, version 2. RFC 4949, RFC Editor,
August 2007. http://www.rfc-editor.org/rfc/rfc4949.txt.

[45] Michael Sikorski and Andrew Honig. Practical malware analysis: the hands-
on guide to dissecting malicious software. no starch press, 2012.

[46] Cornell University. Code optimization: Memory access times. https://cvw.
cac.cornell.edu/codeopt/memtime. accessed: 28.11.2022.

[47] Ryan J. Urbanowicz, Melissa Meeker, William La Cava, Randal S. Olson,
and Jason H. Moore. Relief-based feature selection: Introduction and review.
Journal of Biomedical Informatics, 85:189–203, 2018.

[48] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[49] Zhixing Xu, Sayak Ray, Pramod Subramanyan, and Sharad Malik. Malware
detection using machine learning based analysis of virtual memory access
patterns. In Design, Automation & Test in Europe Conference & Exhibition
(DATE), 2017, pages 169–174. IEEE, 2017.

[50] Pavel Yosifovich. Windows Internals, Part 1 (Developer Reference). Mi-
crosoft Press, may 2017.

[51] Çağatay Yücel and Ahmet Koltuksuz. Imaging and evaluating the memory
access for malware. Forensic Science International: Digital Investigation,
32:200903, 2020.

http://www.rfc-editor.org/rfc/rfc4949.txt
https://cvw.cac.cornell.edu/codeopt/memtime
https://cvw.cac.cornell.edu/codeopt/memtime
http://virusshare.com/

Part II
Publications

Chapter 6

P1: Memory access patterns for
malware detection

Sergii Banin, Andrii Shalaginov, Katrin Franke

Abstract

Malware brings significant threats to modern digitized society. Today exist
many malware detection techniques, yet malware developers put in significant ef-
forts to evade detection and remain unnoticed on their victims’ computers, such
as through encryption and obfuscation that tend to eliminate known and notice-
able traces in memory, network or disk activities. Because of this, there remains a
strong need for new malware detection methods, especially ones based on Machine
Learning models, because processing of large amounts of data are not suitable task
for human. This paper presents a novel method that could potentially detect zero-
day attacks and contribute to proactive malware detection. Our method is based
on analysis of sequences of memory access operations produced by binary file
during execution. In order to perform experiments we utilized an automated virtu-
alized environment with binary instrumentation tools to trace the memory access
sequences. Unlike the other relevant papers, we focus only on analysis of basic
(Read and Write) memory access operations and their n-grams rather than on fact
of presence or overall number of operations. Additionally, we performed a study
of n-grams of memory accesses and tested it against real-world malware samples
collected from open sources. Collected data and proposed feature construction
methods resulted in accuracy of up to 98.92% using such Machine Learning meth-
ods as k-NN and ANN. Thus, we believe that our proposed method will serve as a
stepping stone for better proactive malware detection techniques in the future.

63

64 P1: Memory access patterns for malware detection

6.1 Introduction
Malware is the malicious software designed to perform illegal or unwanted

activity on a victim’s system. The VirusShare database [23] contains 25,072,568
malware samples as of 9th May, 2016. When a new malware sample is detec-
ted there is a time gap between the moment antivirus vendors can analyze it and
the moment they update their databases for their customers. To thwart detection,
malware developers develop additional techniques to evade detection by antimal-
ware software through the use of different obfuscation techniques such as encryp-
tion, polymorphism, metamorphism, dead code insertions, and instruction substi-
tution [20] in order to change the appearance of a file and its static characteristics.
For example, it is possible to change hash sums used as file signatures (such that
SHA-1 or md5) by simply changing different strings in the file. Further, dead
code insertions can be used in executables to change opcode sequences, making
detection troublesome.

There are two main approaches for malware analysis that can be found in the
literature [3, 11]: static and dynamic. Static analysis is done on a malicious file
without its execution and aimed at collecting various static characteristics such as
bytes, opcodes and API n-grams frequencies, Portable Executable header features,
strings and others [20, 21, 8]. Dynamic analysis is based on running a malicious
executable in a controlled environment and tracking its activity within the sys-
tem. Such activities include network, registry and disk usage patterns, API-calls
monitoring, instruction tracing, memory layout investigation and others [5]. To
collect such information one can use either specialized sandboxes like Cuckoo [9]
or utilize any Virtual Machines such as VirtualBox accompanied by a debugger or
other watchdog software. Despite the fact that some authors consider [24, 18] disk
and network activities crucial for malware detection, few authors have outlined the
utility of memory properties analysis [1, 12].

This paper presents a novel methodology for malware detection. It is based on
the extraction of the memory access sequences (further called memtraces) for both
benign and malicious executables using the dynamic binary instrumentation tool
Intel Pin [10]. This dynamic binary instrumentation tool is used for live analysis of
binary executables and allows for analyzing different properties of execution such
as memory activity, opcodes, addressing space, etc. Our proposed methodology
is based on the assumption that similar opcodes with similar arguments will result
in nearly the same memtraces, which is explained later in the paper. Thus, we
apply an n-gram technique to extract features from memtrace sequences in order
to perform benign against malicious classification. Moreover, we used specially-
tuned feature selection to be able to verify classification accuracy while adhering
to a set of community-accepted Machine Learning (ML) methods. It will be shown
that our method can find an application in proactive malware analysis with reliable

6.2. Memory patterns in malware detection 65

results using only fraction of the execution records of the malware sample. Unlike
the other related works, where authors worked on specific ML methods and other
dynamic features, we focus primarily on memory access sequences and patterns
within them. So, this paper contributes to a new malware detection methodology
and test it against real-world samples.

The reminder of the paper is organized as following: 6.2 presents an overview
of the dynamic malware analysis, including existing behavioural characteristics as
well as how memory activity can be used for identification of malicious activities.
Further, 6.3 presents our contribution towards the memtraces analysis for malware
detection. Description of the collected malware samples and analysis of the results
are given in the 6.4 section. Finally, 6.5 contains our final remarks and conclusion.

6.2 Memory patterns in malware detection
In this section we provide a short overview of existent studies that are related to

our, because there dynamic binary instrumentation tools and memory activity ana-
lysis were also used. Dynamic malware analysis involves malware execution
in controlled environment with further investigation of its activity and any possible
traces that can be found in the system. In the Malware Analysis Cookbook, Ligh
et al. [14] defined the following automated procedure for dynamic malware ana-
lysis covering a set of predefined operations ranging from VM start up to traces
collection.

According to SANS [3] one may conclude that a number of behavioural char-
acteristics can be used to identify whether or not an executable file has some mali-
cious functionality. With a use of such dynamic malware analysis, it is possible to
collect different types of features such as file system events, registry changes, API
and DLL calls, network and memory activity [24]. In the paper [18], the authors
claim that memory analysis without ground-truth can’t be considered trustworthy,
especially on proprietary operating systems (e.g. MS Windows). They investigate
the accuracy and efficiency of traversal-based and signature-based memory ana-
lysis tools (Volatility [7] framework and its plug-ins), which are designed to gather
information about processes, modules, files etc. Further work [18] also examined
accuracy and efficiency of robust field- and graph- based signature schemes Sig-
Field [4] and SigGraph [15]. They compared results from binary analysis tool
and Volatility over the Virtual Machine memory, claiming that traversal-based and
signature-based methods tend to produce less accurate results.

A methodology for malware analysis with using Intel Pin was discussed earlier
[1]. The model was first tested in virtual environment and afterwards in a real en-
vironment with Windows XP or Xen Linux installed. They extracted the following
characteristics: system or user API calls if any file or folder was modified, calls
that create hard or symbolic links, calls or arguments of function exec() and in-

66 P1: Memory access patterns for malware detection

structions that performed memory operations read and write. Unlike in this paper,
where we focus on single memory access operations generated by single opcodes,
they utilized basic blocks of a program. The basic block is an instruction sequence
which is executed between control flow transfer instructions. Among other fea-
tures, the authors used fact of presence, size of transferred data and memory range
of memory access operations within the basic blocks. Recording the execution
trace they generated regular expressions and security policies, which then were
used for malware detection. As the result, they achieved 100% detection rate for
original and obfuscated malware samples on both Windows and Linux. The au-
thors claim that their system is capable of accurate malware detection with 93.68%
code and path coverage of input-dependent executables. Finally, it is worth men-
tioning the work [12] that proposed the ensemble learning technique of malware
detection based on a number of features extracted with Intel Pin [10]: frequency of
opcode occurrence, presence of particular opcode, difference between frequency
of opcode in malware and benign executables, distance and presence memory ref-
erence and total number of load and store memory operations as well as branches.
For each executable they collected a feature vector for every 10,000 committed
instructions and achieved classification accuracy up to 95.9% with a specialized
ensemble classifier.

6.3 Memtraces for malware detection
The proposed method based on memtraces is described below. Steps from

characteristics collection and feature construction for future use in ML are simil-
arly presented.

6.3.1 Collecting memory access

Opcode (API calls) n-grams have consistently been successfully utilized as re-
liable features for malware detection [16]. No matter the programming language or
frameworks used for developed programs, a compiled PE32 executable can be rep-
resented as a sequence of opcode instructions. Opcodes (or assembly commands)
are basic commands executed on the hardware level. Some operate only with
CPU’s registers, and as such XOR EAX,EAX or MOV ESI,EBX won’t
have any interaction with virtual memory, while others can generate sequences
reading from and writing to virtual memory operations, for instanceMOV EBX,
V AR_NAME which reads from memory and MOV [V AR_NAME],
110 which writes to it.

In this paper we analyse sequences of basic memory access operations which
are R for Read and W for Write operations. Our goal is to record a sequence of
memory access operations, or memtraces, and analyze this sequence. The major-
ity of modern desktop computers utilize x86 compatible architectures that were

6.3. Memtraces for malware detection 67

introduced in order to implement pipelines and, as a result, increase execution
speed. Modern x86 compatible CPUs translate opcodes into a sequence of micro-
operations (or uops) responsible for loading and storing data, interacting with arith-
metic logical units, branching, and so on, each uop executed on the specific port.
Some authors collected information about number and types of micro-operations
used by CPUs in order to execute certain opcodes, as in [6] where such information
was collected for Intel architectures ranging from Pentium to the Skylake architec-
ture. For example, in Sandy Bridge architecture port p23 stands for memory read
or address calculation, and p4 for memory write.

To be more specific, we focus on opcodes that allow interaction with memory
such as MOV, AND, XOR, ADD etc. It was found that, regarding the number
of load and store micro-operations, the opcodes were similar to those presented
in the book [6]. Our scope was confined to solely memory-related activity, and
we looked for a number of micro-operations going to a memory read port (e.g.
p2 or p3 for Ivy Bridge and Skylake architectures) or a memory write port (e.g.
p4 for Ivy Bridge and Skylake architectures). No similar information was found
for AMD CPUs, so the scope was also limited to Intel processors. With the help
of Intel Pin, we checked data that are usually transferred by the detected read
and write operations where we found that most of the memory operations involve
transfers of 4 bytes. (1- 2- 8- and 10-byte memory accesses were also found.)
This means that Intel Pin is capable of detecting memory operations on the level
of separate opcodes and has a desired granularity. From the results of this study
we concluded that opcode with similar parameters will generate similar memory
access sequence regardless of the overall task of the executable and Intel CPU
model. To verify this we tried, with help of Intel Pin, to make the output contain
executed opcodes and its (if exists) memory operations. The examples of opcodes
and memtraces captured from calc.exe benign executable taken from Windows 7
are given below.
[mov edi, dword ptr [ebp-0x20]]
R
[add dword ptr [eax], ecx]
RW
[mov dword ptr [ebp-0x8], edx]
W

This sequence can be explained as following:

• mov edi, dword ptr [ebp-0x20] reads from memory, and writes this inform-
ation to the edi register. According to [6] instructions of type MOV Register,
Memory for all addressing types involves 1 read operation (1 microoperation
for the port p23).

• add dword ptr [eax], ecx reads data from address that is previously cal-
culated (by the memory read port which has additional function of address

68 P1: Memory access patterns for malware detection

calculation), then it calculates the sum and later data is written to the already
calculated address. Instructions of type ADD Memory, Register involves 2
microoperations to the store port (one for address calculation and one for
reading) and 1 microoperation for writing [6].

• Instruction mov dword ptr [ebp-0x8], edx generates W (Write) because MOV
Memory, Register is a memory writing.

Based on what was said above, we highlight two hypotheses: (i) Opcode n-
grams are reliable features for malware detection as described earlier, and (ii) Op-
codes with similar arguments will produce similar memory activity. As results,
memtraces can be used as robust features for identification of malware samples.
It is hard to say how many memtraces are required for good detection rate; this
will have to be studied later on. To start with however, we decided to restrict
length of recorded memtrace sequence to 10 millions of records. According to our
measurements, in order to perform 10,000,000 memtraces, an executable (from
our dataset) spends about 0.053 seconds on our hardware. Time was recorded with
a use of chrono a C++ lirary. This makes our system potentially applicable for the
systems which require near real time malware detection, because classification of
a software sample will take less than a second. Afterwards, the original memtrace
sequence is pruned to get first 100,000 and then 1,000,000 memtraces in order to
study influence of the memtraces sequence length on the accuracy.

6.3.2 N-gram as feature extraction

In order to detect malicious executable we record the sequence of memory ac-
cess operations(memtraces). We define original memtrace sequence Soriginal as a
set of memory access operations: Soriginal = (m1,m2, ...ml) where l is the num-
ber of memtraces recorded during execution of a program and mi is either Read or
Write memory access operation. Memtrace sequence ms is defined as subgroup of
original memtrace sequence where ms ⊆ Soriginal. Here ms is constructed from
memtraces: ms = (mk+0,mk+1...mk+p−1) where k ∈ [1, l−p+1] is the starting
position of certain memtrace sequence, and p ∈ [1, l] is the length of memtrace se-
quence. So, the memtrace sequence of length p=n is called n-gram. We use only R
for read and W for write operation regardless to size of the transmitted data. Then
we extract n-grams of preferred size from the original memtrace sequence. While
authors who apply opcode n-grams for virus detection usually use n=1, n=2 [19]
n=3, n=4, n=5 [22], we could not use n of such small sizes. Here are the reasons:

• Executable may contain hundreds of different opcodes. Thus, sequences
of OR,OR,OR and ADD,ADD,ADD represent different features for opcode
based methods.

6.3. Memtraces for malware detection 69

• We trace only memory accesses. Thus, both OR,OR,OR and ADD,ADD,ADD
(Memory, Register operands) could be recorded as RWRWRW and RWR-
WRW.

• Memtraces sequence is a binary sequence, because it contains only two sym-
bols. For the length of 1 or 10 million, class-wise frequency for memtrace
n-gram of size 6 will be close to uniform, and there is a high likelihood, that
among benign and malicious classes there will be no a single unique n-gram
for particular class.

During initial experiments we also found that there is no class-unique n-grams
up to the size of 12 for the dataset used for experiment. It can be explained by the
fact that not all the opcodes generates memtrace activity. From one perspective it
makes less data to work with, but from another it could probably result in lower
classification accuracy. So, we decided to start from n-gram size of 16, and proceed
with 20,24,36,48,72,96 to cover different n-grams and have feasible processing
and analysis overhead. Another reason of increasing n-gram size is that probability
of particular n-gram to occur in a sequence of memtraces is higher for smaller n
values, thus utilizing small n values can result in impossibility of finding unique
features and low classification accuracy. We limit n-gram size to 96 because our
scripts were not able to finish bitmap construction for 10,000,000 memtraces due
to out of memory error.
6.3.3 Feature Selection

To use extracted memtraces for training ML models, we need to extract fea-
tures that will provide the best description of classes [13]. Ideal feature for classi-
fication task is the feature, that exists only in particular class and is present in all
instances of this class. However, in real-world problems, it is usually very hard
or even impossible to find such features. So, the task is to find features that fit
previously stated request better than others using the following steps:

1. For each class (benign and malicious) construct vector of n-grams (which are
unique within the class) and their class-wise frequencies, e.g.: [[WWR, 1.0],
[WRW, 0.87], [RRR, 0.66], ...]

2. Having two vectors, one for benign and one for malicious executables, we
delete those n-grams that are present in both vectors, regardless to their
class-wise frequencies. In other words, we subtract intersection of two sets
from each of them and get two clean vectors.

3. From each of clean vectors we select particular amount (e.g. 100,200,400)
of n-grams with highest class-wise frequency and combine them into the
final feature vector of length 200, 400 or 800. The numbers 100, 200, 400

70 P1: Memory access patterns for malware detection

were chosen, because many researchers used to utilize feature numbers from
100 to 1,000. So, this a common baseline for similar researches, yet we need
to take into account ML software performance.

However, to be able to apply ML classification we need to build a bitmap
(matrix) of presence, where "1" is placed if particular instance contains particular
feature and "0" if not. Such bitmap is used later to train ML methods. In order
to assess model quality we will use 5-fold cross validation. For results assessment
we will use classification accuracy because it shows how well model performs on
the whole dataset. Finally, newly built feature vector is then used for building the
bitmap that is later used in Machine Learning algorithms.

6.4 Experiments & Results
This section is devoted to experiments design and analysis of achieved results

of the proposed method.

6.4.1 Computing Environment

All our experiments were performed on Virtual Dedicated Server (VDS) with
Intel(R) Core(TM) CPU @ 3.60GHz, 4 cores, SSD RAID and 48GB RAM. Ubuntu
14.04 64 was installed with MySQL 5.5, PHP 5.5.9 and VirtualBox 5.0.16. Win-
dows 7 32-bit was used as guest OS, because of its wide spread [17] and the fact
that malware written for 32-bit OS’s will run on 64-bit as well. Another reason to
use 32-bit version of Windows 7 is that our VDS was not capable of running newer
or 64-bit versions of Windows due to virtualization issues.

6.4.2 Malware & data collection

Benign files were collected from clean installations of 32 bit versions of Mi-
crosoft Windows OS (XP, 7, 8, 10). The reason of such choice is that there is no
publicly available datasets with big amount of benign files. Malicious files were
taken from VirusShare repository [23] (VirusShare_00207.zip). This archive con-
tains collection of PE32 files, which is a very popular executable format due to
strong legacy of 32-bit operational systems and compatibility issues. Both benign
and malicious files were unsorted and uncategorised. In order to avoid duplicates,
files were renamed with their md5 sums. Having information gained from peframe
[2] those files, that contain GUI field in the peframe output, were selected. The
reason of this kind of filtering is that many malicious executables, that don’t have
GUI, can switch to idle mode soon after start, so, this will bring significant prob-
lems to automated dynamic analysis since it could produce very small amounts of
data or it will require an unreasonably long waiting time. After files were filtered

6.4. Experiments & Results 71

by presence of GUI, the smallest 1,000 files from each of the datasets were selec-
ted. File sizes of selected benign and malicious executables vary from 115.4 KB
to 152.1 KB and from 976 bytes to 28.7 KB respectively. The experiments setup
included automated execution of malware as specified in the Figure 8.2 according
Lingh et al. [14].

Create Virtual Machine
with Windows 7 installed

Copy Intel Pin tool to VM

Copy malware and benign
samples to VM

Restore snapshot

Shut down VM

Create snapshot

Run next
executable sample

under Pin tool

Read file with
memtraces from

VM

Store memtraces
to the database

Suspend VM

Pin tool records
memtraces produced by

an executable and
stores it to file

Figure 6.1: Automated malware analysis cycle using Intel Pin for metraces sequences
extraction

During the experiments only 445 benign and 759 malicious files managed to
start since some had anti-debug or anti-VM features. Final dataset contains 1,204
files and corresponding MySQL table of raw memtraces table occupies 6.9 GB of
storage space and table of 96-grams for memtrace sequence length of 10,000,000
occupies 32.2 GB.

6.4.3 Results

We used memory access sequence of lengths 100,000; 1,000,000 and
10,000,000, n-gram sizes of 16,20,24,36,48,72,96 and feature set sizes of 200,400,
and 800. The following ML methods were trained: NB (Naive Bayes), BN (Bayesin
Network), J48 (C4.5), k-NN (k-Nearest Neighbours), ANN (Artificial Neural Net-
work) and SVM (Support Vector Machine). In this paper we present only the most
outstanding achieved results.
Influence of the memtrace sequence length and n-gram on classification accuracy

Considering three lengths mentioned before, we can say, that usage of the first
1,000,000 memtraces is enough to achieve good malware detection rate together
with the number of selected features equal to 800. The results of experiments are
given in the Table 6.1. Other configurations gave lower or equal results.

We can see that k-NN and ANN provide best classification accuracy of 98.92%

72 P1: Memory access patterns for malware detection

n-gram size Machine Learning method
NB BN J48 k-NN ANN SVM

100,000 memtraces
16 60.22 60.47 64.29 64.20 63.54 63.54
20 60.88 62.71 65.03 65.61 63.54 63.54
24 62.46 63.95 67.19 67.28 62.13 63.54
36 59.72 60.63 67.61 67.77 62.54 63.62
48 59.72 59.72 68.77 68.94 62.96 64.45
72 64.12 64.12 71.26 71.26 64.70 67.28
96 67.03 67.03 70.76 71.01 63.87 68.77

1,000,000 memtraces

16 60.71 61.30 82.97 83.80 83.80 70.02
20 55.32 55.32 83.89 84.88 61.38 77.74
24 56.15 56.81 79.49 79.57 61.38 76.50
36 57.64 57.64 78.16 78.32 65.70 76.16
48 73.34 73.34 85.71 85.88 65.86 85.05
72 92.11 92.11 90.95 91.20 92.03 92.03
96 94.44 94.44 98.84 98.92 98.92 98.51

Table 6.1: Accuracy %, for 800 features

for 1,000,000 memtraces, 800 features and 96-grams. k-NN also shows most of
the row-wise best results in the tables. However, the point where k-NN and ANN
reached best accuracy could not be stated as optimal condition for malware-benign
classification task. Several results were not gained due to out-of-memory problem,
but better results could probably be achieved in future work. From one point of
view k-NN is a good algorithm, because it doesn’t require actual training phase.
However, it makes no generalization about processed data. This can result in over-
fitting and classification time growth. Among others J48 and ANN showed good
results and could be considered as reliable candidates for malware-benign clas-
sification task if k-NN is not suitable for some reason. As we can see from the
Table 6.1, the more memtraces we have in the original sequence - the higher ac-
curacy we gain. This is natural dependency, because bigger length of memtrace
sequence gives us more information about an executable. As we can see, n-grams
(48, 72, 96) of bigger size gives us better accuracy. Finally, we have also stud-
ied influence of the number of features on classification accuracy. Similarly to
memory access sequence length, overall dependency shows growth of accuracy
with growth of feature number as shown in the Figure 6.2.

Analysis of the classification accuracy
The non-trivial factors that influence classification accuracy are given in the

Table 6.2 first. During the feature selection process we used to calculate intersec-
tion of unique n-grams sets from benign and malicious executables. This intersec-
tion then was subtracted from both benign and malicious unique n-gram sets. From

6.4. Experiments & Results 73

16

20

24

36

48

72

96

60

68

76

84

92

100

Accuracy, %

Feature set

92-100

84-92

76-84

68-76

60-68

n-gram size

Figure 6.2: Accuracy depending on n-gram size and number of features (200-800) for all
memtrace sequences lengths

the Table we can see that characteristics of intersection under different memtrace
sequence lengths and n-gram sizes. It contains the following columns: n-gram size
- the size of n-gram, Isec - the number of unique n-grams shared between benign
and malicious executables (intersection size), B_unique - the number of unique
n-grams found in benign executables, M_unique - the number of unique n-grams
found in malicious executables, Ratio - intersection ratio, shows similarity between
malicious and benign n-grams sets. Calculated as Ratio = Isec

(B_unique+M_unique)
The Table 6.2 contain intersection ratios calculated for the 1,000,000 memtraces.

n-gram size isec B_unique M_unique Ratio

16 50,751 53,587 56,722 0.46008
20 156,553 209,037 240,098 0.34857
24 234,725 364,926 440,593 0.29140
36 372,336 670,314 1,009,935 0.22160
48 481,347 910,659 1,655,659 0.18756
72 694,570 1,384,718 2,944,111 0.16045
96 918,076 1,884,036 4,201,454 0.15086

Table 6.2: Intersection size and ratio for unique benign and malicious n-grams for
1,000,000 memtraces

74 P1: Memory access patterns for malware detection

6.4.4 Interpretation of achievend results and findings

In the Figure 6.3 we show dependency between accuracy rate and intersection
ratio for 1M of memtraces and all lengths of feature vector. Accuracy rates were
taken from k-NN column of corresponding result table, because k-NN has shown
most of the best results for particular n-gram size. Logarithmic trendlines were
added to every series for easier understanding. We will use k-NN’s accuracy to
illustrate other findings and tendencies for the same reason.

Figure 6.3: Accuracy vs intersection ratio for 106 memtraces

The results achieved by k-NN under all conditions are shown in the Firure
6.2: x-axis is for feature set, y-axis is for n-gram size and z-axis is for accuracy.
Labels on x-axis are named as XXX_type where XXX stands for feature number
and type for memtrace sequence length: h for 100,000, m for 1,000,000 and f for
10,000,000. It is easy to see that growth of feature vector and memtrace sequence
length (x-axis) generally results in accuracy growth. n-gram size and feature num-
ber increase results in accuracy growth, but now it is easier to see that area around
n-gram size of 24 contains descending of accuracy (as well as weak matrix sparse-
ness fading and area under class-wise frequency chart growth).

Worth to mention that there is visible correlation between intersection ratio
and accuracy rate. The smaller ratio implies the bigger accuracy. This can be
explained in the following way. Bigger intersection ratio means fewer features
for feature selection. This results in smaller class-wise frequency of a particular
feature, hence bigger sparseness of presence matrix. Sparse matrix can worsen
generalization of dataset and even result in zero-filled rows, which definitely will

6.4. Experiments & Results 75

decrease accuracy. As we utilize bitmap of presence, and our feature selection
method is aimed on selecting only class-unique features, zero-filled row means
that particular sample could be difficult to correspond to one of the classes. And
high sparseness of a matrix means that many features are not very efficient. So, it
will lower ability of ML methods to generalize through the data. We conducted the
study of class-wise frequencies of features selected in feature vectors, and found
that there is no n-grams with frequency 1.0. This means that either there does not
exist a single n-gram that describes just malicious or just benign executables or
n-grams with class-wise frequency 1.0 were rejected during feature selection as
those present in both classes.

In the Figures 6.4, a and b Areas Under Feature Class-wise frequency charts
(AUFC) are visualized for both malicious and benign executables. Having charts
of this kind built, we can claim that there is a positive correlation between n-gram
size and area. Another natural finding, is that the more features we have - the more
samples we can cover with them, this brings us better accuracy. Also, we found,
that AUFC for memtrace sequence length of 100,000 keeps growing on the n-gram
size from 24 to 48, while for other lengths growth is almost stopped. We should
notice that AUFC for malicious features are bigger than similar areas for benign
features. This means that benign files are more different from each other in terms
of n-grams than malicious ones. It can be explained as benign executables were
made for bigger variety of purposes, while malicious are aimed on performing
malicious activity.

0

20

40

60

80

100

120

140

160

16 20 24 36 48 72 96

Sq
u

ar
e

n-gram size

1000000

10000000

100000

(a) Benign class

0

20

40

60

80

100

120

140

160

16 20 24 36 48 72 96

A
re

a

n-gram size

10000000

1000000

100000

(b) Malicious class

Figure 6.4: Area under class-wise frequency chart for 200 features

From one point of view AUFC is a good measure for estimation of feature se-
lection efficiency, but since ML algorithms work with presence bitmap, it is better
to use another measure, which will directly show quality of extracted data. As it
was said earlier, presence bitmap is a matrix of zeros and ones, so, if it has many
zeros it will be hard to generalize data, hence ML algorithms will produce lower
accuracy. Let’s use sparseness as a measure of zeros percentage in matrix. Sparse-

76 P1: Memory access patterns for malware detection

ness is a ratio between numbers of zeros in matrix to number of cells and could be
expressed as sparseness = number of zeros

width of matrix · length of matrix . Moreover,
we also performed sparseness calculations for all bitmaps. Using sum of benign
and malicious AUFC and sparseness measures for all bitmaps, we built charts in
Figure 6.5 for 800 features. As it can be seen from this chart, sparseness of pres-
ence bitmap is descending, while overall AUFC grows, proving earlier statement.

0.5

0.6

0.7

0.8

0.9

1.0

0

50

100

150

200

250

300

350

400

450

16 20 24 36 48 72 96

A
re

a

n-gram size

10000000 area

1000000 area

100000 area

100000 sparseness

1000000 sparseness

10000000 sparseness

Figure 6.5: Area under class-wise frequency chart for 800 features

6.5 Discussions & Conclusion

This work targets malware detection using memory access patters based on a
sequence of read and write operations, also called memtraces. From the literature
we can see that many authors target dynamic malware analysis due to comprehens-
iveness of the collected behavioural features, including and not limited to disk, net-
work and memory patterns. Yet, only few consider memory access operations as a
reliable sources for malicious activities identifiers. We believe that memtraces can
be highly relevant for proactive malware analysis. This is because it is the result
of opcode execution, which produces consistent operations, yet may slightly vary
for different arguments. We proposed a method for fast malware identification ac-
cording to a presence or non-presence of a specific read and write pattern in its
memory access sequence. For our experiments we used 105, . . . , 107 memtraces
and 200-800 features extracted using 12, . . . , 96 n-gram size. It was found that 106

memtraces with 800 features and 96-grams gives a robust classification accuracy
up to 98.92% using ML methods. In addition to this we studied a range of aspects
and found that such method reveals a set of useful statistical properties that can
be further applied for threat identification and ML-based malware detection. We
believe that our work will contribute to proactive malware analysis in future.

6.6. Bibliography 77

6.6 Bibliography
[1] Najwa Aaraj, Anand Raghunathan, and Niraj K Jha. Dynamic binary

instrumentation-based framework for malware defense. In International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 64–87. Springer, 2008.

[2] Gianni Amato. Peframe. https://github.com/guelfoweb/peframe. accessed:
27.10.2016.

[3] Dennis Distler and Charles Hornat. Malware analysis: An introduction.
SANS Institute InfoSec Reading Room, pages 18–19, 2007.

[4] Brendan Dolan-Gavitt, Abhinav Srivastava, Patrick Traynor, and Jonathon
Giffin. Robust signatures for kernel data structures. In Proceedings of
the 16th ACM conference on Computer and communications security, pages
566–577. ACM, 2009.

[5] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A
survey on automated dynamic malware-analysis techniques and tools. ACM
Computing Surveys (CSUR), 44(2):6, 2012.

[6] Agner Fog. Technical university of denmark. Instruction tables Lists of
instruction latencies, throughputs and micro-operation breakdowns for Intel,
AMD and VIA CPUs, 2016.

[7] VOLATILITY FOUNDATION. Volatility. http://www.volatilityfoundation.org/,
2015. accessed:2016-4-15.

[8] Lars Strande Grini, Andrii Shalaginov, and Katrin Franke. Study of soft
computing methods for large-scale multinomial malware types and families
detection. In Recent developments and the new direction in soft-computing
foundations and applications, pages 337–350. Springer, 2018.

[9] Claudio Guarnieri, Allessandro Tanasi, Jurriaan Bremer, and
Mark Schloesser. The cuckoo sandbox.(2012). URL ht-
tps://www.cuckoosandbox.org, 2012.

[10] IntelPin. A dynamic binary instrumentation tool, 2017.

[11] C. McMillan K. Kendall. Practical malware analysis. In Black Hat Confer-
ence USA, 2007.

[12] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[13] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

https://github.com/guelfoweb/peframe
http://www.volatilityfoundation.org/

78 Bibliography

[14] Michael Ligh, Steven Adair, Blake Hartstein, and Matthew Richard. Malware
analyst’s cookbook and DVD: tools and techniques for fighting malicious
code. Wiley Publishing, 2010.

[15] Zhiqiang Lin, Junghwan Rhee, Xiangyu Zhang, Dongyan Xu, and Xuxian
Jiang. Siggraph: Brute force scanning of kernel data structure instances using
graph-based signatures. In NDSS, 2011.

[16] Bin Lu, Fenlin Liu, Xin Ge, Bin Liu, and Xiangyang Luo. A software birth-
mark based on dynamic opcode n-gram. In Semantic Computing, 2007. ICSC
2007. International Conference on, pages 37–44. IEEE, 2007.

[17] Netmarketshare. Desktop operating system market share. https:
//www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&
qpcustomd=0&qpcustomb=, 2016. accessed: 2017-22-11.

[18] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin. On the trustworthiness
of memory analysis #x2014;an empirical study from the perspective of bin-
ary execution. IEEE Transactions on Dependable and Secure Computing,
12(5):557–570, Sept 2015.

[19] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Op-
code sequences as representation of executables for data-mining-based un-
known malware detection. Information Sciences, 231:64–82, 2013.

[20] Mike Schiffman. A brief history of malware obfuscation: Part 2 of 2, 2010.

[21] Dolly Uppal, Rakhi Sinha, Vishakha Mehra, and Vinesh Jain. Malware detec-
tion and classification based on extraction of api sequences. In Advances in
Computing, Communications and Informatics (ICACCI, 2014 International
Conference on, pages 2337–2342. IEEE, 2014.

[22] P Vinod, Vijay Laxmi, and Manoj Singh Gaur. Reform: Relevant features for
malware analysis. In Advanced Information Networking and Applications
Workshops (WAINA), 2012 26th International Conference on, pages 738–
744. IEEE, 2012.

[23] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[24] Jun Yang, Jiangdong Deng, Baojiang Cui, and Haifeng Jin. Research on the
performance of mining packets of educational network for malware detection
between pm and vm. In 2015 9th International Conference on Innovative Mo-
bile and Internet Services in Ubiquitous Computing, pages 296–300. IEEE,
2015.

https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
http://virusshare.com/

Chapter 7

P2: Multinomial malware
classification via low-level
features

Sergii Banin, Geir Olav Dyrkolbotn

Abstract
Because malicious software or ("malware") is so frequently used in a cyber

crimes, malware detection and relevant research became a serious issue in the in-
formation security landscape. However, in order to have an appropriate defense
and post-attack response however, malware must not only be detected, but also
categorized according to its functionality. It comes as no surprise that more and
more malware is now made with the intent to avoid detection and research mech-
anisms. Despite sophisticated obfuscation, encryption, and anti-debug techniques,
it is impossible to avoid execution on hardware, so hardware ("low-level") activ-
ity is a promising source of features. In this paper, we study the applicability of
low-level features for multinomial malware classification. This research is a lo-
gical continuation of a previously published paper [4] where it was proved that
memory access patterns can be successfully used for malware detection. In this re-
search we use memory access patterns to distinguish between 10 malware families
and 10 malware types. In the results, we show that our method works better for
classifying malware into families than into types, and analyze our achievements
in detail. With satisfying classification accuracy, we show that thorough feature
selection can reduce data dimensionality by a magnitude of 3 without significant
loss in classification performance.

Keywords: Information security, Malware detection, Malware classification,

79

80 P2: Multinomial malware classification via low-level features

Multinomial classification, Low-level features, Hardware activity

7.1 Introduction
Malware detection is an important part of information security. Recently there

were several major cyber attacks that influenced power grids, banking and trans-
portation systems, manufacturing facilities and so on [33], [41] and all of them
used malware for achieving their final goals. Despite the use of anti-virus solu-
tions, complicated anti-detection techniques allowed adversaries to avoid defense
mechanisms. This fact points out a need for improvements in malware detection.

Malware is used for different purposes: to show ads to users, spread spam,
track user activity, steal data, create backdoors and so on. Malware is often not cre-
ated with a single specific purpose, but rather as a part of more advanced threats.
APT or Advanced Persistent Threat is a human being or organization [11] that op-
erates a campaign of intellectual property theft, the undermining of a company’s
or country’s operations through stealthy, targeted, adaptive and data focused [7]
attack techniques. Something has to exploit a victim’s weaknesses, something has
to aid in the installation of persistence tools, something has to communicate with
command and control servers, and something has to perform actions in the vic-
tim system. Even though specific actions might be launched manually from the
command and control server, they may rely on remote access trojans and back-
doors [34] present in the victim system. As we can see, malware could be used for
different purposes and goals.

Because of the variety of malware functionality, it is important not only to
detect malice (malware detection), but to differentiate between different kinds of
malware (multinomial malware classification or malware classification) in order
to provide better understanding of malware capabilities, describe vulnerabilities
of systems and operations as well as to use appropriate protection and post-attack
actions.

Malware classification or categorization is a common problem that is analyzed
in many research articles [40], [36]. There are two widely used malware categoriz-
ation approaches: malware types and malware families. However, literature stud-
ies show that authors rarely provide proper definitions of these terms. This can
lead to the various misunderstandings and non-valid comparisons. E.g. in [40],
authors mention viruses, backdoors, trojans etc. while talking about classifying
malware types and families. Another example of inconsistent terminology can be
found in [36]. In this paper, authors claim that their system is capable of detecting
the malware families (in their case trojans, backdoors, worms). Nevertheless, they
compare their results to the results from other papers where research was done on
the malware types. Authors of [35] attempted to elaborate on the definition of the
term malware; however, later on they use term malware family when talking about

7.1. Introduction 81

viruses, trojans, worms and other malware types. It might happen, that the use
of inconsistent terminology is more common among academics and not malware
analysis practitioners. Therefore, we must emphasize, in this paper that we use the
following definitions created after reviewing descriptions of malware categories
provided by well-known vendors (e.g. Microsoft, Symantec etc):

Malware type is assigned according to general functionality.
Malware is grouped into a malware family according to its particular
functionality.

Where general functionality is about what malware does (which goals it pursues),
and particular functionality is about how malware acts (which methods it uses in
order to achieve its goals).

As it appears, it is insufficient to know that some malware is affecting opera-
tions: knowledge about its category (family or type) can aid in restoring a system’s
state as well as in developing new security mechanisms to prevent similar problems
in the future. This necessitates standard definitions of different malware kinds and
methods that allow the effective categorization of detected malware.

To avoid detection, malware creators develop additional evasive methods to
thwart detection by antimalware software. They utilize various obfuscation tech-
niques such as metamorphism, polymorphism, encryption, dead code insertions,
and instruction substitution [37]. Such methods allow altering the appearance of a
file and its static characteristics. The basic example is changing hash sums (such
that SHA-1 or md5) used as file signatures by means of changing different strings
in the file. Moreover, dead code insertions will change opcode sequences in the
executable, making detection more difficult.

There are two main ways to perform malware analysis which are widely used
and described in the literature [9, 20]: static and dynamic. Static analysis is per-
formed without execution of a malicious file. The main purpose of this approach is
to collect different static properties: bytes, opcodes and API n-grams frequencies,
properties of Portable Executable header, strings (e.g. commandline commands,
URLs etc) and others [37, 44]. Dynamic analysis is done by executing malware
in a controlled environment (a virtual machine or emulator) and recording actions
it has done in the system. These include patterns of a registry, network and disk
usage, monitoring of API-calls, tracing of executed instructions, investigation of
memory layout and so on [10]. Specialized sandboxes like Cuckoo [8] or other
Virtual Machines can be used. They might be assisted by a debugger or other
tracing software. Some authors assume [10, 30] disk and network activities are es-
sential for malware detection, but few authors explored the capabilities of memory
properties analysis [1, 21].

Though malware creators use a variety of sophisticated evasive techniques

82 P2: Multinomial malware classification via low-level features

[34], it is impossible to avoid execution on the system’s hardware. Earlier low-
level (or hardware) activity has proven to be efficient in malware detection [4].
In this paper, we use a similar technique for multinomial malware classification.
Achieved results and findings will be used in future work, where combinations of
high- and low-level activity will be used for malware categorization according to
the specific context.

In this paper, we use sequences of memory access operations generated by
a set of malicious executables as a source of features for machine learning al-
gorithms. We apply dynamic analysis inside the virtualized environment as it is
a safe (we don’t let real malware samples spread outside of our environment) and
time-efficient solution (experiments on physical machines would take significantly
longer). We find the best features for distinguishing between ten predefined mal-
ware families and ten types. However, our models should be simple enough so that
we can build a connection between low-level and high-level activity in the future
work. Therefore, we may choose less accurate but simpler models to make analysis
easier. Our initial hypothesis predicts that since malware types and families have
a valuable difference in high-level behavior, we might be able to find distinctive
low-level behavior patterns among malware categories. In the future work, we will
test our models on the dataset of newer malware in order to check their capabilities
against previously unknown (as for the models) malware. Our second hypothesis
is that since malware families are assigned according to their particular function-
ality (e.g. exploiting of a certain vulnerability), they might generate more explicit
activity that allows distinguishing better between families than between types.

The remainder of the paper is arranged in the following order: Section 7.2
contains State of the Art, Section 7.3 describes our methodology, Section 7.4 de-
scribes our results, Section 7.5 presents analysis of the results achieved, Section
7.6 presents a series of short remarks, conclusions, and a projection of future work.

7.2 State of the art
As was written above, in order to perform appropriate counteractions (to pre-

vent) or postactions (to recover), we need additional information about malware
category. With knowledge about malware types, we can apply appropriate de-
fense mechanisms: e.g. in order to protect against Ransomware, we should keep
an up-to-date backup of the data, while defense against self-replicating (Viruses)
malware could be implemented with a thorough managing of a network traffic and
removable media. In addition to knowledge about malware type, knowledge about
malware family can help to set up appropriate defense mechanisms. Moreover,
information about malware family can serve well in incident response actions:
proper definition of malware family points to the potentially affected system com-
ponents.

7.2. State of the art 83

Many authors have performed research on malware classification. Different
techniques and features are used to classify unknown malware into known mal-
ware categories or to detect outliers and perform a thorough analysis of such an-
omalies. For example, the authors of [23] combined different types of malware
attributes (opcodes, API calls, flags, registers etc) in order to classify malware into
11 families. They used discriminant distance metric learning and pairwise graph
matching in ensembled classifier to create an efficient framework that is capable of
detecting previously unknown samples. Authors of [42] used a length of functions
for classifying Trojans into 7 different families. They created pretty fast (O(n)
training and classification time) and relatively accurate (around 80% average ac-
curacy) method for malware classification. They also warn, that their approach
might not be as successful on other malware types such as Viruses, where mali-
cious code is difficult to extract. The same authors in their newer paper [43] used
API calls and their parameters as features for malware detection, and classification
of 10 malware families. They managed to achieve up to 97% accuracy in malware
detection, and up to 95% accuracy in malware classification.

Nevertheless, malware analysis always challenges. Authors of [5] did a thor-
ough review of anti- debug, disassembly and VM techniques on the dataset of more
than 4 million malware samples. As was shown, around 34% of malware is packed,
while most of the packers listed in the paper contain some kind of anti-debug or
anti-reverse engineering techniques. Moreover, among samples considered non-
packed more than 68% contain obfuscation, 43% contain anti-debugging and 12%
contain anti-disassembly techniques. This gives a clear view of a need of advanced
dynamic analysis. However, more than 81% contain anti-VM techniques. The
presence of anti-VM techniques might cause some problems for dynamic analysis.
The authors didn’t mention how they created their dataset and how the distribution
of anti- techniques might be different from a real world. For example, Symantec
published a paper where they claim that around 18% of malware stop execution
when detected while being launched on a virtual machine [45]. Also, they say that
a significant amount of organizations were planning to use server virtualization by
the end of 2015. This means that malware may run on virtual machines or even
created specifically to act on VMs and use their vulnerabilities [45]. Thus dynamic
malware analysis, which is often performed in virtualised environments [13], is a
relevant and promising research topic.

Dynamic malware analysis could be done on the different levels regarding to
how "far" the features are from the hardware. For example, API calls or network
analysis can be considered as high-level features and were proved to be reliable
features for malware analysis [13]. On the other hand, memory activity [4] [1],
opcodes [21], file system activity [22] and other hardware-based features[28] can
be used for malware detection and considered as low-level features.

84 P2: Multinomial malware classification via low-level features

When studying memory access traces, we use Intel Pin [19], a binary instru-
mentation tool that allows us to capture detailed information about every single ac-
cess to memory. Malware analysis usingf Intel Pin was described earlier in [1] and
[4]. Authors of [1] tested model in a virtual environment and in a real environment
with installed Windows XP or Xen Linux. They recorded the following features:
API calls (both system or user) if any file or folder was modified, calls which cre-
ated symbolic or hard links, calls and arguments passed to function exec(), and
instructions that executed memory operations such as read and write. While in our
paper we target separate memory access operations generated by separate opcodes,
authors of [1] used basic blocks of a program. The basic block is a sequence of
instructions executed between conditional branching instructions. Together with
other properties of memory access operations in the basic blocks, authors studied
memory range, the presence of certain operations and the size of transferred data.
Using records of the execution trace, it was possible to create regular expressions
and security policies, to use them for malware detection. Finally, 100% detection
rate was achieved for both Windows and Linux on the original and obfuscated mal-
ware samples. Authors also state that their approach allows one accurately detect
malware, and achieved 93.68% code and path coverage of input-dependent execut-
ables. Ensemble learning method for malware detection with a use of a number of
properties extracted with Intel Pin [19] was proposed in the [21]. Authors used
the frequency of opcode occurrence, presence of a particular opcode, difference
between the frequency of opcode in malware and benign executables, distance and
presence of memory references, and total number of load and store memory op-
erations as well as branches. For each sample in their dataset, they recorded a
generalized feature vector for every ten thousands of executed instructions, reach-
ing up to 95.9% of classification accuracy.

Paper [4] is worth special attention, since the authors used memory access
traces for malware detection. Their initial goal was to show that low-level fea-
tures (memory access patterns in their case) are applicable for malware detection
tasks. They used a virtualized environment and Intel Pin [19] to record memory
access operations produced by malicious and benign executables. Using Machine
Learning, they achieved more than 98% of accuracy for malicious against benign
classification. Even though they used a different feature selection method, this
work created a baseline for our research. However, the authors of [4] didn’t take
into account malware categories present in their dataset which points to one of the
main goals of our research: testing whether memory access operations applicable
for multinomial malware classification.

Additionaly, behavior analysis has its disadvantages: it might be vulnerable to
anti-emulation, when malware is created with capabilities not to reveal it’s func-
tionality in emulated and virtual environments. Even though it might not be the

7.2. State of the art 85

biggest problem, behavior based detection methods have another disadvantage:
malware cannot be detected being executed [34]. The speed of detection depends
on the features used for detection. E.g. if we use n-grams (or 1-grams) of API
calls (or any other high-level event), our detection system will not make a decision
before a certain API call is executed. However, single API call invokes the execu-
tion of many (rough analysis allows us to say hundreds) of opcodes with different
parameters. So it is hypothetically possible to detect a needed high-level event
before it is completed, since opcodes provide better data granularity. This is yet
another reason to study low-level features in malware context. However, we need
significantly more storage to store information about executed opcodes and their
parameters than for API calls: from what was said above, it is easy to see that
amount of data (to store and to analyze) can be larger in several magnitudes lar-
ger. In it’s turn, memory access sequence takes less space and can be stored as a
sequence of binary elements (R for read and W for write operation). It therefore
simplifies process of pattern search and matching. Memory accesses potentially
provide granularity better than opcodes: it is therefore possible to detect execution
of opcodes sequence before it is finished. Moreover, since not all opcodes gener-
ate memory activity [4] this method should create smaller performance overhead
while giving detection system more time to make a decision.

Taking into account the presence of anti-debug techniques mentioned above,
as well the contiguous growth of virtualization solutions’ market share [31] our re-
search can aid for out-of-VM security solutions. Since many virtualized solutions
might contain sensitive information, vendors won’t always have access to the sys-
tems, while malware capable of escaping virtual environment can undermine not
only host system [45], but other guest systems as well. Methods that allow mon-
itoring the state of guest system from outside a virtual machine can improve the
security of a virtualized environment without breaking ethical and privacy policies.
In their paper [18], the authors designed and implemented a VMM-based hidden
process detection system. Their system is placed outside of a protected virtual ma-
chine and interacts with a virtual machine manager. During the virtual machine
introspection they inspect low-level state of protected virtual machine and track
presence of hidden processes or lack of critical processes. In [15], authors created
a system, that can detect OS type with a use of fingerprints extracted from vir-
tual machine memory without false positives. Authors of [28] proposed Malware-
Aware Processors, where they suggest hardware-based online monitoring of mal-
ware. As a features for malware detection they use frequency of memory read
and write operations, memory address histogram, frequency and existence of op-
codes and instruction categories. Moreover, hardware manufacturers tend to invest
in hardware-based security solutions [28]. Because of everything written above,
the results of our research may contribute to different aspects of digitized society,

86 P2: Multinomial malware classification via low-level features

Figure 7.1: Simplified experimental flow

from improving the security of operations to helping security measures agree with
ethical and privacy considerations.

7.3 Methodology
In this section we describe our experimental flow and explain details about

dataset, feature selection, chosen machine learning methods, and hardware. We
also outline several phases of analysis that we perform on the achieved results.

In our study we followed the scheme provided in Figure 7.1. We first created
two datasets: one for malware families, and another for malware types. We then
extracted features by recording memory access traces from each sample. After-
wards, we constructed n-grams of a size 96 for each sample. Lastly, we performed
feature selection and trained Machine Learning Models. A detailed scheme of our
experimental flow is shown in Figure 8.2 and described below in this Section.

Figure 7.2: Detailed experimental flow

7.3. Methodology 87

7.3.1 Dataset

The initial dataset was created under the initiative of the Testimon [14] research
group and consisted of 400k malware samples. All malware samples were PE32
executables. This dataset was previously used for research purposes and described
in more details in [38]. The malware that we used in our research was selected un-
der the following criteria: the file should not be a DLL (only EXE files), it should
not contain AntiDebug or AntiVM features, it contains GUI and files were sorted
ascending according to a size of a file. Information about file type, AntiDebug,
AntiVM and GUI were gained through the use of peframe [3]. As our research is
aimed on proof of concept, dealing with DLLs and AntiDebug features was not a
case, so we eliminated potential problems by filtering such things out (though we
argue that study of AntiDebug influence will be an important part of future work).
As we described in previous sections we can skip dealing with AntiVM, however
we should remember this for assessing the results. We selected malicious files
where peframe detected a presence of GUI for a simple reason: malware samples
without GUI can fall into idle mode soon after starting, making it hard to collect
enough data and increasing the time of dynamic analysis [4]. The presence of GUI
should not significantly influence the results because it is present in every single
sample. Because if something influences every sample we might assume, that res-
ults will be equally biased. We also decided to select small files because our goal
was to prove a presence of features that can help to distinguish between 10 mal-
ware categories. If we used big files with long execution times it would be more
likely to find a unique feature for each malware sample, which is good for clas-
sification accuracy, but won’t contribute to understanding our findings and won’t
prove that our hypothesis works.

The main goal of this research is to check how memory access patterns can
aid in malware classification. In order to do this, we created two datasets: the
first contain 10 malware types and the second contain 10 malware families. We
decided to choose the following malware types: backdoor, pws, rogue, trojan, tro-
jandownloader, trojandropper, trojanspy, virtool, virus, worm. Additionaly we
chose the following malware families: agent, hupigon, obfuscator, onlinegames,
renos, small, vb, vbinject, vundo, zlob. The reason for such choice was that these
types and families were prevalent in our malware dataset. We tried to create a bal-
anced dataset, so each malware category contained around 100 samples. However,
not all of the files launched, so they were rejected before analysis. Our datasets
contained 952 files for malware types and 983 files for malware families. We can
therefore assume that our datasets are approximately balanced, and we don’t need
to analyze the influence of sample distribution on the final results.

88 P2: Multinomial malware classification via low-level features

7.3.2 Feature construction and selection

The first task is to record a sequence of the first 1’000’000 (one million)
memory access operations performed by an executable. We record only the type
of operation: W for Write, and R for Read. This length of a sequence was chosen
based on results from previous research [4] where it provided the best accuracy
for malware against benign classification. We also found, that not all the execut-
ables can produce a greater or equal amount of memory access operations. On the
Figure 7.3, the charts show the distribution of memory access operations gained
from types and families datasets. We analyze all samples regardless the amount of
memory access operations they produced. We do not truncate or fill missing oper-
ations with zeros: instead we work with the available amount of data. We explain
our choice in the following paragraphs.

(a) Families (b) Types

Figure 7.3: Memory access operation numbers for families and types

As was stated in the Section 7.2 in some scenarios it might important to de-
tect malicious process as fast as possible. Also in Section 7.1 we stated that our
models should be simple enough to perform high level analysis of the findings in
future work. So we need to find features that do not rely on how long the process
is executed. The sequence of memory access operations is later on divided into
overlapping n-grams of a length 96. An n-gram is a sub-sequence of length n of
original sequence of length L. For example if an original sequence of length L=6
[WRWWRW] is divided into n-grams of length n=4 (4-grams) then our n-grams
set will look the following way: {WRWW,RWWR,WWRW}. Each n-gram starts
from the second element of the previous one: they overlap on the n-1 elements as
it is shown on the Figure 7.4.

This n-gram size was also chosen due to findings published in previous re-
search [4]. We might notice, that out of 296 possible n-grams we have to select the
most relevant, thus significantly reduce feature space. N-grams are later stored for
feature selection. Some malware researchers use file-wise frequency of features as

7.3. Methodology 89

Figure 7.4: Example of overlapping n-grams

feature values: file-wise frequency is a ration between number of observations of
a certain feature in the file and overall number of all observation of all features.
In our case n-grams are stored without file-wise frequency for two reasons. First,
we can not guarantee the amount of memory access operations (how long the file
will run before stop) produced by a random file. Second, if we are able to find
unique memory access patterns that comply with our classification goal, we can
continue with more in-depth analysis of results, provide better high-level descrip-
tion of low-level findings.

As numbers of features are too big to just simply feed them to the machine
learning models additional feature selection methods are therefore required. We
obtained more than 15M of features for malware families dataset, and more than
6M of features for malware types dataset. The numbers are big but not surpris-
ing: sequence of memory access operations is basically a binary sequence with
two possible elements R or W, so each sequence on 1M operations can potentially
contain up to 1M-96+1 different 96-grams. However, during preliminary experi-
ments we found that such amounts of data are too big to use in general-purpose
machine learning libraries. Also models built on high-dimensional data provide
results that are harder to interpret by human analysis. We used a feature selec-
tion method based on Information Gain. Information gain is an attribute quality
measure based on class entropy and class conditional entropy given the value of
attribute [24]. We ranked all features according to their Information Gain and se-
lected 50000 with highest rank. We chose this number for several reasons. First,
is computational complexity while training ML models, and second because we
know from previous research [4], that we need around 400 features for class to get
good classification accuracy. This reason is however more empirical since in this
paper we study multinomial classification. After feature selection we use several
conventional Machine Learning models in order to check our hypothesis, quality
of feature selection and get some additional findings. To study the classification
performance dependency on number of features we also selected best 5, 10, 15
and 30 thousands of features. We also performed correlation-based feature selec-
tion (CfSubsetEval [16] from Weka [17]) on the best 10000 features. This method
selects features based on their correlation between class and other features. In
simple words: the best feature is the one that correlates with classes and does not

90 P2: Multinomial malware classification via low-level features

correlate with other features (does not bring redundant information). This gave us
the 29 best features, and we will show in Section 7.4 that they perform almost as
good as thousands of features. However, it was impossible to get a larger number
of features from correlation-based feature selection due to computational issues.
On the Table 7.1 and on the Figure 7.5 we also present results for best 29 features
selected by Information gain, as so we can compare feature selection performance
on similar feature numbers. We omit results for feature numbers between 29 and
5000 to simplify presented material as they don’t add any significant information
to the reader.

7.3.3 Machine Learning algorithms

As a machine learning (ML) methods we chose the following: k-Nearest Neigh-
bors (kNN), RandomForest (RF), Decision Trees (J48), Support Vector Machines
(SVM), Naive Bayes (NB) and Artificial Neural Network (ANN). The following
parameters (default for Weka package) were used for ML algorithms: kNN used
k=1; RF had 100 random trees; J48 used pruning confidence of 0.25 and min-
imum split number of 2; SVM used radial basis as function of kernel; NB used
100 instances as preferred batch size; ANN used 500 epochs, learning rate 0.3
and a number of hidden neurons equal to half of the sum of a number of classes
and a number of attributes. The results for ANN are shown only for the smallest
amount of features since machine learning software Weka [17] was not able to
finish training of such big neural networks. This fact can be explained by means
of time complexity for training. According to [12] computational complexity of
ANN isO(nMPNe) where n is a number of input variables (size of a feature set),
M number of hidden neurons, P number of output values (10 in our case, since we
have 10 classes), N number of samples, e number of learning epochs. Artificial
Neural Networks built by Weka by default has 1 hidden layer, when the number of
hidden neurons is taken as M = (P +n)/2 and e equals 500. For the dataset with
29 features, 10 classes, around 1000 samples and 5-fold cross validation it took
5 × 9seconds ≈ 45seconds to train models. The time complexity in this case is
O(3 · 108operations).For example, for 5000 features the time complexity would
be around O(6 · 1013) what will take roughly 105 times more time to complete a
task which is not suitable for our purposes since 45s · 105 ≈ 52days of training
time.

We held our experiments on Virtual Dedicated Server (VDS) with Intel Core
CPU running at 3.60GHz, 4 cores, SSD RAID storage and 48GB of virtual memory.
As a main operating system Ubuntu 14.04 64bit was used. Additionally, MySQL
5.5, PHP 5.5.9 and VirtualBox 5.0.16 were used. Windows 7 32-bit was installed
on the VirtualBox virtual machine as a guest OS. It is widely spread [27] and
malware written for 32-bit OS’s will run on 64-bit OS as well as well. We also

7.4. Results 91

met some virtualization problems and were not able to run VM with 64-bit OS
installed.

7.3.4 Analysis

During the analysis stage we try to explain achieved results in terms of num-
bers and words. We perform two types of analysis: statistical and context using
sub-categories of our two datasets (different than original 10 classes). In statistical
analysis we look into per-category classification accuracy and use statistical meas-
ures to explain differences in performance of machine learning models for different
malware categories. During context analysis we are seeking an understanding of
classification performance with a use of malware functionality description. As a
results of analysis we not only understand how distribution of subcategories in-
fluence on per-category classification accuracy, but also show how human under-
standable explanation of malware functionality can contribute to an explanation of
malware classification performance. With these findings we contribute to our fu-
ture work where we are going to correspond low- and high-level activity and make
results achieved with low-level features more understandable.

We also compare our results with results from a paper [38] where authors
used similar malware categories but did static analysis and used different ML al-
gorithms.

7.4 Results
In this section we present results and key finding of our experiments. In order

to test the quality of our ML models we used 5-fold cross validation. As a classi-
fication quality measure, we use accuracy: it allows us to compare results in this
paper with results from previous study published in [4]. It also shows how many
instances have been correctly identified in our multinomial classification problem.
In the Table 7.1 we present results for classification accuracy of different ML
algorithms as a function of number of features. Each cell contains the accuracy
that a certain ML method achieved with a given number of features. The last row
shows accuracy that given ML method achieved with 29 features selected based on
correlation [16]. We separated it from other feature sets as here we used different
feature selection method.

The results are also presented in Figure 7.5. As we can see SVM and NB, in
general, showed lower accuracy than other methods. This is interesting, since
SVM performed pretty well in previous studies [4]. Additionally, in general,
neither SVM nor NB improve their performance with an increased number of fea-
tures. We can also see other ML methods (kNN, RF and J48) slightly improve
their performance as number of features increase. However, using 50000 features
instead of 5000 to gain a few extra percents of accuracy is not necessarily an effi-

92 P2: Multinomial malware classification via low-level features

cient method, when our goal is to better understand how low-level features can be
used for multinomial malware classification. Therefore we might put emphasis on
a little bit less accurate but more understandable model. Because of this we decided
to compare ML methods performance when only 29 features used. On the charts,
these results are shown with separate points aligned to the most representative res-
ults on the horizontal axis. With 29 features (selected by corellation-based feature
selection) given, ML methods such as kNN, RF and J48 show either small drop in
performance or even some increase when compared to 5000 features. Other ML
methods such as SVM and NB show significant grows of classification accuracy
when given fewer features. One of the possible reasons could be that SVM is not
originally designed for multinomial classification, it means that in order to deal
with more than 2 classes it has to build several one-versus-all or one-versus-one
classifiers. SVM is also known to have problems in so-called HDLSS datasets.
High Dimension Low Sample Size dataset is a dataset, where the number of fea-
tures is much bigger than the number of samples (it is true for most of our datasets,
where number of samples is no bigger than 1000, while feature number starts from
5000). This fact was pointed out in different studies such as [2] and [26]. Na-
ive Bayes classifier on its turn assumes that features are independent. But when
we used Information Gain for feature selection, we can have a lot of potentially
correlated features, thus Naive Bayes showed low classification performance in
comparison to dataset where features where selected with respest to their mutual
independence. Such behavior of Naive Bayes was studies in [32]. Also it is worth
mentioning, that all the ML methods showed poor performance when 29 features
selected by Information Gain were used.

Accuracy for families Accuracy for types
Number of features kNN RF J48 SVM NB ANN kNN RF J48 SVM NB ANN

29 0.282 0.274 0.265 0.246 0.232 0.271 0.201 0.204 0.2 0.201 0.198 0.206
5000 0.806 0.802 0.800 0.651 0.646 N/A 0.642 0.637 0.623 0.468 0.430 N/A

10000 0.802 0.807 0.793 0.607 0.599 N/A 0.663 0.678 0.648 0.461 0.412 N/A
15000 0.800 0.802 0.795 0.607 0.600 N/A 0.665 0.661 0.645 0.455 0.415 N/A
30000 0.814 0.818 0.814 0.591 0.606 N/A 0.673 0.688 0.666 0.419 0.412 N/A
50000 0.833 0.845 0.827 0.648 0.572 N/A 0.668 0.675 0.665 0.375 0.386 N/A

CfSbased 29 features 0.784 0.781 0.769 0.740 0.724 0.783 0.668 0.668 0.626 0.584 0.498 0.617

Table 7.1: Classification performance for families and types datasets

As we are able to see, classification performance are better when our algorithms
are used for distinguishing between malware families and worse for malware types.
We can explain this fact by referring to Section 7.1, where we provided definitions
for term malware family and malware type. From the definitions it is easy to un-
derstand, that since malware sample is put into malware type according to general
functionality it might be harder to distinguish between such categories, since a
goal that malware achieves can be achieved by different methods. On the other

7.4. Results 93

hand, malware families are about particular functionality, which means that meth-
ods used by samples within family should be more similar. This interpretation
can be strengthened by the following observations: from malware families dataset
we were able to extract more than 15 millions of uniques features, while types
dataset gave us "only" 6 millions of such. It is worth mentioning that it took 1.66
hours (5987 seconds) to run through more than 15 millions of features extracted
from malware samples divided in families, and select 50000 based on Information
Gain. And it took 1.72 hours (6192 seconds) to run through more than 6 millions
of features extracted from malware samples divided in types, and select 50000
based on Information Gain. In the next section 7.5 we will provide more analysis
of the achieved results and describe some valuable findings.

(a) Families

(b) Types

Figure 7.5: Classification performance for families (a) and types (b) datasets

94 P2: Multinomial malware classification via low-level features

7.5 Analysis
In this section we analyze our findings. First, we analyze our results by means

of statistics, e.g. we use our posterior knowledge of achieved accuracy and addi-
tional subcategories in order to explain why some malware categories are easier to
classify than other. After we perform context analysis and try to show how human
understandable description of malware categories can assist us in analyzing classi-
fication performance. Later we compare our results with results presented in [38]
since authors used similar malware categories for their research.

7.5.1 Statistical analysis

For the analysis we will focus on the classification results from kNN algorithm.
As it can be seen from Table 7.1 kNN provided best classification accuracy for
both families and types when given 29 features selected with correlation-based
[16] features selection. Also we chose this feature set for deeper analysis since
following a rule of a thumb "less is more" we think that smaller feature set is much
easier to analyze and it complies with our goals from Section 7.1. The question
about a trade-off between model complexity and accuracy is not properly studied
in the literature. However, the authors of [6] state that best models usually rely on
a few features.

For our analysis we performed the following steps.

1. We recorded per-sample classification results and created a table where in-
formation about classification of each sample in our dataset is stored.

2. To this table we added a column where information about additional subcat-
egories of each sample is stored. For samples in the malware types dataset,
we added information about malware families, and vice versa.

3. As table from Step 1 allows us to calculate per-family (or per-type) classific-
ation accuracy we examined the influence of additional subcategories on the
efficiency of our machine learning model to detect a certain malware type or
family.

In the following paragraphs we describe our analysis workflow in a more detailed
manner.

As we obtained our results based on average from a 5-fold cross validation,
we decided to run 5-fold cross validation 5 times. Each cross-validation was done
with a different random seed value in Weka [17]. This allowed us to make each
sample to be in the test set (in other words - not used in model generating) more
than once. We combined achieved results and took final information about clas-
sification result for a certain sample by the majority of results from all 5 runs.

7.5. Analysis 95

In order to analyze the influence of additional subcategory on classification per-
formance, we calculated entropy and coefficient of unalikeability of subcategories
for each malware family or type. The (informational) entropy [39] is calculated
as H(X) = −

∑n
i=1 p(xi) log2 p(xi) where X is a variable (subcategory in this

case), xi is an ith value of a variable, and p(xi) is a probability of a variable X to
obtain value xi. In simple words, entropy is often used to show randomness of a
certain variable. It is also used in static malware analysis for detection of packers
[25]. So in our case higher entropy will be a sign that certain category (type or
family) are more diverse in terms of subcategories. In the matter of interest, we
also used a coefficient of unalikeability [29]. It is an index of qualitative variation
that measures variance of a nominal attribute (like our subcategory). It is calcu-

lated as u =
∑

i 6=j c(xi,xj)

n2−n where c(xi, xj) =
{
1, xi 6= xj
0, xi = xj

}
. It is a very simple

coefficient, however it efficiently reflects variance of a nominal variable: if all the
data are equal (variable obtain a certain value for all positions) than unalikeability
is 1, and 0 if all positions are different. As we will show later unalikeability has a
strong negative correlation with entropy.

After looking at results from Section 7.4 and taking into account our initial hy-
potheses our first guess was that the more subcategories are found within a specific
class the more difficult it is to generalize over that class. However pure number
of subcategories will not reflect their real distribution, and that was an important
reason to introduce some more advanced measures described above. On the Tables
7.2a and 7.2b we present analysis of subcategory distribution on the classification
accuracy.

As we can see, entropy in terms of subcategories in general is higher for mal-
ware types than for malware families. This can be easily explained by the fact that
malware types samples are represented by higher number of subcategories. In or-
der to illustrate findings from Tables 7.2 we will use charts on Figure 7.6. As we
have written above, we can see a strong negative correlation between entropy and
accuracy. However accuracy does not strongly dependent on neither unalikeability
nor entropy. As we can see for both families and types datasets we can find classes
with relatively high and low accuracy regardless the fact they share similar amount
of subcategories and similar value entropy.

On the Tables 7.3a and 7.3b we show Pearson’s correlation between corres-
ponding columns in Tables 7.2a and 7.2b respectively. As we can see from these
tables, accuracy is strongly affected by the number of subcategories or entropy in
types dataset. This is yet another proof that families are assigned due to particular
functionality, thus more alike within one family, and more diverse within several
families. Table 7.3 also shows that entropy and coefficient of unalikeability has
very strong (close to -1) correlation. However it is also worth to analyze several

96 P2: Multinomial malware classification via low-level features

class acc. unalike. entropy subN
agent 0.56 0.23 2.43 8
vbinject 0.59 0.98 0.08 2
obfuscator 0.64 0.98 0.08 2
hupigon 0.69 0.88 0.34 2
vb 0.75 0.36 1.83 8
small 0.84 0.73 0.92 7
vundo 0.88 0.94 0.22 3
renos 0.91 1.00 0.00 1
onlinega. 0.99 1.00 0.00 1
zlob 0.99 0.90 0.29 2

(a) Families

class acc. unalike. entropy subN
worm 0.43 0.02 5.69 63
pws 0.54 0.06 4.50 40
trojan 0.54 0.12 4.14 37
trojandr. 0.62 0.22 3.35 26
backdoor 0.67 0.11 4.18 40
trojanspy 0.71 0.27 2.92 22
trojando. 0.74 0.27 2.75 20
virtool 0.77 0.24 2.53 15
virus 0.81 0.02 5.42 55
rogue 0.86 0.31 2.08 9

(b) Types

Table 7.2: Accuracy (acc.), unalikeability (unalike.), entropy and number of subcategories (subN) for malware
families (a) and types (b). Onlinega. stands for onlinegames, trojandr - for trojandropper, trojando. - for trojan-
downloader.

specific cases in order to understand the nature of different classification accuracy
for different malware categories.

7.5.2 Context analysis

In this subsection we analyze how human understandable description of ad-
ditional subcategories influence classification performance. Within each (families
and types) dataset we compare categories with high and low per-category accuracy
by means of their two most frequent subcategories.

First, we will take a look at families dataset. For example malware family zlob
has high classification accuracy (0.99) and relatively low entropy (0.29). It belongs

7.5. Analysis 97

acc. unalike. entropy subN
acc. 1.0 0.43 -0.44 -0.37
unalike. 0.43 1.0 -1.00 -0.92
entropy -0.44 -1.00 1.0 0.93
subN -0.37 -0.92 0.93 1.0

(a) Families

acc. unalike. entropy subN
acc. 1.0 0.59 -0.60 -0.61
unalike. 0.59 1.0 -0.98 -0.96
entropy -0.60 -0.98 1.0 0.99
subN -0.61 -0.96 0.99 1.0

(b) Types

Table 7.3: Correlation between accuracy (acc.), unalikeability (unalike.), entropy and number of subcategories
(subN) for columns of Tables 7.2a (a) and 7.2b (b)

to two types (subcategories) such as trojandownloader and trojan with classwise
frequencies of 0.95 and 0.05 respectively. However, another malware family vbin-
ject has even lower entropy (0.08) but much lower accuracy (0.59). It also belongs
to two types such as virtool and trojan with classwise frequencies of 0.99 and 0.01
respectively.

Second, let’s take a look at types dataset. Malware type virus has relatively
high entropy (5.42) and relatively high accuracy (0.81). Samples of this type be-
long to 55 different families (subcategories). And two most frequent are small and
radix with classwise frequencies of 0.12 and 0.05 respectively. On its turn, mal-
ware type rogue has the highest accuracy of 0.86 with way lower entropy of 2.08.
Samples of this type belongs to only 9 families, two most frequent of which are
fakexpa and internetantivirus with classwise frequencies of 0.43 and 0.35 respect-
ively. On the other hand, malware type worm has entropy (5.69) slightly higher
than virus, but almost twice lower accuracy (0.43). Samples of worm type belongs
to 63 families, two most frequent of which are roram and kelvir with classwise
frequencies of 0.08 and 0.05 respectively.

In the first case we might admit, that trojandownloader and trojan families
might have relatively similar behaviour, because first downloads and installs an-
other malicious software, while others are trojans by itself. Yet they share a similar
feature: they might look legitimate, and trick user to download and/or run them.
On the other hand virtools are aimed on modification of other malicious software
in order to hide them from antivirus software. At a first glance it might look like
trojandownloaders and trojans are more similar than virtools and trojans. However

98 P2: Multinomial malware classification via low-level features

(a) Families

(b) Types

Figure 7.6: Per-family (a) and per-type (b) entropy (left vertical axis), unalikeability and accuracy (right vertical
axis)

in both cases trojans make up only small amount of all samples. This is a very
important finding and we will return to it later.

In the second case we should also study what our subcategories are. Small
malware family are multipurpose malware, that is often used for downloading and
executing additional files. They used in the initial infection of visitors to websites
They also tend to drop and use kernel mode driver for its purposes. Radix on its
turn is a mass-mailing malware that propagates by send a copy of itself via e-mail

7.5. Analysis 99

with a use of its own SMTP engine. FakeXPA and internetantivirus are programs
than pretend to scan systems for malware and display fake warning about mali-
cious programs found on victim system. After that they ask you to pay for remov-
ing fake threats. There is no surprise that they have similar functionality and is a
part of malware type rogue. Roram spreads via IRC channels. Kelvir also spreads
via chat programs, but instead of IRC it uses MSN or Windows Messenger. To
sum up this paragraph: small and radix are pretty different by functionality, while
fakexpa and internetantivirus are way more similar. Yet malware type to which
they belong are easy to generalize over. At the same time roram and kelvir are dif-
ferent only by the name of the chat program they use for proliferating. However,
we might assume that our methodology is not capable of generalizing over such
functionality.

7.5.3 Classification performance comparison

It is worth comparing our work with a paper by Shalaginov et al. [38] where
the authors used malware dataset with a similar malware categories. It the Table
7.4 per-category True Positive and False Positive rates from [38] and our work are
present. They did not include accuracy measure in their work, so we compare our
results using True and False Positive rates. Authors of that work used a Neuro-
Fuzzy approach for malware classification, while we will use results achieved by
kNN because, as it was said earlier, it brought us best results in case of 29 features.
As we can see, in most cases TP rate from our work is higher, and FP rate is some-
what lower than in [38]. However, for such categories as hupigon or trojan our
results are worse. Authors of paper in interest used different features: they used
static features from PE header. And Table 7.4 is yet more proof that static analysis
may be outperformed by dynamic analysis. Specifically we can explain our rel-
ative success by the fact, that malware categories (both families and types) in use
are assigned based on the functionality (dynamic characteristics), so our dynamic
approach may be more suitable for such tasks. It is also worth mentioning that
they had bigger dataset, so our results might be influenced as well if we increase
number of samples. Authors of [38] used up to 20 features to complete their goals,
what makes their work useful for malware analysts. This fact ensures us that us-
ing smaller (even though a bit less accurate) models gives better contribution for
the scientific community. Finally, they show overall classification accuracy around
39.6% while ours is around 78.4%.

100 P2: Multinomial malware classification via low-level features
Sh

al
ag

in
ov

et
al

Family vb hupigon vundo obfuscator agent renos small onlinegames vbinject zlob
TP rate 0.3595 0.8080 0.5405 0.1222 0.1633 0.3276 0.5229 0.6084 0.2076 0.4295
FP rate 0.0226 0.2033 0.0233 0.1185 0.0341 0.0101 0.1397 0.0303 0.0261 0.0262
Type trojan pws trojando. worm virtool backdoor virus rogue trojandr. trojanspy

TP rate 0.6084 0.1954 0.1385 0.1608 0.2112 0.3392 0.0857 0.0000 0.0744 0.0769
FP rate 0.5220 0.0432 0.0517 0.0097 0.0614 0.1528 0.0098 0.0000 0.0193 0.0152

O
ur

w
or

k

Family vb hupigon vundo obfuscator agent renos small onlinegames vbinject zlob
TP rate 0.75 0.695 0.879 0.639 0.56 0.91 0.835 0.99 0.586 0.99
FP rate 0.028 0.036 0.02 0.061 0.015 0.009 0.046 0 0.02 0.003
Type trojan pws trojando. worm virtool backdoor virus rogue trojandr. trojanspy

TP rate 0.542 0.535 0.745 0.433 0.765 0.667 0.808 0.864 0.615 0.71
FP rate 0.046 0.046 0.026 0.049 0.033 0.057 0.038 0.02 0.026 0.029

Table 7.4: Comparison of our results to the results from [38]

As we shown in this Section, subcategories might be a key to explain classific-
ation performance of our malware classification approach, but only of the many.
As we shown in previous paragraphs, subcategories does not directly influence
classification accuracy neither by means of variety, nor by their amount. However
analysis of subcategories pointed us to a very important finding: our approach is
better in detecting and generalizing over a certain types of behavior, and worse for
others. It means that in order to improve classification accuracy, in the future work
we have to study how usage of context as ground truth will influence classification
accuracy. We will elaborate on this more in the next section.

7.6 Conclusion and Future Work
In this paper we showed that patterns of memory access operations can be used

for malware classification. We tested our method over the datasets with malware
types and families. At a first glance, an achieved accuracy of 0.688 and 0.845 is not
that high, however it is important to remember that in our case we have 10 classes
and random guess on the balanced dataset will not exceed 0.1. So our results are
way better than theoretical random guess generator. It is also important to notice
that we went down from millions of potential features to 50000, and from them
extracted 29 best features that allowed us to have compact yet relatively accurate
models.

We have also shown that our approach performs better in some conditions,
while worse in others. As we stated before, ground truth and context might help to
improve classification accuracy. As a ground truth we might use high-level activ-
ity, to do so we should study what high-level activity (e.g. which API calls) are
represented by certain memory access patterns. This study might also bring ad-
ditional meaning to memory access sequences, because now a 96-gram similar to
WWWRWRW...WWRWW does not say anything to a human analyst. While context
analysis might involve capturing opcodes as well as the content of the memory. It
can also be useful to use variative n-gram length, however, it might be extremely
time and memory consuming. We also plan to evaluate models built with our ap-

7.7. Bibliography 101

proach against previously unkown, or assumed to be new, malware samples Nev-
ertheless, our research topic is shown as promising, capable of bringing valuable
findings and worth of further studies.

7.7 Bibliography
[1] Najwa Aaraj, Anand Raghunathan, and Niraj K Jha. Dynamic binary

instrumentation-based framework for malware defense. In International
Conference on Detection of Intrusions and Malware, and Vulnerability As-
sessment, pages 64–87. Springer, 2008.

[2] Jeongyoun Ahn. High dimension, low sample size data analysis. 2006.

[3] Gianni Amato. Peframe. https://github.com/guelfoweb/peframe. accessed:
27.10.2016.

[4] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[5] Rodrigo Rubira Branco, Gabriel Negreira Barbosa, and Pedro Drimel Neto.
Scientific but not academical overview of malware anti-debugging, anti-
disassembly and anti-vm technologies. Black Hat, 2012.

[6] Davide Canali, Andrea Lanzi, Davide Balzarotti, Christopher Kruegel, Mi-
hai Christodorescu, and Engin Kirda. A quantitative study of accuracy in
system call-based malware detection. Proceedings of the 2012 International
Symposium on Software Testing and Analysis - ISSTA 2012, page 122, 2012.

[7] Eric Cole. Advanced persistent threat: understanding the danger and how to
protect your organization. Newnes, 2012.

[8] Cuckoo Sandbox. Cuckoo sandbox: automated malware analysis. https://
www.cuckoosandbox.org/, 2015. accessed: 2016-4-15.

[9] Dennis Distler and Charles Hornat. Malware analysis: An introduction.
SANS Institute InfoSec Reading Room, pages 18–19, 2007.

[10] Manuel Egele, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. A
survey on automated dynamic malware-analysis techniques and tools. ACM
Computing Surveys (CSUR), 44(2):6, 2012.

[11] What APT Means To Your Enterprise and Greg Hoglund. Advanced persist-
ent threat.

[12] Scala for Machine Learning. Time complexity: Graph & machine learning
algorithms. https://github.com/guelfoweb/peframe. accessed: 23.11.2017.

https://github.com/guelfoweb/peframe
https://www.cuckoosandbox.org/
https://www.cuckoosandbox.org/
https://github.com/guelfoweb/peframe

102 Bibliography

[13] Ekta Gandotra, Divya Bansal, and Sanjeev Sofat. Malware analysis and clas-
sification: A survey. Journal of Information Security, 5(02):56, 2014.

[14] Testimon Research Group. Testimon research group. https://testimon.ccis.no/,
2017.

[15] Yufei Gu, Yangchun Fu, Aravind Prakash, Zhiqiang Lin, and Heng Yin. Os-
sommelier: memory-only operating system fingerprinting in the cloud. In
Proceedings of the Third ACM Symposium on Cloud Computing, page 5.
ACM, 2012.

[16] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[17] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[18] Qiang Hua and Yang Zhang. Detecting malware and rootkit via memory
forensics. In Computer Science and Mechanical Automation (CSMA), 2015
International Conference on, pages 92–96. IEEE, 2015.

[19] IntelPin. A dynamic binary instrumentation tool, 2017.

[20] C. McMillan K. Kendall. Practical malware analysis. In Black Hat Confer-
ence USA, 2007.

[21] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[22] Dhilung Kirat, Giovanni Vigna, and Christopher Kruegel. Barecloud: Bare-
metal analysis-based evasive malware detection. In USENIX Security Sym-
posium, pages 287–301, 2014.

[23] Deguang Kong and Guanhua Yan. Discriminant malware distance learning
on structural information for automated malware classification. In Proceed-
ings of the 19th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, pages 1357–1365. ACM, 2013.

[24] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[25] Robert Lyda and James Hamrock. Using entropy analysis to find encrypted
and packed malware. IEEE Security & Privacy, 5(2), 2007.

[26] James Stephen Marron, Michael J Todd, and Jeongyoun Ahn. Distance-
weighted discrimination. Journal of the American Statistical Association,
102(480):1267–1271, 2007.

https://testimon.ccis.no/

Bibliography 103

[27] Netmarketshare. Desktop operating system market share. https:
//www.netmarketshare.com/operating-system-market-share.aspx?qprid=10&
qpcustomd=0&qpcustomb=, 2016. accessed: 2017-22-11.

[28] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based malware detection
using low-level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

[29] Mike Perry and Gary Kader. Variation as unalikeability. Teaching Statistics,
27(2):58–60, 2005.

[30] A. Prakash, E. Venkataramani, H. Yin, and Z. Lin. On the trustworthiness
of memory analysis #x2014;an empirical study from the perspective of bin-
ary execution. IEEE Transactions on Dependable and Secure Computing,
12(5):557–570, Sept 2015.

[31] PRNewswire. Virtual desktop infrastructure market to see 27.35%
cagr driven by byod to 2020. http://www.prnewswire.com/news-releases/
virtual-desktop-infrastructure-market-to-see-2735-cagr-driven-by-byod-to-2020-566513421.
html, 2016. accessed: 2017-9-29.

[32] Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R Karger. Tackling
the poor assumptions of naive bayes text classifiers. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), pages 616–
623, 2003.

[33] Reuters. Ukraine’s power outage was a cyber attack: Ukren-
ergo. https://www.reuters.com/article/us-ukraine-cyber-attack-energy/
ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA, 2017.

[34] Ethan Rudd, Andras Rozsa, Manuel Gunther, and Terrance Boult. A survey
of stealth malware: Attacks, mitigation measures, and steps toward autonom-
ous open world solutions. IEEE Communications Surveys & Tutorials, 2017.

[35] Imtithal A Saeed, Ali Selamat, and Ali MA Abuagoub. A survey on malware
and malware detection systems. International Journal of Computer Applica-
tions, 67(16), 2013.

[36] V Sai Sathyanarayan, Pankaj Kohli, and Bezawada Bruhadeshwar. Signature
generation and detection of malware families. In Australasian Conference on
Information Security and Privacy, pages 336–349. Springer, 2008.

[37] Mike Schiffman. A brief history of malware obfuscation: Part 2 of 2, 2010.

[38] Andrii Shalaginov, Lars Strande Grini, and Katrin Franke. Understanding
neuro-fuzzy on a class of multinomial malware detection problems. In Neural
Networks (IJCNN), 2016 International Joint Conference on, pages 684–691.
IEEE, 2016.

https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
https://www.netmarketshare.com/operating-system-market-share.aspx? qprid=10&qpcustomd=0&qpcustomb=
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven- by-byod-to-2020-566513421.html
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven- by-byod-to-2020-566513421.html
http://www.prnewswire.com/news-releases/virtual-desktop-infrastructure-market-to-see-2735-cagr-driven- by-byod-to-2020-566513421.html
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA

104 Bibliography

[39] Claude E Shannon. A mathematical theory of communication, part i, part ii.
Bell Syst. Tech. J., 27:623–656, 1948.

[40] S Momina Tabish, M Zubair Shafiq, and Muddassar Farooq. Malware de-
tection using statistical analysis of byte-level file content. In Proceedings of
the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics,
pages 23–31. ACM, 2009.

[41] The Verge. The petya ransomware is starting to look like a
cyberattack in disguise. https://www.theverge.com/2017/6/28/15888632/
petya-goldeneye-ransomware-cyberattack-ukraine-russia, 2017.

[42] Ronghua Tian, Lynn Margaret Batten, and SC Versteeg. Function length
as a tool for malware classification. In Malicious and Unwanted Soft-
ware, 2008. MALWARE 2008. 3rd International Conference on, pages 69–76.
IEEE, 2008.

[43] Ronghua Tian, Rafiqul Islam, Lynn Batten, and Steve Versteeg. Differen-
tiating malware from cleanware using behavioural analysis. In Malicious
and Unwanted Software (MALWARE), 2010 5th International Conference on,
pages 23–30. IEEE, 2010.

[44] Dolly Uppal, Rakhi Sinha, Vishakha Mehra, and Vinesh Jain. Malware detec-
tion and classification based on extraction of api sequences. In Advances in
Computing, Communications and Informatics (ICACCI, 2014 International
Conference on, pages 2337–2342. IEEE, 2014.

[45] Candid Wueest. Threats to virtual environments. Symantec Research. Moun-
tain View. Symantec, 2014.

https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia
https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia

Chapter 8

P3: Correlating High- and
Low-Level Features: Increased
Understanding of Malware
Classification

Sergii Banin, Geir Olav Dyrkolbotn

Abstract
Malware brings constant threats to the services and facilities used by modern

society. In order to perform and improve anti-malware defense, there is a need
for methods that are capable of malware categorization. As malware grouped into
categories according to its functionality, dynamic malware analysis is a reliable
source of features that are useful for malware classification. Different types of
dynamic features are described in literature[4][3][12]. These features can be di-
vided into two main groups: high-level features (API calls, File activity, Network
activity, etc.) and low-level features (memory access patterns, high-performance
counters, etc). Low-level features bring special interest for malware analysts: re-
gardless of the anti-detection mechanisms used by malware, it is impossible to
avoid execution on hardware. As hardware-based security solutions are constantly
developed by hardware manufacturers and prototyped by researchers, research on
low-level features used for malware analysis is a promising topic. The biggest
problem with low-level features is that they don’t bring much information to a
human analyst. In this paper, we analyze potential correlation between the low-
and high-level features used for malware classification. In particular, we analyze
n-grams of memory access operations found in [4] and try to find their relation-

105

106 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

ship with n-grams of API calls. We also compare performance of API calls and
memory access n-grams on the same dataset as used in [4]. In the end, we analyze
their combined performance for malware classification and explain findings in the
correlation between high- and low-level features.

Keywords: Malware analysis, Malware classification, Information security,
Low-level features, Hardware-based features

8.1 Introduction
Malware, or malicious software, is one of the threats that modern digitized

society faces every day. The use of malware ranges from showing ads to users,
spreading spam and stealing of private data, to attacks on power grids, transport-
ation and banking facilities[22][18]. The more severe consequences of malware
use, the more likely they are a part of malicious campaign performed by an APT:
Advanced Persistent Threat[7], an organization or a human that performs stealthy,
adaptive, targeted and data focused [6] attack. APTs utilize different methods,
tools and techniques to achieve their goals. Malware can be used at the different
steps of APT kill-chain[4]: from reconnaissance and denial-of-service attacks to
data stealing and creation of backdoors (for remote access) in the victim system.
Since malware can be used for the variety of purposes, it is not only important
to detect it, but also to be able to categorize it into different categories based on
certain properties.

Malware classification (categorization) is an important step for understanding
goals and methods of adversaries[1], analyzing security of systems and operations
as well as for improving defense and security mechanisms. Static malware detec-
tion may fail due to obfuscation and encryption techniques used by the creators of
malware. Because of this dynamic, or behavior-based detection methods are used.
Moreover, malware samples are categorized into types and families by anti-virus
vendors based on their behavior[4]. Hence, it is possible to assume that the use of
features derived from malware behavior for malware classification can outperform
static methods due to the nature of categories. Both static and dynamic methods
need predefined sets of features: properties derived from a malicious file itself or
its behavior.

We can divide features for dynamic analysis into two main groups: high-level
(API and system calls, network activity, etc.) and low-level (memory access op-
eration, opcodes, operations on hard-drive, etc). Generally speaking, we consider
low-level features as those that directly emerge from the system’s hardware[4] [13]
[17]. Malware authors can try to conceal their malware and its behavior from anti-
malware solutions and malware analysts by utilizing different techniques such as
obfuscation, encryption, polymorphism or anti-debug. Despite their attempts, they
can not avoid execution on the systems hardware[16][4]. That’s why hardware-

8.1. Introduction 107

Figure 8.1: Generalized problem description

based, or low-level, features (since they are behavior features) are a reliable source
of information for malware detection[5][17] and classification [4]. Different low-
level features have been used for malware detection and classification: Hardware
Performance Counters[3], frequencies of memory reads and writes[16],memory
access patterns[5][4], architectural and micro-architectural events[21]. To the au-
thor’s knowledge, there are no attempts to explain how particular low-level fea-
tures correspond to high-level activity. Hardware-based features describe behavior
of an executable on a very fine-grained level, so it is hard, by looking at the low-
level feature itself, to explain which role in the behavior of an executable it has.
Therefore, in this paper, we made an attempt to explain how memory access pat-
terns correlate with the behavior of malware described by high-level features. This
will make it easier for a human analyst to understand what exactly makes malware
samples to be distinctive.

In order to describe our problem more generally we use an approach pictured
on the Figure 8.1. Assume we have a dataset that contains N samples and the
task is to classify them into M classes. From the dataset we can extract features of
types A (e.g. low-level features) and B (e.g. high-level features). Different feature
types are derived from different sources of information: different ways to describe
properties of samples in the dataset. After feature selection, features of both types
can be independently used for classification of samples from the dataset. Here
we suggest a hypothesis that features from feature sets A and B can correlate with
each other. In this paper, we focus on finding a correlation between n-grams of
memory access operations and API calls. To address this problem we take paper
[4] as baseline. In their paper authors used patterns of memory access operations
to classify malware into 10 malware families and 10 malware types. The best 29
n-grams of memory access operations are selected, and we reuse them in our case
since our datasets are identical. As the high-level, or human understandable, fea-
tures we decided to use n-grams of API calls since they are shown to be a reliable

108 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

source of information for malware detection[2] and classification[12]. To get the
most complete picture of possible correlations between memory access operations
and API calls we need to search for all-to-all correlations. However, such an ex-
haustive search is computationally infeasible. In order to be able to carry out the
search, we had to adjust the method, as described in Subsection 8.4.7. We record
an execution flow of malware samples that contains memory access operations
performed by single instructions as well as calls to the API functions (more details
in Section 8.4). First, we perform classification and feature selection for n-grams
of API calls. Our goal is not to study the performance of API calls for malware
classification, but rather to find good and relatively short feature set of API calls n-
grams as it will be more useful for research and analysis purposes. This feature set
is later used in an attempt to find a possible relationship between memory access
patterns and API calls, which existence or non-existence will help to reveal nature
of memory access patterns that were successfully used for the same classification
task.

The key findings of our paper are following. Our results show no significant
correlation between information relevant for multinomial malware classification
represented by best API-calls and best memory access patterns. This is important,
as it shows that memory access patterns are not redundant to the higher level fea-
tures such as API calls. As the result, feature set combined from memory access
patterns and API calls show improved classification performance. This contributes
to better malware detection and classification as well as to the potential hardware-
based security solutions.

This paper is a proof of concept, and our main goal is to address challenges
and possibility of a high-level explanation of low-level events as well as creation
of a stepping stone towards an explanation of a performance of low-level features
in malware classification context. The remainder of the paper is arranged as fol-
lows. In Section 8.2 we provide an overview of the related studies and focus on
the baseline paper [4]. In Section 8.3 we describe our problem more specific-
ally and describe an approach for validating of our hypothesis. In Section 8.4 we
describe our experimental design, analysis environment, methods used for feature
extraction and selection, explain how we search for correlation between features
of different types as well as provide terms, definitions and assumptions important
for our study. Finally, in Section 8.5 we present results, analyze them and provide
conclusions in Section 8.6.

8.2 Background
In this section, we present a short overview of articles that are related to fea-

tures and methods we use in this paper. There are many papers that use hardware-
based features for malware detection or categorization. For example in [3] a real-

8.2. Background 109

time dynamic malware detection with the use of special-purpose registers of mod-
ern CPUs as a source of features is proposed. Special-purpose registers, or hard-
ware performance counters, are used for CPU scheduling, performance monitor-
ing, integrity checking or workload pattern identification. In their paper, authors
used four different events to construct features: retiring of a branch, load and store
instructions as well as mispredicted branch instructions. With the use of various
machine learning algorithms, they achieved up to 96% accuracy when classifying
malicious and benign executables. Even though their dataset is small, consisting of
only 20 benign and 11 malicious samples, their paper shows that hardware-based
(or low-level) features can be used for malware detection.

In [16] Ozsoy et al. propose so-called malware-aware processors: processors
that has a built-in hardware module that is capable of malware detection. In their
work authors also mention hardware performance counters, but choose slightly
different features to be used in malware detection: frequency of memory reads
and writes, immediate and taken branches as well as unaligned memory accesses.
They implemented a malware-aware processor in an FPGA emulator and state that
their system is capable of malware detection with detection rates up to 94% and
false positive rates of up to 7%. As they didn’t achieve low-enough false positive
rates, they propose to use malware-aware processor together with a software-based
solution. They also emphasize the importance of malware-aware processor to be
always on, so that it is hard to avoid detection from it.

Paper [5] is of particular interest for us, since it proposes a novel method for
malware detection based on memory access pattern. In their work Banin et al. re-
corded sequences of memory access operations produced by malicious and benign
executables. They didn’t take into account addresses and values used by these op-
erations but utilized only a type of operation: read or write. Each sample in their
dataset was launched under surveillance of specially crafted Intel Pin [11] tool and
was made to produce up to 10 millions of memory access operations. Later, larger
sequences of memory access operations were split into a set of overlapping sub-
sequences - n-grams of a size from 16 to 96. With the use of a feature selection
and various machine learning algorithms they achieved a classification accuracy
of up to 98%. Results showed, that 800 memory access n-grams are enough to
achieve the highest accuracy on their dataset of 455 benign and 759 malicious ex-
ecutables. They claimed, that n-grams of memory access operations of a size 96
extracted from only the first million of memory access operations performed by
executables are reliable features for malware against benign classification. Later,
in [4] they evaluated performance of 96-grams derived from the first million of
memory access operations for the malware classification task. They used two dif-
ferent datasets, one consisted of 952 malware samples and was label according to
malware types while the other had 983 malicious executables that were labeled

110 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

according to malware families. With the use of feature selection, they compared
results from feature sets of a size 50,000 and 29. Even though machine learning
algorithms showed a decline in performance while given 29 features instead of
50000, this decline was only of a 5%. With only 29 features they achieved a clas-
sification accuracy of up to 78% for malware families and 66% for types. Even
though it was far from the 98% from their previous paper they stated, that 78% can
be considered good enough for 10-class classification problem. They also com-
pared their results to the results from a paper [19], where authors used the same
malware families and types but on the different dataset. In [19] Shalaginov et
al. used static features, and achieved lower true positive and higher false positive
rates. As we stated in the Section 8.1 we use paper [4] as a baseline: we use the
same datasets, execution environment (Virtual Machine) and use their feature set
as low-level features which origin we tend to explain. We will elaborate more on
the similarities between our data collection processes in the Section 8.4.

Finally, we will look at some articles that make use of API-calls performed
by malware during its execution for malware detection and classification. In their
paper [12] Islam et al. used frequencies of occurrence of API calls during the ex-
ecution of malware to detect malware and categorize into one of the 9 malware
families. They also carve several static-based features such as lengths of functions
or printable strings. Combining dynamic and static features they created so-called
integrated feature vector and evaluated the classification performance of different
features separately and together. They achieved a classification accuracy of up to
97% and showed that integrated feature vector can outperform other feature vec-
tors. On its turn, Lim et al. in [15] proposed to use k-grams (special modification
of n-grams derived from behavior automatons) of API-calls for malware detection.
Even though authors didn’t clearly picture the performance of their algorithm, they
explained how small sequences of API calls can be used to measure the similarity
between the behavior of different malware samples.

Shijo et al. [20] (similarly to [12]) utilized integrated feature vector construc-
ted from dynamic and static features. As dynamic features, they used API calls
n-grams of a size 3 and 4. With the use of only dynamic features they achieved a
classification accuracy of up to 97% for malware against benign classification. In-
tegrated feature vector allowed them to gain an increase in classification accuracy
of up to 1%. The last paper we want to mention is [2] where Alazab et al. used API
calls n-grams of a size 1 to 5 for malware detection. With the use of Support Vector
Machines they achieved a classification accuracy of up to 96% and concluded, that
for their dataset the best features were actually 1-grams or unigrams: n-grams of a
size 1.

As we have seen, different high- and low-level features are used for malware
detection and classification. Our goal in this paper is to find possible correlation

8.3. Problem description 111

between memory access patterns (low-level features) and API calls (high-level
features).

8.3 Problem description
From the literature overview, we can state that low-level features (despite dif-

ficulties with their extraction) can be a reliable source of information for malware
detection and classification. However, system counters, opcodes and memory ac-
cess patterns don’t give much information about malware functionality to the se-
curity analyst. An n-gram of opcodes of a size 4, when given out of context, does
not reveal what it was used for by itself. The same can be said about sequence of
memory access operations: it is challenging to grasp which goals were achieved
by malware when a certain sequence of memory access operations was performed.
For example, a typical n-gram of a size 96 of memory access operations found
in [4] looks like this: WRWRRRRR...WWWRRRRRW . It is obvious, that
such features, even if they can be effectively used for malware classification, do
not bring much useful information about malware’s behavior. As different papers
describe the use of low-level features for malware detection and classification, to
the author’s knowledge there have been no attempts to find a relationship between
low-level activity and high-level events such as API-calls. Because of everything
said above, first, we propose two following statements:

1. N-grams of memory access operations can be used for malware classifica-
tion (shown in [4]).

2. N-grams of API calls can be used for malware classification (shown in e.g.
[20]).

Based on statements 1 and 2 we propose the following hypothesis: if statements
1 and 2 are true, then it should be possible to find a correlation between some of
the features from both feature spaces. An approach for validating this hypothesis
is described in Subsection 8.4.7. For example, we assume that some memory ac-
cess n-grams might originate in API call n-grams. If we are able to validate this
hypothesis then we will find a way to correlate sequences of memory access oper-
ations to the events of higher level which are more human understandable. If our
hypothesis is rejected, then API calls and memory access n-grams are independ-
ent features, thus combining them into an integrated feature vector should increase
overall classification accuracy. Generally speaking, our goal is to check whether
sequences of memory access operations that were successfully used for multino-
mial malware classification can be attributed to certain sequences of API calls, thus
can be explained with high-level events and become more human understandable.

112 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

8.4 Experimental design
In this section, we present terms and definitions, provide the assumptions used

and describe experimental setup and properties of datasets. Later on, we explain
methods used for data collection and processing, list the machine learning and fea-
ture selection algorithms and describe the way we were searching for correlation
between high- and low-level event.

8.4.1 Terms, definitions and assumptions

In this subsection, we provide terms and definitions and assumptions used dur-
ing this study. We begin with the definitions:

• N-gram. An n-gram is a sub-sequence of length n of an original sequence of
length L. For example if an original sequence of length L=6 [RRWRWW]
is split into n-grams of length n=4(4-grams) then our n-grams set will be:
RRWR,RWRW,WRWW[4]. In this example, similarly to baseline paper [4],
and our paper we use overlapping n-grams: the next n-gram begins from the
second element of the preceding one.

• Memory access operations: when an executable is reading from virtual
memory, read (or R) memory operation is recorded. When writing to vir-
tual memory performed by an executable, write (or W) memory operation is
recorded.

• API call: or Application Programming Interface call is a call to a function
provided by the operating system (Windows 7 in our case). API calls are
usually used by malware and goodware to perform network, file, process
and other kinds of activity.

• Malware types and families. Malware types and families are different ways
to divide malware into categories. Malware types describe general function-
ality of malware: what it does, which goals it pursues. Malware families
describe particular functionality of malware: which methods it use and how
it pursues its goals [4]. For example, virus, worm and backdoor are malware
types, while hupigon, vundo and zlob are malware families.

We continue with the following assumptions:

1. We assume that for the research and analytic purposes it is better to use smal-
ler feature sets even if their performance in terms of classification accuracy
is slightly lower [4]. For example, it is way easier to understand feature set
of a size 33 that brings classification accuracy of around 70% than the one
of a size 20000 with classification accuracy 73%.

8.4. Experimental design 113

2. We assume that if features from different sources (memory access operations
and API calls) are related to each other, then this relationship can be found
among small sets of the best features.

8.4.2 Experimental flow

In this subsection, we will describe our experimental flow. On the Figure 8.2
we picture a schematic view of our experiment. By running malware samples from
two datasets (see Subsection 8.4.3), we collect data (memory access operations
and API calls, Subsection 8.4.5) and perform feature construction (n-grams of
API calls), later on, we use feature selection to reduce feature space and train
machine learning algorithms in order to assess quality of a newly built feature
vectors (Subsection 8.4.6). For the consistency (to the baseline paper) reasons, we
run malware samples until they generate 1,000,000 of memory access operations.
Some samples stop execution before they generate the desired amount of memory
access operations, but we keep such data as is since this is a real-world scenario
where one can’t expect malware to produce as much traces as needed. While
running malware, we record memory access operations and API calls (if present)
for every executed instruction. From the literature review we understood, that API
call n-grams of a size 3 and 4 are the most promising features. However, we also
decided to use n-grams of length 8 in order to get a slightly more complete picture
of API calls n-grams capabilities for malware classification. This also gives us
more data to use in the search for correlation between memory access patterns
and API calls. The number of n-grams is quite big, so in order to pursue one
of our goals (shorter and more understandable feature set) we perform feature
selection to reduce the dataset. As well as authors of [4] we used Correlation Based
feature selection [9] from machine learning tool Weka [10] as it showed quite good
performance while reducing the size of a feature set in several times of magnitude.
After getting a reduced feature set, we store data in the format that can be used for
training of machine learning models. In our case, similarly to the baseline paper,
as feature values, we store only the fact of presence (1 or 0) of a certain feature in
the behavior of a malicious sample. The logic here is similar to [4]: in contrast to
other articles, where authors rely on frequencies of appearance of certain features,
we want to find features that work regardless the time malicious executable has
run. Our data looks like a bitmap of presence, where each row represents a single
malicious sample, first column represents a category of a sample (family or type)
and the rest of the columns represent features. Cells contain 1 if a certain feature
is present in the behavior of malware and 0 if not. The bitmap of presence is later
used for training the machine learning models (see Subsection 8.4.6), which
classification performance (classification accuracy) is compared with the one from
baseline paper. Having API call n-grams as features, we later search through the

114 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

entire records or behavior data from each malware sample in order to find whether
these n-grams are related to the 29 memory access n-grams derived by authors of
[4]. We elaborate on the search technique in the Subsection 8.4.7.

Figure 8.2: Detailed experimental flow

8.4.3 Dataset

Similarly to [4], our two datasets are derived from the original dataset collec-
ted under the initiative of Testimon [8] research group. It consists of 400k malware
samples: malicious PE32 executables gathered from VirusShare[23]. Initial data-
set was used for research purposes and is described in [19]. Both our datasets are
the same as in baseline paper [4]. The authors of a baseline paper provide a detailed
description of their datasets, while we focus only on the most important proper-
ties of these datasets. First of all, one dataset (952 files) has malware samples
that are labeled according to ten types: backdoor, pws, rogue, trojan, trojandown-
loader, trojandropper, trojanspy, virtool, virus, worm. Secondly, another dataset
(983 files) has its malware samples label according to ten families: agent, hupi-
gon, obfuscator, onlinegames, renos, small, vb, vbinject, vundo, zlob. The choice
of categories was made by the simple rule: 10 most prevalent categories in the ori-
ginal dataset were chosen. To simplify automated malware analysis (see Section
8.4.4) sample were chosen to be without anti-VM and anti-Debug features. As de-
scribed in [4], dealing with anti-analysis functionality of malware is out of scope in
such research, since their goal was to study a possibility of malware classification
with memory access patterns as features. The distributions of categories within
datasets are almost uniform, so we assume that datasets are nearly balanced, so
there is no need to study the influence of categories distribution on the results of
an assessment of machine learning models.

8.4. Experimental design 115

8.4.4 Analysis environment

Our analysis environment was almost identical to the one in [4], apart from dif-
ferent versions of host OS and VirtualBox. We assume that these changes will not
influence the results of the experiments since hardware and guest OS are identical.
We run our experiments on Virtual Dedicated Server (VDS) with Intel Core CPU
running at 3.60GHz, 4 cores, SSD RAID storage and 32GB of virtual memory.
As a main operating system, Ubuntu 18.04 64bit was used. Additionally, Intel Pin
3.6[11], Python 2.7 and VirtualBox 5.2.22 were used. Windows 7 32-bit was in-
stalled on the VirtualBox virtual machine as a guest OS. We used a virtual machine
as an isolated environment to run malware together with a specially crafted Intel
Pin tool. The virtual machine is reverted to the same snapshot before each run, so
we avoid the influence of the environment on the results of data acquisition. To be
consistent with a baseline paper, we choose the 32-bit version of Windows 7.

8.4.5 Data collection

We focus on "correlating" the n-grams of memory access operations with n-
grams of API calls. We need to: a) record memory access operations produced
by malware b) record calls to API functions. The first task is the easiest one.
With the use of dynamic binary instrumentation framework Intel Pin, one can put
instrumentation on each executed instruction and record memory access opera-
tions performed by it. For the consistency reasons, we chose the same amount of
memory access operations to record as was used in [4]. A malicious executable
run until it produces 1 million of memory access operations. As it was shown in
the previously published papers, this is not only enough to reveal maliciousness of
an executable [5] but also to perform multinomial classification of malware into
categories and types[4]. The second task is more difficult. When a call instruction
is performed it only contains an address of a function. In order to get its name
from a library, one should find which one of the export symbols correspond to
a certain address. Moreover, some native Windows libraries perform inter- and
intra-modular calls not to the functions themselves (a call to a first instruction of
a function) but to the subroutines within these functions. Most of the papers that
use dynamic API call sequences do not describe how they treat such calls: it is not
clear whether they record or just ignore them. In this paper, we treat a call to a
first instruction of an API function and a call to a subroutine in an API function
equally. Our reason for this is that if a logic of an executable requires such calls to
be done and we can collect this information, it may improve the understanding of
malware’s current execution goals and context.

The call instruction can be used to invoke internal (to an executable itself)
function. It is usually impossible to derive a name of an internal function of an
executable (unless you have debug file, which is not the case in malware analysis),

116 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

so we store a name of a section where a function of interest is placed. We also keep
this information and treat such calls equally to the API calls. Having raw data re-
corded, we split a sequence of API calls generated by each malicious sample into
n-grams.

For better analysis capabilities as well as future work we record additional in-
formation for each instruction executed after launching a malware sample. A real
example of raw data is present in the Listing 2 in Appendix A. In order to record
this data, we created an Intel Pin based tool that is launched together with each
sample from a dataset. A tool records all data into a file and stops if an executable
generated 1 million of memory access operations. Some samples generate less
memory activity than others, but we consider it a real-world scenario where one
can’t rely on malware to generate a particular amount of data.

From the raw data we extract names of the called functions, store them into the
sequence according to their execution order and split the sequence into n-grams
of a different size. For example, one of the API call n-grams of a size 4 derived
from malware families dataset looks as following: memset, GetModuleHandleW,
ferror, _freea. From the raw data, we extract API calls and memory access opera-
tions, that are later used in training the machine learning models and searching for
mutual correlation.

8.4.6 Machine learning algorithms and feature selection

For the consistency reasons, we chose the same machine learning (ML) al-
gorithms as in [4]: k-Nearest Neighbors (kNN), RandomForest (RF), Decision
Trees (J48), Support Vector Machines (SVM), Naive Bayes (NB) and Artificial
Neural Network (ANN). The following parameters (default for Weka[10] pack-
age) were used for ML algorithms: kNN used k=1; RF had 100 random trees; J48
used pruning confidence of 0.25 and a minimum split number of 2; SVM used ra-
dial basis as function of kernel; NB used 100 instances as the preferred batch size;
ANN used 500 epochs, learning rate 0.3 and a number of hidden neurons equal
to half of the sum of a number of classes and a number of attributes. In order to
assess the quality of machine leraning models we used 5-fold cross validation, and
chose accuracy (number of correclty classified instances) as the measure of evalu-
ation. To reduce the feature set we used Correlation Based feature selection from
Weka. Correlation-based feature selection [9] is an algorithm that chooses a subset
of features that have the highest correlation with classes, lowest correlation with
each other and give the best merit among other possible subsets. First reason to
choose this feature selection method as it helped authors of a baseline paper to go
from 50 thousands of features to just 29, so we wanted to get a number of features
of nearly the same magnitude. Second reason is that one of our goals is to have
relatively short feature set that can be easily analyzed by a human analyst.

8.4. Experimental design 117

8.4.7 Correlating features derived from different sources

In this section, we present a method to validate our hypothesis presented in
Section 8.3. There are several approaches that can be used to validate our hypo-
thesis. The first one is the most obvious: create the entire feature sets for memory
access operations and API calls n-grams and find correlations between them (all-
to-all approach). This approach will reveal the full picture of correlation between
the two feature types. But it also has one major drawback, that makes its use almost
impossible. The entire feature space of memory access n-grams in [4] consists of
15 millions distinctive features for malware families dataset. Finding their correl-
ation with around 12 thousands of API calls 3-grams (see Subsection 8.5.1) can
not be finished in feasible time. Slightly less time consuming variant is to search
for correlation between the best memory access operations features and the en-
tire feature space of API calls n-grams (best-to-all approach). This method would
provide a less complete overview over the possible correlations, but would still be
very time consuming, and is left for the future work. To some initial results we
used a best-to-best approach: instead of taking the entire feature sets of memory
access operations and API calls, we use only the best features out of both feature
spaces. This approach allowed us to finish the experiments in feasible time, but
also has some limitations that will be discussed in the following sections. As this
paper is aiming to provide a proof of concept for searching for correlations, we
believe that this approach properly fits our purposes.

One of the challenges we met during this research is how to correlate a certain
n-gram of memory access operations to an n-gram (n-grams) of API calls. First
of all, we need to locate a place in a raw data, where a certain n-gram of memory
access operations is found. To do this, we iterate over the raw data, collect memory
access operation into a buffer of a size 96 (see Section 8.2) and check if the pat-
tern in the buffer is found among one of the features taken from the baseline paper.
If match occurs - we save the position where memory n-grams starts and begin
the search for API call n-gram. There can be various approaches to this and we
selected the following one, as it brings wider coverage of execution flow. To state
that a certain memory access n-gram is related to an API call n-gram we use the
following criteria:

1. If the beginning of memory access n-gram lays after first call in API calls
n-gram and before the call that follows current n-gram - these memory and
API call n-grams correlate. In this case we assume that memory access n-
gram is correlated to an API calls n-gram.

2. For any other case we state, that memory access and API call n-grams are
not correlated.

118 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

The above mentioned criteria works as shown in Figure 8.3 where we present a
simplified version of our data. On this Figure, memory access n-gram of a size
96 correlates with API calls 3-grams [APIcall_1, APIcall_2, APIcall_3], [APIc-
all_2, APIcall_3, APIcall_4] and [APIcall_3, APIcall_4, APIcall_5] but does not
correlate with [APIcall_4, APIcall_5, APIcall_6]

Figure 8.3: Correlation between API calls and memory access n-grams

8.5 Results and analysis
In this section we provide the results of feature selection and classification for

API calls n-grams, compare them to the results achieved with memory access n-
grams from [4] and evaluate our findings in correlating these two types of features.

8.5.1 API call n-grams for malware classification

From the raw captured data we extracted 12818 3-grams, 17407 4-grams and
33900 8-grams in the malware family dataset and 17252 3-grams, 24054 4-grams
and 49513 8-grams in the malware types dataset. Using correlation based feature
selection allowed us to reduce number of features to the following: 23 3-grams,
33 4-grams and 47 8-grams in the malware family dataset and 52 3-grams, 62
4-grams and 76 8-grams in the malware types dataset. The reduction of feature
vectors worked similarly to the baseline paper: we went down from tens of thou-
sands to less than hundred features. As assessment of classification performance
of API call n-grams is not the main goal of this paper, we provide only the res-
ults for reduced feature sets. However, we performed classification on the full
feature sets and their classification accuracy was only a few percents higher then
in reduced feature sets. It is again similar to [4], so we assume that it is possible
to compare newly acquired feature set with the one from [4]. In the Table 8.1
the classification accuracy achieved by different machine learning algorithms is
presented. On the left and right sides of the table we present the results achieved
on malware families and malware types datasets respectively. First row represent
results achieved with n-grams of memory access operations of a size 96 from [4].
We name this feature type Mem96. Rows from 2 to 4 represent results achieved
with API calls n-grams of sizes 3,4, and 8. We name them API3,API4 and API8
respectively. As we can see, most of the time API calls n-grams performed on the

8.5. Results and analysis 119

same or even higher level then memory acess n-grams for the malware families
dataset. In contrast, performance of API calls n-grams for malware types dataset
most of the time was lower then the one by memory access n-grams. These results
help us to prove Statement 2 from Section 8.3. In the Table 8.1 we use bold font
in order to underline best classification accuracy for a certain type of features. It
is also worth mentioning, that in general API calls n-grams of a size 4 performed
better then other types of n-grams. We have to draw an important conclusion from
the results we achieved with API calls n-grams. Classification performance of less
then a hundred API calls n-grams are comparable to those achieved with tens of
thousands of memory access n-grams in [4].

Table 8.1: Classification accuracy for baseline feature set, API call n-grams feature sets
and combined feature sets.

Feature set size Families Types
Feature type Fam. Typ. kNN RF J48 SVM NB ANN kNN RF J48 SVM NB ANN
1 Mem96 29 29 0.784 0.781 0.769 0.740 0.724 0.784 0.668 0.668 0.626 0.584 0.498 0.617
2 API3 23 36 0.775 0.780 0.746 0.709 0.652 0.774 0.616 0.631 0.587 0.533 0.521 0.607
3 API4 33 46 0.813 0.810 0.792 0.765 0.677 0.805 0.636 0.636 0.604 0.541 0.566 0.616
4 API8 47 67 0.799 0.801 0.784 0.751 0.694 0.797 0.643 0.660 0.605 0.537 0.562 0.615
5 API3+Mem96 52 65 0.834 0.856 0.817 0.781 0.711 0.845 0.680 0.700 0.641 0.573 0.556 0.682
6 API4+Mem96 62 75 0.838 0.859 0.824 0.786 0.716 0.842 0.680 0.694 0.662 0.580 0.566 0.676
7 API8+Mem96 76 96 0.832 0.845 0.801 0.773 0.717 0.835 0.667 0.687 0.649 0.586 0.575 0.686

8.5.2 Correlating memory access and API call n-grams

The results we got were quite surprising. With the feature selection, we used
and feature correlation search method we described in Subsection 8.4.7 we found
no correlation between memory access n-grams and API call n-grams for mal-
ware types dataset. For malware types dataset our hypothesis about the correlation
between features derived from different sources was rejected. Results for malware
families dataset was not much different. One memory access n-gram was found
to be related to a certain API calls 3-gram in different malicious samples, and
the other was found to be related to two API calls 4-grams in different malicious
samples as shown in Listing 8.1. So our initial hypothesis was mostly rejected
for malware families dataset as well. Having this information we decided to create
integrated feature sets by combining memory n-grams feature set with API call
n-grams feature sets. We analyze the performance of an integrated feature set in
the next subsection.

8.5.3 Performance of integrated feature sets

We found an idea about combining features of different types into an integ-
rated feature vector from [15]. In the Table 8.1 we present classification accuracy
achieved with integrated feature vectors. In the rows 5 to 7 results of combin-
ing memory n-grams feature vector with all API call n-gram feature vectors are

120 P3: Correlating High- and Low-Level Features: Increased Understanding of Malware
Classification

present. As we can see, with several exceptions, most of the time integrated fea-
ture vector outperform separate feature vectors. Moreover, with an integrated fea-
ture vector (which size didn’t exceed 100) we achieved a classification accuracy of
85.9% for families and 70% for types, which are higher than respective 84.5% and
66.8% achieved in [4] with use of 50,000 memory access n-grams. This indicates
that combining API call and memory access n-grams does not bring redundant in-
formation which often results in lower classification accuracy[14]. Even though
our hypothesis was rejected, the increased classification accuracy of an integrated
feature set show that our correlation search method (Subsection 8.4.7) was correct.

8.5.4 Discussion and analysis of correlation findings

As we already said, for the two entire datasets, we found only two memory
access n-grams that we found to be related to the API call n-grams from a re-
duced feature set. In the Listing 8.1 we show found relationships of memory
access n-grams and API call n-grams. As we can see, for our family dataset, a
memory access n-gram is related to only one API call 3-gram. However, the re-
lationship between memory access n-gram and API 4-grams can look a little bit
more complicated. We found that the same memory access n-gram can originate
from different API call n-grams. But this can be easily explained after analysis of
the API 4-grams themselves. As we can see, these two API call 4-grams can easily
overlap: last three API calls of the first 4-gram can be the first three API calls in
the second 4-gram. And as we described in Subsection 8.4.7 if the beginning of
memory access n-gram lays between first and last call in the API call n-gram -
these memory and API call n-grams are related. So it is easy to understand now,
that if selected API call n-grams are overlapping - the same memory access n-gram
can originate from both of them.
Memory ngram WWWRRRRRRRWRRWRRWWWWRRWWWWRWRRRRRWRRWWRWWR

↪→ RRWWWRRRWWRRRRWRWRRRRRRWRRRRRRRRRRRWRWWRWWWWWRRRWRRRWW
is related to the following API call 3-gram: RtlTryEnterCriticalSection,

↪→ RtlLeaveCriticalSection,memset

Memory ngram WRWRRRRRRWRRWRWRRRWRRRRRRWRRRWRWRRRRRRWRRR
↪→ RRRRRWWRWRRRWWWRRWWRWRRRRRWRWWRWRWWRRWWRWWRWWWWWRRRRRW

is related to the following API call 4-grams: RtlEnterCriticalSection,
↪→ RtlEnterCriticalSection,RtlEnterCriticalSection,
↪→ RtlCompareUnicodeStrings

and RtlEnterCriticalSection,RtlEnterCriticalSection,
↪→ RtlCompareUnicodeStrings,RtlCompareUnicodeStrings

Listing 8.1: Memory access n-grams and correlated API call n-grams from malware
families dataset

As a way to improve our search technique it is possible to split a sequence of API
calls into non-overlapping n-grams. However, in some rare cases, it might result
in several memory trace n-grams to be related to a single API call n-gram. Another
reason of small correlation findings can be a best-to-best approach that we chose

8.5. Results and analysis 121

for correlation search. Utilizing a best-to-all approach together with an in-depth
explanation of correlated API calls n-grams is one of the priority goals for the fu-
ture work.

There is one thing that is important to look at after presenting relatively poor
correlation findings. As we have written above, we trace the execution of mal-
ware samples until they generate 1 million of memory access operations. Some
samples produce less than the expected number of memory access operations. It is
important to understand, that the execution of PE file does not start from the main
module of a file. Instead, different API calls are invoked by an operating system
(they still executed under the process of malware, so we trace them anyway) in or-
der to prepare an execution environment. The amount and type of calls performed
before execution of main logic (main module) of a malware depends on the way an
executable was compiled and the resources it needs for execution. It is important
to notice, that even if an API call is made from the main module of an executable,
its instructions will be corresponded to the external module(e.g. ntdll.dll). To go
deeper into this problem first we counted the number of instructions executed by
malware from its main module and divided it by the total number of instructions
in the trace. Amount of instructions performed from the main module (defined by
the malware directly) ranges from 0% to 99.9% with an average of around 20%. It
means that some samples didn’t even reach to the execution of their main module.
From first glance, it should have led to the sample being indistinguishable from
each other. Nevertheless, as we already said, this platform-specific (PE is an ex-
ecutable format used in Windows) preamble depends on the properties of the file.
Another thing that we checked was the percentage of call instructions executed
from the main module. These numbers range from 0% to 8% with an average of
up to 1.5%. From what was said above, and from additional data analysis, it is pos-
sible to draw the following conclusion: most of the API calls in our experiments
didn’t originate from the main modules of executables. Moreover, as the number
of instructions performed from the main modules is relatively low, the memory
access n-grams from [4] also did not originate from main modules either. The first
conclusion that can be drawn from this is that some malicious executables can be
categorized into families and types (with an accuracy we achieved) based on the
activity they produce before executing their main logic. On the first hand, these are
very promising results since detection mechanisms based on the features used in
this paper can potentially detect malware before anything malicious is done. How-
ever, we didn’t study what changes to our victim system our malicious samples did.
So this is clearly a question for future research. On the other hand we might have
actually detected malicious behavior by itself: there are known malware samples
that achieve its goals from TLS callbacks or by inserting malicious code into legit-
imate DLLs or executables (other than malware’s main modules) and performing

122 Bibliography

direct jumps or calls to the infected parts of legitimate DLL’s or executables.
As a final remark to this subsection we suggest the following solution to the

questions we outlined in the beginning. To understand if API calls that actually
produce memory access patterns from [4] can be useful for malware classification
we have to use only a certain amount of API calls made around a place from where
memory access n-gram is originated from. Based on these API call sequences we
may try to find features that are relevant for malware classification. This is planned
to be done in the future work, as the amount of “API calls made around a place
from where memory access n-gram is originated from” has to be found after a
number of experiments. Also, the type of features in this future case has to be
discussed as well.

8.6 Conclusions
In this paper, we examined the nature of memory access n-grams that were

successfully used for malware classification by authors of [4]. We also attemp-
ted to understand the relationship between those low-level features and high-level
activity patterns such as API call n-grams. Our findings showed no significant
correlation between the best n-grams of memory access operations and the best
n-grams of API calls (at least under our experimental design). We also showed
that API calls n-grams can be used for malware classification on the dataset from
[4] and found that combining features derived from different sources (low- and
high-level activity) can bring improvement in classification accuracy. While ana-
lyzing our data we concluded, that both low- and high-level features used in our
experiments often have their origin outside of the main module of an executable.
This paper brings important findings and outlines the direction of future research
about the use of low-level features in malware analysis.

8.7 Bibliography
[1] Types of malware. https://usa.kaspersky.com/resource-center/threats/

types-of-malware. accessed: 17.03.2019.

[2] Manoun Alazab, Robert Layton, Sitalakshmi Venkataraman, and Paul Wat-
ters. Malware detection based on structural and behavioural features of api
calls. 2010.

[3] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. Hpcmal-
hunter: Behavioral malware detection using hardware performance counters
and singular value decomposition. In Computer and Knowledge Engineer-
ing (ICCKE), 2014 4th International eConference on, pages 703–708. IEEE,
2014.

https://usa.kaspersky.com/resource-center/threats/types-of-malware
https://usa.kaspersky.com/resource-center/threats/types-of-malware

Bibliography 123

[4] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification
via low-level features. Digital Investigation, 26:S107–S117, 2018.

[5] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[6] Eric Cole. Advanced persistent threat: understanding the danger and how to
protect your organization. Newnes, 2012.

[7] What APT Means To Your Enterprise and Greg Hoglund. Advanced persist-
ent threat.

[8] Testimon Research Group. Testimon research group. https://testimon.ccis.no/,
2017.

[9] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[11] IntelPin. A dynamic binary instrumentation tool, 2017.

[12] Rafiqul Islam, Ronghua Tian, Lynn M Batten, and Steve Versteeg. Classific-
ation of malware based on integrated static and dynamic features. Journal of
Network and Computer Applications, 36(2):646–656, 2013.

[13] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[14] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[15] Hyun-il Lim. Detecting malicious behaviors of software through analysis of
api sequence k-grams i. 2016.

[16] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Malware-aware processors: A framework for efficient
online malware detection. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 651–661. IEEE,
2015.

[17] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based malware detection
using low-level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

https://testimon.ccis.no/

124 Appendices

[18] Reuters. Ukraine’s power outage was a cyber attack: Ukren-
ergo. https://www.reuters.com/article/us-ukraine-cyber-attack-energy/
ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA, 2017.

[19] Andrii Shalaginov, Lars Strande Grini, and Katrin Franke. Understanding
neuro-fuzzy on a class of multinomial malware detection problems. In Neural
Networks (IJCNN), 2016 International Joint Conference on, pages 684–691.
IEEE, 2016.

[20] PV Shijo and A Salim. Integrated static and dynamic analysis for malware
detection. Procedia Computer Science, 46:804–811, 2015.

[21] Adrian Tang, Simha Sethumadhavan, and Salvatore J Stolfo. Unsuper-
vised anomaly-based malware detection using hardware features. In Interna-
tional Workshop on Recent Advances in Intrusion Detection, pages 109–129.
Springer, 2014.

[22] The Verge. The petya ransomware is starting to look like a
cyberattack in disguise. https://www.theverge.com/2017/6/28/15888632/
petya-goldeneye-ransomware-cyberattack-ukraine-russia, 2017.

[23] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

Appendix A Raw data sample
In this Appendix we present a sample of a raw data gather during our experi-

ments. We also explain each field included in the data.

1. Opcode id: each opcode is given a unique identifier. If this opcode is ex-
ecuted again (e.g. in a loop), it will receive the same id.

2. Module name: a name of a module where current instruction is executed, It
can be a name of a library or a name of an executable itself.

3. Section name: a name of a section in executable file or library where cur-
rent instruction is executed. Often it will be .text or CODE, however it some
cases (especially with malware) a name of an executable section can be dif-
ferent from standard.

4. Current function name: if a function name of a current instruction can be
found we record it to understand which function performed a certain part of
logic.

5. Opcode: text representation of an assembly instruction together with argu-
ments but without arguments values.

https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA
https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia
https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia
http://virusshare.com/

Appendix A. Raw data sample 125

6. Type of module: whether an instruction is executed from the main module
of executable under analysis or from the external library.

7. Memory operations: memory operations performed by an instruction. Only
read or write without addresses and values.

8. Name of a function being called: if a current instruction is call - a name of
a function is being stored.

A real example of raw data is present in the Listing 2. The first line represents
header: names of fields are in the same order as in the list above.
OPID;MODULE;SECTION;ROUTINE;OPCODE;MODULETYPE;MEMOPS;ROUTINETOCALL
6712;C:\Windows\SYSTEM32\ntdll.dll;.text;RtlInitializeExceptionChain;xor

↪→ ecx, ecx;isNotMainModule;;
6713;C:\Windows\SYSTEM32\ntdll.dll;.text;RtlInitializeExceptionChain;call

↪→ eax;isNotMainModule;W;BaseThreadInitThunk
6369;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;mov edi,

↪→ edi;isNotMainModule;;
6370;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;push ebp;

↪→ isNotMainModule;W;
6371;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;mov ebp,

↪→ esp;isNotMainModule;;
6372;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;test ecx,

↪→ ecx;isNotMainModule;;
6373;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;jnz 0

↪→ x76f4853d;isNotMainModule;;
6374;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;push dword

↪→ ptr [ebp+0x8];isNotMainModule;RW;
6375;C:\Windows\system32\kernel32.dll;.text;BaseThreadInitThunk;call edx;

↪→ isNotMainModule;W;unnamedImageEntryPoint
6714;C:\Users\win7\Documents\malware_PE32\1b6142e3c80362a3f49666856f330510

↪→ ;.duciuni;unnamedImageEntryPoint;inc ebx;isMainModule;;
6715;C:\Users\win7\Documents\malware_PE32\1b6142e3c80362a3f49666856f330510

↪→ ;.duciuni;unnamedImageEntryPoint;pushad ;isMainModule;W;

Listing 2: Raw data sample

Chapter 9

P4: Detection of running
malware before it becomes
malicious

Sergii Banin, Geir Olav Dyrkolbotn

Abstract
As more vulnerabilities are being discovered every year[16], malware con-

stantly evolves forcing improvements and updates of security and malware detec-
tion mechanisms. Malware is used directly on the attacked systems, thus anti-virus
solutions tend to neutralize malware by not letting it launch or even being stored
in the system. However, if malware is launched it is important to stop it as soon as
the maliciousness of a new process has been detected. Following the results from
[6] in this paper we show, that it is possible to detect running malware before it be-
comes malicious. We propose a novel malware detection approach that is capable
of detecting Windows malware on the earliest stage of execution. The accuracy
of more than 99% has been achieved by finding distinctive low-level behavior pat-
terns generated before malware reaches it’s entry point. We also study the ability
of our approach to detect malware after it reaches it’s entry point and to distinguish
between benign executables and 10 malware families. Keywords: Malware detec-
tion, Low-level features, Hardware-based features, Information security, Malware
analysis, Malware classification

9.1 Introduction
Every year our society becomes more dependent on computers and computer

systems, thus attacks on the personal, industry and infrastructure computers start

126

9.1. Introduction 127

having more severe consequences [22][25]. According to NIST the amount of
vulnerabilities discovered every year has grown almost 3 times during the years
2015-2019 [16]. At the same time a number of vulnerabilities found on Win-
dows platforms has shown 10% growth[17]. Furthermore, the amount of newly
discovered Windows malware has grown 30% during the same period[2]. Such
security landscape outlines the need for updates in existing and invention of new
malware detection mechanisms.

Malware detection methods can be divided based on which features of mal-
ware they use for detection: static and dynamic. Static features emerge from the
properties of an executable files themselves: file header, opcode and byte n-grams
or hashes are known to be used for malware detection[23]. Dynamic features rep-
resent the behavior of malware when it runs and can be roughly divided into high-
and low-level features[6]. API and system calls, network and file activity are some
of the high-level features, while memory access operations, opcodes or hardware
performance counters are the low-level features. Basically we perceive behavioral
features that emerge from the system’s hardware as the low-level ones[5][12][19].
Static features are easier to change for an attacker utilizing techniques such as ob-
fuscation or encryption. However, malware becomes malicious only when it is
executed and it is impossible to avoid a behavioral footprint[8]. Even though dif-
ferent techniques such as polymorphism, anti-VM or anti-debug might be used to
change high-level behavioral patterns, the functionality of malware remains sim-
ilar. Moreover, as soon as malware is launched - it is impossible to avoid execution
on the system’s hardware. That’s why in this paper we use low-level features such
as memory access patterns for malware detection[7] and classification[5].

Memory access patterns previously were proven to be effective features for
malware detection[7] and classification[5]. A memory access pattern is a sequence
of read and write operations performed by an executable and will be described in
details in Section 9.3. The problem with low-level features is that it is hard for
a human analyst to understand the context under which a certain pattern has oc-
curred. A previous work [6] presented an attempt to fill the gap between low-level
activity (memory access patterns) and its high-level (more human understandable
API calls) representation. During the study it was also found, that under the exper-
imental design used in [6] and [5] most of the recorded behavioral activity emerged
not from the main module of an executable (after the Entry Point1 - AEP) but prior
to the moment when instruction pointer (IP) is set to the Entry Point (before the
Entry Point - BEP). Without going into much details (see Section 9.2 for details)
these findings showed, that it is potentially possible to detect running malicious
executable before it starts executing the logic that was put into it by the creator.

1In this paper, by Entry Point, we mean the first executed instruction from the main module of
executable.

128 P4: Detection of running malware before it becomes malicious

To study these findings, in this paper we use a novel approach in behavioral
malware analysis. This approach involves analysis of behavioral traces divided
into those generated BEP and those generated AEP: BEP-AEP approach. More
specifically, we show how memory access patterns can be used for malware detec-
tion based on the activity produced BEP. To be consistent in our studies we also
compare these results to those achieved based on the activity produced AEP: by the
malicious code itself. As paper [5] showed a possibility to classify malware into
categories (families or types) using memory access patterns, further we investigate
the usefulness of BEP-AEP approach for distinguishing between benign execut-
ables and different malware families. In order to formalize our future findings we
propose the following hypotheses:

Hypothesis 1. It is possible to detect (distinguish from benign) running malicious
executable based on the memory access patterns it produces before it begins to
execute malicious code (BEP).

Hypothesis 2. It is possible to detect (distinguish from benign) running malicious
executable based on the memory access patterns it produces after its Entry Point
(AEP).

And as the logic put into the executable (and makes malware malicious) nor-
mally runs AEP we had another hypothesis:

Hypothesis 3. If Hypotheses 1, 2 are true, then it should be easier (higher classi-
fication performance) to detect running malicious executable AEP than BEP.

To test whether a BEP-AEP approach can be used to distinguish between be-
nign and several different categories of malicious executables we had another three
hypotheses (directly derived from Hypotheses 1, 2 and 3)

Hypothesis 4. It is possible to distinguish between several malware categories
and benign executables based on the memory access patterns they produce BEP.

Hypothesis 5. It is possible to distinguish between several malware categories
and benign executables based on the memory access patterns they produce AEP.

Hypothesis 6. If Hypotheses 4, 5 are true then it should be easier (higher classific-
ation performance) to distinguish between several malware categories and benign
executables based on the memory access patterns they produce AEP.

In order to check the above mentioned hypotheses we decided to perform a
series of experiments that consist of several parts. First, we record memory access
patterns produced by executables before and after entry point with help of dynamic

9.2. Related works 129

binary instrumentation framework Intel Pin[11]. Second, we perform feature con-
struction and selection to create different feature vectors. Last, we train several
machine learning (ML) algorithms to check our hypotheses by looking at classi-
fication performance of machine learning models.

The remainder of the paper is arranged as following: Section 9.2 provides
a literature overview, Section 9.3 describes our choice of methods, Section 9.4
explains our experimental setup, in Section 9.5 we provide results and analyze
them, in Section 9.6 we discuss our findings and in the Section 9.7 we provide
conclusions.

9.2 Related works
In this section we provide an overview of papers that are related to this article

in terms of features used for malware detection as well as methods to extract those
features. The first paper we would like to mention is [1] where authors sugges-
ted to use Intel Pin based tool to detect malicious behavior by matching it against
predefined security policies. Authors record execution flow of executables and de-
scribe it by splitting into basic blocks with additional information about each basic
block. Among the different sources of information of the basic blocks they used:
file modification system calls, fact of presence of exec function call and the fact
of presence of memory read and write operations. During the testing phase they
managed to achieve average path coverage of more than 93% which later helped
them to get as much as 100% detection rate on Windows and Linux systems. Even
though their datasets were relatively small this work showed promising capabilit-
ies of Intel Pin in the malware research.

The next paper [3] focuses more on the low-level features and their use in
malware detection. As the features they used retired and mispredicted branch in-
structions as well as retired load and stored instructions derived from hardware per-
formance counters. Authors achieved classification precision of more then 90%.
Their dataset was also relatively small, but they pointed to the effectiveness of
low-level feature in malware detection. Later, the same authors expanded their
approach by using additional low-level features (near calls, near branches, cache
misses etc.) in the paper [4]. They have also expanded their task to multinomial
classification of benign and malicious samples divided into several families. This
time they achieved 95% precision on a bigger dataset, what, once again, showed
capabilities of low-level features use in malware detection and classification.

In [13] another example of application of hardware-based features is proposed.
Extending their work from [18], authors propose hardware malware detector that
uses several low-level features such as: frequencies and presence of opcodes from
different categories, memory reference distance, presence of a load and store op-
erations, amount of memory reads and writes, unaligned memory accesses as well

130 P4: Detection of running malware before it becomes malicious

as taken and immediate branches. Using ensemble specialized and ensemble clas-
sifiers authors achieved classification and detection accuracy of around 90% and
96% respectively.

Papers [1][3][13] used information about memory access operations but they
didn’t use sequences, or patterns, of memory access operations. The first paper
where memory access patterns were used for malware detection was [7]. There
authors explored a possibility of malware detection based on n-grams of memory
access operations. They recorded sequences of memory access operations from
malicious and benign executables. After the experiments authors found, that with
n-gram size of 96 it is possible to achieve malicious against benign classifica-
tion accuracy of up to 98%. Later, the same authors explored possibility of a use
of memory access n-grams for malware classification [5]. They tested their ap-
proach on two datasets label into malware types and families respectively. After
the feature selection they went down to as low as 29 features which allowed them
to classify malware types with accuracy of 66% and families with accuracy of
78%. This performance was not as good as pure malicious against benign classi-
fication. However, for 10-class classification problem such accuracy showed that
this methods (with certain limitations) can be used for malware classification as
well. During their studies authors discovered a following problem: memory ac-
cess patterns provide little context to a human analyst as it is almost impossible to
understand which part of the execution flow created a distinctive memory access
pattern. To eliminate this knowledge gap, in their next paper [6] they performed
an attempt to "correlate" memory access patterns (as low-level features) with API
calls (as high-level features). Together with memory access operations they recor-
ded API calls performed by malicious executables. In the end their attempt was
not successful: with their methodology they were not able to find any significant
"correlation" between memory access patterns and API calls. However, as those
events were proven to be independent they showed, that combining API calls and
memory access patterns into integrated feature vector results into increased clas-
sification performance. On the dataset from [5] they managed to show increased
classification accuracy of 70% and of 86% for malware types and families respect-
ively. It was in this paper where they discovered, that most of the behavioral activ-
ity they recorded originated from BEP and outlined a need for additional study of
such finding.

To the best of our knowledge no one has analyzed the possibility of malware
detection and classification based on activity generated BEP. Therefore we think
that our paper provides a novel contribution and grounds for further research.

9.3. Methodology 131

9.3 Methodology

This section describes the methods used in our work. We begin with a de-
scription of the process creation flow on Windows. It has multiple stages and it is
important to show where we begin to record a behavioral trace: a set of opcodes
with their memory access operations, current function and module name. Second,
we explain the way we transform a behavioral trace into the memory access pat-
terns that are later used as features for training the ML models. We also describe
how we perform a feature selection. Last, we provide a description of ML methods
and evaluation metrics.

9.3.1 General overview

As we present BEP-AEP approach in this paper, we have to provide a brief
description of a process creation flow the way it is implemented in Windows. The
flow of process creation consists of several stages (as described in Windows Intern-
als [28]) and is depicted on the Fig. 9.1. First, the process and thread objects are
created. Then a Windows Subsystem Specific process initialization is performed.
Lastly, the execution of the new process begins from the Final Process Initializa-
tion (Stage 7 on Fig. 9.1). During these stages OS initializes a virtual address space
that is later used by a process. Virtual address space is divided into private process
memory and protected OS memory. The size of virtual address space depends on
the OS type. Normally 32-bit Windows will have up to 4GB while 64-bit - up to
512GB of virtual address space. The virtual address space contains heap, stack,
loaded DLLs, kernel and code of the executable (main module). CPU executes
instructions (opcodes) from main module or one of the loaded libraries. Each op-
code can be divided into several microoperations. Some microoperations are used
for arithmetical-logical operations while some are responsible for memory read
and write operations. Whenever execution of an opcode requires a memory related
microoperation to be executed, Intel Pin tool will record this into the behavioral
trace. Intel Pin tool begins to record the behavioral trace at Stage 7, when a new
process is started. In the context of a newly created process, Stage 7 generates a
BEP activity and includes (but is not limited to) the following actions: installing
of exception chains; checking if the process is debugee and whether prefetching is
enabled; initialization of image loader, heap manager; loading of all the necessary
DLLs. When it is finished, AEP activity begins from execution of Entry Point in
the main module. Some malware samples might use packing, thus will unpack
itself in the beginning of its execution. However, it is important to understand,
that unpacking will be done with instructions from the main module of executable.
Thus, with our approach, unpacking will happen AEP.

132 P4: Detection of running malware before it becomes malicious

Convert and Validate

Parameters and Flags

Open EXE and Create Sec�on

Object

Create Windows Process and

Thread Objects

Perform Windows Subsystem

Speci�c Process Ini�aliza�on

Start Execu�on of the Ini�al

Thread

Convert and Validate

Parameters and Flags

Final Process Ini�aliza�on

Start Execu�on of Entry Point

Done

Windows Susbsystem

New Process

Crea�ng Process

Stage 1

Stage 2

Stages 3+4

Stage 5

Stage 6

Stage 7

Figure 9.1: Process creation flow [28]

9.3.2 Data collection

In this subsection we describe the way we record behavioral traces. In order
to record memory access traces we wrote a custom tool that was based on the
Intel Pin framework[11]. Intel Pin is a binary instrumentation framework that
allows to intercept execution flow of a process and extract much of the information
related to this process such as: memory access operations, opcode, name of a
module from which an opcode is being executed and name of a current routine
(if possible to derive). Every executable from our dataset (Section 9.4.1) was
launched together with the Intel Pin tool. The tool records all the data mentioned
above into the behavioral trace. The process of each executable was observed from
the beginning of its execution. We recorded the behavioral trace until we gathered
1,000,000 (1M) of memory access operations (similar to [7] and [5]) BEP, and
then we continued recording AEP - again until we reached 1M of memory access
operations. As we worked with real-life malicious and benign executables, we
were not always able to record the desired amount of memory access operations.
Some samples reached main module before producing the desired 1M of memory
access operations BEP, while some finished their work before producing 1M of
memory access operations AEP. It is worth mentioning, that some samples didn’t
produce any traces AEP. All data collection was done in the Virtual Box virtual
machine (VM) in order to protect the host system, allow automation and ensure
equal launch conditions for all executables.

9.3.3 Feature construction and selection

Before using our data for training the ML models we have to construct and
select features. Memory access operations (BEP or AEP respectively) are concat-

9.3. Methodology 133

enated into memory access sequence. Based on the methods used in [6] we split
memory access sequence produced by an executable into a set of subsequences:
n-grams of the length 96. These n-grams are overlapping, so every next n-gram
begins from the second element of the previous one. A typical memory access
n-gram looks the following way: RRRWWWWR...WRRRRRRRW. If we treat R as
0 and W as 1 n-gram of a size n=96 becomes binary sequence with potential fea-
ture space of 296. Even though we do not get this amount of distinctive features,
our samples still produce millions of features (see Section 9.5). So we need to
perform feature selection in order to reduce feature space, reject uninformative
features and be able to train ML models in a feasible time. Smaller feature set also
contributes for better understanding of the findings and allows "manual" analysis
if necessary[5][6].

The feature selection is performed in two steps. On the first step we go down
from millions of features to 50,000 by using Information Gain feature selection
method. Information Gain (IG) is an attribute quality measure that reflects "the
amount of information, obtained from the attribute A, for determining the class
C"[14] and is calculated as following:

Gain(A) = −
∑
k

pk log pk +
∑
j

pj
∑
k

pk|j log pk|j

where pk is the probability of the class k, pj is the probability of an attribute to
take jth value and pk|j is the conditional probability of class k given jth value of an
attribute. On the second step we use Correlation-based feature selection (CFS)[9]
from Weka[10] package (CfsSubsetEval). This method selects a subset of features
based on the maximum-Relevance-Minimum-Redundancy principle by selecting
features that have maximal relevance for representing the target class and minimal
mutual correlation[20]. The reason we did not apply this method to the full feature
set is computational complexity. In order to perform CFS feature selection one
needs to calculate correlation matrix between all features which would require
infeasible amount of computational resources and time. We also select 5,10,15 and
30 thousands of features with IG. It is important to know, that CFS adds features
to the feature set until further increase of its merit is no longer possible. Thereby,
in the end we use IG to select the same amount of features as was selected by
CFS. By doing so we can directly compare performance of two feature selection
methods. After the feature selection process we create data that is later used to
train ML models. Basically we generate a table, where each row represents values
that features from the feature set take for a certain sample. In our paper similarly
to [7] we use 1 if feature (memory access n-gram) is generated by sample and 0 if
not.

134 P4: Detection of running malware before it becomes malicious

9.3.4 Machine Learning methods and evaluation metrics

We use Weka[10] machine learning toolkit to build and evaluate our mod-
els. Similarly to [6] we choose the following ML methods to build our models:
k-Nearest Neighbors (kNN), RandomForest (RF), Decision Trees (J48), Support
Vector Machines (SVM), Naive Bayes (NB) and Artificial Neural Network (ANN)
with the default for Weka[10] package parameters. To evaluate quality of mod-
els we use 5-fold cross validation[14] and choose the following evaluation metrics
for models assessment: accuracy (ACC) as number of correctly identified samples
and F1-measure (F1M) which takes into account precision and recall. We omit
using False Positives measure as it is not representative for multinomial classific-
ation. The F1M values presented in Section 9.5 are average weighted. For the
benign against malicious classification our dataset is nearly balanced (see Subsec-
tion 9.4.1), however while doing multinomial classification we had to deal with
imbalanced classes. The problem with imbalanced classes is that evaluation met-
rics does not reflect real quality of models, since simple guessing on the majority
class will give high accuracy. To deal with this problem we apply weights to the
samples, so that sums of the weights of samples within each class would be equal.

9.4 Experimental setup
In this section we describe our dataset, experimental environment and experi-

mental flow.

9.4.1 Dataset

As Windows is the most popular desktop platform [15] we focused on ana-
lyzing Windows malware. Our dataset consists of two parts: malware samples
and benign samples. Benign samples were collected from Portable Apps [21] in
September 2019. It is a collection of free Portable software that includes various
types of software such as graphical, text and database editors; games; browsers;
office, music, audio and other types of Windows software. In total we obtained
2669 PE executables. Malicious samples were taken from VirusShare_00360 pack
downloaded from VirusShare[27]. VirusShare_00360 contained 65518 samples,
out of which 2973 were PE executables. For each sample we downloaded a report
from VirusTotal[26] and left samples that belonged to the 10 most common fam-
ilies. Those families are: Fareit, Occamy, Emotet, VBInject, Ursnif, Prepscram,
CeeInject, Tiggre, Skeeyah, GandCrab. According to the VirusTotal reports, res-
ulted samples were first seen (first submission date) between March 2018 and
March 2019. Not all the samples were launched successfully, and from those that
launched not all the samples produced traces AEP (most likely executables lacked
some resources, e.g. certain libraries). So the amounts of samples that generated

9.5. Results and Analysis 135

Table 9.1: Amount of samples that generated traces BEP and AEP.

Benign Malicious Fareit Occamy Emotet VBInject Ursnif Prepscram CeeInject Tiggre Skeeyah GandCrab
BEP 2098 2005 573 307 196 164 162 143 127 117 115 101
AEP 1717 1755 573 174 188 162 161 143 115 69 73 97

traces BEP and AEP are different. In the Table 9.1 we present amount of samples
of each category that produced traces BEP and AEP.

9.4.2 Experimental environment

For our experiments we used Virtual Dedicated Server with 4-cores Intel Xeon
CPU E5-2630 CPU running at 2.4GHz and 32GB of RAM with Ubuntu 18.04 as
a main operating system. As a virtualization software we used VirtualBox 6.0.14.
We created a Windows 10 VM and disconnected it from the Internet. We have
uploaded Intel Pin togther with our custom tool into the VM. We also disabled all
built-in anti-virus features to make malware run properly and also because they
kept interrupting the work of Intel Pin and created a base snapshot which was used
for all experiments. We controlled the VM and data collection process with Python
3.7 scripts.

9.4.3 Experimental flow

During the data collection phase we begin with starting up a VM. Then we
upload an executable to the VM and launch it together with Intel Pin tool. When a
behavioral trace is ready we download it from the VM and begin a new experiment
with reverting a VM to the base snapshot. It is important to notice that benign
executables were uploaded together with their folder. This allowed more of the
benign applications to run properly and helped to emulate a more real-life scenario,
where benign applications often come with various additional resources they need
for normal operations.

9.5 Results and Analysis
In this section we provide the classification performance of ML models per-

formed under different conditions. We also analyze the results and show how they
align with the Hypotheses from Section 9.1.

9.5.1 Classification performance

Each table contains performance metrics of ML methods (Subsection 9.3.4)
achieved with a feature sets (Subsection 9.3.3) of a different length (FSL stands
for feature set length). Some of the cells contain missing values: due to processing
limitations of Weka we were not able to obtain all of the results.

In the Tables 9.2 and 9.3 the results of malicious against benign classification

136 P4: Detection of running malware before it becomes malicious

Table 9.2: Malicious vs Benign BEP classification performance.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.671 - -
30K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.983 - -
15K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.983 - -
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.983 - -
5K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.983 - -

9 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988
CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988 0.997 0.997

Table 9.3: Malicious vs Benign AEP classification performance.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.974 0.974 0.985 0.985 0.991 0.991 0.948 0.948 0.735 0.720 - -
30K 0.982 0.982 0.990 0.990 0.989 0.989 0.949 0.949 0.795 0.787 - -
15K 0.990 0.990 0.992 0.992 0.988 0.988 0.947 0.947 0.795 0.787 - -
10K 0.990 0.990 0.992 0.992 0.989 0.989 0.955 0.955 0.795 0.787 - -
5K 0.989 0.989 0.991 0.991 0.988 0.988 0.960 0.960 0.795 0.787 - -
39 0.910 0.909 0.910 0.909 0.908 0.908 0.907 0.906 0.844 0.840 0.910 0.909

CFS 39 0.990 0.990 0.990 0.990 0.989 0.989 0.987 0.987 0.982 0.982 0.991 0.991

BEP and AEP are presented. As we can see, under our experimental design it is
possible to achieve classification accuracy of 0.999 for BEP and 0.992 for AEP
with 10000 features. CFS selected 9 features for BEP and 39 for AEP. Classifica-
tion performance with use of CFS-selected features is slightly lower than the best
result achieved with those selected by IG. At the same time, it is often higher for
the same amount of features selected by IG.

In the Tables 9.4 and 9.5 we present performance of ML models in classi-
fying benign and 10 malicious families using features generated BEP and AEP.
In these tables we show classification performance for the imbalanced (Imb) and
balanced datasets (Bal) (Subsection 9.3.4). As we can see, performance of multi-
nomial classification is lower than the benign against malicious classification. By
using BEP and AEP features we achieved 0.605 and 0.749 classification accuracy
respectively. The main observation that can be derived from these tables is that it
is easier to distinguish between benign executables and 10 malware families using
features generated AEP than BEP. As the number of samples that produced traces
BEP and AEP is different we have also tested the performance of features from
BEP on the normalized dataset, when we only take into account samples that pro-
duced traces AEP. These results are present in the Appendix Appendix A. We also
combined features produced BEP and AEP and tested classification performance
of the combined feature set. These results presented in the Appendix Appendix B.

9.5. Results and Analysis 137

Table 9.4: 10 Malicious families vs Benign BEP classification performance.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.812 0.776 0.812 0.775 0.811 0.771 - - 0.429 0.462 - -
50K

Bal 0.601 0.546 0.605 0.549 0.596 0.541 - - 0.403 0.326 - -
Imb 0.812 0.777 0.813 0.776 0.808 0.769 0.789 0.740 0.687 0.667 - -

30K
Bal 0.598 0.542 0.600 0.543 0.594 0.538 0.549 0.477 0.433 0.355 - -
Imb 0.813 0.777 0.815 0.777 0.811 0.772 0.792 0.745 0.689 0.668 - -

15K
Bal 0.594 0.538 0.596 0.540 0.594 0.539 0.565 0.501 0.435 0.355 - -
Imb 0.813 0.775 0.814 0.776 0.809 0.770 0.798 0.753 0.689 0.668 - -

10K
Bal 0.589 0.531 0.593 0.535 0.590 0.531 0.569 0.502 0.435 0.356 - -
Imb 0.789 0.745 0.790 0.745 0.789 0.743 0.782 0.728 0.633 0.591 - -

5K
Bal 0.508 0.446 0.513 0.452 0.512 0.446 0.492 0.413 0.382 0.301 - -
Imb 0.653 0.575 0.653 0.575 0.653 0.575 0.652 0.571 0.651 0.567 0.652 0.573

InfoGain

92
Bal 0.184 0.140 0.185 0.140 0.183 0.137 0.182 0.135 0.180 0.128 0.170 0.136
Imb 0.813 0.775 0.813 0.775 0.810 0.769 0.805 0.760 0.740 0.725 0.810 0.771

CFS 92
Bal 0.585 0.526 0.585 0.527 0.578 0.529 0.572 0.512 0.521 0.467 0.576 0.540

Table 9.5: 10 Malicious families vs Benign AEP classification performance.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.890 0.883 0.902 0.890 0.897 0.888 - - 0.433 0.420 - -
50K

Bal 0.715 0.694 0.724 0.714 0.749 0.737 - - 0.503 0.418 - -
Imb 0.891 0.883 0.891 0.883 0.898 0.888 0.727 0.635 0.505 0.527 - -

30K
Bal 0.725 0.705 0.732 0.714 0.729 0.708 0.539 0.498 0.493 0.414 - -
Imb 0.889 0.881 0.900 0.891 0.898 0.887 0.780 0.712 0.508 0.530 - -

15K
Bal 0.724 0.704 0.731 0.714 0.723 0.702 0.625 0.589 0.499 0.420 - -
Imb 0.887 0.878 0.900 0.891 0.897 0.886 0.805 0.756 0.509 0.530 - -

10K
Bal 0.717 0.695 0.725 0.706 0.729 0.711 0.645 0.606 0.497 0.418 - -
Imb 0.866 0.851 0.872 0.854 0.865 0.848 0.747 0.669 0.384 0.384 - -

5K
Bal 0.660 0.618 0.661 0.619 0.653 0.605 0.504 0.442 0.433 0.342 - -
Imb 0.694 0.615 0.694 0.616 0.693 0.613 0.688 0.604 0.670 0.597 0.693 0.617

InfoGain

40
Bal 0.306 0.212 0.307 0.206 0.302 0.204 0.299 0.217 0.298 0.193 0.283 0.225
Imb 0.902 0.896 0.903 0.892 0.891 0.880 0.889 0.873 0.872 0.864 0.900 0.890

CFS 40
Bal 0.725 0.701 0.726 0.704 0.717 0.695 0.706 0.667 0.695 0.653 0.722 0.692

9.5.2 Analysis

From the results presented in Tables 9.2 and 9.3 we can conclude that both
Hypotheses 1 and 2 are supported: we can distinguish between malicious and be-
nign behavior BEP and AEP. However, even if there is a visible decline in accuracy
when switching from AEP behavior to BEP it is relatively low. Thus, we are not
able to conclude that our approach allows to detect malware BEP better then AEP
or vise versa. Thereby, we were not able to support or reject Hypothesis 3. This
may be a reflection of property of our dataset or a limitation of our approach, and
therefore needs further investigation in the future work.

By looking at the numbers of features selected by CFS we can see, that it se-
lects more features for BEP data than for AEP data. And it’s not surprising, since
the behavior of executables become more diverse AEP: this is where their internal
logic starts being executed. It is also confirmed by the amount of unique features

138 P4: Detection of running malware before it becomes malicious

Table 9.6: Evaluation of Hypotheses after analyzing the results

H 1 H 2 H 3 H 4 H 5 H 6
Supported Yes Yes - Yes Yes Yes

produced by the samples BEP and AEP. Malicious samples produced more than
1M features BEP, and more than 7M features AEP. On the other hand, benign ap-
plications produced more than 4.5M of features BEP and almost 20.5M AEP. This
resulted in more then 5M unique features to choose from for BEP classification,
and 25M for AEP classification. This also shows, that benign applications are
more diverse and produce more distinctive memory access patterns as a result of a
more distinctive behavior. And it makes sense, since malware samples belong to
10 malware families, thus should share more common properties according to the
definition of malware family from [5].

The results of multinomial classification (Tables 9.4 and 9.5) are more di-
verse then those for malicious against benign classification. This time, it is clearly
easier to distinguish between 11 classes AEP than BEP. Even though multinomial
classification accuracy BEP is not that impressive it is still significantly better than
potential accuracy of 0.09(09) that can be achieved by random guessing. Thus we
can conclude, that Hypothesis 4 is supported. Multinomial classification accuracy
AEP was significantly better. So we can conclude that Hypothesis 5 is also sup-
ported, thereby Hypothesis 6 as well.

This time CFS has chosen less features for the AEP classification than for the
BEP classification. As we mentioned above, malware assigned to one of the fam-
ilies based on its particular functionality. And this functionality becomes revealed
AEP. Thereby it is logical to say, that classification of 11 classes is more accurate
based on the behavior generated AEP. Table 9.6 present combined results of the
Hypotheses evaluation.

9.6 Discussion
In this section we present an attempt to interpret our findings. Earlier, we

showed the possibility of malware detection based on the memory access patterns
generated BEP. So, we wanted to find an explanation of why the BEP activity of
malicious and benign executables is so different. More specifically we wanted to
see which high-level activity is responsible for generating specific memory access
patterns. As it was written in Subsection 9.3.2, we recorded not only memory
access operations, but also routine names for each executed opcode. Since BEP
activity happens in the Windows libraries (Subsection 9.3.1) we are always able
to derive a name of a current routine. Thereby, a memory access pattern can
be represented as a sequence of routine names. However, our memory access

9.7. Conclusions 139

patterns are of a length 96, so having 96 routine names (many of which are re-
petitive) makes analysis harder and adds redundant information. Thus, we de-
cided to represent each memory access pattern as a sequence of unique routine
names. For example, if memory access pattern begins in a routine RTN_1, pro-
ceeds into the RTN_2 and finishes in the RTN_1 we store the following sequence:
{RTN_1,RTN_2,RTN_1}. After performing this search on the 9 features selected
by CFS (Subsection 9.5.1) we made a surprising discovery: most of these fea-
tures originated in RtlAllocateHeap routine from the ntdll.dll Windows library.
Some memory access patterns were completely generated by RtlAllocateHeap,
while others involved other routines as well. The same memory access pattern
can be found in different routine sequences. However, similar to [6], this is the
result of our patterns structure and feature construction method (e.g. they can start
and end with a sequence of repetetive W’s or R’s) that allow similar pattern to
appear multiple times in a row. For example, one feature can be found in the fol-
lowing sequences: {RtlAllocateHeap}, {bsearch,RtlAllocateHeap}, {LdrGetPro-
cedureAddressForCaller,RtlAllocateHeap}, {RtlEqualUnicodeString, RtlAllocate-
Heap}. The RtlAllocateHeap routine is responsible for allocating a memory block
of a certain size from a heap. Thus, when the Final Process Initialization phase of
process creating flow needs to allocate a memory block it produces a distinctive
activity that allows to distinguish between malicious and benign processes on the
stage of initialization. Unfortunately, we were not able to explain why this memory
allocation activity can be so distinctive. Neither the official Microsoft documenta-
tion on RtlAllocateHeap, nor the Windows Internals book[28] gives enough details
about memory allocation routines. To answer this question, one may need to re-
verse engineer ntdll.dll library and perform a Kernel-level[24] debugging. And we
leave it for the future work, as this is out of scope of this paper.

9.7 Conclusions
In this paper we presented a novel dynamical malware analysis approach,

where we distinguish between activity produced before and after Entry Point. As
we were able to show, it is possible to distinguish between malicious and benign
executables BEP with accuracy of up to 0.999 with 10000 features, and up to 0.997
with just 9 features. It means, that it is possible to detect malicious executables on
the stage of their launch: before they become malicious. We also found, that dis-
tinguishing between benign samples and samples from 10 malware families is also
possible using BEP activity. We have also made an interesting discovery: many
of the memory access patterns used for malware detection BEP are generated by
the RtlAllocateHeap routine. This paper shows a need for further research of the
low-level activity use in malware analysis. First of all, we need to make a complete
explanation of why the BEP activity of malicious and benign executables are that

140 Bibliography

different. Second, we have to check the robustness of this approach against the
previously unknown malware. Lastly, to fully utilize the capabilities of BEP-AEP
approach we need to study the possibility of building the real-time system that
uses our approach. This will involve assessment of computational overhead and
potential impact on the user experience.

9.8 Bibliography
[1] Najwa Aaraj, Anand Raghunathan, and Niraj K Jha. Dynamic binary

instrumentation-based framework for malware defense. In Detection of In-
trusions and Malware, and Vulnerability Assessment.

[2] AVTEST. The independent IT-Security Institute. Malware. https://www.
av-test.org/en/statistics/malware/, 2020.

[3] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. Hpcmal-
hunter: Behavioral malware detection using hardware performance counters
and singular value decomposition. In Computer and Knowledge Engineer-
ing (ICCKE), 2014 4th International eConference on, pages 703–708. IEEE,
2014.

[4] Mohammad Bagher Bahador, Mahdi Abadi, and Asghar Tajoddin. Hlmd:
a signature-based approach to hardware-level behavioral malware detection
and classification. The Journal of Supercomputing, 75(8):5551–5582, 2019.

[5] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification
via low-level features. Digital Investigation, 26:S107–S117, 2018.

[6] Sergii Banin and Geir Olav Dyrkolbotn. Correlating high-and low-level fea-
tures. In International Workshop on Security, pages 149–167. Springer, 2019.

[7] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[8] Pete Burnap, Richard French, Frederick Turner, and Kevin Jones. Malware
classification using self organising feature maps and machine activity data.
computers & security, 73:399–410, 2018.

[9] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[11] IntelPin. A dynamic binary instrumentation tool, 2017.

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Bibliography 141

[12] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[13] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu Ghaza-
leh, and Dmitry V Ponomarev. Ensemblehmd: Accurate hardware malware
detectors with specialized ensemble classifiers. IEEE Transactions on De-
pendable and Secure Computing, 2018.

[14] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[15] NetMarkeshare. Operating system market share. https://netmarketshare.com/
operating-system-market-share.aspx, 2020.

[16] NIST. National vulnerability database. https://nvd.nist.gov/vuln/search/
statistics?form_type=Basic&results_type=statistics&search_type=all, 2020.

[17] NIST. National vulnerability database: Windows. https://nvd.nist.gov/vuln/
search/statistics?form_type=Advanced&results_type=statistics&query=Windows&
search_type=all, 2020.

[18] Meltem Ozsoy, Caleb Donovick, Iakov Gorelik, Nael Abu-Ghazaleh, and
Dmitry Ponomarev. Malware-aware processors: A framework for efficient
online malware detection. In 2015 IEEE 21st International Symposium on
High Performance Computer Architecture (HPCA), pages 651–661. IEEE,
2015.

[19] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based malware detection
using low-level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

[20] Hanchuan Peng, Fuhui Long, and Chris Ding. Feature selection based on
mutual information criteria of max-dependency, max-relevance, and min-
redundancy. IEEE Transactions on pattern analysis and machine intelli-
gence, 27(8):1226–1238, 2005.

[21] PortableApps.com. Portableapps.com. https://portableapps.com/apps, 2020.

[22] Reuters. Ukraine’s power outage was a cyber attack: Ukren-
ergo. https://www.reuters.com/article/us-ukraine-cyber-attack-energy/
ukraines-power-outage-was-a-cyber-attack-ukrenergo-idUSKBN1521BA, 2017.

[23] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. Ma-
chine learning aided static malware analysis: A survey and tutorial. In Cyber
Threat Intelligence, pages 7–45. Springer, 2018.

https://netmarketshare.com/operating-system-market-share.aspx
https://netmarketshare.com/operating-system-market-share.aspx
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Basic&results_type=statistics&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Windows&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Windows&search_type=all
https://nvd.nist.gov/vuln/search/statistics?form_type=Advanced&results_type=statistics&query=Windows&search_type=all
https://portableapps.com/apps
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA
https://www.reuters.com/article/ us-ukraine-cyber-attack-energy/ukraines-power-outage-was-a-cyber- attack-ukrenergo-idUSKBN1521BA

142 Bibliography

[24] Michael Sikorski and Andrew Honig. Practical malware analysis: the hands-
on guide to dissecting malicious software. no starch press, 2012.

[25] The Verge. The petya ransomware is starting to look like a
cyberattack in disguise. https://www.theverge.com/2017/6/28/15888632/
petya-goldeneye-ransomware-cyberattack-ukraine-russia, 2017.

[26] Virus Total. Virustotal-free online virus, malware and url scanner. Online:
https://www. virustotal. com/en, 2012.

[27] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[28] Pavel Yosifovich. Windows Internals, Part 1 (Developer Reference). Mi-
crosoft Press, may 2017.

https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia
https://www.theverge.com/2017/6/28/ 15888632/petya-goldeneye-ransomware- cyberattack-ukraine-russia
http://virusshare.com/

Appendices 143

Appendix A Classification results: normalized dataset
Here we present classification results for the normalized dataset using features

from BEP.

Table 7: Malicious vs Benign BEP classification performance on the normalized dataset.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50000 0.997 0.997 0.996 0.996 0.998 0.998 0.981 0.980 0.750 0.738 - -
30K 0.997 0.997 0.997 0.997 0.998 0.998 0.983 0.983 0.981 0.980 - -
15K 0.997 0.997 0.999 0.999 0.998 0.998 0.990 0.990 0.981 0.980 - -
10K 0.997 0.997 0.999 0.999 0.998 0.998 0.990 0.990 0.981 0.980 - -
5K 0.995 0.994 0.996 0.996 0.997 0.997 0.988 0.988 0.981 0.981 - -
10 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 10 0.998 0.998 0.998 0.998 0.997 0.997 0.998 0.998 0.988 0.988 0.997 0.997

Table 8: 10 Malicious families vs Benign BEP classification performance on the normal-
ized dataset.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.819 0.779 0.818 0.776 0.817 0.774 - - 0.478 0.500 - -
50K

Bal 0.586 0.528 0.588 0.528 0.590 0.532 - - 0.386 0.292 - -
Imb 0.817 0.776 0.819 0.777 0.816 0.774 0.798 0.744 0.685 0.659 - -

30K
Bal 0.579 0.517 0.587 0.525 0.591 0.536 0.555 0.491 0.423 0.337 - -
Imb 0.815 0.774 0.821 0.779 0.815 0.770 0.799 0.747 0.686 0.662 - -

15K
Bal 0.574 0.511 0.587 0.525 0.584 0.522 0.587 0.525 0.428 0.345 - -
Imb 0.817 0.776 0.819 0.777 0.817 0.772 0.800 0.749 0.685 0.660 - -

10K
Bal 0.576 0.513 0.580 0.517 0.578 0.518 0.569 0.505 0.422 0.335 - -
Imb 0.812 0.769 0.815 0.771 0.814 0.770 0.803 0.750 0.631 0.572 - -

5K
Bal 0.571 0.505 0.570 0.505 0.570 0.509 0.564 0.502 0.419 0.313 - -
Imb 0.663 0.579 0.663 0.579 0.663 0.579 0.661 0.575 0.661 0.575 0.661 0.575

InfoGain

52
Bal 0.190 0.135 0.189 0.155 0.189 0.133 0.189 0.144 0.188 0.131 0.190 0.146
Imb 0.823 0.782 0.822 0.781 0.817 0.772 0.809 0.760 0.739 0.721 0.823 0.781

CFS 52
Bal 0.588 0.531 0.584 0.525 0.584 0.525 0.571 0.510 0.507 0.444 0.567 0.529

144 Appendices

Appendix B Classification results: combined feature set
Here we present classification results achieved with combined feature set.

Table 9: Malicious vs Benign classification performance on the normalized dataset using
combined feature set

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50000 0.996 0.996 0.998 0.998 0.999 0.999 0.981 0.981 0.981 0.980 - -
30K 0.996 0.996 0.999 0.999 0.998 0.998 0.982 0.982 0.981 0.980 - -
15K 0.997 0.997 0.999 0.999 0.998 0.998 0.987 0.987 0.981 0.980 - -
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.989 0.989 0.981 0.980 - -

5K 0.999 0.999 0.999 0.999 0.998 0.998 0.995 0.995 0.981 0.980 - -
13 0.988 0.987 0.988 0.987 0.998 0.998 0.988 0.987 0.988 0.987 0.988 0.987

CFS 13 0.997 0.997 0.998 0.998 0.996 0.996 0.996 0.996 0.988 0.988 0.997 0.997

Table 10: 10 Malicious families vs Benign classification performance on the normalized
dataset using combined feature set.

kNN RF J48 SVM NB ANN
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

Imb 0.910 0.905 0.917 0.910 0.910 0.906 - - 0.802 0.771 - -
50K

Bal 0.740 0.718 0.749 0.726 0.746 0.736 - - 0.508 0.419 - -
Imb 0.906 0.900 0.918 0.910 0.910 0.904 0.787 0.750 0.795 0.761 - -

30K
Bal 0.744 0.744 0.743 0.722 0.734 0.718 0.518 0.465 0.495 0.403 - -
Imb 0.904 0.898 0.917 0.909 0.908 0.902 0.806 0.771 0.908 0.902 - -

15K
Bal 0.744 0.723 0.740 0.720 0.737 0.723 0.608 0.570 0.493 0.400 - -
Imb 0.903 0.896 0.909 0.901 0.908 0.898 0.799 0.765 0.790 0.753 - -

10K
Bal 0.735 0.708 0.729 0.705 0.728 0.707 0.593 0.550 0.486 0.388 - -
Imb 0.792 0.763 0.789 0.759 0.790 0.757 0.754 0.710 0.679 0.647 - -

5K
Bal 0.535 0.499 0.534 0.498 0.535 0.499 0.440 0.382 0.408 0.311 - -
Imb 0.663 0.579 0.662 0.577 0.662 0.577 0.662 0.577 0.660 0.569 0.663 0.579

InfoGain

62
Bal 0.190 0.134 0.191 0.156 0.190 0.134 0.189 0.133 0.181 0.418 0.185 0.140
Imb 0.915 0.909 0.916 0.909 0.909 0.903 0.896 0.879 0.876 0.862 0.908 0.903

CFS 62
Bal 0.744 0.722 0.745 0.724 0.739 0.721 0.723 0.691 0.669 0.625 0.743 0.729

Chapter 10

P5: Fast and straightforward
feature selection method: A case
of high dimensional low sample
size dataset in malware analysis

Sergii Banin

Abstract
Malware analysis and detection is currently one of the major topics in the in-

formation security landscape. Two main approaches to analyze and detect malware
are static and dynamic analysis. In order to detect a running malware, one needs
to perform dynamic analysis. Different methods of dynamic malware analysis
produce different amounts of data. The methods that rely on low-level features
produce very high amounts of data. Thus, machine learning methods are used to
speed up and automate the analysis. The data that fed into machine learning al-
gorithms often requires preprocessing. Feature selection is one of the important
steps of data preprocessing and often takes significant amount of time. In this pa-
per we analyze the Intersection Subtraction (IS) feature selection method that was
first proposed and used on a high dimensional dataset derived from the behavi-
oral malware analysis. In our work, we assess its computational complexity and
analyze potential strengths and weaknesses. In the end, we compare Intersection
Subtraction and Information Gain (IG) feature selection methods in term of poten-
tial classification performance and time complexity. We apply them to the dataset
of memory access patterns produced by malicious and benign executables. As the
result we found, that the features selected by IS and IG are very different. Nev-

145

146 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

ertheless, machine learning models trained with IS-selected features performed
almost as good as those trained with IG-selected features. IS allowed to achieve
the classification accuracy of more than 99%. We also show, the IS feature selec-
tion method is faster than IG what makes it attractive to those who need to analyze
high dimensional datasets.

10.1 Introduction
Today many researchers from different research areas have to deal with big

amounts of data. Various statistical methods are used to process and understand
data that is too big or complex for human analysis. Part of these methods are
called machine learning: "the automatic modeling of underlying processes that
have generated the collected data" [22]. Currently, machine learning is one of the
most used approaches when there is a need to predict certain qualities of objects or
events. Machine learning algorithms can be divided into supervised (classification
and regression) and unsupervised (clustering). In this paper we focus on the classi-
fication: prediction of a class (type) of a sample based on its features (properties).
Machine learning is widely used in different fields such as medicine, biology, man-
ufacturing [24] or information security [31] [4]. In information security, machine
learning is extensively used in production and research, as the amounts of data that
need to be processed are enormous. Especially, machine learning is actively used
for malware analysis and detection. According to AV-TEST Institute, there are
more than 350,000 new malware samples detected every day [3]. The developers
of the anti-virus solutions and researchers work on finding a way to detect malware
without having to search through the entire database of already known malware.
Moreover, they try to find methods that allow detecting previously unknown mal-
ware. The common practice is to find certain characteristics that are common to
many malware samples. As the number of malware is very big and growing [3]
the machine learning methods are used to deal with the emerging amount of data.
Machine learning methods rely on features: properties of objects that are being
studied. There are two main types of features that can be extracted from malware:
static and dynamic. Static features are extracted directly from the malicious file
without a need to launch it. Static features are relatively easy to extract, but at
the same time it is easier to change them with a use of obfuscation or encryption
[1]. However, malware becomes malicious only after it has been launched. The
features that occur after the launch of malware are called dynamic, or behavioral
features. We can divide dynamic features into high- and low-level features [6]. File
and network activity, API [2] and system calls are some of the high-level features,
while opcodes, memory access operations [38] or hardware performance counters
are considered to be low-level ones. We name dynamic features that emerge from
the system’s hardware as the low-level features [5] [21] [25]. To represent a certain

10.1. Introduction 147

behavioral event with low-level features we need to record and process a signific-
antly bigger amount of data. For example, to describe an API call on the high
level we only need its name and arguments passed to it on the call. However, if we
decide to record a sequence of opcodes or memory access operations invoked by
the API call we’ll end up with hundreds if not thousands of events. In this paper,
we address a problem that arises from the number of low-level features one needs
to record and process while doing dynamic malware analysis.

While machine learning provides good opportunities for automation and ana-
lysis, the data that is used by machine learning algorithms has to be preprocessed.
Various methods of data preprocessing are described in the literature: discretiz-
ation of continuous features, attribute binarization, the transformation of discrete
features into continuous, dimensionality reduction and so on [22]. The first three
of the aforementioned methods are mostly used when the chosen machine learning
algorithm works only with a certain type of data. For example, the Naive Bayes
classifier needs discrete data to provide a useful outcome. On its turn, dimension-
ality reduction is often needed, when the amount of features in the dataset is too
big. Having too many features can result in increased model training times and
model overfitting. There are several ways to reduce dimensionality: feature subset
selection, feature extraction and principal components analysis (PCA) [22]. Fea-
ture extraction is aimed at finding a set of new features that are constructed as a
function of original features. On its turn, PCA finds a new coordinate system with
a focus on making the axes aligned with the highest variance of the data. These
methods, however, make it harder to analyze the results achieved by the machine
learning model: it is sometimes important to understand which features contribute
the most towards the classification performance of a model. In such cases, in or-
der to reduce the dimensionality, one may apply feature (subset) selection. With
feature selection it is possible to select a certain amount of best features based on
a certain feature quality measure while keeping the original features intact.

Feature selection is aimed at the dimensionality reduction. Ironically, when the
amount of features becomes too big (for example millions as in [8] or [5]) the fea-
ture selection becomes a very computationally intense task. The datasets where the
number of features is much bigger than the number of learning samples are called
High-dimensional low (small) sample size (HDLSS/HDSSS) datasets. Sometimes
there are so many features [8], that commonly used machine learning packages
simply can not handle such datasets. Storing such a dataset in the single file or
database table becomes a problem as well. Thus, the use of the common machine
learning packages becomes impossible since they require data to be stored in one
piece. On its turn, developing and implementation of a custom machine learning
package can take more time than actual data collection and be a hard task for the
researchers that don’t have enough expertise in software development.

148 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

In this paper we focus on the feature selection method that was developed and
used in [8] to detect malware based on the memory access patterns. In [8] the
dataset contained almost six millions of binary features and 1204 samples divided
into two classes. The features represented sequences of memory access operations
generated by malicious and benign software. The feature took value 1 if it was
generated by a sample, and 0 if not. Utilized feature selection method was aimed
at removing those features, that are present (take value 1) in the samples of both
classes. Thus, it is named Intersection Subtraction (IS) feature selection method.
This method helped authors of [8] to reduce feature space from 6M of features to
800. With the use of selected features, it became possible to train a classification
model that achieved 98% classification accuracy for the two-class dataset. In this
paper, we provide an additional analysis of the IS feature selection method and
discuss its advantages and disadvantages. We also compare its performance with
an Information Gain [22] feature selection method in a similar malware detection
problem. We run our tests on the newer and larger dataset of malicious and benign
executables. We show how machine learning models trained with features selected
by IS feature selection perform compared to those selected by IG.

The remainder of the paper is arranged as follows. In Section 10.2 we de-
scribe the problem and provide an overview of related articles. In Section 10.3
we describe the IS feature selection method, theoretically assess its strengths and
weaknesses and explain the context in which IS might be used. In the Section 10.4
we describe our experimental setup, compare feature sets selected by IS and IG,
and train machine learning algorithms with the use of selected features. In Section
10.5 we discuss our findings and outline the future work. In the last Section 10.6
we summarize our findings and provide conclusions.

10.2 Background
In this section, we describe the problem area and provide an overview of the

papers related to HDLSS datasets and feature selection.

10.2.1 Problem description

While talking about the optimal size of the dataset to be used in machine learn-
ing model training, different authors consider different dataset sizes to be optimal.
The size of the dataset consists of a number of samples and features. In various
sources [26] [15] one can find suggestions, that a minimal amount of samples for
training should be between 50 and 80, while 200 and more samples are expected to
bring increased accuracy and significantly smaller error rates. Other authors have
shown that it is important to have at least 20 to 30 samples per class [11]. When
talking about the number of features it is generally considered, that the fewer fea-
tures there are in the dataset - the better it is for machine learning algorithm [8] [5]

10.2. Background 149

[7] [22]. Some authors advise utilizing the rule of 10: in order to train a model with
a good performance, one needs to have ten times more samples than the number of
features [23]. However, in some cases, the number of features can be significantly
higher than the number of learning samples. This may happen due to the context
of the research and the nature of data. For example, in [8] the authors describe
a novel malware detection approach. They record memory access operations per-
formed by malicious and benign executables, split them into n-grams of various
sizes and use those n-grams as features for training the machine learning models.
Each feature could take value 1 or 0 if the n-gram represented by the feature was
or was not generated by the sample respectively. The sequence of memory ac-
cess operations is a sequence of Reads (R) and Writes (W). In their work, authors
record a first million of memory access operations performed by each executable
after it was launched. Afterwards, the sequence of memory access operations is
being split into the set of overlapping n-grams of a size 96. Since memory access
operations take only two possible values (R and W), the potential feature space of
the above-mentioned approach is 296 if a sequence of memory access operations
would be completely random. However, as the same authors mention in their next
paper [5], the memory access operations are not random. Thus in [8] their ini-
tial feature space is "only" about 6M of features. They had 1204 samples divided
into two classes. This can be considered a good sample size based on what was
suggested in [11] [15]. However, the amount of features generated under such
experimental design makes it impossible to follow "the rule of 10". A straightfor-
ward approach in such conditions could be to simply use all the data for training
the machine learning model. However, just the storage of a complete dataset from
[8] would take more than 6GB of space. Popular machine learning frameworks
such as Weka [19] or Scikit-learn [26] are not suited to load and handle so much
data. This shows a need for dimensionality reduction. In the works similar to [8]
or [5] it is important to keep the original features in order to be able to interpret
results. For example, having the results from [8] it might be possible to under-
stand which memory access patterns make malicious behavior distinctive from the
benign behavior. Thereby, dimensionality reduction methods such as feature ex-
traction or PCA are not applicable in such cases. On its turn, feature selection can
help to select a subset features without hindering their original state.

Feature selection methods can be divided into several categories: filter, wrap-
per and embedded methods. Filter methods choose features based on a certain
quality measure such as Pearsons correlation, Chi-square, mutual information and
so on. Wrapper methods choose features based on the classification performance
of the target machine learning model trained with the use of those features [33].
Wrapper methods are very computationally intense since for every possible fea-
ture subset there is a need to train and test the machine learning model. Embedded

150 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

methods, as the name states, are embedded in the machine learning algorithms.
Algorithms such as Decision Trees [22] perform feature selection simultaneously
with model training. However, the computational overhead is higher than one of
the filter methods and such algorithms are susceptible to overfitting [9] and are
not suitable for high dimensional data [33]. So for the research similar to [8] the
most suitable approach for dimensionality reduction will be a filter-based method.
In the case of (very) high dimensional data, it is crucial to have a feature selec-
tion method with the lowest possible computational overhead. The perfect feature
selection method will have a computational complexity of O(n) that is linear to
a number of features n. But such a method does not exist, since filter methods
are aimed to select features that represent classes (and consequently samples) in
the best possible way [22]. Thereby, while choosing the feature selection method
to work on the high dimensional dataset it is desirable to choose a method with
the computational complexity of O(mn) where m is the number of samples in the
dataset.

The use of different filter-based feature selection methods are described in vari-
ous papers. Information Gain [7] [24], Correlation-based feature selection [5] [17]
and ReliefF [17] are some of the common feature selection methods. Informa-
tion Gain (IG) ranks features based on entropy in respect to the classes and can
be described as "the amount of information, obtained from the attribute A, for de-
termining the class C" [22]. Basically, in order to perform a feature selection based
on IG one have to calculate probabilities of an attribute to take certain values and
relevant class-conditional probabilities. This results in a computational complexity
aroundO(mn), where n is the amount of features and m is the amount of samples.
Correlation-based Feature selection method (CFS) was proposed in [18] and is
aimed at selecting the subset of features that have a high correlation to the class
but low correlation between each other. By doing so it is possible to find a subset
of features with minimal redundancy. The problem with this method, is that it re-
quires to calculate a pairwise correlation matrix between all of the n features and
m classes which requires m((n2 − n)/2) operations. The feature selection search
could require an additional (n2−n)/2 operations in a worst-case scenario. With a
potential computational complexity ofO(m((n2−n)/2)+(n2−n)/2) the use of
CFS for high dimensional data becomes very problematic. For example, just stor-
ing of correlation matrix needed for 6M of features in [8] would require at least 18
TB of space. Thus, in order to apply CFS on high dimensional datasets it might
be useful to first reduce a feature space with another, less computationally intense,
feature selection method and only after apply the CFS [5]. ReliefF ranks features
based on their ability to separate close samples from the different classes [22]. In
order to perform feature selection with ReliefF, it is first important to calculate a
distance matrix between all samples. The resulting computational complexity of

10.2. Background 151

the method can be roughly estimated as O(n((m2 − m)/2)) that is almost m/2
times more than the one of the IG. Having a large n makes the use of ReliefF less
favorable than IG.

Based on the assumptions about the computational complexity of the above-
mentioned feature selection methods one can make a conclusion, that IG might be
one of the best choices when it comes to the high dimensional datasets. The prob-
lem is that even the feature selection methods with O(mn) complexity become
slow with the large numbers of n. And as we mentioned above, common machine
learning packages are not suitable to work with big datasets. Thus, a researcher
that needs to perform feature selection on such datasets is forced to develop a
custom implementation of feature selection algorithm with regards to the data in
interest. In this case, inefficient implementation of the common feature selection
algorithm may result in significant use of time and even inability to obtain results
(e.g. due to the lack of virtual memory). For example, the Information Gain of a
feature is calculated with the following formula:

Gain(A) = −
∑
k

pk log pk +
∑
j

pj
∑
k

pk|j log pk|j

where pk is the probability of the class k, pj is the probability of an attribute to
take jth value and pk|j is the conditional probability of class k given jth value of
an attribute [22]. This shows, that it is necessary to "count" how many times each
attribute takes a certain value in total and when a certain class is given. Lets rewrite
previously mentioned computational complexity of IG as O(nTqmeaureIG) where
TqmeaureIG = f(m) is the computational time needed to calculate the quality
measure (Information Gain in this case) of a feature. We will need TqmeaureIG
later, to show that the IS feature selection method works faster than IG, which
is important when working with high dimensional datasets. Thus, it is easy to see
that the inefficient implementation of IG can significantly increase the time needed
to obtain the results. As we will later show, it is possible to overcome this problem
with a Intersection Subtraction feature selection method.

10.2.2 Literature overview

In this subsection, we refer to papers where authors addressed the problems re-
lated to HDLSS datasets and feature selection on them. In the [12] authors outline
both curses and blessings of high dimensionality. By blessings of dimensionality,
they mention the phenomenon of measure concentration and the success of asymp-
totic methods. While talking about curses of dimensionality authors outline several
areas where they can occur: optimization, function approximation and numerical
integration. They also stress attention to the fact, that many "classical" statistical
methods are based on the assumption, that the amount of features n is less than the

152 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

amount of samples m, while m→∞. However, these methods may fail if n > m,
especially when n → ∞. Other authors in [14] outline the following challenges
of high dimensionality: "(i) high dimensionality brings noise accumulation, spuri-
ous correlations and incidental homogeneity; (ii) high dimensionality combined
with large sample size creates issues such as heavy computational cost and al-
gorithmic instability" [14]. As well as authors of [12] they outline, that traditional
statistical methods may fail when used on high dimensional data. The authors of
[40] review the performance and limitations of several common classifiers such as
Naive Bayes, Linear Discriminant Analysis, Logistic regression, Support Vector
Machines and Distance Weighted Discrimination in the case of two-class classi-
fication problem on HDLSS datasets. They also say, that if the number of features
n→∞ and both classes are from the same distribution "the probability that these
two groups are "perfectly" separable converges to 1" [40]. In simple words, it
means, that with a large enough amount of features it should be possible to con-
struct a set of rules (build a classifier) that will perfectly fit (overfit) the training
data. This fact outlines the importance of thorough feature selection. It will im-
prove the capability of machine learning algorithms to create models with good
generality and interpretability. The model with good generality is the model that
is capable of generalizing over the dataset; such model would not be significantly
changed if the number of samples in the dataset is slightly increased/decreased
[40]. A model with good interpretability makes the analysis of the model itself
easier. The fewer features are involved during the training the easier it is to ana-
lyze the obtained model. For example, authors of [5] underline the importance of
the fact, that having 29 features instead of 6M or 15M helps in the understand-
ing of the underlying processes. They performed multinomial (10 class) malware
classification with the use of features constructed from memory access patterns.
Similarly to [8], they used memory access 96-grams as features. Such feature,
if found to be important in the classification, can not be directly understood by
a human analyst. Thus, in [6] they made an attempt to interpret memory access
sequences with more high-level system events (API calls). Such analysis would be
much harder if they had millions of features instead of 29.

Various authors addressed the problem of feature selection on HDLSS datasets
more specifically. For example same authors in [36] and [37] present possible im-
provements to the PCA in HDLSS cases. In [36] they propose a way to estimate
singular value decomposition of the cross data matrix. Later, in [37] authors ex-
plore the impact of the geometric representation of HDLSS data on a possibility
to converge the dataset to an n-dimensional surface. The authors of [13] propose
a nonlinear transformation of HDLSS data. They showed, how transformation
based on inter-point distances helps to increase final classification accuracy. In the
[39] the authors propose a hybrid feature selection method that is based on ant-

10.3. Intersection Subtraction selection method 153

lion optimization and grey wolf optimization methods (ALO-GWO). They evalu-
ate the performance of the proposed method on several HDLSS datasets. The au-
thors show that the ALO-GWO feature selection method provides a good balance
between the performance of models and the ability to reduce a feature space. The
above-mentioned papers addressed the problem of feature selection on HDLSS.
However, the number of features in the dataset used in those papers rarely ex-
ceeded several tens of thousands (e.g. in [39]). On their turn, authors of [16]
during the test of their feature selection method used a dataset with more than
3M of features. In their work, they proposed a feature selection method based on
bijective soft sets (BSSReduce). They claim, that the computational complexity of
the method is O(m) where m is the number of samples. This might have been a
perfect feature selection method for the HDLSS datasets. However, after review-
ing the provided algorithms, it looks like their approach relies on the precomputed
bijective soft sets that have to contribute to the computational complexity as well.
Nevertheless, the results of testing the BSSReduce on the several HDLSS datasets
showed, that it is capable of significant dimensionality reduction while keeping a
competitive level of the trained models performance. It could be useful to com-
pare BSSReduce with our method, unfortunately, authors of BSSReduce did not
provide the source code of their tool. An approach different from the previously
mentioned papers is present in the [5]. The authors of the paper did not focus
on feature selection. However, they needed to reduce feature space in two HDLSS
datasets from 6M and 15M of features. Authors said that "models should be simple
enough" [5] to make their analysis easier. In order to reduce a large feature space,
they performed feature selection in two steps. On the first step, they used custom
implementation of Information Gain feature selection to reduce feature space to
50K and fewer features. On the second step, they took the best 5K feature se-
lected by IG and used them in CFS implementation from Weka. This resulted in
29 features selected by CFS. The models trained with just 29 features performed
almost as good as a model trained on 5K and more features. For Naive Bayes and
Support Vector Machine algorithms, smaller feature set even allowed to increase
the performance of trained models. Such approach has its own limitations. CFS is
aimed at selecting features that are not correlated with each other. However, since
the first feature selection step utilizes IG, there is no guarantee that features passed
to the CFS does not have a strong mutual correlation. But as we mentioned above,
running CFS on the HDLSS dataset with millions of features requires enormous
computational resources and sometimes impossible.

10.3 Intersection Subtraction selection method
In this section, we describe the IS feature selection method and evaluate its

strengths and weaknesses.

154 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

10.3.1 The context

Before describing the Intersection Subtraction feature selection method we
need to describe a context under which its use becomes meaningful. This method
was developed during the research described in [8]. The task was to detect mal-
ware based on the memory access traces. To do this, malicious and benign ex-
ecutables were launched together with custom-built Intel Pin [20] tool. The raw
data consisted of the first 1M of memory access operations performed by each ex-
ecutable. The sequences contained W for each write operation and R for each read
operation performed by an executable. These sequences were later divided into
a set of overlapping n-grams of various sizes. For example, a sequence [WWR-
WRR] of a length 6 can be divided into the set of 4-grams in the following way:
[WWRW,WRWR,RWRR]. The n-grams were directly used as features for machine
learning models training. Each feature got value 1 if the corresponding n-gram
was generated by the sample regardless of the number of times it was encountered
in the trace of a certain sample. In other cases, the feature got value 0. As the
goal of the [8] was to be able to detect malware, it is possible to state, that fea-
tures that obtain 1 (are present within a certain class) pose greater interest. Such
approach allows to state, that presence of certain memory access n-grams is the
sign of malicious behavior. The dataset from [8] was nearly balanced and samples
were divided into two classes. So the context of the use of the proposed feature
selection method is the following: two-class classification problem on a balanced
dataset with binary features.

10.3.2 Feature selection algorithm

The feature space in [8] was around 6M of unique memory access n-grams of
a size 96. By the time of writing, authors were not able to implement any common
feature selection method (for example IG) to operate on such dataset. Thus, they
implemented the following feature selection method. It includes the following
steps:

1. Construct two vectors of features for each class. The feature is included
in the vector of the class if the corresponding memory access n-gram was
generated by a sample from this class.

2. Having two vectors constructed, remove from them features that are present
in both vectors. Having this done we obtain two vectors of class-unique
features. In other words, we subtracted an intersection of two feature sets
from both of them.

3. Decide on the size of the final feature set k.

10.3. Intersection Subtraction selection method 155

4. From each of the class-unique features vectors select k/2 features with the
highest class-wise frequency. A class-wise frequency is the proportion of
samples within the class that generate a corresponding memory access n-
gram.

5. Use the k selected features to construct the final dataset with reduced dimen-
sionality.

The resulting dataset is later used to build machine learning models. The operation
performed in Step 2 is quite similar to the symmetric difference of two sets. How-
ever, we prefer to say that we subtract intersection from both sets, as we need those
sets to be separated until the last step. It is also worth mentioning, that having an
intersection of two feature sets allows to explore features that fell into it. It might
be useful for additional analysis of the results [8].

10.3.3 Computational complexity

Lets discuss the potential computational complexity of Intersection Subtrac-
tion (IS) feature selection. As data is already labeled (samples divided into two
classes) the feature vectors from the Step 1 are ready from the beginning. Step 2
requires finding an intersection of two sets. Imagine we have two sets A and B
with cardinality of a and b respectively. In order to find the intersection of A and
B we need to compare all elements of set A with all elements of set B. Such opera-
tion will have a computational complexity of O(ab). Let’s denote the intersection
of A and B as C = A∩B with cardinality c. Subtracting the elements of C from A
and B, similarly to the previous operation, will have the computational complexity
of O(ac + bc). The resulting computational complexity of O(ab + ac + bc) may
look quite high already, since both a and b are large in case of HDLSS datasets.
However, the real implementation of IS feature selection with the use of Python
programming language shows, that execution of the Step 2 does not take significant
time (see Section 10.4). First of all, according to [28], subtraction A-C (set dif-
ference) will have computational complexity of O(a). So we can already rewrite
previously mentioned computational complexity of Step 2 with O(ab + a + b).
Moreover, if we are not interested in the intersection C itself, we can utilize two
operations A-B and B-A in order to obtain sets of class-unique features. Complex-
ity of such approach will be O(a + b). The Step 4 requires the calculation of
class-wise frequencies of the features. In our particular case, when features are
binary, we only need to count how many samples from each class has value 1 of a
certain feature. The Step 4 will then haveO((a− c)m+(b− c)m) computational
complexity. Here, m is the number of samples in the dataset, a-c is the amount of
class-unique features from set A and b-c - from set B. It is also worth mentioning,
that Step 4 can be optimized. Let’s assume that the dataset is perfectly balanced, so

156 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

we have two classes with m/2 samples. Since our IS feature selection is aimed on
finding class-unique features, we can only search for 1s among a-c and b-c features
of m/2 samples of each class. So the Step 4 can be optimized to have a complexity
ofO((a− c)m/2+ (b− c)m/2). Lets now try to assess the overall computational
complexity of the IS feature selection. Let us have the initial amount of features
a+b=n and m samples. The amount of features from intersection c is normally
smaller than both a and b (here we assume, that A 6⊂ B and B 6⊂ A). Having
this we can conclude, that the complexity of Step 2 O(ab + a + b) after substitu-
tion will be smaller than O(n2) for all a > 1. On its turn, the complexity of Step
4 O((a − c)m/2 + (b − c)m/2) should be smaller than O(mn). The resulting
complexity of O(ab+ a+ b+ (a− c)m/2 + (b− c)m/2) should be smaller than
O(n2 +mn). The feature selection method where the upper boundary of compu-
tational complexity is described with n2 is not what we outlined in Section 10.2
as a good feature selection method for HDLSS dataset. Lets now make a substi-
tution similar to the one we made in Section 10.2. First, lets substitute m with
TqmeaureIS = g(m) which is the time needed to calculate class-wise frequency of
a feature. Second, the time Tin needed to find whether a certain feature from one
set is present in another set (to find an intersection, or to subtract these features
from the set) is relatively small. Thus, the updated computational complexity of
IS feature selection will be smaller than O((nTin)2 + nTqmeaureIS) which can be
smaller than O(nTqmeaureIG) of IG. We will prove this in Section 10.4.

10.3.4 Theoretical assessment

In this subsection, we discuss potential outcomes of the IS feature selection.
As we already mentioned, IS feature selection is potentially faster than a more
common IG feature selection. This makes IS attractive for the high dimensional
datasets. However, speed comes with a price. Let’s look at the potential disadvant-
ages of IS feature selection. As we described at the beginning of this section, the
use of this method makes more sense when we are interested in finding features
the presence of which poses particular interest. However, it might happen, that in
the dataset will be no class-unique features. In other words, it will be impossible
to say, that if a certain feature of a sample takes value 1, then this sample belongs
to a certain class. In such case, it will be impossible to find an intersection of two
feature sets. The other problem is potential information loss due to intersection
removal. Imagine we have a dataset that is represented in the Table 10.1. It has
4 features and 4 samples labeled into two classes C1 and C2. IS feature selec-
tion will remove features f1 and f3 since they obtain value 1 (are present) in both
classes. The remaining features f2 and f4 will not allow us to generate a rule that
will be able to distinguish between samples s2 and s4. This example is quite small,
but on the larger dataset removing a feature that takes value 1 in e.g. all samples

10.4. Experimental evaluation 157

Table 10.1: Sample dataset 1

f1 f2 f3 f4
s1 1 1 1 0 C1
s2 1 0 0 0 C1
s3 1 0 1 1 C2
s4 0 0 1 0 C2

of one class and only in one sample of another class can lead to the inability of
building a model with good performance. Such feature would be most likely se-
lected by IG feature selection. The last disadvantage of the IS feature selection
is potentially poor performance on the multinomial datasets. If we increase the
number of classes we will end up in the situation of growing intersection size. In
such case, the IS will remove more features from the feature space resulting in
increased information loss. We begin with the description of our dataset and ex-
perimental environment. Later, we explain the basics of memory access operations
and explain the way we record and process the data.

10.4 Experimental evaluation
In this section we describe experimental evaluation of the IS feature selection

method. We show how IS feature selection can be applied for malware detection.
During experimental evaluation we compare performance of features selected by
IS and IG. On the Figure 10.1 we depict general data-flow of our experiments. We
start by recording memory access operations produced by benign and malicious
executables. After, we split sequences of memory access operations into n-grams.
Then we apply feature selection methods to select best features (n-grams). In the
end, we use these features to train machine learning models and compare per-
formance of the models trained with a use of features selected by different feature
selection methods. Before presenting the results achieved by machine learning
models, we show the experimental time complexity of the IS and IG feature se-
lection methods. We also check how similar the feature sets selected by different
methods are.

We now proceed with the description of our dataset, experimental environment
and the way we collect and process the data.

10.4.1 Dataset

In this work we use dataset similar to the one used in [7]. It consists of 2098
benign and 2005 malicious Windows executables. Malicious executables were
downloaded as part of VirusShare_00360 pack available at VirusShare [35]. Mali-
cious samples belong to the following malware families: Fareit, Occamy, Emotet,

158 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

Dataset:

2098 benign samples,

2005 malicious samples.

1,000,000 memory

access operations
96-grams

Select best

features based

on Information

Gain

Feature vectors of length 14, 15,

5000, 10000, 15000, 30000,

50000

Results

Select best 15

features based on

CFS

Select best

features based

on Intersection

Subtraction

Construct feature

vectors using 5000,

10000, 15000, 30000,

50000 best features

Construct feature

vectors using 5000,

10000, 15000, 30000,

50000 best features

Feature vector of length 50000 Feature vector of length 50000

Select best 9 features

based on CFS

Select best 14

features based on IS

Select best 9 features

based on IG

Machine Learning

algorithm

Feature vectors of length 9,

5000, 10000, 15000, 30000,

50000

Compare

Figure 10.1: The flow of data collection and feature selection

VBInject, Ursnif, Prepscram, CeeInject, Tiggre, Skeeyah, GandCrab. According
to the VirusTotal [32] reports, our samples were first seen (first submission date)
between March 2018 and March 2019. Benign executables are the real software
downloaded from Portable Apps [27] in September 2019.

10.4.2 Experimental environment

In order to perform dynamic malware analysis, we need to avoid the influence
of any environmental changes, so that all executables are launched in similar con-
ditions. To achieve this we used an isolated Virtual Box virtual machine (VM) with
Windows 10 guest operating system. VMs were launched on the Virtual Dedicated
Server (VDS) with 4-cores Intel Xeon CPU E5-2630 CPU running at 2.4GHz and
32GB of RAM with Ubuntu 18.04 as a main operating system.

10.4. Experimental evaluation 159

10.4.3 Memory access operations

The executables used on Windows operating systems are compiled into the
files in PE32 format. Files of PE32 format contain header and sections. The
header contains the metadata that is used by operating system in order to properly
load an executable into memory and prepare all the necessary resources. The sec-
tions contain information about imported and exported functions, resources, data
and the executable code. The executable code is stored in the binary form which
can be represented as opcodes. Opcodes (or assembly commands) are the basic
instructions that are executed by the CPU. Execution of some instructions will
not require memory access. Foe example execution of MOV EAX,EBX opcode
will not result in memory access, since data is being moved between registers in
the CPU. At the same time, MOV EDI, DWORD PTR [ebp-0x20] will generate
a Read (R) memory access, since the data has to be read from the memory. On
its turn, the ADD DWORD PTR [EAX],ECX will require Reading (R) the value
from the memory location addressed by [EAX] and then Writing (W) the result of
the addition to the memory. The sequences of opcodes were previously proven
to be a source of effective features for malware detection [10] [34] [30]. When
the sequence of opcodes is executed it generates a sequence of memory access
operations. Two previous statements allow for memory access sequences to be
a potential source of features for malware detection [8]. Under our experimental
design we use only the type of memory access operation: R for Read and W for
Write. We do not use the value that is transferred to or from the memory as well
as the address of the memory region in use.

10.4.4 Data collection

Each malware sample was launched on the clean snapshot of VM. During the
execution of each sample, we recorded the first million of memory access oper-
ations produced after the launch. This was done with the help of a custom-built
Intel Pin [20] tool that was launched together with the sample inside the VM. The
VM had all built-in anti-virus features disabled to make malware run properly and
also because they kept interrupting the work of Intel Pin. The automation of VM
and data collection were performed with the help of Python 3.7 scripts.

The memory access traces were first stored in the separate files. After, they
were split into the sequence of overlapping n-grams of the size 96 (96-grams). We
choose n-gram size (as well as the amount of recorded memory accesses) based on
the conclusions of their effectiveness drawn in [8]. The n-grams of memory access
operations for each sample are then stored in the MySQL table. This table took
28.5 GB of storage.

160 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

10.4.5 Feature selection and machine learning algorithms

We implemented IS feature selection algorithm with Python. The custom im-
plementation of IG feature selection algorithm was similar to one in [7]. That
implementation allows to run feature selection in multiple threads, which signific-
antly speeds up the process. We found, that samples produced more than 5.5M of
unique n-grams (features). Benign samples generated more than 4.5M of features,
while malicious - more than 1M of features. When performing IS feature selec-
tion we found, that benign and malicious samples shared almost 600K common
features. Subtraction of those features resulted in almost 4M and 430K of class-
unique benign and malicious features respectively. According to the algorithm
from Section 10.3 we selected 50,30,15,10 and 5 thousands of features. We se-
lected a similar amount of features with the IG feature selection algorithm as well.
Similarly to [5], [6] and [7] we wanted to reduce feature space even more, so that
our models are simple enough for future human analysis. Thus, we used CFS fea-
ture selection method from Weka [19] to select the most relevant and least redund-
ant features from 50K features selected by IS and IG. As the result we obtained 15
features from IS-based 50K feature set, and 9 features from IG-based 50K feature
set. As CFS appends features to the feature set until the increase of its merit is
no longer possible, it is impossible to control the final amount of selected features
unless the GreedyStepwise search is applied. However, such search never finishes
its work when applied to the larger feature sets in our experimental environment.
We wanted to compare the performance of IS and IG with the CFS as well. So we
tried to select the same number of features with IG and IS. However, CFS selected
15 features. And as the IS have to select equal amount of features from each class
(Section 10.3) we decided to select 14 features with IS (7 from each class).

The selected features were later used to build machine learning models. The
data that is actually fed into mechine learning algorithms is basically a bitmap of
presence [8]: if a certain sample (row) generates a certain feature (column), then
this feature takes value 1 for this sample. In the opposite case the feature takes
value 0. We used the following machine learning algorithms from Weka: k-Nearest
Neighbors (kNN), RandomForest (RF), Decision Trees (J48), Support Vector Ma-
chines (SVM) and Naive Bayes (NB) with the default Weka [19] parameters. We
assessed the quality of the models with 5-fold cross validation [22]. Accuracy
(ACC) as the amount of correctly classified samples and F1-measure (F1M) that
takes into account precision and recall were chosen as evaluation metrics. Further
in this section, we present the classification performance of the machine learning
models.

10.4. Experimental evaluation 161

10.4.6 Time complexity

One of the reasons to use IS feature selection is that it is relatively faster than
the other common methods. In this subsection, we provide time taken by IS and
IG methods to select 50K of features from the initial 5.5M distinct features. It
took 302 seconds (∼5 minutes) for IS to select 50K features. In contrast, the IG
used 18,560 seconds (∼5.15 hours) to select 50K features when running in one
thread. While being launched in 16 threads, IG used 1168 seconds (∼20 minutes)
to select 50K features. Further increase in the number of threads does not make
sense, since this is the maximum amount of threads available at our VDS. As we
can see, single-threaded IS works 3.8 times faster than IG ran with 16 threads and
61.5 times faster than IG ran with one thread. To find an intersection of benign and
malicious feature sets the IS used 1.18 seconds as the average of 1000 runs. It has
used an additional 0.7 seconds to subtract intersection from both feature vectors.
The actual implementation of our feature selection algorithms did not load the
entire dataset at the same time. Thus, it is impossible to directly measure the time
needed to calculate the quality measure of a single feature, since it is calculated in
iterations. But indirect assessment (we divide overall time by the total amount of
features to go through) showed, that IS needed around 5.5 ·10−5s to assess a single
feature, and IG needed 2.12 · 10−4s and 3.4 · 10−3s to assess a single feature with
16 and 1 thread respectively. It is important to mention, that the times provided
are relevant to our data structure and the way we store our data. For instance, the
fact that we stored memory access n-grams for each sample in a separate cell of
the database table could affect the time needed to perform feature selection.

10.4.7 Analysis of selected feature sets

Here we analyze how different are the feature sets selected by IS and IG. In the
Table 10.2 the Feature amount column shows the size of the feature set for IS and
IG methods; the Common features column shows the number of similar features
selected by IG and IS for the corresponding feature set size; the Difference ratio
column shows the ratio of the distinct features and is calculated as (Feature amount
- Common features)/Feature amount. As we can see, most of the features selected
by the IS method are different from those selected by IG. It complies with the
theoretical assessment of IS (see Section 10.3), where we explained that IS may
discard features with potentially high information gain only because they get value
1 in both classes. As we mentioned before, we used CFS feature selection on the
feature sets of the size 50K. It is worth mentioning that CFS selected completely
different features when working with 50K feature sets selected by IS or IG. When
using IG and IS to select the same amount of features as selected by CFS we also
obtained completely different feature sets.

162 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

Table 10.2: Difference between feature sets selected by IS and IG.

Feature amount Common features Difference ratio
50K 994 0.98
30K 994 0.97
15K 979 0.93
10K 955 0.9

5K 812 0.84
IG/IS 9/14 0 1

10.4.8 Classification performance

In this subsection, we present the classification performance achieved by the
machine learning algorithms. Tables 10.3 and 10.4 contain evaluation metrics
of machine learning models trained with the feature sets of a different length se-
lected by different feature selection algorithms. There, FSL stands for feature set
length, ACC stands for accuracy and F1M stands for F1-measure. As we can see,
both feature vectors allowed to achieve a quite high classification accuracy. The
best performing RF model that used 10K features selected by IG managed to clas-
sify 99.9% of the samples correctly. On its turn, features selected by IS allowed
to build kNN and RF models with an accuracy of 99.8%. As we can see, in most
cases models built with the use of features selected by IS have slightly lower classi-
fication performance. However, the difference in accuracy or F1-measure between
IS and IG features is most of the time less than 1%. Thus, it is hard to conclude
whether the features selected by IG is significantly better than those selected by
IS. There is one exception for NB models built with the use of 50K features. As it
is possible to see, the NB model trained with 50K features selected by IG has sig-
nificantly lower accuracy and F1-measure than the one trained with 50K features
selected by IS. This difference might be explained by the nature of features selec-
ted by IS and the limitations of the NB method. While building the model, Naive
Bayes assumes that features are independent. However, Information Gain feature
selection potentially selects a lot of mutually correlated features. The IS does not
take into account the mutual correlation between features as well. However, there
should be less correlated features selected by IS, since one half of the features will
not have 1s in one of the classes and vice versa. These properties of Naive Bayes
were studied in [29]. Even though CFS selected completely different features in IS
and IG cases, the models built with those features showed a quite similar classific-
ation performance. We will discuss this in Section 10.5. When we used IS and IG
to select the number of features similar to CFS we found, that models built with
these features perform slightly worse if compared to the models built with features
selected by CFS. This finding can be explained by the natures of CFS and IS al-

10.5. Discussion and Future work 163

Table 10.3: Classification performance with a use of features selected by IG

kNN RF J48 SVM NB
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

InfoGain

50K 0.996 0.996 0.996 0.996 0.997 0.997 0.983 0.983 0.693 0.671
30K 0.996 0.996 0.997 0.997 0.998 0.998 0.986 0.986 0.983 0.983
15K 0.996 0.996 0.998 0.998 0.998 0.998 0.991 0.990 0.983 0.983
10K 0.998 0.998 0.999 0.999 0.998 0.998 0.992 0.991 0.983 0.983

5K 0.995 0.995 0.997 0.997 0.997 0.997 0.988 0.988 0.983 0.983
9 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988 0.988

CFS 9 0.997 0.997 0.997 0.997 0.996 0.996 0.997 0.997 0.988 0.988

Table 10.4: Classification performance with a use of features selected by IS

kNN RF J48 SVM NB
Method FSL ACC F1M ACC F1M ACC F1M ACC F1M ACC F1M

IS

50K 0.991 0.991 0.997 0.997 0.997 0.997 0.983 0.983 0.982 0.982
30K 0.996 0.996 0.997 0.997 0.997 0.997 0.983 0.983 0.985 0.985
15K 0.998 0.998 0.998 0.998 0.997 0.997 0.984 0.984 0.983 0.983
10K 0.998 0.998 0.997 0.997 0.997 0.997 0.985 0.985 0.983 0.983
5K 0.998 0.998 0.998 0.998 0.997 0.997 0.985 0.985 0.983 0.983

14(7+7) 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983 0.983
CFS 15 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.997 0.983 0.983

gorithms. The IS will select features with higher class-wise frequency. However,
such features might correlate with each other. Thus, these features might have a
strong correlation with each other bringing redundant information to the model. In
contrast, CFS will try to select a feature set that has as little redundant information
as possible. Looking once again in the Tables 10.3 and 10.4 we can conclude,
that both feature selection methods performed quite good under our experimental
setup while selecting feature sets that are very different to each other.

Important notice. The results from the Table 10.3 is similar to part of the
results provided in [7]. This happened because our papers share the same dataset.
Also the data collection processes have only minor differences: in this paper we
recorded the first million of memory access operations, while methodology of [7]
is to record the first million of memory access operations unless a certain stopping
criteria is met.

10.5 Discussion and Future work
In this section we discuss our findings and limitations that should be applied

to the possible conclusions made based on the presented results. As we were able
to see, IS feature selection works faster than IG. The main reason to this is the
fact that the selection of features based on its class-wise frequency requires less
computations. However, it is important to understand, that all measurements of

164 P5: Fast and straightforward feature selection method: A case of high dimensional
low sample size dataset in malware analysis

time complexity presented in this paper are specific to our conditions (available
computational resource, structure of the data, implementation of feature selection
algorithms) and might differ in other conditions. The theoretical assessment of the
IS feature selection method predicted, that features selected by IS might bring less
information about samples and classes than those selected by IG. But the experi-
mental evaluation showed only marginal difference in classification performance.
Under our experimental setup, only the amount of features selected by CFS could
be considered as a proof of our theoretical assessment. The CFS selected more
features from IS-selected feature set to gain similar merit (what resulted in similar
classification performance). As we mentioned before, CFS adds features to the
feature set until its merit stops growing. These facts show, that features selected
by IS possess less information. Thus, on the small feature sets, we need more
features selected by IS than those selected by IG. As we compared classification
performance of machine learning methods we found, that under certain conditions
NB might perform better when using IS-selected features. This fact can be ex-
plored more thoroughly in the future work. The method was tested on a nearly
balanced dataset, and we selected the equal amount of features to represent both
classes. The use of other approach in the selection of the desired amount of fea-
tures or applicability on the imbalanced datasets is left for the future work.

The IS feature selection method is quite simple in implementation. However,
as we discussed in Section 10.3, its applicability limited to the cases where we
are interested in the fact of presence of a certain feature in the class. Thus, when
features are not binary or discreet, the applicability of IS feature selection is ques-
tionable. It is possible, however, to binarize continuous variables [22], but this
a separate topic and it is out of scope of this paper. There is also a number of
possible improvements and modifications that can be applied to the IS feature se-
lection method in the future. For example, we can decrease the time complexity
of IS in the following way. When we calculate class-wise frequencies of features
we might limit the search space by the samples that produce this feature. Rough
estimation suggest, that it may halve the time needed to perform IS feature se-
lection. Another modification that can be implemented in IS feature selection is
introduction of the degree of membership to the intersection. For example, a cer-
tain feature f might occur in both classes C1 and C2. These classes have mC1

and mC2 samples respectively. The feature f is present in mf
C1 samples of a class

C1 and mf
C2 samples of class C2. For example, we may exclude feature from the

intersection if:

max(
mf

C1
mC1

,
mf

C2
mC2

)

min(
mf

C1
mC1

,
mf

C2
mC2

)
> ε

10.6. Conclusions 165

Basically, we keep a feature if it represents ε times bigger fraction of samples of
one class than fraction of samples of the other class. Such approach may decrease
an information loss, but will contribute to the increase of computational complex-
ity of IS feature selection method. And thus will make IS less attractive feature
selection method.

It is also important to outline the following observation. IS and IG selected
quite different feature sets. Moreover, CFS selected completely different features
from those preselected by IS and IG. Nevertheless, classification performance of
the machine learning models appeared to be very similar when using different fea-
ture sets. This raises the following question: do the mentioned feature selection
methods always select the best feature set or do they find one of the several simil-
arly good feature sets? This question is left open for the future studies.

10.6 Conclusions
In this paper, we studied the performance of Intersection Subtraction feature

selection on malware detection problem. We showed, that with the use of IS fea-
ture selection on HDLSS dataset it is possible to correctly classify more than 99%
of the benign and malicious samples. The main contribution of this paper is the
direct comparison of IS and IG feature selection methods under the same condi-
tions. We found, that most of the features selected by IS and IG are different. The
classification performance of the machine learning models trained with the use
of quite different feature sets appeared to be very similar. Even though the mod-
els trained with IG-selected features showed marginally better performance, the
single-thread implementation of the IS feature selection method worked 3.8 times
faster than the 16-threads implementation of IG. This makes Intersection Subtrac-
tion feature selection attractive when it comes to the analysis of HDLSS datasets.
The IS feature selection may help when it is not known yet whether the data is
useful for the classification task at all. The number of features might so big, that
it is pointless to spend time running more common (also slower) feature selection
methods. Thus, with certain above-mentioned limitations, the IS feature selection
may be successfully applied to HDLSS datasets.

10.7 Bibliography
[1] Mamoun Alazab, Sitalakshmi Venkatraman, Paul Watters, and Moutaz

Alazab. Information security governance: the art of detecting hidden mal-
ware. In IT security governance innovations: theory and research, pages
293–315. IGI Global, 2013.

[2] Manoun Alazab, Robert Layton, Sitalakshmi Venkataraman, and Paul Wat-

166 Bibliography

ters. Malware detection based on structural and behavioural features of api
calls. 2010.

[3] AVTEST. The independent IT-Security Institute. Malware. https://www.
av-test.org/en/statistics/malware/, 2020.

[4] Ahmad Azab, Mamoun Alazab, and Mahdi Aiash. Machine learning based
botnet identification traffic. In 2016 IEEE Trustcom/BigDataSE/ISPA, pages
1788–1794. IEEE, 2016.

[5] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification
via low-level features. Digital Investigation, 26:S107–S117, 2018.

[6] Sergii Banin and Geir Olav Dyrkolbotn. Correlating high-and low-level fea-
tures. In International Workshop on Security, pages 149–167. Springer, 2019.

[7] Sergii Banin and Geir Olav Dyrkolbotn. Detection of running malware before
it becomes malicious. In International Workshop on Security, pages 57–73.
Springer, 2020.

[8] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[9] Max Bramer. Principles of data mining, volume 180. Springer, 2007.

[10] Domhnall Carlin, Philip O’Kane, and Sakir Sezer. Dynamic analysis of mal-
ware using run-time opcodes. In Data analytics and decision support for
cybersecurity, pages 99–125. Springer, 2017.

[11] Kevin K Dobbin and Richard M Simon. Sample size planning for devel-
oping classifiers using high-dimensional dna microarray data. Biostatistics,
8(1):101–117, 2007.

[12] David L Donoho et al. High-dimensional data analysis: The curses and bless-
ings of dimensionality. AMS math challenges lecture, 1(2000):32, 2000.

[13] Subhajit Dutta and Anil K Ghosh. On some transformations of high di-
mension, low sample size data for nearest neighbor classification. Machine
Learning, 102(1):57–83, 2016.

[14] Jianqing Fan, Fang Han, and Han Liu. Challenges of big data analysis. Na-
tional science review, 1(2):293–314, 2014.

[15] Rosa L Figueroa, Qing Zeng-Treitler, Sasikiran Kandula, and Long H Ngo.
Predicting sample size required for classification performance. BMC medical
informatics and decision making, 12(1):8, 2012.

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Bibliography 167

[16] Ke Gong, Yong Wang, Maozeng Xu, and Zhi Xiao. Bssreduce an o (u)
incremental feature selection approach for large-scale and high-dimensional
data. IEEE Transactions on Fuzzy Systems, 26(6):3356–3367, 2018.

[17] Lars Strande Grini, Andrii Shalaginov, and Katrin Franke. Study of soft
computing methods for large-scale multinomial malware types and families
detection. In Recent Developments and the New Direction in Soft-Computing
Foundations and Applications, pages 337–350. Springer, 2018.

[18] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[19] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[20] IntelPin. A dynamic binary instrumentation tool, 2017.

[21] Khaled N Khasawneh, Meltem Ozsoy, Caleb Donovick, Nael Abu-Ghazaleh,
and Dmitry Ponomarev. Ensemble learning for low-level hardware-supported
malware detection. In Research in Attacks, Intrusions, and Defenses, pages
3–25. Springer, 2015.

[22] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[23] Malay Haldar. How much training data do you need? https://medium.com/
@malay.haldar/how-much-training-data-do-you-need-da8ec091e956, 2015.

[24] Olga Ogorodnyk, Ole Vidar Lyngstad, Mats Larsen, Kesheng Wang, and
Kristian Martinsen. Application of machine learning methods for prediction
of parts quality in thermoplastics injection molding. In International Work-
shop of Advanced Manufacturing and Automation, pages 237–244. Springer,
2018.

[25] Meltem Ozsoy, Khaled N Khasawneh, Caleb Donovick, Iakov Gorelik, Nael
Abu-Ghazaleh, and Dmitry Ponomarev. Hardware-based malware detection
using low-level architectural features. IEEE Transactions on Computers,
65(11):3332–3344, 2016.

[26] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

[27] PortableApps.com. Portableapps.com. https://portableapps.com/apps, 2020.

https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956
https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956
https://portableapps.com/apps

168 Bibliography

[28] Python.org. Time complexity. https://wiki.python.org/moin/TimeComplexity,
2020.

[29] Jason D Rennie, Lawrence Shih, Jaime Teevan, and David R Karger. Tackling
the poor assumptions of naive bayes text classifiers. In Proceedings of the
20th International Conference on Machine Learning (ICML-03), pages 616–
623, 2003.

[30] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Op-
code sequences as representation of executables for data-mining-based un-
known malware detection. Information Sciences, 231:64–82, 2013.

[31] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. Ma-
chine learning aided static malware analysis: A survey and tutorial. In Cyber
Threat Intelligence, pages 7–45. Springer, 2018.

[32] Virus Total. Virustotal-free online virus, malware and url scanner. Online:
https://www. virustotal. com/en, 2012.

[33] B Venkatesh and J Anuradha. A review of feature selection and its methods.
Cybernetics and Information Technologies, 19(1):3–26, 2019.

[34] P Vinod, Vijay Laxmi, and Manoj Singh Gaur. Reform: Relevant features for
malware analysis. In Advanced Information Networking and Applications
Workshops (WAINA), 2012 26th International Conference on, pages 738–
744. IEEE, 2012.

[35] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[36] Kazuyoshi Yata and Makoto Aoshima. Effective pca for high-dimension,
low-sample-size data with singular value decomposition of cross data matrix.
Journal of multivariate analysis, 101(9):2060–2077, 2010.

[37] Kazuyoshi Yata and Makoto Aoshima. Effective pca for high-dimension,
low-sample-size data with noise reduction via geometric representations.
Journal of multivariate analysis, 105(1):193–215, 2012.

[38] Çağatay Yücel and Ahmet Koltuksuz. Imaging and evaluating the memory
access for malware. Forensic Science International: Digital Investigation,
32:200903, 2020.

[39] Hossam M Zawbaa, Eid Emary, Crina Grosan, and Vaclav Snasel. Large-
dimensionality small-instance set feature selection: a hybrid bio-inspired
heuristic approach. Swarm and Evolutionary Computation, 42:29–42, 2018.

[40] Lingsong Zhang and Xihong Lin. Some considerations of classification for
high dimension low-sample size data. Statistical methods in medical re-
search, 22(5):537–550, 2013.

https://wiki.python.org/moin/TimeComplexity
http://virusshare.com/

Chapter 11

P6: Detection of Previously
Unseen Malware using Memory
Access Patterns Recorded Before
the Entry Point

Sergii Banin, Geir Olav Dyrkolbotn

Abstract
Recently it has been shown, that it is possible to detect malware based on

the memory access patterns produced before executions reaches its Entry Point.
In this paper, we investigate the usefulness of memory access patterns over time,
i.e to what extent can machine learning algorithm trained on "old" data, detect
new malware samples, that was not part of the training set and how does this
performance change over time. During our experiments, we found that machine
learning models trained on memory access patterns of older samples can provide
both high accuracy and a high true positive rate for the period from several months
to almost a year from the update of the model. We also perform a substantial
analysis of our findings that may aid researchers who work with malware and Big
Data.

Keywords: information security, malware detection, low-level features, memory
access patterns

11.1 Introduction
Detection and analysis of malware is one of the important areas in the inform-

ation security research[3]. Malware analysis can be divided into two categories:

169

170 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

static and dynamic analysis. While static analysis uses features derived from the
file itself, dynamic makes use of the behavioral traces generated when malware
is launched. Behavioral or dynamic features can be categorized into high- and
low-level features[5]. Low-level features emerge from the hardware of the sys-
tem: hardware performance counters, opcodes, or memory access patterns are the
low-level or hardware-based features. In our paper we utilize dynamic malware
analysis using low-level features (memory access patterns). Malware analysis of-
ten involves dealing with Big Data: for example, the database table containing
memory access patterns of 4000 executables can take several tens of gigabytes[3].
Thus, in this paper, we show how one can analyze the classification performance
results obtained after processing the big amounts of data.

It has been recently shown, that it is possible to detect Windows malware
based on the behavioral traces produced before the Entry Point (BEP)[6]. It is
an important finding since malware malware stopped upon detection BEP can not
harm the system where it was launched. However, the authors of [6] used k-fold
cross-validation to assess the performance of the machine learning model used for
malware detection. Such approach has some limitations: for example, the feature
selection made on the full dataset may affect the validity of the classification per-
formance results. As the new malware samples are detected every day, and the
amount of newly discovered malware constantly grows[2] it is important to study,
how a novel malware detection approach can handle samples that were not in-
volved in training. Thus, we decided to test how memory access traces produced
BEP can be used to detect newer, previously unseen malware. We split our dataset
into the train set and several time-arranged test sets which will emulate "aging" of
the model. We also update the train set with newer malware and observe changes
in the performance of the model. To conduct this study we outlined the follow-
ing research questions. RQ1: Is it possible to use memory access traces recorded
BEP to distinguish between previously unseen malicious and benign executables?
RQ2: How long, since the update, the ML model trained on memory access traces
recorded BEP can provide a good detection rate? While answering the RQ1 we
expect, that the detection of previously unseen malware should be possible with
the use of BEP memory access traces. At the same time, while answering the RQ2
we expect, that the classification performance and detection rate should be worse
the further away in time a train and test set are from each other. However, the 13
months time span of our dataset may affect the results. We assume a detection
rate equal or more than 0.95 to be good. While conducting our studies, we found
some unexpected trends in classification performance. Since the amounts of data
we worked with were very big, we perform analysis which may pose an interest
to other researchers working with malware and Big Data. The remainder of the
paper is arranged as follows: in Section 11.2 we make a short literature over-

11.2. Background 171

view; in Section 11.3 we describe our methods; in Section 11.4 we describe our
experimental setup; we provide the results in Section 11.5; in Section 11.6 we
perform an analysis of the findings and outline a need for an additional evaluation
which is present in Section 11.7; in the end, we discuss our findings and provide
concluding remarks in Section 11.8.

11.2 Background
Here we present a brief overview of the related literature. Malware detec-

tion with the use of memory access patterns was first described in [7] by Banin et
al. There it has been shown, that it is possible to distinguish between malicious
and benign executables with the accuracy of up to 98%. It was [7] where the re-
quired amount of memory access operations (1M) and the size of n-grams (96)
were shown to be sufficient for such tasks. The technique proposed in [7] was re-
cently extended by Yucel et al. in [26], where authors used memory access patterns
to explore the similarity between different malware categories. Later, Banin et al.
in [4] showed, that memory access patterns can be successfully used to classify
malware into 10 families and 10 types with an accuracy of 78% and 66% respect-
ively. In that paper, it has also been shown, that one needs very few features to
perform this type of classification. However, the memory access pattern by itself
does not give any information regarding the functionality of the malware to the hu-
man analyst. Thus, in their next paper [5] authors performed an attempt to correlate
memory access patterns (low-level features) with API calls (high-level features) to
bring more context to the human analysts. During the analysis of findings made in
[5] authors found, that most of the memory access patterns they recorded emerged
from BEP. These findings lead to another work [6], where authors showed that
memory access patterns from BEP can be used to detect malware with an accuracy
similar to the one achieved with memory access patterns emerged from after the
Entry Point (AEP). In particular, they achieved a classification accuracy of more
than 99% when distinguishing between malicious and benign executables with a
help of only 9 BEP memory access patterns. To the best of our knowledge, memory
access patterns have not been tested against previously unseen malware that was
not used to train the model. However, many works provide examples of splitting
the malware dataset into train and test sets to emulate the detection of previously
unseen malware. In [23] authors randomly selected 50% of the dataset to be used
as a train set, while the remainder was used as a test set. On the test set, containing
roughly 3K malicious and 2.2K benign executable, they managed to achieve ac-
curacy of 100% with the Random Forest algorithm. Similarly, authors of [22] used
around 10K malicious and 2.5K benign samples for training, 750 malicious and
610 benign executables for testing, and achieved up to 89% of accuracy. Authors
of [15] split their dataset into train and test sets based on the year when samples

172 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

were submitted to the VirusTotal[24]. With a train set containing samples from
the year 2012, and a test set from the year 2013, they managed to achieve 72%
detection rate without a human reviewer and 89% with. The different approach
in training and testing was presented in [8]. The authors used a dataset of benign
and malicious Android applications from the years 2010-2017. They performed
consecutive training on a certain year and testing on the years newer than the one
used for training. Their results show, that e.g. precision may both drop or rise
as the test set becomes more distant in time from the train set. Similarly, authors
of [17] test the performance of their Android malware detection approach on test
sets arranged on the monthly basis. In their paper, it is possible to observe the
decay of the performance of the model trained on samples from the year 2014 as
test sets become more distant in time from train one. Authors of [19] elaborate
on the good practices for building the relevant malware dataset and conducting
time-aware malware studies. Among the other recommendations they give, there
are several that we follow in our research: describe an experimental environment,
OS, network connectivity, etc.; describe the dataset; provide family names of the
malware samples in use. Authors of [1] state, that train and test sets combination
that is built based on a certain time metric will generally yield the performance
worse than the one of a random split (e.g. k-folds cross-validation).

11.3 Methodology
This section is dedicated to the description of the methods used in this paper.

Our choice of methods is based on findings made in [7],[5] and [6]. We begin
with the description of our data collection process. Then we explain the way we
preprocess and select features. Later, we explain the way we split our data into
train and test sets. In the end, we describe the evaluation metrics and machine
learning algorithm used in this paper.

11.3.1 Data collection

Our data collection is based on the BEP-AEP approach that was first presented
and described in [6] and analysis of memory access patterns first used in [7]. The
key concept involves splitting the behavioral trace of the process into two main
parts: the one that occurs before the Entry Point (BEP) and after (AEP). In this
paper, we focus only on the trace produced BEP. With a help of Intel Pin binary
instrumentation framework [11] we record the memory access operations produced
by the process from the moment it starts. We record only the type of memory
access operation: R for read and W for write. We record the sequence of the first
1M of memory access operations. However, if the sample does not produce 1M
million memory access operations BEP we still keep its data, thereby making our

11.3. Methodology 173

experiments more realistic. Similarly to [6] we stop recording the trace as soon as
the execution flow reaches the first instruction from the main module of executable.

11.3.2 Data preprocessing and feature selection
The sequence of up to 1M of memory access operations is recorded for each

sample in the dataset. Each sequence is later split into the set of overlapping n-
grams of the size n=96: memory access patterns. Each next n-gram overlaps the
previous one on n-1 operations. These 96-grams later serve as features for ML
algorithms. For classification purposes, each feature describes the presence or
absence of a certain pattern in a trace of a sample: it takes value 1 if a pattern
is present in a trace of a sample and 0 if not. When working with memory access
traces the amount of features (unique patterns) is always big and can reach millions
of features[3][5][6][7][4]. It is unlikely, that all features contain valuable inform-
ation. Moreover, regular machine learning packages are not suitable to work with
data of such a high dimensionality. So it is important to perform feature selection
before feeding the data into ML algorithm. To reduce the feature space, we per-
form a two-step feature selection process that was described in more detail in [6].
First, we select 50K best features from the training set based on their Information
Gain (IG)[12]. Later, we use these 50K features to select the best feature subset
using Correlation-based feature selection (CFS)[9] from ML package Weka[10].
CFS searches for the best subset of the given feature space and selects features that
have a high correlation with classes in the dataset but low correlation between each
other. We use CFS with the default for Weka parameters. With current implement-
ations, it is challenging to use CFS on the full feature set, since performing the CFS
requires a calculation of correlation matrix between all features, the process that
requires an infeasible amount of time and computational resources when we are
talking about millions of features. It is important to note, that CFS adds features to
the feature set until the merit of the feature set stops growing more than a certain
threshold[9]. Thus, it is challenging to choose the desired amount of features to be
selected by CFS.

11.3.3 Splitting the dataset
Different authors utilize different approaches to test their malware detection

method on previously unseen malware. Some simply split the dataset into train
and test sets. While others make their dataset time coherent: samples arranged
based on a certain time property. This allows emulating the updates of the models
with time. In this paper, we arrange our dataset based on the first seen time from the
VirusTotal (VT)[24]. There are not many other sources of time-related information
when talking about the Windows executables, as compilation time available in PE
header can be forged[21]. We split our dataset into bins based on the month the
malware samples were first seen on VT. Note, that finding enough benign samples

174 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

from a certain period of time is a quite challenging task. Thus, even though we
also arrange benign samples based on VT data, we add them into bins based on
their position on the benign timeline and the number of malicious samples in the
same bin (see Section 11.4.2). This approach allows us to make training and
test sets to have almost equal amounts of malicious and benign executables. We
consider samples that are present in a certain bin to be unseen to those present in
the older bins. Thus, newer benign and malicious samples do not contribute to the
model and do not affect the feature selection process. We try to keep the amount of
malicious and benign executables in bins equal. We also keep all malware samples
in the bins regardless of the malware family they belong to. We decided to use
our dataset as is since samples from the same family evolve over time and the
distribution of families across the bins is not uniform what adds more realism to
our experiments.

11.3.4 Evaluation

To check the applicability of memory access traces recorded BEP for the de-
tection of previously unseen malware we train the ML model on the training set
that consists of one or several bins and separately test it on the bins that were not
used for training. We iteratively increase the training set by adding newer bins
into it. As an ML algorithm we have chosen Random Forest (RF) algorithm from
Weka[10] package, since it has shown one of the best results in [6]. RF constructs
a number of decision trees, which are used for the classification. We use RF with
default, for Weka, parameters where the number of trees is 100. To evaluate the
quality of the models we use several metrics. Accuracy, as the amount of correctly
classified samples. True positive rate (TPR), as the amount of actual malware that
is detected as malware (detection rate). False positive rate (FPR), as the amount of
actual benign executables classified as malware (potential false alarms in the sys-
tem). In this paper, we show, how these metrics change with the increased amount
of time passed since the "last update" of the model (latest bin added to the training
set).

11.4 Experimental setup
In this section, we describe our experimental environment, provide details

about our dataset, and explain our experimental flow.

11.4.1 Experimental environment

When using dynamic malware analysis, it is important to avoid the influence
of changes in the experimental environment and ensure equal launching conditions
for all samples. It is also important to isolate malware so that the host system
or network are not affected by the malicious behavior. To ensure security and

11.4. Experimental setup 175

repeatability we use Virtual Box virtual machine (VM) with Windows 10 guest
operating system. The VM was isolated from the internet. All our VMs were
launched on the Virtual Dedicated Server (VDS) with 4-cores Intel Xeon CPU E5-
2630 CPU running at 2.4GHz and 32GB of RAM with Ubuntu 18.04 as a host
operating system.

11.4.2 Dataset

In this subsection, we describe the content of our dataset and explain how the
dataset is split into bins which are later used to construct different train- and test-
set combinations. This dataset was previously used in [6] and [3]. Our dataset
can be divided into two main parts: benign and malicious executables. Malware
samples were obtained from VirusShare_00360 collection from VirusShare[25].
VirusShare_00360 contained 65518 samples, out of which 2973 were PE execut-
ables. For each malicious sample, we got a report from VirusTotal(VT) [24]: an
online malware analysis tool that also allows seeing how different Anti-Virus en-
gines react to a certain sample. We left only samples that were recognized as
malicious by at least 20 engines. In the final dataset, we included samples that
belonged to the 10 most common families: Fareit, Occamy, Emotet, VBInject,
Ursnif, Prepscram, CeeInject, Tiggre, Skeeyah, GandCrab. According to the VT
reports, resulted samples were first seen (first submission date) between March
2018 and March 2019. Not all the samples were launched successfully, so the
amount of malware samples that generated traces is 2005. Benign samples were
downloaded from Portable Apps [18] in September 2019 and is a set of free Port-
able applications. It contains various software such as graphical, text, and database
editors; games; browsers; office, music, audio, and other types of Windows soft-
ware. According to the VT, benign samples were first seen between December
2006 and December 2019. Some benign samples were first seen on VT after their
download date because it was we who first uploaded them to the VT to check
whether they are truly benign. We left only samples that were not recognized as
malicious by any of the AV engines available on VT. After running the samples
2098 of them produced traces.

As it is outlined in the literature[19], it is important to present the distribution
of malware categories in the dataset. In Table 11.1 we show the number of samples
that belong to each of the families. As it is possible to see, the dataset is not
balanced in terms of malware families. However, we did not polish this aspect of
our dataset since we only cared about samples being benign and malicious.

We looked at two possible splitting approaches to create time-ordered subsets
from the original dataset. In the first approach, we split malware into 13 bins based
on the month they were first seen on VT. We also included benign samples into the
monthly bins based on their VT first seen date. However, this approach resulted in

176 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

Table 11.1: Distribution of malware families in the dataset

Total Fareit Occamy Emotet VBInject Ursnif Prepscram CeeInject Tiggre Skeeyah GandCrab
2005 573 307 196 164 162 143 127 117 115 101

Table 11.2: Amount of benign and malicious samples in bins.

Bin # 0 1 2 3 4 5 6 7 8 9 10 11 12
Benign 64 119 174 88 167 66 39 130 149 264 214 307 317
Malicious 64 119 174 88 167 66 39 130 149 264 214 307 224

highly imbalanced subsets, where the malware to goodware ratio sometimes was as
high as 50 to 1. It is quite problematic to find the desired amount of benign samples
from the desired time period. So we decided to discard the first approach due to
this imbalance. Instead, we decided to split benign samples into 13 time-ordered
bins and align the number of samples in them according to monthly bins created
from malware samples. Each bin would contain as many benign samples as the
corresponding malicious bin. Only the last bin would contain more benign samples
since the amount of benign samples is bigger in the original dataset. This way,
every next bin will have benign samples that are newer than those in the previous
one. In Table 11.2 we present the amount of benign and malicious samples that
were put into each of the 13 resulting bins. As we can see, the bins have different
amounts of samples in them. To describe our bins in an even more detailed way,
in Fig. 11.1 we present the distribution of the above-mentioned malware families
among the malware samples in each of the 13 bins. As we can see, malware
families are not evenly distributed among the bins.

Having 13 bins with equal malware to goodware ratio except for the bin #13
we use them to construct train and test sets that are used to training and test ML
models. The training set is a combination of one or several consecutive bins. From
here the training sets will be named in the following way: training set based on the
bin #0 is called T0 while training set built from bins #0 to 7 is called T0_7 and so
on. For each training set, we have one or more test sets, made of the remaining
bins that were not used in the construction of the train set. For example, for the
training set T0_10 we will have two test sets consist of the bin 11 and bin 12
respectively. With such approach, we obtain 12 combinations of train and test sets.
As we previously described the distribution of malware families within the bins
(which now also represent test sets) we now use Fig. 11.2 to show the distribution
of the malware families within train sets. As we can see, after the train set T0_1 the
distribution of families within the train sets begins to stabilize itself and becomes
quite similar between the train sets closer to the last one.

11.4. Experimental setup 177

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 1 2 3 4 5 6 7 8 9 10 11 12

Bins families distirution

VBInject

Ursnif

Tiggre

Skeeyah

Prepscram

Occamy

GandCrab

Fareit

Emotet

Figure 11.1: Distribution of malware families among the malware samples within each of
the 13 bins

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

T0 T0_1 T0_2 T0_3 T0_4 T0_5 T0_6 T0_7 T0_8 T0_9 T0_10T0_11

Trains sets families distirution

VBInject

Ursnif

Tiggre

Skeeyah

Prepscram

Occamy

GandCrab

Fareit

Emotet

Figure 11.2: Distribution of malware families among the malware samples within train
sets

11.4.3 Experimental flow

Every sample from our dataset is first copied to the clean snapshot of the VM.
Then, we launch it together with a customized Intel Pin tool. The Intel Pin tool
records memory access operations and stores them into a trace file. The trace is
later copied to the host system, and the VM is reverted to the previous state. It
is important to note, that the benign executables from PortableApps were copied
to the VM together with the content of their folder. This approach allowed us
to provide more realistic results since benign executables often require additional

178 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

resources to be launched properly.

11.5 Results
In this section, we provide the detection performance achieved with our ap-

proach by RF algorithm. As we outlined in Section 11.3 we decided to test our
malware detection approach with help of the RF ML algorithm because it has
previously shown good classification performance with a similar type of features.
In Fig. 11.3 we show the accuracy, true positive rate, and false positive rate of
RF algorithm. For table data see Appendix Appendix A. Each line on the chart
represents a certain evaluation metric of the ML model trained on a certain train
set. Each point of the line is the value of the metric obtained while attempting to
classify samples from one of the test bins. Before looking into the achieved res-
ults it is important to mention, that accuracy, TPR, and FPR achieved by models
trained on the sets T0_1 - T0_5 match for all the corresponding test sets. Thus,
corresponding points and lines on the charts merge. To simplify our charts we
omit results achieved with T0_3 - T0_4 since they are the same as those achieved
with T0_1, T0_2 and T0_5. First, let’s take a look at the accuracy achieved by the
RF algorithm. As it is possible to see from Fig. 11.3a we can outline two main
trends in the classification performance. The first trend shows, that the further in
time a test bin from the train set - the lower the classification accuracy. This trend,
however, has several exceptions. First of all, the model trained on T0 shows a drop
in accuracy for test bins 5 and 6. For other test bins, it has a quite stable accuracy
while showing minor improvements (e.g. accuracy on bin 7 is higher than the one
on the bin 0). Lastly, models trained on T0_6 and T0_7 show a significant spike
of accuracy on the T0_11 and drop on the last test bin. The second trend shows,
that the closer train set to the test set (the more up-to-date it is) the higher classi-
fication accuracy on the test set becomes. For example, accuracy on the test set 12
improves when the train set is updated with newer bins. Now let’s look at the TPR
and FPR showed by the RF algorithm. As we can see, most of the test bins are
classified with TPR that is equal to or higher than 0.95. Moreover, models trained
on sets T0_1 - T0_7 always show TPR of 1 for all test bins. It means, that such
a model will not miss any of the previously unseen malicious samples. However,
from the FPR chart, we can also see that some models (especially T0_1 - T0_5)
show an increasing amount of false positives for test bins that are further away
from the training set. FPR can become as high as 0.72 which in reality will result
in a significant amount of false alarms and may seriously affect the operations of
the system that uses such models in AV solutions. It is also important to mention,
that model trained on T0 shows 0 FPR for all of the test bins while missing some
of the malware samples. The overall trend of FPR and TPR is the following. Most
of the models, while keeping high TPR (detection rate) over time develop higher

11.5. Results 179

0.60

0.70

0.80

0.90

1.00

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Figure 11.3: Performance of RF algorithm

FPR which clearly shows that even the models with good detection capabilities
have to be regularly updated.

While acquiring the data present on the Fig. 11.3a, 11.3b and 11.3c we de-
rived several interesting findings. The performance of the models does not change
when trained on sets T0_1 - T0_5 as they show very low accuracy towards the
last test bins. But when the model is trained on the sets T0_6 and beyond, the

180 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

accuracy rapidly improves. We also noticed, that when a train set is changed from
T0 to T0_1 the model starts performing worse for many of the test bins. It is
quite counter-intuitive since normally we would expect a better performance of
the model that used more recent samples (bigger and updated training set) to train.
The rapid improvement of accuracy and a counter-intuitive difference in perform-
ance between models trained on T0 and T0_1 raised our attention and we analyze
these findings in Section 11.6.

As we can see, the performance of most of the models built with the use of
memory access patterns recorded BEP degrade over time. Some models degrade
more than the others, acquiring high FPR. But at the same time, the TPR of most
of the models remains relatively high, thus even an outdated model built with BEP
memory access traces will protect the potential system over a long period of time
(while producing a high amount of false alarms).

11.6 Analysis
When we discovered a rapid improvement in the model’s performance with

the change of train set from T0_5 to T0_6 and significant difference between mod-
els trained on T0 and T0_1 we had several hypotheses about the reason for these
changes.

11.6.1 Influence of families

The simplest idea was the influence of the malware families’ distribution in
training and test sets. For example, different distribution of families in train sets
could lead to models biased towards a certain category of malware. However,
if looking into Fig. 11.2 and 11.1 from Section 11.4 we may see, that the
distribution of families in training sets T0_5 and T0_6 are almost identical. The
family distribution does not also explain the difference in performance between
models trained on T0 and T0_1: it is easy to see, that family distribution in T0_1
is closer to e.g. test bin 9 than the one in T0. Thus we rejected this hypothesis.

11.6.2 Influence of features

The other potential reason for the model performance changes could be the
features. As we are not using the entire feature set and using a two-step feature
selection process it could be, that the features we select as well as their amount
can affect the potential performance of the model trained on data built with such
features. First of all, let’s take a look in Table 11.3 where the amounts of features
selected by CFS for each of the train sets are present.

First of all, it is easy to see that train sets can be grouped into three categories
based on the number of features selected on them by CFS. In the first group, it will
be a single set T0: 555 features were selected from it. In the second group there

11.6. Analysis 181

Table 11.3: Amount of features selected by CFS feature selection method for all train sets

Train Set T0 T0_1 T0_2 T0_3 T0_4 T0_5 T0_6 T0_7 T0_8 T0_9 T0_10 T0_11
Features 555 133 135 136 134 134 134 8 10 11 11 10

will be sets T0_1 - T0_6 with the number of features ranging from 133 to 136.
And in the third group there will be sets T0_7 - T0_11 with the number of features
ranging from 8 to 11.

The amounts of features selected from the sets in the third group did not sur-
prise us, since they are quite similar to what can be seen in [6]. It was already
known, that in some cases we need very few of the BEP memory access patterns
to achieve 0.99 classification accuracy.

When talking about T0, 555 is a quite high amount of features, since T0 has
only 128 samples. It is generally considered in the literature, that fewer features in
the dataset improves the performance of ML algorithms [7] [4] [6] [12]. In some
articles authors suggest using the rule of 10: to train a good performing ML model,
it is advised to have ten times more training samples than features [13]. However,
in our case, a bigger amount of features allowed to eliminate false positives and
contributed towards relatively stable TPR and accuracy along the test sets. Based
on the experience from [6] we were surprised by the fact that CFS has selected
so many features for a relatively small dataset. So we calculated IG for all of the
555 features selected from T0 and found, that 531 of them had IG of 1. For a two-
class dataset, it means that each of these features can be solely used to correctly
classify all samples of the train set. As CFS stops adding features to the feature set
when the merit of the set stops to increase, it becomes clear that the high amount
of selected features is due to their high quality. Even if they correlate with each
other, there is no way to distinguish between features with exact same values for
all samples if they carry a lot of information.

While evaluating the second group, we found, that the number of features se-
lected for the sets T0_5 and T0_6 is the same. So the number of features has no
influence over the rapid increase in model performance. Thus we decided to check
how feature sets change with the change of the train sets. To observe changes in
feature sets we built a Table 11.4. In this table, each row and column is named
T0_X_N where T0_X represents one of the training sets, while N is the number of
features selected from this training set. Each cell of the table shows the amount
of features common between the feature sets whose row and column cross in this
cell.

It is easy to see, that feature sets from T0 to T0_6 share many common features
between them. However, as it was shown in Section 11.5, model trained on T0
show better performance on the last 6 test bins than models trained on T0_1-T0_-

182 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

Table 11.4: Amount of common features between the feature sets.

T
0_

55
5

T
0_

1_
13

3

T
0_

2_
13

5

T
0_

3_
13

6

T
0_

4_
13

4

T
0_

5_
13

4

T
0_

6_
13

4
T

0_
7_

8
T

0_
8_

10
T

0_
9_

11
T

0_
10

_1
1

T
0_

11
_1

0

T0_555 555 126 126 127 126 126 126 2 2 3 3 3
T0_1_133 133 128 126 126 126 126 1 1 1 1 1
T0_2_135 135 127 127 127 127 1 1 1 1 1
T0_3_136 136 127 127 127 1 1 1 1 1
T0_4_134 134 128 128 1 1 1 1 1
T0_5_134 134 128 1 1 1 1 1
T0_6_134 134 1 1 2 1 1
T0_7_8 8 0 0 0 0
T0_8_10 10 4 2 0
T0_9_11 11 1 1
T0_10_11 11 5
T0_11_10 10

6. This can be a sign of the drawback in our feature selection approach, as it
can not select the same features from e.g. train sets T0 and T0_1. Let’s now
look into the feature sets T0_5_134 and T0_6_134, a place where the RF model
gets rapid improvement in classification accuracy. These feature sets share 128
of 134 features. However, the latter allows for higher classification accuracy. We
examined 6 "old" unique features from T0_5_134 and 6 "new" from T0_6_134 in
terms of the information they carry. We found, that 5 out of 6 of old and new
features have the same IG in their respective train sets. The remaining features
have their IG different in the 5th digit after the decimal point. We believe, that such
an insignificant difference in feature set quality could not result in the improvement
of classification accuracy that we’ve seen in Section 11.5. It is also worth to
mention, that feature sets from T0_7 to T0_11 share more common features with
T0 then with T0_1-T0_6. And the RF models trained on them generally perform
better than those trained on T0_1-T0_6.

Another thing we could check emerges from the nature of our features and the
way we process experimental data. As we explained in Section 11.3 the feature
takes value 1 when a certain memory access pattern is generated by a sample and
0 otherwise. What can happen, that the majority of selected features take value
1 for more samples of one class that of another. This means, that the feature set
represents behavior of a certain class. In other words, one class can be described by
the presence of certain memory access patterns while another by absence of such.
And since malware and benign software evolve over the time it might happen,

11.6. Analysis 183

Table 11.5: Proportion of features that represent one class more than another.
Fe

at
ur

e
Se

t

T
0_

55
5

T
0_

1_
13

3

T
0_

2_
13

5

T
0_

3_
13

6

T
0_

4_
13

4

T
0_

5_
13

4

T
0_

6_
13

4

T
0_

7_
8

T
0_

8_
10

T
0_

9_
11

T
0_

10
_1

1

T
0_

11
_1

0

Mal 0.771 0.030 0.037 0.037 0.022 0.022 0.022 0.125 0.2 0.273 0.364 0.5
Ben 0.229 0.970 0.963 0.963 0.978 0.978 0.978 0.875 0.8 0.727 0.636 0.5

that newer samples of a certain class will start generating patterns that were not
generated by samples of this class at the time of training (in the training set) and
vice versa. Thus, we decided to explore how selected features represent classes
in train sets. To do this we counted the proportion of features that represent more
malicious or more benign samples. Basically, we found the number of features
that take value 1 in more samples of one class than in another. In Table 11.5,
values in column Mal reflect the portion of the entire feature set features that take
value 1 more often in malicious samples, while column Ben reflect similar values
for the benign class. As we can see from this table, feature sets that contribute to
the good performance of RF models (T0,T0_7-T0_11) have a smaller imbalance
between the number of features that represent malicious and benign classes than
other feature sets. However, the feature set T0_6 stands out. It has one of the
highest imbalances but allows for better performance than feature sets with similar
feature balance. Thus, we can not conclude that the way features represent classes
affects the performance of models. We also trained RF models with 50K best
features (see Section 11.3) but the results were the same as with CFS-selected
features.

11.6.3 Influence of feature space

As we found, that feature qualities have no direct influence on the classific-
ation performance we decided to check whether the entire feature sets can be a
reason for the classification performance we observed in Section 11.5. Samples
in a dataset can be considered as points in the multidimensional space, where di-
mensionality is defined by the number of features and coordinates of the point are
the values of features for the particular sample. It is known, that in general the
further away in given feature space samples of a different class from each other
- the easier it is to distinguish between them[12][20]. Some ML algorithms, e.g.
k-Nearest Neighbors or Support Vector Machines, use distances between samples
directly. But even if the distance measure between samples is not used in the ML
algorithm, two samples of two different classes that have the same coordinates
(are in the same point of feature space) are impossible to distinguish from each
other. So we decided to visualize how selected features allow to separate samples

184 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

(d) T0 (e) T0_1 (f) T0_2

(g) T0_3 (h) T0_4 (i) T0_5

(j) T0_6 (k) T0_7 (l) T0_8

(m) T0_9 (n) T0_10 (o) T0_11

(p) Legend

Figure 11.3: Distance-preserving projection of train and test samples from multidimen-
sional feature spaces into the two dimensional plane.

11.6. Analysis 185

of different classes. It is impossible to draw a space which dimensionality exceeds
3. However, there is a way to reduce the dimensionality of a dataset and draw
it on the 2D plane while keeping relative distances between point intact: multi-
dimensional scaling[14] (MDS). With a help of MDS, it is possible to visualize
how samples from the multidimensional dataset are located relative to each other
on the two-dimensional plane. Using MDS implementation from scikit-learn [16]
Python package we built Fig. 11.3. In this Figure, each subfigure is an illustration
of the location of the train and test samples in the feature space of a certain training
set. For example, in Fig. 11.3f we can see how samples are located in the feature
space of the T0_2. On each of the subfigures we depicted the following elements
(for colors and shapes see the legend on Subfigure 11.3p):

• Train samples of benign and malicious classes. Train samples of a malicious
class have different shapes according to their family (see Legend) but use the
same dark-red color.

• Test samples of benign and malicious classes. Test samples of a malicious
class have different shapes and colors according to their family (see Legend).

• We have also marked centers of malicious and benign parts of the train and
each of the test sets. A center here is a point that has coordinates equal to
the mean of the samples in the group: it can be considered as a centroid of
the corresponding cluster. For example in Fig. 11.3o a point Named "Ben
Test 12" is a center of benign samples for test set 12.

From Fig. 11.3 it is possible to understand some of the classification results. For
example, in Fig. 11.3d we can see, that benign parts of train and test samples lay
relatively close to each other, while several groups of malicious test samples are
located closer to benign samples than to the malicious train set. This explains 0
FPR achieved by ML model on this train and test sets combination and non-ideal
TPR since some malicious samples are closer to the benign part of the train set than
to the malicious one. On its turn, Fig. 11.3e shows why FPR grows and accuracy
drops for a model trained on T0_1: both benign samples and centers of benign
parts of test sets become closer to the malicious train part over the time. We may
also observe in Fig. 11.3k- 11.3o that malicious and benign sets slightly overlap,
but still quite distinguishable. On the other hand, a comparison of Fig. 11.3i and
11.3j does not explain the rapid improvement in the classification accuracy of the
models. Moreover, the relative positioning of the benign and malicious sets almost
doesn’t differ1. At this point, we had to conclude, that feature spaces analysis does

1It is important to note, that Fig. 11.3i and 11.3j look rotated against each other only because
we had no control over how exactly the points from multidimensional space are placed on the two-
dimensional plane by the MDS algorithm.

186 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

not help to understand the classification accuracy difference between T0_5 and
T0_6 models. We must also admit, that the counter-intuitive difference between
the performance of models trained on T0 and T0_1 can not be explained with this
approach. Our next hypothesis about the unexpected classification performance
was about the potential limitations of the RF algorithm. Thus, we decided to train
models with several different ML algorithms and compare their performance to the
RF algorithm. We decided to find out whether it is possible to obtain models that
can detect malware with the use of BEP memory access traces better.

11.7 Additional evaluation
This section is dedicated to answering the question "Is it possible to classify

malicious and benign samples better than with use of RF algorithm?2". When we
decided to test classification performance of other algorithms we first checked the
k-Nearest Neighbors(kNN) algorithm as it performed quite well in [6],[4] or [7].
However, it showed very similar to RF performance so we do not present the results
achieved by kNN. The next algorithm we decided to check was the J48 (Decision
Trees) algorithm from Weka [10]. The main difference between RF and J48 is the
number of trees that are used. By default, RF from Weka uses 100 trees while J48
builds a single tree. In Fig. 11.4 we present accuracy, TPR, and FPR of J48. For
table data see Appendix Appendix B. First of all, J48 trained on sets T0-T0_4 show
exactly the same performance as RF. On the Fig. 11.4, similarly to Fig. 11.3, we
omit results on T0_3 and T0_4 because the results on the remaining test sets do
not change. However, when we look at the performance of J48 trained on T0_5
we can easily see, that J48 performs better with this train set than RF. Moreover,
J48 trained on T0_5 classifies test sets 7-11 with exactly the same accuracy as RF
trained on T0_6. At the same time, J48 trained on T0_6 classifies test sets 7-12 with
exactly the same accuracy as RF trained on T0_5. For the rest of the training sets,
J48 and RF behave mostly similarly but there are some visible differences. E.g.
J48 trained on T0_8 performs better than RF, while RF trained on T0_9 performs
better than J48. As RF is a set of many decision trees, we explored how the number
of trees affects the performance of RF. It was found, that the number of trees of 4 or
less RF performs the same way J48 does. This means that we could have observed
a case of overfitting of the Random Forest algorithm when trained on T0_5. So
far we showed, that there can be specific cases when one tree-based algorithm
outperforms another. But in an attempt to improve the classification accuracy of
models trained on T0_1-T0_5 we decided to utilize Locally-Weighted Learning
(LWL) algorithm from Weka. LWL is a combination of kNN and any other ML
algorithm that supports weighted learning and has relatively low training time.

2Under the current conditions: same dataset and features.

11.7. Additional evaluation 187

0.600

0.700

0.800

0.900

1.000

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T1_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0

0.2

0.4

0.6

0.8

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Figure 11.4: Performance of J48 algorithm

The basic principle of LWL is the following: to classify a test sample, at the time
of classification LWL trains an ML model with a use of k train samples that are
close to the test sample. The k samples are weighted according to their distance.
This way every test sample is classified by a separate ML model. The default ML
algorithm that is used in LWL in Weka is Decision Stump (DS). Decision stump is
a simple decision tree that consists of only one node. In the Fig. 11.5 we present

188 P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded
Before the Entry Point

the performance of the LWL algorithm. For table data see Appendix Appendix C
What is easy to see in Fig. 11.5b is the improvement of TPR if compared to RF
and J48. We can also observe the FPR values (Fig. 11.5c) became more diverse
between the models trained on different train sets. From the accuracy chart (Fig.
11.5a) we can see, that the model trained on T0 performs not as well as similar
models of RF and J48. Its performance almost matches the one of a model trained
on T0_7 on the test sets 8-12. We also observe a decline in the performance of the
models T0_1 - T0_5 if compared to T0. However, the LWL models T0_1 - T0_4
perform better than those of RF and J48: accuracy is higher, while FPR is lower. So
we were able to improve the performance of some of the low-performing models
by changing the ML algorithm. But the LWL trained on T0_5 performs almost
as bad as the RF and significantly worse than J48. When switching to the T0_6
model we see the rapid improvement of the performance that is similar to the one
we have seen with RF.

As we were able to see, for some combinations of train and test sets it is
possible to improve classification performance by choosing the different ML al-
gorithms. Thus, we can answer positively to the question outlined at the beginning
of this section. Some algorithms will perform better under certain conditions while
worse under the other. But the final choice of the ML algorithm is always up to the
developers of the potential AV system and should be based on the requirements of
the system in interest.

11.8 Discussion and Conclusions
In this section, we discuss our findings, present the conclusions, and outline

possible improvements that can be implemented in future work.
In this paper, we have shown, that behavioral traces recorded before the Entry

point have the potential to be used for the detection of previously unseen malware.
It is an important finding since malware detected BEP has no chance to harm the
system even though it was launched. The results presented in Sections 11.5 and
11.7 show, that we can answer yes to the RQ1 outlined in Section 11.1. The
memory access traces recorded before the Entry Point can be successfully used
to distinguish between previously unseen malicious and benign executables. To
answer the RQ2 we have also shown, that most of the ML models trained on the
BEP memory access traces can provide a good detection rate (TPR > 0.95) for
the significant periods of time since the update of the model. Some models provide
high TPR for a period of at least 11 months. But it is important to remember, that
they also tend to develop high FPR which is a clear sign of the need for regular
updates of the model since high FPR will disrupt operations of the system by
raising a lot of false alarms. Thus, we have to conclude that memory access traces
recorded BEP can be used for malware detection, but such an approach has its

11.8. Discussion and Conclusions 189

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12

AC
C

Test bin number

T0
T0_1
T0_3
T0_4
T0_2
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(a) Accuracy

0.80

0.85

0.90

0.95

1.00

1 2 3 4 5 6 7 8 9 10 11 12

TP
R

Test bin number

T0
T0_1
T0_2
T0_3
T0_4
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(b) True positive rate

0.00
0.10
0.20
0.30
0.40
0.50
0.60
0.70

1 2 3 4 5 6 7 8 9 10 11 12

FP
R

Test bin number

T0
T0_1
T0_2
T0_3
T0_4
T0_5
T0_6
T0_7
T0_8
T0_9
T0_10
T0_11

(c) False positive rate

Figure 11.5: Performance of LWL algorithm

limitations that should be taken into account.
We have also performed an attempt to explain some of the cases of difference

in the performance of ML models. Under our approach, we were not able to show
that features or feature spaces influence the classification performance of the mod-
els. But we were able to show, that in some cases (for certain combinations of

190 Bibliography

train and test sets) some ML algorithms perform better than the others. But it is
still important to pay attention to the TPR and FPR when making a choice of the
ML algorithm to be used in a real system. Some trends of the classification per-
formance results remain similar between different ML algorithms: e.g. models
trained on T0 outperform those trained on T0_1 - T0_6 on the last 7 test bins (true
for RF, J48, LWL); models trained on T0_5 are among the worst-performing mod-
els (RF, LWL); model trained on T0 shows a drop of performance for the test bins
5 and 6 (RF, J48, LWL). Based on these findings we have to conclude, that such
performance of models can be a sign of a potential weakness of our BEP memory
access patterns approach. In future work, one may try to understand, whether this
is a weakness in the use of memory access patterns or the fact that we are focusing
on the BEP activity. To do this, different types of features and features recorded
AEP may be used on the same dataset. It may also be the result of some special
properties of our dataset, that we had no control over since we used all of the avail-
able samples. So in future research, one may use our approach on the different,
potentially larger, and more diverse dataset. It may also be useful to perform the
analysis of the misclassified samples[19], as it may help to understand the clas-
sification performance as it was shown in [4]. During the analysis phase we also
observed a case of overfitting of Random Forest algorithm. We believe, that this
finding has a potential to be investigated by machine learning researchers working
on improving of understanding the performance of common ML algorithms.

We also believe, that our paper provides an important example of the analysis
of the classification performance. Analysis of subcategories, the influence of the
amount and quality of features in the updated feature set, and graphical analysis of
feature space can help other researchers to understand their results. We think, that
such approach can be used not only in malware analysis but in many areas where
ML is used. Together with the feature selection approach, where we can reduce
the feature space from hundreds of thousands and millions of features to hundreds
and even fewer features, our paper provides valuable solutions for those working
with Big Data and high-dimensional datasets.

11.9 Bibliography
[1] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

Are your training datasets yet relevant? In International Symposium on En-
gineering Secure Software and Systems, pages 51–67. Springer, 2015.

[2] AVTEST. The independent IT-Security Institute. Malware. https://www.
av-test.org/en/statistics/malware/, 2020.

[3] Sergii Banin. Malware Analysis using Artificial Intelligence and Deep Learn-

https://www.av-test.org/en/statistics/malware/
https://www.av-test.org/en/statistics/malware/

Bibliography 191

ing: Fast and straightforward feature selection method: A case of high di-
mensional low sample size dataset in malware analysis. Springer, 2020.

[4] Sergii Banin and Geir Olav Dyrkolbotn. Multinomial malware classification
via low-level features. Digital Investigation, 26:S107–S117, 2018.

[5] Sergii Banin and Geir Olav Dyrkolbotn. Correlating high-and low-level fea-
tures. In International Workshop on Security, pages 149–167. Springer, 2019.

[6] Sergii Banin and Geir Olav Dyrkolbotn. Detection of running malware before
it becomes malicious. In International Workshop on Security, pages 57–73.
Springer, 2020.

[7] Sergii Banin, Andrii Shalaginov, and Katrin Franke. Memory access patterns
for malware detection. Norsk informasjonssikkerhetskonferanse (NISK),
pages 96–107, 2016.

[8] Haipeng Cai. Assessing and improving malware detection sustainability
through app evolution studies. ACM Transactions on Software Engineering
and Methodology (TOSEM), 29(2):1–28, 2020.

[9] M. A. Hall. Correlation-based Feature Subset Selection for Machine Learn-
ing. PhD thesis, University of Waikato, Hamilton, New Zealand, 1998.

[10] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

[11] IntelPin. A dynamic binary instrumentation tool, 2017.

[12] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[13] Malay Haldar. How much training data do you need? https://medium.com/
@malay.haldar/how-much-training-data-do-you-need-da8ec091e956, 2015.

[14] Al Mead. Review of the development of multidimensional scaling meth-
ods. Journal of the Royal Statistical Society: Series D (The Statistician),
41(1):27–39, 1992.

[15] Bradley Austin Miller. Scalable platform for malicious content detection
integrating machine learning and manual review. PhD thesis, UC Berkeley,
2015.

[16] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos,
D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Ma-
chine learning in Python. Journal of Machine Learning Research, 12:2825–
2830, 2011.

https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956
https://medium.com/@malay.haldar/how-much-training-data-do-you-need-da8ec091e956

192 Bibliography

[17] Feargus Pendlebury, Fabio Pierazzi, Roberto Jordaney, Johannes Kinder, and
Lorenzo Cavallaro. {TESSERACT}: Eliminating experimental bias in mal-
ware classification across space and time. In 28th {USENIX} Security Sym-
posium ({USENIX} Security 19), pages 729–746, 2019.

[18] PortableApps.com. Portableapps.com. https://portableapps.com/apps, 2020.

[19] Christian Rossow, Christian J Dietrich, Chris Grier, Christian Kreibich, Vern
Paxson, Norbert Pohlmann, Herbert Bos, and Maarten Van Steen. Prudent
practices for designing malware experiments: Status quo and outlook. In
2012 IEEE Symposium on Security and Privacy, pages 65–79. IEEE, 2012.

[20] Saket Sathe and Charu C Aggarwal. Nearest neighbor classifiers versus ran-
dom forests and support vector machines. In 2019 IEEE International Con-
ference on Data Mining (ICDM), pages 1300–1305. IEEE, 2019.

[21] Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, and Katrin Franke. Ma-
chine learning aided static malware analysis: A survey and tutorial. In Cyber
Threat Intelligence, pages 7–45. Springer, 2018.

[22] Ashu Sharma, Sanjay K Sahay, and Abhishek Kumar. Improving the detec-
tion accuracy of unknown malware by partitioning the executables in groups.
In Advanced computing and communication technologies, pages 421–431.
Springer, 2016.

[23] Sanjay Sharma, C Rama Krishna, and Sanjay K Sahay. Detection of ad-
vanced malware by machine learning techniques. In Soft Computing: Theor-
ies and Applications, pages 333–342. Springer, 2019.

[24] Virus Total. Virustotal-free online virus, malware and url scanner. Online:
https://www. virustotal. com/en, 2012.

[25] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[26] Çağatay Yücel and Ahmet Koltuksuz. Imaging and evaluating the memory
access for malware. Forensic Science International: Digital Investigation,
32:200903, 2020.

https://portableapps.com/apps
http://virusshare.com/

Appendices 193

Appendix A Classification results achieved by RF

Table 6: RF accuracy

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.975 0.991 0.989 0.994 0.902 0.885 0.992 0.980 0.994 0.984 0.982 0.987
T0_1 1.000 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0_2 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0_5 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0_6 0.992 0.913 0.947 0.923 0.984 0.876
T0_7 0.930 0.953 0.949 0.987 0.878
T0_8 0.996 0.998 0.998 0.935
T0_9 0.998 0.997 0.945
T0_10 0.997 0.987
T0_11 0.976

Table 7: RF TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.95 0.983 0.977 0.994 0.803 0.769 0.985 0.96 0.989 0.967 0.964 0.969
T0_1 1 1 1 1 1 1 1 1 1 1 1
T0_2 1 1 1 1 1 1 1 1 1 1
T0_5 1 1 1 1 1 1 1
T0_6 1 1 1 1 1 1
T0_7 1 1 1 1 1
T0_8 1 1 0.997 1
T0_9 1 0.993 1
T0_10 0.993 1
T0_11 1

194 Appendices

Table 8: RF FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0 0 0 0 0 0
T0_1 0 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0_2 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0_5 0 0.1 0.32 0.215 0.294 0.72 0.58
T0_6 0.015 0.173 0.106 0.154 0.033 0.211
T0_7 0.14 0.094 0.103 0.026 0.208
T0_8 0.008 0.005 0 0.11
T0_9 0.05 0 0.095
T0_10 0 0.022
T0_11 0.041

Appendix B. Classification results achieved by J48 195

Appendix B Classification results achieved by J48

Table 9: J48 accuracy

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.975 0.989 0.989 0.994 0.902 0.885 0.992 0.980 0.994 0.984 0.982 0.987
T0_1 1.000 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0_2 1.000 1.000 1.000 1.000 0.950 0.840 0.892 0.853 0.640 0.660
T0_5 1.000 0.992 0.916 0.947 0.923 0.984 0.876
T0_6 0.950 0.840 0.892 0.853 0.640 0.660
T0_7 0.916 0.947 0.923 0.984 0.876
T0_8 0.996 1.000 0.997 0.998
T0_9 0.986 0.818 0.980
T0_10 0.995 0.995
T0_11 0.959

Table 10: J48 TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.95 0.977 0.977 0.988 0.803 0.769 0.985 0.96 0.989 0.967 0.964 0.969
T0_1 1 1 1 1 1 1 1 1 1 1 1
T0_2 1 1 1 1 1 1 1 1 1 1
T0_5 1 1 1 1 1 1 1
T0_6 1 1 1 1 1 1
T0_7 1 1 1 1 1
T0_8 0.992 1 0.993 0.996
T0_9 1 0.993 0.996
T0_10 0.997 0.997
T0_11 0.931

196 Appendices

Table 11: J48 FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0 0 0 0 0 0
T0_1 0 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0_2 0 0 0 0 0.1 0.32 0.215 0.294 0.72 0.58
T0_5 0 0.015 0.167 0.106 0.154 0.033 0.211
T0_6 0.1 0.32 0.215 0.294 0.72 0.58
T0_7 0.167 0.106 0.154 0.033 0.211
T0_8 0 0 0 0
T0_9 0.028 0.358 0.032
T0_10 0.007 0.006
T0_11 0

Appendix C. Classification results achieved by LWL 197

Appendix C Classification results achieved by LWL

Table 12: LWL accuracy

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.996 0.991 1.000 0.997 0.977 0.923 0.992 0.916 0.947 0.916 0.980 0.871
T0_1 1.000 1.000 1.000 1.000 1.000 0.969 0.886 0.921 0.888 0.822 0.778
T0_2 1.000 1.000 1.000 1.000 0.973 0.903 0.928 0.911 0.912 0.815
T0_3 1.000 1.000 1.000 0.962 0.853 0.900 0.864 0.723 0.721
T0_4 1.000 1.000 0.969 0.853 0.921 0.876 0.775 0.765
T0_5 1.000 0.954 0.873 0.898 0.876 0.661 0.667
T0_6 0.992 0.903 0.947 0.916 0.933 0.861
T0_7 0.916 0.947 0.923 0.984 0.876
T0_8 0.992 0.984 0.819 0.946
T0_9 0.984 0.818 0.980
T0_10 0.989 0.989
T0_11 0.989

Table 13: LWL TPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0.992 0.98 1 0.994 0.96 0.85 1 0.99 1 0.986 0.987 0.991
T0_1 1 1 1 1 1 1 1 1 1 1 1
T0_2 1 1 1 1 1 1 1 1 1 1
T0_3 1 1 1 1 1 1 1 1 1
T0_4 1 1 1 1 1 1 1 1
T0_5 1 1 1 1 1 1 1
T0_6 1 1 1 1 1 1
T0_7 1 1 1 1 1
T0_8 1 1 0.997 1
T0_9 0.995 0.993 0.996
T0_10 0.98 0.982
T0_11 0.982

198 Appendices

Table 14: LWL FPR

Train set Test bin number
1 2 3 4 5 6 7 8 9 10 11 12

T0 0 0 0 0 0 0 0.015 0.16 0.106 0.154 0.026 0.215
T0_1 0 0 0 0 0 0.062 0.23 0.158 0.224 0.355 0.379
T0_2 0 0 0 0 0.054 0.19 0.143 0.178 0.176 0.315
T0_3 0 0 0 0.077 0.29 0.2 0.271 0.554 0.476
T0_4 0 0 0.062 0.29 0.158 0.248 0.45 0.401
T0_5 0 0.092 0.25 0.204 0.248 0.678 0.568
T0_6 0.015 0.19 0.106 0.168 0.134 0.237
T0_7 0.17 0.106 0.154 0.033 0.211
T0_8 0.015 0.033 0.358 0.091
T0_9 0.028 0.358 0.032
T0_10 0.003 0.006
T0_11 0.006

Chapter 12

S1: Machine Learning Aided
Static Malware Analysis: A
Survey and Tutorial

Andrii Shalaginov, Sergii Banin, Ali Dehghantanha, Katrin Franke

Abstract
Malware analysis and detection techniques have been evolving during the last

decade as a reflection to development of different malware techniques to evade
network-based and host-based security protections. The fast growth in variety and
number of malware species made it very difficult for forensics investigators to
provide an on time response. Therefore, Machine Learning (ML) aided malware
analysis became a necessity to automate different aspects of static and dynamic
malware investigation. We believe that machine learning aided static analysis
can be used as a methodological approach in technical Cyber Threats Intelligence
(CTI) rather than resource-consuming dynamic malware analysis that has been
thoroughly studied before. In this paper, we address this research gap by conduct-
ing an in-depth survey of different machine learning methods for classification of
static characteristics of 32-bit malicious Portable Executable (PE32) Windows files
and develop taxonomy for better understanding of these techniques. Afterwards,
we offer a tutorial on how different machine learning techniques can be utilized in
extraction and analysis of a variety of static characteristic of PE binaries and eval-
uate accuracy and practical generalization of these techniques. Finally, the results
of experimental study of all the method using common data was given to demon-
strate the accuracy and complexity. This paper may serve as a stepping stone for
future researchers in cross-disciplinary field of machine learning aided malware

199

200 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

forensics.

12.1 Introduction
Stealing users’ personal and private information has been always among top

interests of malicious programs [7]. Platforms which are widely used by normal
users have always been best targets for malware developers [8].

Attackers have leveraged malware to target personal computers [21], mobile
devices [61], cloud storage systems [12], Supervisory Control and Data Acquisi-
tion Systems (SCADA) [11], Internet of Things (IoT) network [81] and even big
data platforms [67].

Forensics examiners and incident handlers on the other side have developed
different techniques for detection of compromised systems, removal of detected
malicious programs [22, 13], network traffic [63], and even log analysis [69]. Dif-
ferent models have been suggested for detection, correlation and analyses of cyber
threats [19] (on a range of mobile devices [43] and mobile applications [45], cloud
applications [10], cloud infrastructure [46] and Internet of Things networks [47]).
Windows users are still comprising majority of Internet users hence, it is not sur-
prising to see Windows as the most adopted PC Operating System (OS) on top
of the list of malware targeted platforms [1]. In response, lots of efforts have
been made to secure Windows platform such as educating users [54, 25], em-
bedding an anti-virus software [40], deploying anti-malware and anti-exploitation
tools [53, 52], and limiting users applications privilege [41].

In spite of all security enhancements, many malware are still successfully com-
promising Windows machines [36, 1] and malware is still ranked as an important
threat to Windows platforms [33]. As result, many security professionals are still
required to spend a lot of time on analyzing different malware species [9]. This
is a logical step since malware analysis plays a crucial role in Cyber Threats In-
telligence (CTI). There has been proposed a portal to facilitate CTI and malware
analysis through interactive collaboration and information fusion [56].

There are two major approaches for malware analysis namely static (code)
and dynamic (behavioral) malware analysis [15, 7]. In dynamic malware ana-
lysis, samples are executed and their run time behavior such as transmitted net-
work traffic, the length of execution, changes that are made in the file system, etc.
are used to understand the malware behavior and create indications of compromise
for malware detection [15]. However, dynamic analysis techniques can be easily
evaded by malware that are aware of execution conditions and computing envir-
onment [34]. Dynamic malware analysis techniques can only provide a snapshot
view of the malware behavior and hence very limited in analysis of Polymorph
or Metamorph species [44]. Moreover, dynamic malware analysis techniques are
quite resource hungry which limits their enterprise deployment [37].

12.1. Introduction 201

In static malware analysis, the analyst is reversing the malware code to achieve
a deeper understanding of the malware possible activities. [28]. Static analysis
relies on extraction of a variety of characteristics from the binary file such that
function calls, header sections, etc. [83]. Such characteristics may reveal indic-
ators of malicious activity that are going to be used in CTI [57]. However, static
analysis is quite a slow process and requires a lot of human interpretation and
hence [7].

Static analysis of PE32 is a many-sided challenge that was studied by different
authors. Static malware analysis also was used before for discovering intercon-
nections in malware species for improved Cyber Threat Intellifence [42, 66]. As
32-bit malware are still capable of infecting 64-bit platforms and considering there
are still many 32-bit Windows OS it is not surprising that still majority of Windows
malware are 32-bit Portable Executable files [7]. To authors knowledge there has
not been a comparative study of ML-based static malware using a single data-
set which produces comparable results. We believe that utilization of ML-aided
automated analysis can speed up intelligent malware analysis process and reduce
human interaction required for binaries processing. Therefore, there is a need for
thorough review of the relevant scientific contributions and offer a taxonomy for
automated static malware analysis.

The remainder of this paper is organized as follows. We first offer a com-
prehensive review of existing literature in machine learning aided static malware
analysis. We believe this survey paves the way for further research in application
of machine learning in static malware analysis and calls for further development
in this field. Then, taxonomy of feature construction methods for variety of static
characteristics and corresponding ML classification methods is offered. After-
wards, we offer a tutorial that applies variety of set of machine learning techniques
and compares their performance. The tutorial findings provide a clear picture of
pros and cons of ML-aided static malware analysis techniques. To equally com-
pare all the methods we used one benign and two malware datasets to evaluate all
of the studied methods. This important part complements the paper due to the fact
that most of the surveyed works used own collections, sometimes not available for
public access or not published at all. Therefore, experimental study showed per-
formance comparison and other practical aspects of ML-aided malware analysis.
Section 12.4 gives an insight into a practical routine that we used to establish our
experimental setup. Analysis of results and findings are given in the Section 12.5.
Finally, the paper is concluded and several future works are suggested in the Sec-
tion 12.6.

202 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

12.2 An overview of Machine Learning-aided static malware
detection

This section provides an analysis of detectable static properties of 32 bit PE
malware followed by detailed description of different machine learning techniques
to develop a taxonomy of machine learning techniques for static malware analysis.

12.2.1 Static characteristics of PE files
PE file format was introduced in Windows 3.1 as PE32 and further developed

as PE32+ format for 64 bit Windows Operating Systems. PE files contain a Com-
mon Object File Format (COFF) header, standard COFF fields such as header, sec-
tion table, data directories and Import Address Table (IAT). Beside the PE header
fields a number of other static features can be extracted from a binary executable
such as strings, entropy and size of various sections.

To be able to apply Machine Learning PE32 files static characteristics should
be converted into a machine-understandable features. There exist different types
of features depending on the nature of their values such that numerical that de-
scribes a quantitative measure (can be integer, real or binary value) or nominal that
describes finite set of categories or labels. An example of the numerical feature is
CPU (in %) or RAM (in Megabytes) usage, while nominal can be a file type (like
∗.dll or ∗.exe) or Application Program Interface (API) function call (like write()
or read()).

1. n-grams of byte sequences is a well-known method of feature construction
utilizing sequences of bytes from binary files to create features. Many tools
have been developed for this purpose such as hexdump [39] created 4-grams
from byte sequences of PE32 files. The features are collected by sliding
window of n bytes. This resulted in 200 millions of features using 10-grams
for about two thousands files in overall. Moreover, feature selection (FS)
was applied to select 500 most valuable features based on Information Gain
metric. Achieved accuracy on malware detection was up to 97% using such
features. Another work on byte n-grams [51] described usage of 100-500
selected n-grams yet on a set of 250 malicious and 250 benign samples.
Similar approach [31] was used with 10, . . . , 10, 000 best n-grams for n =
1, . . . , 10. Additionally, ML methods such that Naive Bayes, C4.5, k-NN
and others were investigated to evaluate their applicability and accuracy.
Finally, a range of 1-8 n-grams [27] can result in 500 best selected n-grams
that are used later to train AdaBoost and Random Forests in addition to
previously mentioned works.

2. Opcode sequences or operation codes are set of consecutive low level ma-
chine abstractions used to perform various CPU operations. As it was shown [62]

12.2. An overview of Machine Learning-aided static malware detection 203

such features can be used to train Machine Learning methods for success-
ful classification of the malware samples. However, there should be a bal-
ance between the size of the feature set and the length of n-gram opcode
sequence. N-grams with the size of 4 and 5 result in highest classification
accuracy as unknown malware samples could be unveiled on a collection
of 17,000 malware and 1,000 benign files with a classification accuracy up
to 94% [58]. Bragen [5] explored reliability of malware analysis using se-
quences of opcodes based on the 992 PE-files malware and benign samples.
During the experiments, about 50 millions of opcodes were extracted. 1-
gram- and 2-gram-based features showed good computational results and
accuracy. Wang et al. [79] presented how the 2-tuple opcode sequences can
be used in combination with density clustering to detect malicious or benign
files.

3. API calls are the function calls used by a program to execute specific func-
tionality. We have to distinguish between System API calls that are available
through standard system DLLs and User API calls provided by user installed
software. These are designed to perform a pre-defined task during invoca-
tion. Suspicious API calls, anti-VM and anti-debugger hooks and calls can
be extracted by PE analysers such as PEframe [3]. [83] studied 23 malware
samples and found that some of the API calls are present only in malwares
rather than benign software. Function calls may compose in graphs to rep-
resent PE32 header features as nodes, edges and subgraphs [84]. This work
shows that ML methods achieve accuracy of 96% on 24 features extrac-
ted after analysis of 1,037 malware and 2,072 benign executables. Further,
in [71] 20,682 API calls were extracted using PE parser for 1,593 mali-
cious and benign samples. Such large number of extracted features can help
to create linearly separable model that is crucial for many ML methods as
Support Vector Machines (SVM) or single-layer Neural Networks. Another
work by [55] described how API sequences can be analysed in analogy with
byte n-grams and opcode n-grams to extract corresponding features to clas-
sify malware and benign files. Also in this work, an array of API calls from
IAT (PE32 header filed) was processed by Fisher score to select relevant
features after analysis of more than 34k samples.

4. PE header represents a collection of meta data related to a Portable Execut-
able file. Basic features that can be extracted from PE32 header are Size of
Header, Size of Uninitialized Data, Size of Stack Reserve, which may in-
dicate if a binary file is malicious or benign [14]. The work [75] utilized
Decision Trees to analyse PE header structural information for describing
malicious and benign files. [76] used 125 raw header characteristics, 31 sec-

204 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

tion characteristics, 29 section characteristics to detect unknown malware in
a semi-supervised approach. Another work [80] used a dataset containing
7,863 malware samples from Vx Heaven web site in addition to 1,908 be-
nign files to develop a SVM based malware detection model with accuracy
of 98%. [38] used F-score as a performance metric to analyse PE32 header
features of 164,802 malicious and benign samples. Also [29] presented re-
search of two novel methods related to PE32 string-based classier that do not
require additional extraction of structural or meta-data information from the
binary files. Moreover, [84] described application of 24 features along with
API calls for classification of malware and benign samples from VxHeaven
and Windows XP SP3 respectively. Further, ensemble of features was ex-
plored [59], where authors used in total 209 features including structural
and raw data from PE32 file header. Further, Le-Khac et al. [35] focused on
Control Flow Change over first 256 addresses to construct n-gram features.

In addition to study of specific features used for malware detection, we ana-
lyzed articles devoted to application of ML for static malware analysis published
between 2000 and 2016, which covers the timeline of Windows NT family that are
still in use as depicted in the Figure 12.1. We can see that the number of papers
that are relevant to our study is growing from 2009 and later, which can be jus-
tified on the basis of increase in the number of Windows users (potential targets)
and corresponding malware families.

Figure 12.1: Timeline of works since 2009 that involved static analysis of Portable Ex-
ecutable files using method characteristics using also ML method for binary malware clas-
sification

Challenges. Despite the fact that some of the feature construction techniques
reflected promising precision of 90+ % in differentiation between malicious and
benign executables, there are still no best static characteristic that guarantee 100%
accuracy of malware detection. This can be explained by the fact that malware
are using obfuscation and encryption techniques to subvert detection mechanisms.

12.2. An overview of Machine Learning-aided static malware detection 205

In addition, more accurate approaches such as bytes N-GRAMS are quite resource
intensive and hardly practical in the real world.

12.2.2 Machine Learning methods used for static-based malware detection

Statistical methods
Exploring large amounts of binary files consists of statistical features may be

simplified using so called frequencies or likelihood of features values. These meth-
ods are made to provide prediction about the binary executable class based on stat-
istics of different static characteristics (either automatically or manually collected)
which are applicable to malware analysis too as describe by Shabtai et al. [60]. To
process such data, extract new or make predictions the following set of statistical
methods can be used:

Naive Bayes is a simple probabilistic classifier, which is based on Bayesian
theorem with naive assumptions about independence in correlation of different
features. The Bayes Rule can be explained as a following conditional independ-
ences of features values with respect to a class:

P (Ck|V) = P (Ck)
P (V |Ck)
P (V)

(12.1)

where P (Ck) is a prior probability of class Ck, k = 1, ...,m0 which is cal-
culated from collected statistics according to description of variables provided by
Kononenko et al. [32]. This method is considered to tackle just binary classifica-
tion problem (benign against malicious) since it was originally designed as mul-
tinomial classifier. V = 〈v1, ..., va〉 is the vector of attributes values that belongs
to a sample. In case of Naive Bayes input values should be symbolical, for ex-
ample strings, opcodes, instruction n-grams etc. P (V) is the prior probability of
a sample described with vector V . Having training data set and given vector V
we count how many samples contain equal values of attributes (e.g. based on the
number of sections or given opcode sequence). It is important to mention that V
have not to be of length of full attribute vector and can contain only one attribute
value. P (V |Ck) is the conditional probability of a sample described with V given
the class Ck. And P (Ck|V) conditional probability of class Ck with V . Based on
simple probability theory we can describe conditional independence of attribute
values vi given the class Ck:

P (V |Ck) = P (v1 ∧ ... ∧ va|Ck) =
a∏
i=1

P (vi|Ck) (12.2)

Dropping the mathematical operations we get final version of Equation 12.1:

P (Ck|V) = P (Ck)
a∏
i=1

P (Ck|vi)
P (Ck)

(12.3)

206 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

So, the task of this machine learning algorithm is to calculate conditional and
unconditional probabilities as described in the Equation 12.3 using a training data-
set. To be more specific, the Algorithm 1 pseudo code shows the calculation of the
conditional probability.

Algorithm 1 Calculating P (Ck|V) - conditional probability of class Ck with V
1: Sample structure with class label and attribute values
2: S ← array of training Samples
3: V ← array of attribute values
4: Ck ← class number
5: P_Ck = 0
6: function get_P _Ck(ClassNumber, Samples)
7: output = 0
8: for all sample from Samples do
9: if sample.getClass() == ClassNumber then

10: output+ = 1
size[Samples]

11: end if
12: end for
13: return output
14: end function
15: function get_P _Ck_vi(ClassNumber, v, i, Samples)
16: output = 0
17: for all sample from Samples do
18: if sample.getClass() == ClassNumber AND

sample.getAttribute(i) == v then
19: output+ = 1

size[Samples]
20: end if
21: end for
22: return output
23: end function
24: P (Ck|V = 0)
25: prod = 1
26: i=0
27: for all vfromV do
28: prod∗ = get_P_Ck_vi(ClassNumber,v,i,Samples)

get_P_Ck(ClassNumber,Samples)
29: i+ = 1
30: end for
31: P (Ck|V) = prod ∗ get_P_Ck(ClassNumber, Samples))

So, we can see from the Equation 12.1 that given output is as a probability

12.2. An overview of Machine Learning-aided static malware detection 207

that a questioned software sample belongs to one or another class. Therefore,
the classification decision will be made by finding a maximal value from set of
corresponding class likelihoods. Equation 12.4 provides formula that assigns class
label to the output:

ŷ = argmax
k∈{1,...,K}

P (Ck)P (V |Ck). (12.4)

Bayesian Networks is a probabilistic directed acyclic graphical model (some-
times also named as Bayesian Belief Networks), which shows conditional depend-
encies using directed acyclic graph. Network can be used to detect "update know-
ledge of the state of a subset of variables when other variables (the evidence vari-
ables) are observed" [32]. Bayesian Networks are used in many cases of classi-
fication and information retrieval (such as semantic search). The method’s routine
can be described as following. If edge goes from vertex A to vertex B, then A is a
parent of B, and B is an ancestor of A. If from A there is oriented path to another
vertex B exists then B is ancestor of A, and A is a predecessor of B. Let’s des-
ignate set of parent vertexes of vertex Vi as parents(Vi) = PAi. Direct acyclic
graph is called Bayesian Network for probability distribution P (v) given for set
of random variables V if each vertex of graph has matched with random variable
from V . And edge of a graph fits next condition: every variable vi from V must
be conditionally independent from all vertexes that are not its ancestors if all its
direct parents PAi are initialized in graph G:

∀Vi ∈ V ⇒ P (vi|pai, s) = P (vi|pai) (12.5)

where vi is a value of Vi, S - set of all vertexes that are not ancestors of Vi, s
- configuration of S, pai - configuration of PAi. Then full general distribution of
the values in vertexes could be written as product of local distributions, similarly
to Naive Bayes rules:

P(V1, . . . , Vn) =
n∏
i=1

P(Vi | parents(Vi)) (12.6)

Bayesian Belief Networks can be used for classification [32], thus can be
applied for malware detection and classification as well [58]. To make Bayesian
Network capable of classification it should contain classes as parent nodes which
don’t have parents themselves. Figure 12.2 shows an example of such Bayesian
network.
Rule based

Rule based algorithms are used for generating crisp or inexact rules in different
Machine Learning approaches [32]. The main advantage of having logic rules

208 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Figure 12.2: Bayesian network suitable for malware classification [58]

involved in malware classification is that logical rules that operate with statements
like equal, grater then, less or equal to can be executed on the hardware level
which significantly increases the speed of decision making.

C4.5 is specially proposed by Quinlan [50] to construct decision trees. These
trees can be used for classification and especially for malware detection [74]. The
process of trees training includes processing of previously classified dataset and
on each step looks for an attribute that divides set of samples into subsets with the
best information gain. C4.5 has several benefits in compare with other decision
tree building algorithms:

• Works not only with discrete but with continuous attributes as well. For
continuous attributes it creates threshold tp compares values against [49].

• Take into account missing attributes values.

• Works with attributes with different costs.

• Perform automate tree pruning by going backward through the tree and re-
moving useless branches with leaf nodes.

Algorithm 2 shows a simplified version of decision tree building algorithm.

12.2. An overview of Machine Learning-aided static malware detection 209

Algorithm 2 Decision tree making algorithm
1: S = s1, s2, ... labelled training dataset of classified data
2: x1i, x2i, ..., xpi - p-dimensional vector of attributes of each sample si form S
3: Check for base cases
4: for all attributes x do
5: Find the normalized gain ratio from splitting set of sample on x
6: end for
7: Let xbest be the attribute with the highest normalized information gain.
8: Create decision node that splits on xbest
9: Repeat on the subsets created by splitting with xbest. Newly gained nodes add

as children of current node.

Neuro-Fuzzy is a hybrid models that ensembles neural networks and fuzzy
logic to create human-like linguistic rules using the power of neural networks.
Neural network also known as artificial neural network is a network of simple
elements which are based on the model of perceptron [65]. Perceptron implements
previously chosen activation functions which take input signals and their weights
and produces an output, usually in the range of [0, 1] or [−1, 1]. The network can
be trained to perform classification of complex and high-dimensional data. Neural
Networks are widely used for classification and pattern recognition tasks, thus for
malware analysis [72]. The problem is that solutions gained by Neural Networks
are usually impossible to interpret because of complexity of internal structure and
increased weights on the edges. This stimulates usage of Fuzzy Logic techniques,
where generated rules are made in human-like easy-interpretable format: IF X >
3 AND X < 5 THEN Y = 7.

Basic idea of Neuro-Fuzzy (NF) model is a fuzzy system that is trained with a
learning algorithm similar to one from neural networks theory. NF system can be
represented as a neural network which takes input variables and produces output
variables while connection weights are represented as encoded fuzzy sets. Thus at
any stage (like prior to, in process of and after training) NF can be represented as a
set of fuzzy rules. Self-Organising (Kohonen) maps [30] is the most common tech-
niques of combining Neuro and Fuzzy approaches. Shalaginov et al. [64] showed
the possibility of malware detection using specially-tuned Neuro-Fuzzy technique
on a small dataset. Further, NF showed good performance on large-scale binary
problem of network traffic analysis [63]. This method has also proven its effi-
ciency on a set of multinomial classification problems. In particular, it is useful
when we are talking about distinguishing not only "malware" or "goodware" but
also detecting specific type of "malware" [68]. Therefore, it has been improved
for the multinational classification of malware types and families by Shalaginov et
al. [70].

210 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Distance based
This set of methods is used for classification based on predefined distance

measure. Data for distance-based methods should be carefully prepared, because
computational complexity grows significantly with space dimensionality (number
of features) and number of training samples. Thus there is a need for proper feature
selection as well as sometimes for data normalization.

k-Nearest Neighbours or k-NN is classification and regression method. k-
NN does not need special preparation of the dataset or actual "training" as the
algorithm is ready for classification right after labelling the dataset. The algorithm
takes a sample that is need to be classified and calculates distances to samples from
training dataset, then it selects k nearest neighbours (with shortest distances) and
makes decision based on class of this k nearest neighbours. Sometimes it makes
decision just on the majority of classes in this k neighbours selection, while in
other cases there is weights involved in process of making decision. When k-NN
is used for malware classification and detection there is a need for careful feature
selection as well as a methodology for dealing with outliers and highly mixed data,
when training samples cannot create distinguishable clusters [58].

Support Vector Machine or SVM is a supervised learning method. It con-
structs one or several hyperplanes to divide dataset for classification. Hyperplane is
constructed to maximize distance from it to the nearest data points. Sometimes ker-
nel transformation is used to simplify hyperplanes. Building a hyperplane is usu-
ally turned into two-class problem (one vs one, one vs many) and involves quad-
ratic programming. Let’s have linearly separable data (as shown in Figure 12.3)
which can be represented as D = {(xi, yi) | xi ∈ Rp, yi ∈ {−1, 1}}ni=1. Where
yi is 1 or -1 depending on class of point xi. Each xi is p-dimensional vector (not
always normalised). The task is to find hyperplane with maximum margin that
divides dataset on points with yi = 1 and yi = −1: w · x − b = 0. Where w is a
normal vector to a hyperplane [20]. If dataset is linearly separable we can build
two hyperplanes w · x − b = 1 and w · x − b = −1 between which there will be
no (or in case of soft margin maximal allowed number) points. Distance between
them (margin) is 2

||w|| , so to maximize margin we need to minimize ||w|| and to
find parameters of hyperplane we need to introduce Lagrangian multipliers α and
solve Equation 12.7 with quadratic programming techniques.

argmin
w,b

max
α≥0

{
1

2
‖w‖2 −

n∑
i=1

αi[yi(w · xi − b)− 1]

}
(12.7)

Figure 12.3: Maximum margin hyperplane for two class problem [32]

12.2. An overview of Machine Learning-aided static malware detection 211

Sometimes there is a need to allow an algorithm to work with misclassified
data hence leaving some points inside the margin based on the degree of misclas-
sification ξ. So the Equation 12.3 turns into Equation 12.8.

arg min
w,ξ,b

max
α,β

{
1

2
‖w‖2 + C

n∑
i=1

ξi −
n∑
i=1

αi[yi(w · xi − b)− 1 + ξi]−
n∑
i=1

βiξi

}
with αi, βi ≥ 0

(12.8)

Also the data might be linearly separated, so there is a need for kernel trick.
The basic idea is to substitute every dot product with non-linear kernel function.
Kernel function can be chosen depending on situation and can be polynomial,
Gaussian, hyperbolic etc. SVM is a very powerful technique which can give good
accuracy if properly used, so it often used in malware detection studies as shown
by Ye et al. [82].
Neural networks

Neural Network is based on the model of perceptron which has predefined
activation function. In the process of training weights of the links between neurons
are trained to fit train data set with minimum error with use of back propagation.
Artificial Neural network (ANN) consists of input layer, hidden layer (layers) and
output layer as it is shown on Figure 12.4.

Figure 12.4: Artificial neural network [32]

The input layer takes normalized data, while hidden output layer produces
activation output using neuron’s weighted input and activation function. Activation
function is a basic property of neuron that takes input values given on the input
edges, multiply them by weights of these edges and produces output usually in a
range of [0,1] or [-1,1]. Output layer is needed to present results and then interpret
them. Training of ANN starts with random initialization of weights for all edges.
Then feature vector of each sample is used as an input. Afterwards, result gained
on the output layer is compared to the real answers. Any errors are calculated and
using back-propagation all weights are tuned. Training can continue until reaching
desired number of training cycles or accuracy. Learning process of ANN can be
presented as shown in the Algorithm 3. Artificial Neural networks can be applied
for complex models in high-dimensional spaces. This is why it often used for
malware research [72].

212 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Algorithm 3 ANN training
1: S = s1, s2, ... labeled training dataset of classified data
2: x1i, x2i, ..., xpi - p-dimensional vector of attributes of each sample si form S
3: N number of training cycles
4: Lrate learning rate
5: Random weight initialization
6: for all training cycles N do
7: for all samples S do
8: give features xi as input to the ANN
9: compare class of si with gained output of ANN

10: calculate error
11: using back-propagation tune weights inside the ANN with Lrate
12: end for
13: reduce Lrate
14: end for

Open Source and Freely available ML Tools
Today machine learning is widely used in many areas of research with many

publicly available tools (Software products, libraries etc.).
Weka or Waikato Environment for Knowledge Analysis is a popular, free,

cross platform and open source tool for machine learning. It supports many of
popular ML methods with possibility of fine tuning of the parameters and final
results analysis. It provides many features such as splitting dataset and graphical
representation of the results. Weka results are saved in .arff file which is specially
prepared CSV file with header. It suffers from couple of issues including no sup-
port for multi-thread computations and poor memory utilization especially with
big datasets.

Python weka wrapper is the package which allows using power of Weka
through Python programs. It uses javabridge to link Java-based Weka libraries to
python. It provides the same functionality as Weka, but provides more automation
capacities.

LIBSVM and LIBLINEAR are open source ML libraries written in C++ sup-
porting kernelized SVMs for linear, classification and regression analysis. Bind-
ings for Java, Mathlab and R are also present. It uses space-separated files as input,
where zero values need not to be mentioned.

RapidMiner is machine learning and data mining tool with a user friendly
GUI and support for a lot of ML and data mining algorithms.

Dlib is a free and cross-platform C++ toolkit which supports different -machine
learning algorithms and allows multi-threading and utilization of Python APIs.

12.2. An overview of Machine Learning-aided static malware detection 213

Feature Selection & Construction process
Next important step after the characteristics extraction is so-called Feature Se-

lection process [32]. Feature Selection is a set of methods that focus on elimination
of irrelevant or redundant features that are not influential for malware classifica-
tion. This is important since the number of characteristics can be extremely large,
while only a few can actually be used to differentiate malware and benign ap-
plications with a high degree of confidence. The most common feature selection
methods are Information Gain, and Correlation-based Feature Subset Selection
(CFS) [24]. The final goal of Feature Selection is to simplify the process of know-
ledge transfer from data to a reusable classification model.

Taxonomy of malware static analysis using Machine Learning
Our extensive literature study as reflected in Table 12.1 resulted to proposing

a taxonomy for malware static analysis using machine learning as shown in Fig-
ure 12.5. Our taxonomy depicts the most common methods for analysis of static
characteristics, extracting and selecting features and utilizing machine learning
classification techniques. Statistical Pattern Recognition process [26] was used as
the basis for our taxonomy modelling.

Figure 12.5: Taxonomy of common malware detection process based on static character-
istics and Machine Learning

Year Authors Dataset Features FS ML

PE32 header

214 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

2016 Cepeda et
al. [6]

7,630 malware and
1.818 goodware

57 features from
VirisTotal

ChiSqSelector
with 9
features
finally

SVM, RF, NN

2016 Le-Khac et
al. [35]

Malicious: 94 ;Be-
nign: 620

Control Flow
Change and 2-6
n-grams

- Naive Bayes

2014 Markel et al.
[38]

Malicious: 122,799,
Benign: 42,003

46 features use
python ’pefile’

- Naive Bayes, Logistic
Regression, Classific-
ation and Regression
Tree (CART)

2013 Khorsand et
al. [29]

Benign: 850 “EXE”
and 750 “DLL”; Mal-
ware: 1600 from VX
heavens

eliminated - Prediction by partial
matching

2012 Devi et
al. [14]

4,075 PE files: 2954
malicious and 1121
Windows XP SP2 be-
nign

2 + 5 features - BayesNet, k-NN,
SVM, AdaBoostM1,
Decision table, C4.5,
Random Forest,
Random Tree

2011 Zhao [84] 3109 PE: 1037 viruses
from Vx Heavens and
2072 benign execut-
able on Win XP Sp3

24 features from
PE files using
Control Flow
Graph-based on
nodes

Random Forest, De-
cision Tree, Bagging,
C4.5

2011 Ugarte-
Pedrero et
al. [76]

500 benign from
WinXP and 500
non-packed from Vx-
heaven; 500 packed +
500 Zeus

166 structure fea-
tures of PE file

InfoGain Learning with Local
and Global Consist-
ency, Random Forest

2011 Santos et
al. [59]

500 benign and 500
malicious from Vx-
Heavens, also packed
and not packed

209 structural
features

InfoGain Collective Forest

2009 Tang [75] 361 executables and
449 normal trojan
files

PE header struc-
tural features

- Decision Tree

2009 Wang et
al. [80]

Benign: 1,908, Mali-
cious: 7,863

143 PE header
entries

InfoGain,
Gain
raio

SVM

bytes n-gram sequences

2011 Jain et
al. [27]

1,018 malware and
1,120 benign samples

1-8 byte, n-gram,
best n-gram by
documentwise
frequency

- NB, iBK, J48,
AdaBoost1, Random-
Forest

2007 Masud et
al. [39]

1st set - 1,435 execut-
ables: 597 of which
are benign and 838
are malicious. 2nd
set - 2,452 execut-
ables: 1,370 benign
and 1,082 malicious

500 best n-grams InfoGain SVM

12.2. An overview of Machine Learning-aided static malware detection 215

2006 Reddy et
al. [51]

250 malware vs 250
benign

100-500 best n-
gram

Document
Fre-
quency,
In-
foGain

NB, iBK, Decision
Tree

2004 Kolter et
al. [31]

1971 benign, 1651
malicious from Vx
Heaven

500 best n-grams InfoGain Naive Bayes, SVM,
C4.5

opcode n-gram sequences

2016 Wang et
al. [79]

11,665 malware and
1,000 benign samples

2-tuple opcode
sequences

information
entropy

density clustering

2015 Bragen [5] 992 malwares, 771
benign from Windows
Vista

1-4 n-gram
opcode with
vocabulary
530-714,390

Cfs,
Chi-
sqaured,
In-
foGain,
ReliefF,
SymUn-
cert.

Random Forest, C4.5,
Naive Bayes, bayes
Net, Baggin, ANN,
SOM, k-nn

2013 Santos et
al. [58]

13,189 malware vs
13,000 benign

top 1,000 features InfoGain Random Forest, J48,
k-Nearest Neigh-
bours, Bayesian
networks, SVM

2011 Shahzad et
al. [62]

Benign: 300, Mali-
cious: 300 on Win-
dows XP

coabulary of
1,413 with
n-gram=4

tf-idf ZeroR, Ripper, C4.5,
SVM, Naive Bayes, k-
nn

API calls

2012 Zabidi et
al. [83]

23 malware and 1 be-
nign

API calls, debug-
ger features, VM
features

- -

2012 Faruki et
al. [18]

3234 benign, 3256
malware

1-4 API call-
gram

- Random Forest,
SVM, ANN, C4.5,
Naive bayes

2010 Shankarapani
et al. [71]

1593 PE files:875 be-
nign and 715 mali-
cious

API calls se-
quence

- SVM

2010 Sami et
al. [55]

34,820 PE: 31,869
malicious and 2951
benign from Windows

API calls Fisher
Score

Random Forest, C4.5,
Naive Bayes

no features / not described

2012 Baig et al. [4] 200 packed PE and
200 unpacked from
Windows 7, Windows
2003 Server

file entropy - -

2010 Dube et
al. [16]

40,498 samples:
25,974 malware,
14,524 benign

from 32 bit files - Decision Tree

Table 12.1: Analysis of ML methods applicability for different types of static character-
istics

To get a clear picture on application domain of each machine learning and fea-

216 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

ture selection method we analysed reported performance as shown in Figure 12.6.
Majority of researchers were using byte n-gram, opcode n-gram and PE32 header
fields for static analysis while C4.5, SVM or k-NN methods were mainly used for
malware detection. Information Gain is the prevalent method to define malware at-
tributes. Also we can see that n-gram-based method tend to use corresponding set
of feature selection like tf-idf and Symmetric Uncertainty that are more relevant
for large number of similar sequences. On the other hand, PE32 header-based fea-
tures tend to provide higher entropies for classification and therefore Control-Flow
graph-based and Gain Ratio are more suitable for this task.

Figure 12.6: Comparison of accuracy of various static characteristics with respect to fea-
ture selection and machine learning methods. Colour of the bubbles shows used charac-
teristics for detection, while size of the bubble denotes achieved accuracy

To conclude, one can say that majority of authors either extract features that
offers good classification accuracy, or use conventional methods like Information
Gain. However, n-gram based characteristics need other FS approaches to elimin-
ate irrelevant features. Rule-based ML is the most commonly used classification
method along with SVM. Forest-based method tends to be more applicable for
PE32 header-based features. Also ANN is not commonly-used technique. While
most of the works achieved accuracies of 80-100%, some Bayes-based methods
offered much lower accuracy even down to 50% only.

12.3 Approaches for Malware Feature Construction
Similar the previous works, following four sets of static properties are sugges-

ted for feature classification in this paper:
PE32 header features characterize the PE32 header information using the

PEframe tools [76]. Following numerical features will be used in our experi-

12.3. Approaches for Malware Feature Construction 217

ments:

• ShortInfo_Directories describes 16 possible data directories available in PE
file. The most commonly used are "Import", "Export", "Resource", "De-
bug", "Relocation".

• ShortInfo_Xor indicates detected XOR obfuscation.

• ShortInfo_DLL is a binary flag of whether a file is executable or dynamically-
linked library.

• ShortInfo_FileSize measures size of a binary file in bytes.

• ShortInfo_Detected shows present techniques used to evade the detection
by anti-viruses like hooks to disable execution in virtualized environment or
suspicious API calls.

• ShortInfo_Sections is a number of subsections available in the header.

• DigitalSignature contains information about the digital signatture that can
be present in a file

• Packer describes used packer detected by PEframe

• AntiDebug gives insight into the techniques used to prevent debugging pro-
cess.

• AntiVM is included to prevent the execution in a virtualize environment.

• SuspiciousAPI indicates functions calls that are labelled by PEframe as sus-
picious.

• SuspiciousSections contains information about suspicious sections like ".rsrc
\u0000 \u0000 \u0000"

• Url is a number of different url addresses found in the binary file.

Byte n-gram. N-gram is a sequence of some items (with minimum length
of 1) that are predefined as minimal parts of the object expressed in Bytes. By
having the file represented as a sequence of bytes we can construct 1-gram, 2-
gram, 3-gram etc. N-grams of bytes, or byte n-grams are widely used as features
for machine learning and static malware analysis [27, 51].

Reddy et al. [51] used n-grams of size 2,3 and 4 with combination of SVM,
Instance-based learner and Decision Tree algorithms to distinguish between ma-
licious and benign executables. After extracting n-grams they used class-wise

218 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

document frequency as a feature selection measure and showed that class-wise
document frequency is performing better than Information Gain as a feature se-
lection measure. Jain et al. [27] used n-grams in range of 1 to 8 as features and
Naive Bayes, Instance Based Learner and AdaBoost1 [23] as machine learning
algorithms for malware classification and reported byte 3-grams as the best tech-
nique.

Opcode n-gram represent a set of instructions that will be performed on the
CPU when binary is executed. These instructions are called operational codes or
opcodes. To extract opcodes from executable we need to perform disassembly
procedure. After this opcodes will be represented as short instructions names such
as POP, PUSH, MOV, ADD, SUB etc. Santos et al. [58] described a method to
distinguish between malicious and benign executables or detecting different mal-
ware families using opcode sequences of length 1 to 4 using Random Forest,
J48, k-Nearest Neighbours, Bayesian Networks and Support Vector Machine al-
gorithms [23].

API calls is a set of tools and routines that help to develop a program using
existent functionality of an operating system. Since most of the malware samples
are platform dependent it is very much likely that their developers have use APIs
as well. Therefore, analysing API calls usage among benign and malicious soft-
ware can help to find malware-specific API calls and therefore are suitable to be
used as a feature for machine learning algorithms. For example, [71] successfully
used Support Vector Machines with frequency of API calls for malware classific-
ation. [77] provided a methodology for classification of malicious and benign
executables using API calls and n-grams with n from 1 to 4 and achieved accuracy
of 97.23% for 1-gram features. [18] used so-called API call-gram model with
sequence length ranging from 1-4 and reached accuracy of 97.7% was achieved by
training with 3-grams. In our experiments we are going to use 1 and 2 n-grams as
features generated from API calls.

12.4 Experimental Design
All experiments were conducted on a dedicated Virtual machine (VM) on

Ubuntu 14.04 server running on Xen 4.4. The server had an Intel(R) Core(TM)
i7-3820 CPU @ 3.60GHz with 4 cores (8 threads), out of which 2 cores (4 threads)
were provided to the VM. Disk space is allocated on the SSD RAID storage based
on Samsung 845DC. Installed server memory was Kingston PC-1600 RAM, out of
which 8GB was available for the VM. Operating system was an Ubuntu 14.04 64
bit running on ae dedicated VM together with all default tools and utilities avail-
able in the OS’s repository. Files pre-processing were performed using bash scripts
due to native support in Linux OS. To store extracted features we utilised MySQL
5.5 database engine together with Python v 2.7.6 and PHP v 5.5.9 connectors.

12.4. Experimental Design 219

For the experiments we used a set of benign and malicious samples. To authors
knowledge there have not been published any large BENIGN SOFTWARE REFER-
ENCE DATASETS, so we have to create our own set of benign files. Since the
focus of the paper is mainly on PE32 Windows executables, we decided to extract
corresponding known-to-be-good files from different versions of MS Windows,
including different software and multimedia programs installations that are avail-
able. The OSes that we processed were 32 bit versions of Windows XP, Windows
7, Windows 8.1 and Windows 10. Following two Windows malware datasets were
used in our research:

1. VX HEAVEN [2] dedicated to distribute information about the computer
viruses and contains 271,092 sorted samples dating back from 1999.

2. VIRUS SHARE [78] represent sharing resource that offers 29,119,178 mal-
ware samples and accessible through VirusShare tracker as of 12th of July,
2017. We utilized following two archives: VirusShare_00000.zip created
on 2012-06-15 00:39:38 with a size of 13.56 GB and VirusShare_00207.zip
created on 2015-12-16 22:56:17 with a size of 13.91 GB, all together con-
tained 131,072 unique, uncategorised and unsorted malware samples. They
will be referred further as malware_000 and malware_207.

To be able to perform experiments on the dataset, we have to filter out irrelevant
samples (not specific PE32 and not executables), which are out of scope in this
paper. However, processing of more than 100k samples put limitations and require
non-trivial approaches to handle such amount of files. We discovered that common
ways of working with files in directory such that simple ls and mv in bash take
unreasonable amount of time to execute. Also there is no way to distinguish files
by extension like *.dll or *.exe since the names are just md5 sums. So, following
filtering steps were performed:

1. Heap of unfiltered malware and benign files were placed into two directories
"malware/" and "benign/".

2. To eliminate duplicates, we renamed all the files to their MD5 sums.

3. PE32 files were detected in each folder using file Linux command:
\$ file 000000b4dccfbaa5bd981af2c1bbf59a
000000b4dccfbaa5bd981af2c1bbf59a: PE32 executable (DLL) (GUI) Intel

↪→ 80386, for MS Windows

4. All PE32 files from current directory that meet our requirement were scrapped
and move to a dedicated one:

220 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

#!/bin/sh
cd ../windows1;
counter=0;
for i in *; do
counter=$((counter+1));
echo "$counter";
VAR="file $i | grep PE32 " ;
VAR1=$(eval "$VAR") ;
len1=${#VAR1};
if [-n "$VAR1"] && ["$len1" -gt "1"] ;
then
echo "$VAR1" | awk ’{print $1}’ | awk ’{gsub(/:$/,""); print $1 "

↪→ ../windows/PE/" $1}’| xargs mv -f ;
else
echo "other";
file $i | awk ’{print $1}’ | awk ’{gsub(/:$/,""); print $1 " ../

↪→ windows/other/" $1}’ | xargs mv -f ;
fi
done

5. We further can see a variety of PE32 modifications for 32bit architecture:
PE32 executable (GUI) Intel 80386, for MS Windows
PE32 executable (DLL) (GUI) Intel 80386, for MS Windows
PE32 executable (GUI) Intel 80386, for MS Windows, UPX compressed

Following our purpose to concentrate on 32bit architecture, only PE32 are
filtered out from all possible variants of PE32 files shown about.

6. After extracting a target group of benign and malicious PE32 files, multiple
rounds of feature extraction are performed according to methods used in the
literature.

7. Finally, we insert extracted features into the corresponding MySQL data-
base to ease the handling, feature selection and machine learning processes
respectively.

After collecting all possible files and performing the pre-processing phase, we
ended up with the sets represented in the Table 12.2.

Table 12.2: Characteristics of the dataset collected and used for our experiments after
filtering PE files

Dataset Number of files Size

Benign 16,632 7.4GB
Malware_000 58,023 14.0GB
Malware_207 41,899 16.0GB

Further, feature construction and extraction routine from PE files was per-
formed using several tools as follows:

12.5. Results & Discussions 221

1. PEFRAME [3] is an open source tool specifically designed for static analysis
of PE malware. It extracts various information from PE header ranging from
packers to anti debug and anti vm tricks.

2. HEXDUMP is a standard Linux command line tool which is used to display
a file in specific format like ASCII or one-byte octal.

3. OBJDUMP is a standard Linux command line too to detect applications in-
structions, consumed memory addresses, etc.

12.5 Results & Discussions

Before testing different ML techniques for malware detection it is important
to show that our datasets actually represent the real-world distribution of the mal-
ware and goodware. Comparison of "Compile Time" field of PE32 header can be
utilized for this purpose. Figure 12.7 represents log-scale histogram of the com-
pilation time for our benign dataset. Taking into consideration the Windows OS
timeline we found a harmony between our benign dataset applications compile
time and development of Microsoft Windows operating systems. To start with,
Windows 3.1 was originally released on April 6, 1992 and our plot of benign ap-
plications indicates the biggest spike in early 1992. Later on in 1990th, Windows
95 was due on 24 August 1995, while next Windows 98 was announced on 25
June 1998. Further, 2000th marked release of Windows XP on October 25, 2001.
Next phases on the plot correspond to the release of Windows Vista on 30th Janu-
ary 2007 and Windows 7 on 22nd October 2009. Next popular version (Windows
8) appeared on 26th October 2012 and the latest major spike in the end of 2014
corresponds to the release of Windows 10 on 29th July 2015.

Further, compilation time distribution for the first malware dataset malware_-
000 is given in the Figure 12.8. We can clearly see that release of newer Windows
version is always followed by an increase of cumulative distribution of malware
samples in following 6 to 12 month. It can be seen that the release of 32bit Win-
dows 3.1 cause a spike in a number of malware. After this the number of malware
compiled each year is constantly growing. Then, another increase can be observed
in second half of the 2001 which corresponds to the release of the Windows XP
and so on.

Considering the fact that MS DOS was released in 1981 it makes compilation
times before this day look like fake or just obfuscated intentionally. On the other
hand the dataset malware_000 cannot have dates later than June 2012. Therefore,
malware with compilation time prior to 1981 or later than Jan 2012 are tampered

222 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Figure 12.7: Log-scale histogram of compilation times for benign dataset

Figure 12.8: Log-scale histogram of compilation times for malware_000 dataset

12.5.1 Accuracy of ML-aided Malware Detection using Static Characteristics

This part presents results of apply Naive Bayes, BayesNet, C4.5, k-NN, SVM,
ANN and NF machine learning algorithms against static features of our dataset
namely PE32 header, Bytes n-gram, Opcode n-gram, and API calls n-gram.
PE32 header

PE32 header is one of the most important features relevant to threat intelligence
of PE32 applications. We performed feature selection using Cfs and InfoGain
methods with 5-fold cross-validation as presented in the Table 12.3.

We can clearly see that the features from the Short Info section in PE32 head-

12.5. Results & Discussions 223

Figure 12.9: Log-scale histogram of compilation times for malware_207 dataset

Table 12.3: Feature selection on PE32 features. Bold font denotes selected features ac-
cording to InfoGain method

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.377 ShortInfo_Directories 0.369 ShortInfo_DLL 0.131 ShortInfo_FileSize
0.278 ShortInfo_DLL 0.252 ShortInfo_Directories 0.094 ShortInfo_Detected
0.118 AntiDebug 0.142 ShortInfo_FileSize 0.064 SuspiciousAPI
0.099 Packer 0.105 SuspiciousSections 0.044 ShortInfo_Directories
0.088 SuspiciousSections 0.101 SuspiciousAPI 0.036 Packer
0.082 ShortInfo_Xor 0.089 AntiDebug 0.028 AntiDebug
0.076 SuspiciousAPI 0.084 ShortInfo_Detected 0.017 SuspiciousSections
0.045 ShortInfo_FileSize 0.054 ShortInfo_Xor 0.016 Url
0.034 ShortInfo_Detected 0.050 Packer 0.015 AntiVM
0.022 Url 0.036 Url 0.012 ShortInfo_Xor
0.004 AntiVM 0.002 AntiVM 0.002 ShortInfo_DLL

0 ShortInfo_Sections 0 ShortInfo_Sections 0 ShortInfo_Sections
0 DigitalSignature 0 DigitalSignature 0 DigitalSignature

Cfs

attribute attribute attribute

ShortInfo_Directories ShortInfo_Directories ShortInfo_Directories
ShortInfo_Xor ShortInfo_Xor ShortInfo_FileSize
ShortInfo_DLL ShortInfo_DLL ShortInfo_Detected
ShortInfo_Detected Packer
Url

ers can be used as a stand-alone malware indicators, including different epochs.
Number of directories in this section as well as file size and flag of EXE or DLL

224 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

have bigger merits in comparison to other features. To contrary, Anti Debug and
Suspicious API sections from PEframe cannot classify a binary file. Finally, we
can say that digital signature and Anti VM files in PE32 headers are almost irrel-
evant in malware detection. Further, we performed exploration of selected ML
methods that can be used with selected features. By extracting corresponding nu-
merical features mentioned earlier, we were able to achieve classification accuracy
levels presented in Table 12.4. Table 12.3 presents also accuracy of ML method
after performing feature selection. Here we used whole sub-sets defined by Cfs
method and features with merit of ≥ 0.1 detected by InfoGain.

Table 12.4: Comparative classification accuracy based on features from PE32 header, in
%. Bn, Ml_000 and Ml_207 are benign and two malaware datasets respectively

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 90.29 91.42 97.63 97.30 87.75 95.08 92.46
Bn vs Ml_207 88.27 91.21 96.43 95.99 84.88 93.24 89.03
Ml_000 vs Ml_207 63.41 71.59 82.45 82.11 73.77 69.99 69.01

Information Gain

Bn vs Ml_000 88.32 89.17 94.09 94.01 94.09 93.51 87.53
Bn vs Ml_207 87.25 90.39 95.06 94.58 84.55 92.37 87.88
Ml_000 vs Ml_207 58.26 67.05 67.77 70.70 69.46 63.19 51.31

Cfs

Bn vs Ml_000 89.35 90.89 95.39 95.38 95.16 93.69 85.85
Bn vs Ml_207 86.88 89.67 91.61 91.68 91.68 91.68 81.91
Ml_000 vs Ml_207 67.45 70.95 76.98 76.92 72.15 68.18 67.06

Malware and goodware can be easily classified using full set as well as sub-set
of features. One can notice that ANN and C4.5 performed much better than other
methods. It can be also seen that the high quality of these features made them very
appropriate to differentiate between the benign and malware_000 dataset. Further,
we can see that the two datasets malware_000 and malware_207 are similar and
extracted features do not provide a high classification accuracy. Neural Network
was used with 3 hidden layers making it a non-linear model and experiments were
performed using 5-fold cross-validation technique.
Bytes n-gram

Bytes n-gram is a very popular method for static analysis of binary execut-
ables. This method has one significant benefit: in order to perform analysis there
is no need of previous knowledge about file type and internal structure since we use
its raw (binary) form. For feature construction we used random profiles that were
first presented by Ebringer et al. [17] called fixed sample count (see Figure 12.10),
which generates fixed number of random profiles regardless of the file size and

12.5. Results & Discussions 225

sliding window algorithm. In this method each file is represented in a hexadecimal
format and frequencies of each byte are counted to build a Huffman tree for each
file. Then using window of fixed size and moving it on fixed skip size the ran-
domness profile of each window is calculated. A Randomness profile is sum of
Huffman code length of each byte in a single window. The lower the randomness
in a particular window the bigger will be the randomness of that profile.

Figure 12.10: Sliding window algorithm [17]

We chose 32 bytes as the most promising sliding window size [17, 48, 73]
and due to big variety of file sizes in our dataset, we chose 30 best features (or
pruning size in terminology from [17]) which are the areas of biggest randomness
(the most unique parts) in their original order. This features was fed into different
machine learning algorithms as shown in Table 12.5. Our results indicate that
the accuracy of this technique is not that high as it was originally developed to
preserve local details of a file ([17])while the size of file affects localness a lot.
In our case file sizes vary from around 0.5Kb to 53.7Mb which adversely affect
the results. Despite worse results it is still easier to distinguish between benign
executables and malware than between malware from different time slices. Also
we can see that ANN is better in Benign vs Malware_000 dataset, C4.5 in Benign
vs Malware_207 and Malware_000 vs Malware_207 datasets.

Also it should be noted that we did not use feature selection methods as in
the case of PE32 header features. Both Information gain and Cfs are not efficient
due to the similarity of features and equivalence in importance for classification
process. For the first dataset the Information Gain was in the range of 0.0473-
0.0672 while for the second dataset it was in the range of 0.0672-0.1304 and for
the last it was 0.0499-0.0725. Moreover, Cfs produces best feature subset nearly

226 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Table 12.5: Classification accuracy based on features from bytes n-gram randomness pro-
files, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 69.9 60.4 76.9 75.6 78.3 78.3 74.8
Bn vs Ml_207 70.3 68.2 75.8 75.6 72.1 71.6 68.2
Ml_000 vs Ml_207 50.1 64.0 68.1 64.7 58.1 60.1 58.2

(a) Less than 1M (b) Bigger than 1M

Figure 12.11: Distribution of file size values in Bytes for three classes

equal to full set. Therefore, we decided to use all features as there is no subset that
could possibly be better than original one.
Opcode n-gram

Opcode n-gram consists of assembly instructions which construct the execut-
able file. The main limitation of this method is that in order to gain opcodes we
need disassemble an application which sometimes fails to give correct opcodes due
to different anti-disassembly and packing techniques used in executables hence we
filtered out this kind of files from our dataset. We extracted 100 most common 3-
and 4-grams from each of three file sets in our dataset. Then we extracted a set of
200 most common n-grams - which are called feature n-grams - to build a pres-
ence vector where value 1 was assigned if a certain n-gram from feature n-grams
is present in top 100 most used n-grams of the file. Table 12.6 represents results of
feature selection performed on the dataset with 3-grams. As can be seen the first
two pair of datasets have a lot of common n-grams, while selected n-grams for
the third pair of dataset is totally different. For Information Gain the threshold of

12.5. Results & Discussions 227

0.1 was used for both benign and malware datasets, while for the last set we used
InfoGain of 0.02.

These data were passed to machine learning algorithms and results are shown
in Tables 12.7 and 12.9. As can be seen C4.5 performed well and had the highest
accuracy almost in all experiments. Also feature selection significantly reduced
the number of n-grams from 200 down to 10-15, while overall accuracy on all
methods did not dropped significantly. In fact, Naive Bayes performed even bet-
ter that can be justified by reduced complexity of the probabilistic model. Also
NF showed much better accuracy in comparison to other methods when using all
features to distinguish between two malware datasets which can be linked to non-
linear correlation in the data that are circumscribed in the Gaussian fuzzy patches.

Table 12.6: Feature selection on 3-gram opcode features. Bold font denotes features that
present in both datasets that include nenign samples

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.302483 int3movpush 0.298812 int3movpush 0.042229 pushlcallpushl
0.283229 int3int3mov 0.279371 int3int3mov 0.039779 movtestjne
0.266485 popretint3 0.227489 popretint3 0.037087 callpushlcall
0.236949 retint3int3 0.202162 retint3int3 0.031045 pushpushlcall
0.191866 jmpint3int3 0.193938 jmpint3int3
0.134709 callmovtest 0.108580 retpushmov
0.133258 movtestje
0.115976 callmovpop
0.114482 testjemov
0.101328 poppopret
0.100371 movtestjne

Cfs

attribute attribute attribute

movtestje movmovadd pushpushlcall
callmovtest retpushmov movtestjne
callmovpop xormovmov movmovjmp
retint3int3 callmovtest jecmpje
popretint3 popretint3 cmpjepush
pushmovadd pushmovadd pushleacall
int3int3mov int3int3mov callpopret
callmovjmp callmovjmp leaveretpush
jmpint3int3 jmpint3int3 pushmovadd
int3movpush int3movpush pushcalllea

callpushlcall
callmovlea
pushlcallpushl
movmovmovl
calljmpmov

Further, we investigated if there is any correlation between n-grams in files that

228 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

Table 12.7: Classification accuracy based on features from opcode 3-gram, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 83.51 83.52 95.53 93.82 94.43 94.51 95.28
Bn vs Ml_207 84.52 84.52 93.93 91.84 92.32 92.44 93.20
Mn_000 vs Ml_207 63.73 63.73 81.21 78.64 75.42 76.64 83.13

Information Gain

Bn vs Ml_000 86.74 86.94 90.41 90.45 89.98 90.26 84.45
Bn vs Ml_207 86.22 86.22 86.22 86.22 87.46 87.48 83.36
Mn_000 vs Ml_207 63.19 62.55 71.19 71.89 69.54 67.36 69.14

Cfs

Bn vs Ml_000 87.79 88.66 91.15 91.22 90.90 90.82 85.31
Bn vs Ml_207 86.24 86.33 89.92 89.73 89.17 89.34 81.58
Mn_000 vs Ml_207 86.24 86.33 89.92 89.73 89.17 89.34 69.25

belong to both benign and malicious classes. We extracted relative frequency of

each n-gram according to the following formula hn−gram =
NClass

files ∈ n−gram

NClass
files

, where

NClass
files ∈ n−gram indicates number of files in class that has n-gram and NClass

files is
a total number of files in this class. The results for 3-gram is depicted in the Fig-
ure 12.12. As a reference we took top 20 most frequent n-grams from benign class
and found frequency of the corresponding n-grams from both malware datasets.
It can be seen that the frequency does not differ fundamentally, yet n-grams for
both malicious classes tend to have very close numbers in comparison to benign
files. Moreover, there is a clear dependency between both malicious classes. We
also can notice that most of the features selected from two datasets that includes
benign samples are same. This highlights reliability of the selected 4-grams and
generalization of this method for malware detection.

Figure 12.12: Distribution of the frequencies of top 20 opcode 3-grams from benign set
in comparison to both malicious datasets

12.5. Results & Discussions 229

Additionally, we studied 4-gram features and extracted 200 features as shown
in Table 12.8. Similar to the 3-grams features selected in the Table 12.6 one can
see that two first pairs of datasets have a lot of common features, while the last one
provides a significantly different set. As in case with 3-grams we used Information
Gain with threshold of 0.1 for both benign and the first malware dataset, while for
the last malware set we used InfoGain of 0.02, which looks reasonable with respect
to number of selected‘ features.

Table 12.8: Feature selection on on 4-gram opcode features. Bold font denotes features
that present in both datasets that include nenign samples

Benign vs Malware_000 Benign vs Malware_207 Malware_000 vs Malware_207

Information Gain

merit attribute merit attribute merit attribute

0.303209 int3int3movpush 0.295427 int3int3movpush 0.047452 pushlcallpushlcall
0.295280 int3movpushmov 0.286378 int3movpushmov 0.045860 movpoppopret
0.285608 int3int3int3mov 0.266966 int3int3int3mov 0.044750 jepushcallpop
0.258733 popretint3int3 0.229431 jmpint3int3int3 0.044573 callpushlcallpushl
0.241215 poppopretint3 0.224318 poppopretint3 0.038822 cmpjepushcall
0.233205 jmpint3int3int3 0.210289 popretint3int3 0.035731 pushcallpopret
0.220679 retint3int3int3 0.170367 retint3int3int3 0.030460 pushcallpopmov
0.185178 movpopretint3 0.148442 movpopretint3 0.028564 movcmpjepush
0.151337 movpushmovsub 0.116760 movpushmovsub 0.025813 cmpjecmpje
0.125703 pushcallmovtest 0.103841 movpushmovpush 0.024372 leaveretpushmov
0.104993 movpushmovpush 0.102730 movpushmovmov 0.023374 pushpushpushlcall
0.104416 movpushmovmov 0.022312 pushcallpoppop

0.021929 movtestjepush
0.020003 pushpushleapush

Cfs

attribute attribute attribute

incaddincadd addaddaddadd leaveretpushmov
movpushmovsub movmovpushpush callmovtestje
jmpmovmovmov movpushmovsub jepushcallpop
pushcallmovtest pushcallmovtest pushlcallpushlcall
int3int3int3mov int3int3int3mov pushpushpushlea
movpoppopret movxormovmov jecmpjecmp
jmpint3int3int3 pushlcallpushlcall movpoppopret
movpopretint3 jmpint3int3int3 pushcallmovpush
int3int3movpush movpopretint3 pushmovmovcall
int3movpushmov int3int3movpush movpopretint3
poppopretint3 int3movpushmov cmpjepushcall
addpushpushpush poppopretint3 movleamovmov
pushpushcalllea movmovjmpmov

pushpushcalllea
retnopnopnop
movaddpushpush
subpushpushpush

The classification performance is given in Figure 12.9. As can be seen, 3-

230 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

grams can show a bit better result than 4-grams in case of distinguishing between
benign and malware_000 or Benign and malware_207 with C4.5 classifier. At the
same time 4-grams are better in order to distinguish between two malware datasets
with C4.5 classifier. We can conclude that results are quite good, and can be used
for malware detection. In our opinion results can be improved by extracting more
features and usage of relative frequencies rather than pure vectors.

Table 12.9: Classification accuracy based on features from opcode 4-gram, in %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 86.92 86.92 95.31 93.73 94.28 94.23 95.54
Bn vs Ml_207 86.84 86.84 93.33 91.71 92.03 92.04 93.75
Ml_000 vs Ml_207 64.90 64.90 81.58 78.98 74.98 75.77 78.80

Information Gain

Bn vs Ml_000 87.79 87.89 91.48 91.45 91.31 90.84 85.74
Bn vs Ml_207 84.64 84.57 87.84 87.83 87.25 87.70 48.67
Mn_000 vs Ml_207 62.73 63.20 69.96 70.25 68.40 67.24 68.90

Cfs

Bn vs Ml_000 89.63 89.63 91.51 91.52 91.52 90.76 84.95
Bn vs Ml_207 86.41 86.64 89.36 89.48 89.16 89.12 81.13
Mn_000 vs Ml_207 66.28 66.17 72.00 72.27 68.96 69.17 69.32

In contrary to 3-grams we can see that the histograms of 4-grams have fun-
damental differences when it comes to malicious and benign sets as it is depicted
in Figure 12.13. We can see that the frequencies correspond to malware_000 and
malware_207 datasets are nearly similar and are far from the frequencies detected
for the benign class. Moreover, there is a clear and strong correlation between two
malware datasets. So, we can conclude that in case of probabilistic-based models
like Bayes Network and Naive Bayes the classification could be a bit better due
to differences in likelihood of appearance, which can be also found in Tables 12.7
and 12.9.
API call n-grams

API calls n-grams is the combination of specific operations invoked by the
process in order to use functionalities of an operation system. In this study we
used peframe to extract API calls from PE32 files. The bigger the n-gram size is
the lower accuracy is possible to gain. The reason for this is that single API calls
and their n-grams are far fewer in comparison with for example opcode n-grams.
After extraction of API calls, we combined them into 1- and 2-grams. For each
task we selected 100 most frequent features in a particular class and combined
them into 200-feature vectors. Tables 12.10 and 12.11 presents results of machine
learning evaluation on API call n-grams data.

12.5. Results & Discussions 231

Figure 12.13: Distribution of the frequencies of top 20 opcode 4-grams from benign set
in comparison to both malicious datasets

As we can see ANN, k-NN and C4.5 are the best classifiers similar to previous
results. It is also more difficult to distinguish between files from malware_000
and malware_207. We gained quite high accuracy, but it is still lower than in
related studies. It could be explained by the size of datasets: other studies datasets
usually consist of several hundreds or thousands of files while our dataset has
more than 110,000 files. After analysing feature selection results we decided not
to include them in the results section since most of the features are similar in terms
of distinguishing between malware and goodware. It means that there is large
number of unique API calls that can be found once or twice in a file in contrary to
the byte or opcode n-gram

Table 12.10: Classification accuracy based on API call 1-gram features, %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 90.79 90.79 93.39 93.47 93.51 93.43 82.44
Bn vs Ml_207 87.18 87.18 90.94 91.03 91.37 91.23 81.28
Ml_000 vs Ml_207 66.19 66.2 78.44 77.09 73.33 72.77 73.55

Table 12.11: Classification accuracy based on API call 2-gram features, %

Dataset Naive Bayes BayesNet C4.5 k-NN SVM ANN NF

All features

Bn vs Ml_000 86.54 86.55 90.88 91.53 91.96 91.85 75.24
Bn vs Ml_207 81.94 81.91 87.84 88.82 88.31 87.81 83.61
Ml_000 vs Ml_207 62.31 62.31 73.69 73.17 70.27 69.45 70.08

We also studied the difference between frequencies distributions of API calls.
Figure 12.14 sketches extracted API 1-grams from three datasets. One can see

232 S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial

that there is a significant spread between numbers of occurrences in benign class
in contrary to both malicious datasets. On the other hand, results for both malware
datasets are similar, which indicates statistical significance of extracted features.
It is important ho highlight that the largest scatter are in frequencies for memset(),
malloc() and free() API calls. On the other hand, malicious programs tend to use
GetProcAddress() function more often for retrieving the address of any function
from dynamic-link libraries in the system.

Figure 12.14: frequencies of 20 most frequent API 1-grams for three different datasets

12.6 Conclusion

In this paper we presented a survey on applications of machine learning tech-
niques for static analysis of PE32 Windows malware. First, we elaborated on dif-
ferent methods for extracting static characteristics of the executable files. Second,
an overview of different machine learning methods utilized for classification of
static characteristics of PE32 files was given. In addition, we offered a taxonomy
of malware static features and corresponding ML methods. Finally, we provided
a tutorial on how to apply different ML methods on benign and malware dataset
for classification. We found that C4.5 and k-NN in most cases perform better than
other methods, while SVM and ANN on some feature sets showed good perform-
ance. On the other hand Bayes Network and Naive Bayes have poor performance
compared to other ML methods. This can be explained by negligibly low prob-
abilities which present in a large number of features such as opcode and bytes
n-grams. So, it can see that static-analysis using ML is a fast and reliable mechan-
ism to classify malicious and benign samples considering different characteristic
of PE32 executables. Machine Learning- aided static malware analysis can be
used as part of Cyber Threat Intelligence (CTI) activities to automate detection of
indications of compromise from static features of PE32 Windows files.

12.7. Bibliography 233

12.7 Bibliography
[1] Infection rates and end of support for windows

xp. https://blogs.technet.microsoft.com/mmpc/2013/10/29/
infection-rates-and-end-of-support-for-windows-xp/. accessed: 01.04.2016.

[2] Vx heaven. http://vxheaven.org/. accessed: 25.10.2015.

[3] Gianni Amato. Peframe. https://github.com/guelfoweb/peframe. accessed:
27.10.2016.

[4] M. Baig, P. Zavarsky, R. Ruhl, and D. Lindskog. The study of evasion of
packed pe from static detection. In Internet Security (WorldCIS), 2012 World
Congress on, pages 99–104, June 2012.

[5] Simen Rune Bragen. Malware detection through opcode sequence analysis
using machine learning. Master’s thesis, Gjøvik University College, 2015.

[6] C. Cepeda, D. L. C. Tien, and P. Ordóñez. Feature selection and improving
classification performance for malware detection. In 2016 IEEE Interna-
tional Conferences on Big Data and Cloud Computing (BDCloud), Social
Computing and Networking (SocialCom), Sustainable Computing and Com-
munications (SustainCom) (BDCloud-SocialCom-SustainCom), pages 560–
566, Oct 2016.

[7] Mohsen Damshenas, Ali Dehghantanha, and Ramlan Mahmoud. A survey
on malware propagation, analysis, and detection. International Journal of
Cyber-Security and Digital Forensics (IJCSDF), 2(4):10–29, 2013.

[8] F. Daryabar, A. Dehghantanha, and N. I. Udzir. Investigation of bypassing
malware defences and malware detections. In 2011 7th International Con-
ference on Information Assurance and Security (IAS), pages 173–178, Dec
2011.

[9] Farid Daryabar, Ali Dehghantanha, and Hoorang Ghasem Broujerdi. Invest-
igation of malware defence and detection techniques. International Journal
of Digital Information and Wireless Communications (IJDIWC), 1(3):645–
650, 2011.

[10] Farid Daryabar, Ali Dehghantanha, Brett Eterovic-Soric, and Kim-
Kwang Raymond Choo. Forensic investigation of onedrive, box, googledrive
and dropbox applications on android and ios devices. Australian Journal of
Forensic Sciences, 48(6):615–642, 2016.

[11] Farid Daryabar, Ali Dehghantanha, Nur Izura Udzir, Solahuddin bin Sham-
suddin, et al. Towards secure model for scada systems. In Cyber Security,
Cyber Warfare and Digital Forensic (CyberSec), 2012 International Confer-
ence on, pages 60–64. IEEE, 2012.

https://blogs.technet.microsoft.com/mmpc/2013/10/29/infection-rates-and-end-of-support-for-windows-xp/
https://blogs.technet.microsoft.com/mmpc/2013/10/29/infection-rates-and-end-of-support-for-windows-xp/
http://vxheaven.org/
https://github.com/guelfoweb/peframe

234 Bibliography

[12] Farid Daryabar, Ali Dehghantanha, Nur Izura Udzir, et al. A review on
impacts of cloud computing on digital forensics. International Journal of
Cyber-Security and Digital Forensics (IJCSDF), 2(2):77–94, 2013.

[13] Ali Dehghantanha and Katrin Franke. Privacy-respecting digital investiga-
tion. In Privacy, Security and Trust (PST), 2014 Twelfth Annual International
Conference on, pages 129–138. IEEE, 2014.

[14] Dhruwajita Devi and Sukumar Nandi. Detection of packed malware. In
Proceedings of the First International Conference on Security of Internet of
Things, SecurIT ’12, pages 22–26, New York, NY, USA, 2012. ACM.

[15] Dennis Distler and Charles Hornat. Malware analysis: An introduction.
SANS Institute InfoSec Reading Room, pages 18–19, 2007.

[16] T. Dube, R. Raines, G. Peterson, K. Bauer, M. Grimaila, and S. Rogers. Mal-
ware type recognition and cyber situational awareness. In Social Computing
(SocialCom), 2010 IEEE Second International Conference on, pages 938–
943, Aug 2010.

[17] Tim Ebringer, Li Sun, and Serdar Boztas. A fast randomness test that pre-
serves local detail. Virus Bulletin, 2008, 2008.

[18] Parvez Faruki, Vijay Laxmi, M. S. Gaur, and P. Vinod. Mining control flow
graph as api call-grams to detect portable executable malware. In Proceed-
ings of the Fifth International Conference on Security of Information and
Networks, SIN ’12, pages 130–137, New York, NY, USA, 2012. ACM.

[19] Anders Flaglien, Katrin Franke, and Andre Arnes. Identifying malware us-
ing cross-evidence correlation. In IFIP International Conference on Digital
Forensics, pages 169–182. Springer Berlin Heidelberg, 2011.

[20] Tristan Fletcher. Support vector machines explained. [Online]. http://sutikno.
blog. undip. ac. id/files/2011/11/SVM-Explained. pdf.[Accessed 06 06 2013],
2009.

[21] Katrin Franke, Erik Hjelmås, and Stephen D Wolthusen. Advancing digital
forensics. In IFIP World Conference on Information Security Education,
pages 288–295. Springer Berlin Heidelberg, 2009.

[22] Katrin Franke and Sargur N Srihari. Computational forensics: Towards
hybrid-intelligent crime investigation. In Information Assurance and Se-
curity, 2007. IAS 2007. Third International Symposium on, pages 383–386.
IEEE, 2007.

[23] Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard Pfahringer, Peter Re-
utemann, and Ian H. Witten. The WEKA data mining software: an update.
SIGKDD Explorations, 11(1):10–18, 2009.

Bibliography 235

[24] Mark A Hall and Lloyd A Smith. Practical feature subset selection for ma-
chine learning. Proceedings of the 21st Australasian Computer Science Con-
ference ACSC’98, 1998.

[25] Chris Hoffman. How to keep your pc secure when microsoft
ends windows xp support. http://www.pcworld.com/article/2102606/
how-to-keep-your-pc-secure-when-microsoft-ends-windows-xp-support.html.
accessed: 18.04.2016.

[26] Anil K Jain, Robert PW Duin, and Jianchang Mao. Statistical pattern recog-
nition: A review. Pattern Analysis and Machine Intelligence, IEEE Transac-
tions on, 22(1):4–37, 2000.

[27] Sachin Jain and Yogesh Kumar Meena. Byte level n–gram analysis for mal-
ware detection. In Computer Networks and Intelligent Computing, pages
51–59. Springer, 2011.

[28] C. McMillan K. Kendall. Practical malware analysis. In Black Hat Confer-
ence USA, 2007.

[29] Z. Khorsand and A. Hamzeh. A novel compression-based approach for mal-
ware detection using pe header. In Information and Knowledge Technology
(IKT), 2013 5th Conference on, pages 127–133, May 2013.

[30] Teuvo Kohonen and Timo Honkela. Kohonen network. Scholarpedia,
2(1):1568, 2007.

[31] Jeremy Z. Kolter and Marcus A. Maloof. Learning to detect malicious ex-
ecutables in the wild. In Proceedings of the Tenth ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining, KDD ’04,
pages 470–478, New York, NY, USA, 2004. ACM.

[32] Igor Kononenko and Matjaz Kukar. Machine learning and data mining: in-
troduction to principles and algorithms. Horwood Publishing, 2007.

[33] S. Kumar, M. Azad, O. Gomez, and R. Valdez. Can microsoft’s service pack2
(sp2) security software prevent smurf attacks? In Advanced Int’l Conference
on Telecommunications and Int’l Conference on Internet and Web Applica-
tions and Services (AICT-ICIW’06), pages 89–89, Feb 2006.

[34] Lastline. The threat of evasive malware. white paper, Lastline Labs,
https://www.lastline.com/papers/evasive_threats.pdf, February 2013. accessed:
29.10.2015.

[35] N. A. Le-Khac and A. Linke. Control flow change in assembly as a clas-
sifier in malware analysis. In 2016 4th International Symposium on Digital
Forensic and Security (ISDFS), pages 38–43, April 2016.

http://www.pcworld.com/article/2102606/how-to-keep-your-pc-secure-when-microsoft-ends-windows-xp-support.html
http://www.pcworld.com/article/2102606/how-to-keep-your-pc-secure-when-microsoft-ends-windows-xp-support.html
https://www.lastline.com/papers/evasive_threats.pdf

236 Bibliography

[36] Woody Leonhard. Atms will still run windows xp – but a bigger shift in
security looms. http://www.infoworld.com/article/2610392/microsoft-windows/
atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html,
March 2014. accessed: 09.11.2015.

[37] R. J. Mangialardo and J. C. Duarte. Integrating static and dynamic mal-
ware analysis using machine learning. IEEE Latin America Transactions,
13(9):3080–3087, Sept 2015.

[38] Z. Markel and M. Bilzor. Building a machine learning classifier for malware
detection. In Anti-malware Testing Research (WATeR), 2014 Second Work-
shop on, pages 1–4, Oct 2014.

[39] M.M. Masud, L. Khan, and B. Thuraisingham. A hybrid model to detect ma-
licious executables. In Communications, 2007. ICC ’07. IEEE International
Conference on, pages 1443–1448, June 2007.

[40] Microsoft. Microsoft security essentials. http://windows.microsoft.com/en-us/
windows/security-essentials-download. accessed: 18.04.2016.

[41] Microsoft. Set application-specific access permissions. https://
technet.microsoft.com/en-us/library/cc731858%28v=ws.11%29.aspx. accessed:
30.05.2016.

[42] C. Miles, A. Lakhotia, C. LeDoux, A. Newsom, and V. Notani. Virusbattle:
State-of-the-art malware analysis for better cyber threat intelligence. In 2014
7th International Symposium on Resilient Control Systems (ISRCS), pages
1–6, Aug 2014.

[43] Nikola Milosevic, Ali Dehghantanha, and Kim-Kwang Raymond Choo. Ma-
chine learning aided android malware classification. Computers & Electrical
Engineering, 2017.

[44] S. Naval, V. Laxmi, M. Rajarajan, M. S. Gaur, and M. Conti. Employing
program semantics for malware detection. IEEE Transactions on Information
Forensics and Security, 10(12):2591–2604, Dec 2015.

[45] Farhood Norouzizadeh Dezfouli, Ali Dehghantanha, Brett Eterovic-Soric,
and Kim-Kwang Raymond Choo. Investigating social networking applica-
tions on smartphones detecting facebook, twitter, linkedin and google+ arte-
facts on android and ios platforms. Australian journal of forensic sciences,
48(4):469–488, 2016.

[46] Opeyemi Osanaiye, Haibin Cai, Kim-Kwang Raymond Choo, Ali De-
hghantanha, Zheng Xu, and Mqhele Dlodlo. Ensemble-based multi-filter
feature selection method for ddos detection in cloud computing. EURASIP
Journal on Wireless Communications and Networking, 2016(1):130, 2016.

http://www.infoworld.com/article/2610392/microsoft-windows/atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html
http://www.infoworld.com/article/2610392/microsoft-windows/atms-will-still-run-windows-xp----but-a-bigger-shift-in-security-looms.html
http://windows.microsoft.com/en-us/windows/security-essentials-download
http://windows.microsoft.com/en-us/windows/security-essentials-download
https://technet.microsoft.com/en-us/library/cc731858%28v=ws.11%29.aspx
https://technet.microsoft.com/en-us/library/cc731858%28v=ws.11%29.aspx

Bibliography 237

[47] Hamed Haddad Pajouh, Reza Javidan, Raouf Khayami, Dehghantanha Ali,
and Kim-Kwang Raymond Choo. A two-layer dimension reduction and two-
tier classification model for anomaly-based intrusion detection in iot back-
bone networks. IEEE Transactions on Emerging Topics in Computing, 2016.

[48] Shuhui Qi, Ming Xu, and Ning Zheng. A malware variant detection method
based on byte randomness test. Journal of Computers, 8(10):2469–2477,
2013.

[49] J. Ross Quinlan. Improved use of continuous attributes in c4. 5. Journal of
artificial intelligence research, pages 77–90, 1996.

[50] RC Quinlan. 4.5: Programs for machine learning morgan kaufmann publish-
ers inc. San Francisco, USA, 1993.

[51] D Krishna Sandeep Reddy and Arun K Pujari. N-gram analysis for computer
virus detection. Journal in Computer Virology, 2(3):231–239, 2006.

[52] Seth Rosenblatt. Malwarebytes: With anti-exploit, we’ll
stop the worst attacks on pcs. http://www.cnet.com/news/
malwarebytes-finally-unveils-freeware-exploit-killer/. accessed: 30.05.2016.

[53] Neil J. Rubenking. The best antivirus utilities for 2016. http://uk.pcmag.
com/antivirus-reviews/8141/guide/the-best-antivirus-utilities-for-2016. accessed:
30.05.2016.

[54] Paul Rubens. 10 ways to keep windows xp machines secure. http://www.cio.
com/article/2376575/windows-xp/10-ways-to-keep-windows-xp-machines-secure.
html. accessed: 18.04.2016.

[55] Ashkan Sami, Babak Yadegari, Hossein Rahimi, Naser Peiravian, Sattar
Hashemi, and Ali Hamze. Malware detection based on mining api calls.
In Proceedings of the 2010 ACM Symposium on Applied Computing, SAC
’10, pages 1020–1025, New York, NY, USA, 2010. ACM.

[56] S. Samtani, K. Chinn, C. Larson, and H. Chen. Azsecure hacker assets portal:
Cyber threat intelligence and malware analysis. In 2016 IEEE Conference on
Intelligence and Security Informatics (ISI), pages 19–24, Sept 2016.

[57] SANS. Who’s using cyberthreat intelligence and how? https://www.sans.org/
reading-room/whitepapers/analyst/cyberthreat-intelligence-how-35767. accessed:
01.03.2017.

[58] Igor Santos, Felix Brezo, Xabier Ugarte-Pedrero, and Pablo G Bringas. Op-
code sequences as representation of executables for data-mining-based un-
known malware detection. Information Sciences, 231:64–82, 2013.

http://www.cnet.com/news/malwarebytes-finally-unveils-freeware-exploit-killer/
http://www.cnet.com/news/malwarebytes-finally-unveils-freeware-exploit-killer/
http://uk.pcmag.com/antivirus-reviews/8141/guide/the-best-antivirus-utilities-for-2016
http://uk.pcmag.com/antivirus-reviews/8141/guide/the-best-antivirus-utilities-for-2016
http://www.cio.com/article/2376575/windows-xp/10-ways-to-keep-windows-xp-machines-secure.html
http://www.cio.com/article/2376575/windows-xp/10-ways-to-keep-windows-xp-machines-secure.html
http://www.cio.com/article/2376575/windows-xp/10-ways-to-keep-windows-xp-machines-secure.html
https://www.sans.org/reading-room/whitepapers/analyst/cyberthreat-intelligence-how-35767
https://www.sans.org/reading-room/whitepapers/analyst/cyberthreat-intelligence-how-35767

238 Bibliography

[59] Igor Santos, Xabier Ugarte-Pedrero, Borja Sanz, Carlos Laorden, and
Pablo G. Bringas. Collective classification for packed executable identifica-
tion. In Proceedings of the 8th Annual Collaboration, Electronic Messaging,
Anti-Abuse and Spam Conference, CEAS ’11, pages 23–30, New York, NY,
USA, 2011. ACM.

[60] Asaf Shabtai, Yuval Fledel, and Yuval Elovici. Automated static code ana-
lysis for classifying android applications using machine learning. In Compu-
tational Intelligence and Security (CIS), 2010 International Conference on,
pages 329–333. IEEE, 2010.

[61] Kaveh Shaerpour, Ali Dehghantanha, and Ramlan Mahmod. Trends in an-
droid malware detection. The Journal of Digital Forensics, Security and Law:
JDFSL, 8(3):21, 2013.

[62] R.K. Shahzad, N. Lavesson, and H. Johnson. Accurate adware detection
using opcode sequence extraction. In Availability, Reliability and Security
(ARES), 2011 Sixth International Conference on, pages 189–195, Aug 2011.

[63] Andrii Shalaginov and Katrin Franke. Automated generation of fuzzy rules
from large-scale network traffic analysis in digital forensics investigations.
In 7th International Conference on Soft Computing and Pattern Recognition
(SoCPaR 2015). IEEE, 2015.

[64] Andrii Shalaginov and Katrin Franke. A new method for an optimal som
size determination in neuro-fuzzy for the digital forensics applications. In
Advances in Computational Intelligence, pages 549–563. Springer Interna-
tional Publishing, 2015.

[65] Andrii Shalaginov and Katrin Franke. A new method of fuzzy patches con-
struction in neuro-fuzzy for malware detection. In IFSA-EUSFLAT. Atlantis
Press, 2015.

[66] Andrii Shalaginov and Katrin Franke. Automated intelligent multinomial
classification of malware species using dynamic behavioural analysis. In
IEEE Privacy, Security and Trust 2016, 2016.

[67] Andrii Shalaginov and Katrin Franke. Big data analytics by automated gener-
ation of fuzzy rules for network forensics readiness. Applied Soft Computing,
2016.

[68] Andrii Shalaginov and Katrin Franke. Towards Improvement of Multinomial
Classification Accuracy of Neuro-Fuzzy for Digital Forensics Applications,
pages 199–210. Springer International Publishing, Cham, 2016.

[69] Andrii Shalaginov, Katrin Franke, and Xiongwei Huang. Malware beaconing
detection by mining large-scale dns logs for targeted attack identification.
In 18th International Conference on Computational Intelligence in Security
Information Systems. WASET, 2016.

Bibliography 239

[70] Andrii Shalaginov, Lars Strande Grini, and Katrin Franke. Understanding
neuro-fuzzy on a class of multinomial malware detection problems. In IEEE
International Joint Conference on Neural Networks (IJCNN 2016), Jul 2016.

[71] M. Shankarapani, K. Kancherla, S. Ramammoorthy, R. Movva, and
S. Mukkamala. Kernel machines for malware classification and similarity
analysis. In Neural Networks (IJCNN), The 2010 International Joint Confer-
ence on, pages 1–6, July 2010.

[72] Muazzam Ahmed Siddiqui. Data mining methods for malware detection.
ProQuest, 2008.

[73] Li Sun, Steven Versteeg, Serdar Boztaş, and Trevor Yann. Pattern recognition
techniques for the classification of malware packers. In Information security
and privacy, pages 370–390. Springer, 2010.

[74] S Momina Tabish, M Zubair Shafiq, and Muddassar Farooq. Malware de-
tection using statistical analysis of byte-level file content. In Proceedings of
the ACM SIGKDD Workshop on CyberSecurity and Intelligence Informatics,
pages 23–31. ACM, 2009.

[75] Shugang Tang. The detection of trojan horse based on the data mining. In
Fuzzy Systems and Knowledge Discovery, 2009. FSKD ’09. Sixth Interna-
tional Conference on, volume 1, pages 311–314, Aug 2009.

[76] X. Ugarte-Pedrero, I. Santos, P.G. Bringas, M. Gastesi, and J.M. Esparza.
Semi-supervised learning for packed executable detection. In Network and
System Security (NSS), 2011 5th International Conference on, pages 342–
346, Sept 2011.

[77] R Veeramani and Nitin Rai. Windows api based malware detection and
framework analysis. In International conference on networks and cyber se-
curity, volume 25, 2012.

[78] VirusShare. Virusshare.com. http://virusshare.com/. accessed: 12.10.2020.

[79] C. Wang, Z. Qin, J. Zhang, and H. Yin. A malware variants detection meth-
odology with an opcode based feature method and a fast density based clus-
tering algorithm. In 2016 12th International Conference on Natural Compu-
tation, Fuzzy Systems and Knowledge Discovery (ICNC-FSKD), pages 481–
487, Aug 2016.

[80] Tzu-Yen Wang, Chin-Hsiung Wu, and Chu-Cheng Hsieh. Detecting un-
known malicious executables using portable executable headers. In INC,
IMS and IDC, 2009. NCM ’09. Fifth International Joint Conference on, pages
278–284, Aug 2009.

http://virusshare.com/

240 Bibliography

[81] Steve Watson and Ali Dehghantanha. Digital forensics: the missing piece
of the internet of things promise. Computer Fraud & Security, 2016(6):5–8,
2016.

[82] Yanfang Ye, Dingding Wang, Tao Li, Dongyi Ye, and Qingshan Jiang. An in-
telligent pe-malware detection system based on association mining. Journal
in computer virology, 4(4):323–334, 2008.

[83] M.N.A. Zabidi, M.A. Maarof, and A. Zainal. Malware analysis with multiple
features. In Computer Modelling and Simulation (UKSim), 2012 UKSim 14th
International Conference on, pages 231–235, March 2012.

[84] Zongqu Zhao. A virus detection scheme based on features of control flow
graph. In Artificial Intelligence, Management Science and Electronic Com-
merce (AIMSEC), 2011 2nd International Conference on, pages 943–947,
Aug 2011.

ISBN 978-82-326-6061-2 (printed ver.)
ISBN 978-82-326-6679-9 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:11

Sergii Banin

Malware detection and
classification using low-level
featuresD

oc
to

ra
l t

he
si

s

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
t.

of
 In

fo
rm

at
io

n
Se

cu
rit

y
an

d
Co

m
m

un
ic

at
io

n
Te

ch
no

lo
gy

D
octoral theses at N

TN
U

, 2023:11
Sergii Banin

	Abstract
	Preamble
	Acknowledgements
	Contents
	Tables
	Figures
	Introduction
	Background and Motivation
	Aim and Scope
	Research questions
	Outline of the Thesis

	Theoretical Foundations
	Basic Concepts
	General overview
	Computer operations
	Malware
	Dynamic Malware Analysis
	Low-level behavior features
	Machine learning
	Assessing the quality of ML aided malware detection
	Feature selection

	Related works

	Summary of published articles
	General overview of the used datasets
	Memory access patterns
	Malware classification
	Correlating high- and low-level features
	Improved malware detection before the Entry Point
	Intersection Subtraction feature selection
	Detection of previously unseen malware
	Survey paper on static analysis techniques

	Contributions
	Malware detection
	Improved detection capabilities
	Feature selection
	Low-level features decoding
	Better possibilities for threat analysis
	Better understanding of the phenomena

	Discussion
	Theoretical implications
	Practical considerations
	Ethical and Legal aspects
	Ethical aspects
	Legal aspects

	Limitations and Future work
	Bibliography

	P1: Memory access patterns for malware detection
	Introduction
	Memory patterns in malware detection
	Memtraces for malware detection
	Collecting memory access
	N-gram as feature extraction
	Feature Selection

	Experiments & Results
	Computing Environment
	Malware & data collection
	Results
	Interpretation of achievend results and findings

	Discussions & Conclusion
	Bibliography

	P2: Multinomial malware classification via low-level features
	Introduction
	State of the art
	Methodology
	Dataset
	Feature construction and selection
	Machine Learning algorithms
	Analysis

	Results
	Analysis
	Statistical analysis
	Context analysis
	Classification performance comparison

	Conclusion and Future Work
	Bibliography

	P3: Correlating High- and Low-Level Features: Increased Understanding of Malware Classification
	Introduction
	Background
	Problem description
	Experimental design
	Terms, definitions and assumptions
	Experimental flow
	Dataset
	Analysis environment
	Data collection
	Machine learning algorithms and feature selection
	Correlating features derived from different sources

	Results and analysis
	API call n-grams for malware classification
	Correlating memory access and API call n-grams
	Performance of integrated feature sets
	Discussion and analysis of correlation findings

	Conclusions
	Bibliography
	Raw data sample

	P4: Detection of running malware before it becomes malicious
	Introduction
	Related works
	Methodology
	General overview
	Data collection
	Feature construction and selection
	Machine Learning methods and evaluation metrics

	Experimental setup
	Dataset
	Experimental environment
	Experimental flow

	Results and Analysis
	Classification performance
	Analysis

	Discussion
	Conclusions
	Bibliography
	Classification results: normalized dataset
	Classification results: combined feature set

	P5: Fast and straightforward feature selection method: A case of high dimensional low sample size dataset in malware analysis
	Introduction
	Background
	Problem description
	Literature overview

	Intersection Subtraction selection method
	The context
	Feature selection algorithm
	Computational complexity
	Theoretical assessment

	Experimental evaluation
	Dataset
	Experimental environment
	Memory access operations
	Data collection
	Feature selection and machine learning algorithms
	Time complexity
	Analysis of selected feature sets
	Classification performance

	Discussion and Future work
	Conclusions
	Bibliography

	P6: Detection of Previously Unseen Malware using Memory Access Patterns Recorded Before the Entry Point
	Introduction
	Background
	Methodology
	Data collection
	Data preprocessing and feature selection
	Splitting the dataset
	Evaluation

	Experimental setup
	Experimental environment
	Dataset
	Experimental flow

	Results
	Analysis
	Influence of families
	Influence of features
	Influence of feature space

	Additional evaluation
	Discussion and Conclusions
	Bibliography
	Classification results achieved by RF
	Classification results achieved by J48
	Classification results achieved by LWL

	S1: Machine Learning Aided Static Malware Analysis: A Survey and Tutorial
	Introduction
	An overview of Machine Learning-aided static malware detection
	Static characteristics of PE files
	Machine Learning methods used for static-based malware detection

	Approaches for Malware Feature Construction
	Experimental Design
	Results & Discussions
	Accuracy of ML-aided Malware Detection using Static Characteristics

	Conclusion
	Bibliography

	Blank Page

