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Abstract

The interior of a eukaryotic cell is a highly complex composite material which consists of

water, structural scaffoldings, organelles, and various biomolecular solutes. All these com-

ponents serve as obstacles that impede the motion of vesicles. Hence, it is hypothesized

that any alteration of the cytoskeletal network may directly impact or even disrupt the vesicle

transport. A disruption of the vesicle-mediated cell transport is thought to contribute to sev-

eral severe diseases and disorders, such as diabetes, Parkinson’s and Alzheimer’s disease,

emphasizing the clinical relevance. To address the outlined objective, a multiscale finite ele-

ment model of the diffusive vesicle transport is proposed on the basis of the concept of

homogenization, owed to the complexity of the cytoskeletal network. In order to study the

microscopic effects of specific nanoscopic actin filament network alterations onto the vesicle

transport, a parametrized three-dimensional geometrical model of the actin filament network

was generated on the basis of experimentally observed filament densities and network

geometries in an adenocarcinomic human alveolar basal epithelial cell. Numerical analyzes

of the obtained effective diffusion properties within two-dimensional sampling domains of

the whole cell model revealed that the computed homogenized diffusion coefficients can be

predicted statistically accurate by a simple two-parameter power law as soon as the inac-

cessible area fraction, due to the obstacle geometries and the finite size of the vesicles, is

known. This relationship, in turn, leads to a massive reduction in computation time and

allows to study the impact of a variety of different cytoskeletal alterations onto the vesicle

transport. Hence, the numerical simulations predicted a 35% increase in transport time due

to a uniformly distributed four-fold increase of the total filament amount. On the other hand,

a hypothetically reduced expression of filament cross-linking proteins led to sparser filament

networks and, thus, a speed up of the vesicle transport.
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Author summary

Many vital processes in our eukaryotic cells and organs require an astonishingly precise

routing of intermediate products to various intra- and extracellular destinations using ves-

icles as transporters. This can be illustrated by numerous examples, such as the production

and destruction of proteins, the export of neurotransmitters or insulin to the extracellular

domain, etc. However, the inside of a cell is tightly packed with numerous structural scaf-

foldings (filaments), which serve as obstacles and impede the vesicle motion. It is thought

that any disturbances of the vesicle-mediated cell transport contribute to numerous

degenerative diseases and disorders, which highlights the clinical relevance for investigat-

ing this intracellular transport mechanism by developing computational models and per-

forming experimental studies. In this study, we numerically quantified how different

specific alterations of the filament density inside a human lung cell—due to changed

mechanical loadings or genetic disorders of proteins being responsible for filament

branching—affect the diffusion of vesicles inside the intracellular fluid. Therefore, based

on the concept of homogenization, a computationally efficient numerical method was

developed and utilized to simulate the diffusion of vesicles inside the whole cell, consider-

ing the detailed structural information of the filament network.

Introduction

One of the most characteristic property of a eukaryotic cell is the utterly high level of organiza-

tion of its internal transport processes, in particular the vesicle-mediated cell transport. It is a

biological process where, e.g., soluble proteins either enter the cell or get released into the

extracellular matrix, known as endo- or exocytosis. In case of the endocytosis, the selected

cargo together with some plasma membrane lipids and extracellular fluid become fully inter-

nalized into the cell forming a spherical vesicle. Diameters between 20 and 100 nm for intracel-

lular transport vesicles have been reported [1–5]. The budding and scission process represents

the de novo production of internal membranes from the plasma membrane lipid bilayer

(donor membrane). Afterwards, the vesicles either diffuse passively through the cytosol (slow

transport) or move actively along microtubules (fast transport) by means of motor proteins,

such as kinesin or dynein. The journey continues until the vesicle finds the correct destination

(tethering), docks to and fuses with the acceptor membrane, where it finally delivers the cargo.

The astonishingly precise manner of the routing of vesicles through the interior of a cell to var-

ious intracellular and extracellular destinations can be illustrated by numerous examples, such

as the release of neurotransmitters into the presynaptic region of a nerve cell or the transport

of insulin towards the cell surface. Busy cells are often filled with thousands of traveling vesi-

cles. In the case of ribbon synapses, the number of vesicles per μm3 with an averaged diameter

of 46 nm is location-dependent and ranges between 212 ± 69 and 524 ± 84, with higher values

closer to the cell membrane [6]. Membrane-bounded vesicles travel with a velocity of about

250 mm/day (i.e. 3 μm/s), while cytoskeletal proteins move only a fraction of a millimeter per

day [7]. The complex mechanisms by which the vesicles form, find their correct destination,

fuse with organelles or the plasma membrane and finally deliver their cargo, has been studied

among others by three Laureates of the 2013 Nobel Prize in Medicine and Physiology: Schek-

man, Rothman and Südhof [8, 9]. Recent advances in imaging techniques allowed to examine

the individual dynamics of secretory vesicles in vitro in more detail [10–13].

The precise manner of the vesicle transport becomes even more impressive considering the

intracellular structure of eukaryotic cells. The interior of a eukaryotic cell—the cytoplasm—is
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a highly complex composite material. It is made up of the solid cytoskeleton, which is sur-

rounded by an inhomogeneous gel-like phase, called cytosol. The cytosol itself comprises

mainly water (70%), as well as many solute ions, micro- and macro-molecules such as proteins

(20–30%) [14–16]. Furthermore, a variety of different not randomly distributed organelles can

be found in the cytoplasm of eukaryotic cells, including the Golgi apparatus and the endoplas-

mic reticulum, that form a very complex structure in the vicinity of the nucleus. The endoplas-

mic reticulum and the Golgi apparatus are two of the main targets or starting points of

transport vesicles, containing enzymes, which, e.g., fuse later on with endosomes and become

lysosomes. Other important organelles are the mitochondria being responsible for the genera-

tion of most of the cell’s chemical energy and are therefore mainly localized near sites of high

ATP consumption.

While the organelles have numerous eminently specialized functions, the cytoskeleton on

the other hand is mainly responsible for maintaining the cellular shape, strength and structural

integrity. It consists of three major types of self-assembling and interconnected polymeric fila-

ments: (i) cable-like actin filaments (diameter: 8 nm, total filament length per cell: 300 mm);

(ii) pipe-like microtubules (diameter: 25 nm, total filament length per cell: 7.5-15 mm);

(iii) rope-like intermediate filaments (diameter: 10 nm, total filament length per cell: 10 mm)

[14]. Actin filaments, e.g., are organized completely different depending on where they are

located inside the cell. In the cell cortex actin filaments are mainly organized in a 3D lattice-

like network having different densities, while in the filopodium they are organized in a tight

parallel bundle of 10 to 20 filaments. However, actin filaments can also be organized in so-

called stress fiber bundles that may connect to the network of intermediate filaments. Recent

advances in imaging techniques allow to gain detailed insights into the spatial organization,

orientation and cross-linking properties of actin filaments, see, e.g., [17–21]. Microtubules

usually radiate from an organizing center, called centrosome, located in the proximity of the

nucleus. Intermediate filaments are reported to be often colinear with microtubules [14]. In

general, the cytoskeltal network undergoes continuous growth and remodeling processes by

means of filament polymerization and depolymerization in order to maintain homeostasis

[22]. For a more detailed discussion on the cell biology, see [7, 23].

It is the highly heterogeneous structure of eukaryotic cells on many different scales together

with the sharp contrast in biophysical properties that ensures the physiological behavior of the

numerous specialized cellular functions. However, each individual intracellular component (of

comparable size) serves as an obstacle that impedes the motion of vesicles within the cell.

Therefore, the hypothesis is posed that any cytoskeletal alteration may directly affect the vesi-

cle-mediated cell transport process. Recently, accessory protein candidates, signaling and con-

trol pathways have been identified in in vitro studies that, e.g., regulate the length or total

filament content, stabilize networks by cross-linking the filaments, and are thus responsible

for the reorganization of the actin cytoskeleton in response to growth factor stimulation or

tumor viruses [24–27]. Zhang et al. [13] found by means of single-vesicle tracking of cell-

bound membrane vesicles that the actin and microtubule polymerization inhibitors cytochala-

sin D and nocodazole significantly decrease the average total number, the mean speed and dis-

placement of individual cell-bound membrane vesicles mainly due to a breakdown of the

active transport mechanism. However, it remains unclear to which extend the purely diffusive

part of the transport process is influenced by a disruption of the cytoskeleton. On the one

hand, the active transport mechanism via motor proteins is much faster than the purely diffu-

sive part, leading to the conclusion that functional changes of the active transport mechanism

may have a more pronounced and immediate influence on the vesicle-mediated cell transport.

On the other hand, a better understanding of the impact of cytoskeletal filament alterations on

the purely diffusive part of the vesicle transport is particularly relevant for cells that lack an
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active vesicle transport mechanism via motor proteins by nature (e.g., red blood cells) or in the

case of a pathologically induced (regional) breakdown of the active transport, being the main

objective of this study. Moreover, mutations or uncontrolled overactivations of actin and

microtubule binding proteins are reported to be related to neurodegenerative diseases like Par-

kinson’s and Alzheimer’s disease [28], amyotrophic lateral sclerosis [29] or cancer [30]. A dis-

ruption or hyperactivity of membrane trafficking pathways is thought to contribute directly to

a variety of severe neurological, immunological, liver and cardiovascular diseases, as well as

intestinal, blood, renal, muscular or multi-systemic disorders, cancer and diabetes [31].

The combination of the results obtained from various biomedical investigations and

detailed mechano-mathematical models with the highly efficient engineering software pack-

ages in order to simulate dynamic processes inside eukaryotic cells, such as the vesicle trans-

port, is needed to bridge the gap between the theoretical investigations and the medical

practice, and may shift the paradigm in the better understanding of different diseases. How-

ever, in contrast to the already advanced biomedical investigations, the mechano-mathemati-

cal and computational modeling of the ongoing processes within cells is rather in the initial

stage, see, e.g., [32–42]. Therein, it is commonly focused on a single aspect of the biomechan-

ics, mechanobiology or biophysics within a small intracellular domain, including certainly not

enough biomedical inputs which are necessary to draw realistic conclusions. The reason there-

fore is simply the heterogeneity and complexity of the cytoplasm, as delineated above.

It is well known in biomechanics that morphological changes are the basis of functional

changes. However, functional changes in turn may affect the morphology. Therefore, the main

objective of this study was to numerically analyze the effects of specific cytoskeletal alterations

onto the diffusive vesicle-mediated cell transport. In particular, the impact of the heterogeneity

of the actin filament network density on the vesicle transport and the fractional anisotropy of

the effective properties were investigated considering the finite size of the transport vesicles,

i.e. the consideration of the inaccessible domains for the vesicles. To address the outlined

objectives, this article is structured as follows: In the first section the used modeling approach

is briefly summarized, containing a description of the generated parameterized 3D cell model

and the implemented biophysical model for the diffusive vesicle transport which is based on

the concept of homogenization owing the complexity of the cytoplasm. Results of the per-

formed numerical investigations are presented and discussed subsequently. For several certain

domains within the cytoplasm, the fractional anisotropy of the computed effective diffusion

properties is investigated. Furthermore, the hypothesis is analyzed whether the relation

between the effective properties and the inaccessible area fraction can be modeled by means of

a two-parameter power law as suggested by Novak et al. [33]. Finally, nine different whole cell

models were generated to study how alterations of the total actin filament amount triggered by

a changed mechanical environment or a reduced number of filament cross-links due to a

mutation of the cross-linking proteins Arp2/3 or filamin may affect the vesicle-mediated cell

transport. The final section concludes with the key findings of this numerical study and pro-

vides a future outlook.

Materials and methods

This section briefly summarizes the workflow and the methodologies used to model and ana-

lyze the passive vesicle-mediated cell transport, i.e. only the movement of the vesicles inside

the cytosol hindered by the cytoskeleton. It is assumed that no external forces act on the vesi-

cles and that only thermal fluctuations (Brownian motions) lead to a net mass transfer of

vesicles. Hence, we treat the passive vesicle transport as a pure diffusion problem, since we

are only interested into how the cytoskeleton affects the time dependent concentration
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distribution of the vesicles inside the cell, i.e. in a closed system. A realistic parametrized three-

dimensional (3D) model of the cytoskeleton was generated, which served as an input for multi-

scale finite element (FE) analyses of the intracellular diffusion process. The model validation

was performed using Monte Carlo simulations, while the correct implementation of the pro-

posed methodology was carefully verified by means of an example with an existing analytical

solution.

Parametrized 3D cytoskeleton model

To perform a systematic numerical study, that allows to investigate, e.g., how the actin filament

network density and the associated fractional anisotropy of the network affect the vesicle trans-

port, a parametrized 3D cytoskeleton model was generated based on recent experiments per-

formed by Meindl et al. [43]. Therein, they compared different fluorescence-based methods

(plate reader, flow cytometry and image analysis) to quantify the in vitro uptake of nanoparti-

cles by phagocytes and non-phagocytic cells. Briefly, among others adenocarcinomic human

alveolar basal epithelial cells (cell line A549) were cultured in Dulbecco’s Modified Eagle’s

Medium (DMEM), 10% fetal bovine serum (FBS), 2 mM L-glutamine and 1% penicillin/strep-

tomycin. Subsequently, the cell cultures were exposed to functionalized and non-functiona-

lized fluorescence-labeled polysterene particles with diameters of 20 and 200 nm for 24 hours

to study their individual uptake behavior. To identify the cells, and to differentiate between

intracellular uptake of particles and adhesion of particles to the plasma membrane, the actin

cytoskeleton was stained with Alexa Fluor1 488-phalloidin, and the nuclei were counter-

stained with Hoechst 33342. The cells were viewed in an A1R Laser Scan microscope (Nikon)

at ex/em of 488 and 518 nm.

Macroscopic actin density model of an A549 cell. In the present study, image stacks of

the above described experiments with a pixel resolution of (0.2 × 0.2 × 0.2) μm were utilized

and pre-processed (including noise reduction and semi-automatic segmentation) using the

software package ImageJ (1.52s, National Institute of Health), such that the color intensity pro-

files of the three image channels (RGB) correspond to the relative density profiles of the actin

filament network (green channel), the nucleus (blue channel) and the nanoparticles (red chan-

nel) for an individual A549 cell.

Afterwards, the image stacks were imported into Matlab (R2017b, The MathWorks, Inc.)

and further processed. For each slice of the z-stack, a Gaussian mixture model p(x), i.e. a linear

superposition of K Gaussians N ðxjμk;ΣkÞ with mean vector μk 2 R
2 and co-variance matrix

Σk 2 R
2�2

weighted by a scalar mixing coefficient 0� bk� 1, in the form

pðxÞ ¼
XK

k¼1

bkN ðxjμk;ΣkÞ with
XK

k¼1

bk ¼ 1 ð1Þ

was fitted to the normalized two-dimensional (2D) color intensity profile of the actin channel

I(x) using an expectation-maximization (EM) algorithm together with a nonlinear least

squares approximation [44–46]. The EM algorithm is an iterative scheme that aims to maxi-

mize the likelihood function with respect to the parameter set (bk, μk, Σk). The algorithm is

deemed to have converged when the change in the log likelihood function falls below a defined

threshold.

Fig 1A shows the original color intensity distribution I(x) of the actin channel normalized

by the total density, while Fig 1B depicts the probability distribution p(x) of the fitted Gaussian

mixture model for one slice of the z-stack. Thereby, a minimum of K = 557 Gaussians was nec-

essary to achieve a coefficient of determination of R2 = 0.93. The learned Gaussian mixture

model p(x), as presented in Fig 1B, describes the experimentally obtained normalized actin
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density distribution as a continuous smooth function and is, therefore, more convenient to

handle than a pixel image containing approximately 61000 discrete intensity values. Further-

more, the parameterized macroscopic model permits, e.g., to alter the density of the actin net-

work at very specific locations by simply adapting the co-variance matrix Σk or the scaling

factor bk in the proximity of the region of interest.

Note that the limited resolution of the confocal microscopy images does not allow the fine

details of the actin filament network to be reconstructed, such as the structure of individual fil-

aments and their branching behavior. However, an accurate mapping of these features is the

key to determine more realistic diffusion properties. Therefore, a generic 3D microscopic

actin filament network was created based on the developed 2D macroscopic actin density

models (obtained for each slice of the z-stack) in combination with published data regarding

the in vitro spatial actin filament organization, as described in the following section.

Microscopic actin filament network and resulting inaccessible domains. In order to

model the detailed actin network structure of an A549 cell, a Matlab routine was implemented

that allows to generate a 3D actin skeleton based on the given relative macroscopic actin den-

sity distribution p(x) for a defined position x within the cell, as introduced in Eq (1). Thereby,

actin filaments (F-actin) were abstracted as solid cylinders having a radius of 5 nm [47–49].

The cylinders were randomly placed within a cube of size (1 × 1 × 1) μm, oriented according

to user-defined distributions. Actin filaments, grown in static conditions, are reported to be

almost isotropically oriented, albeit a preference towards some specific angular orientations

can be seen [50, 51]. Arp2/3-mediated actin filament branching angles of approximately 70˚

are reported, e.g., [17, 52, 53]. Hence, the long axes of the cylinders were uniformly distributed

inR3
and filament branching between 65˚ and 75˚ was allowed. The absolute number of actin

filaments per 1 μm3 in the cell cortex is set to 1 430 with an average length of 1.1 μm according

to Abraham et al. [54]. This resulted in a volume ratio of approximately 0.124, an averaged dis-

tance between neighboring filaments of ca. 40 nm and a F-actin density of 40 mg/ml, which is

significantly higher than the value reported by Hartwig and Shevlin [55]. Therein, a filament

concentration of 10-12 mg/ml is mentioned for the macrophage actin skeleton. Since we were

only interested in the effects of relative alterations of the filament network density onto the dif-

fusive vesicle transport, a filament density of 40 mg/ml was assigned to the maximum values of

the actin density distribution p(x), i.e. the yellow regions in Fig 1B. For all other intracellular

domains the absolute number of actin filaments was scaled according to the macroscopic actin

Fig 1. Macroscopic actin density distribution of an A549 cell. (A) Color intensity distribution I(x, y) (normalized by

the total intensity) of the actin channel obtained from a single slice within the image stack. (B) Corresponding

probability distribution p(x, y) of the fitted Gaussian mixture model using in total 557 Gaussians. Data used in this

figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g001
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density distribution p(x). Fig 2A shows a generated 3D microscopic actin filament network

corresponding to the position with the coordinates x = 30 μm and y = 30 μm, see Fig 1B. The

network consists of 822 actin filaments with an averaged distance between neighboring fila-

ments of 51.31 nm ± 45.29 nm (mean ± SD) and an averaged intersection angle between fila-

ments of 71.14˚ ± 2.48˚.

To estimate the domains which are inaccessible for transport vesicles due to their finite size,

sectional images were created along the z-direction of the generated 3D network (100 slices).

Resulting image slices contained circles, ellipses and rectangles. In case the distance between

neighboring obstacles is smaller than the vesicle diameter, e.g., 20 nm the passage of a vesicle

via this domain is not possible and the area is treated as an additional obstacle. Therefore, too

narrow obstacles were connected via undirected paths. Complex paths were simplified using

graph theory, i.e. by decomposing the graphs into a tree of biconnected components, called

block-cut tree, and by removing inner edges in order to reduce the maximum degree of nodes

within each biconnected component to two [56]. Finally, along each path the inaccessible area

within an image slice can be computed explicitly by virtually placing the vesicles (metaballs)

tangentially between two neighboring obstacles. A representative result of this algorithm can

be seen in Fig 2B. The corresponding inaccessible volume was then approximated by combin-

ing results of all sectional images. Thereby, the inaccessible areas between neighboring slices

were averaged and multiplied by the slice distance. Hence, the generated 3D cell model allows

to specifically alter the cytoskeletal actin network structure locally by simply adjusting, e.g., the

filament radius, the number of filaments or the orientation distribution and cross-linking of

the filaments.

Fig 3 shows the corresponding distribution of the inaccessible area fraction ϕ(x) within a

horizontal 2D cut through the whole 3D cell network using the filament network parameters

as defined above, such as the F-actin density, the orientation distribution, the branching angles

etc. Thereby, the inaccessible area fraction was computed as the sum of the areas being inacces-

sible for vesicles per μm2. The estimated inaccessible area fraction within the A549 cell model

varied between 0 and 0.0931.

The mathematical model problem

The passive vesicle transport in the strongly heterogeneous cytoplasm is modeled as a diffusion

problem. Hence, the class of problems we are interested in are second-order linear parabolic

Fig 2. Microscopic cytoskeletal network model of an A549 cell. (A) Isotropically distributed cylindrical actin

filaments in a cube of dimensions (1 × 1 × 1) μm. (B) Horizontal cut through the 3D network at z = 0.5 μm with

resulting inaccessible domains for vesicles having a diameter of 20 nm. The inset highlights the resulting inaccessible

area (black) due to the obstacles (black with grey edges) and the finite size of the vesicles (grey).

https://doi.org/10.1371/journal.pcbi.1008784.g002
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partial differential equations defined on a macroscopic (convex polygonal) domain O 2 Rd
,

d = {1, 2, 3}, i.e. the cytoplasm, with coefficients originating from a fine microstructure. Thus,

the vesicle concentration uε(x, t) 2 [0, 1] defines the normalized number of vesicles per unit

volume and denotes the solution of the (non-homogeneous) problem

@

@t
uε x; tð Þ � r � Dε xð Þruε x; tð Þð Þ ¼ f ðxÞ; 8x 2 O; t > t0;

uεðx; tÞ ¼ gD; 8x 2 @OD; t > t0;

n � ðDεðxÞruεðx; tÞÞ ¼ gN; 8x 2 @ON ; t > t0;

uεðx; tÞ ¼ u0; 8x 2 O; t ¼ t0;

ð2Þ

where the vesicle concentration gD 2 H1/2(@OD) (Dirichlet boundary condition) and the vesicle

flux gN 2H−1/2(@ON) (Neumann boundary condition) are imposed along a Lipschitz continuous

boundary @O = @OD [ @ON, i.e. the cell membrane, with n as the exterior normal unit vector

to @ON, together with the initial vesicle concentration in the cytoplasm u0 2 L2(O). In addition,

f 2 L2(O) is a smooth source term representing the relative number of vesicles being created or

destroyed inside the cytoplasm, and Dε = (Dε)T 2 (L1 (O))d×d is a spatially rapidly altering dif-

fusion tensor for which 9λ, Λ> 0 : λ|z|2� zT Dε z� Λ|z|2, 8z 2 Rd, and 8ε. Here, ε is a small

length scale parameter that signifies explicitly the multiscale nature of the diffusion tensor Dε

and the solution uε corresponding to the average distance between actin filaments, as introduced

in the previous section. The usual Sobolev spaces H1
DðOÞ ¼ fv 2 H1ðO; v ¼ 0 on @ODg with

H1(O) = {v 2 L2(O),rv 2 L2(O)} = W1, 2(O) are considered. We assume that the cytoskeletal

network structure does not change and that vesicles are neither created nor destroyed inside the

cell during the time of interest. Thus, we treat the diffusion tensor Dε and the domainO, as well

as the source term f as constant with respect to time.

Numerical approximations of such a problem can be obtained by numerous techniques,

e.g., the finite element method, the finite difference method, and the finite volume method.

In S1 Appendix, we provide some details on the implementation and use of the standard

Galerkin finite element method in space together with the backward Euler method in time.

Fig 3. Resulting inaccessible area fraction. Distribution of the inaccessible area fraction ϕ(x) within a 2D cross-

sectional cut through the whole 3D actin filament network model of the A549 cell. Data used in this figure can be

found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g003
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The convergence of such a standard finite element method requires a mesh size H small

enough to resolve the finest length scale ε of the problem, i.e. H� ε. In the case that ε is

small, simulations often represent prohibitive computational costs due to the necessary high

number of degrees of freedom. However, neglecting the fine scale physical properties of the

problem may lead to questionable results on the macroscopic scale of interest. The numerical

simulation of the diffusion process in strongly heterogeneous media poses major computa-

tional challenges. Hence, so-called homogenization strategies are needed to find numerical

approximations to the solution of the given model problem (Eq (2)) with a significantly

reduced computational cost.

The concept of homogenization

The theory of homogenization aims to predict the global behavior of a composite material tak-

ing into account its microscopic constituents and their properties. Thereby, a heterogeneous

medium, possessing a fine not necessarily periodic microstructure with, e.g., rapidly altering

coefficients or perforations, takes on the appearance of a much simpler homogeneous

medium. This homogenized medium can then be modeled using a partial differential equation

with effective coefficients that will capture the properties of the microstructure, supposing that

the microscopic length scale is much smaller than the macroscopic size of the domain in

which a certain physical phenomenon is investigated. Hence, the concept of homogenization

enables to understand how the properties on the microscopic level affect the macroscopic or

global behavior of a composite material.

Various different but related numerical homogenization techniques have been developed,

such as the wavelet homogenization techniques by Dorobantu and Engquist [57], the multigrid

numerical homogenization techniques [58, 59], the multiscale FEM (MsFEM) or the FE2

method [60, 61], and the heterogeneous multiscale method (HMM) [62]. In the present study,

a multiscale method is implemented in Matlab based on the HMM and the mathematical

homogenization by asymptotic expansion [63]. The key aspects of the algorithm are summa-

rized in the following subsection.

The multiscale model for the diffusive vesice transport. The general idea of the multi-

scale model is to couple solutions of numerous microscale problems in order to obtain the

macroscopic behavior of the solutions. However, it is not the purpose of this method to resolve

the microscale behavior in the entire domain. It can be seen as probing the local microstruc-

ture in a statistical sense.

The multiscale model for the diffusive vesicle transport contains two essential parts. The

first part is an overall macroscopic scheme for the macroscopic variables on a macroscale

domain O 2 Rd
, d = {1, 2, 3}. Hence, let u0 (x) be the (homogenized) macroscopic vesicle con-

centration, i.e. the normalized number of vesicles per unit volume, denoting the solution of

the (homogenized, up-scaled) macroscopic problem

@

@t
u0 x; tð Þ � r � D0 xð Þru0 x; tð Þð Þ ¼ f ðxÞ; 8x 2 O; t > t0;

u0ðx; tÞ ¼ gD; 8x 2 @OD; t > t0;

n � ðD0ðxÞru0ðx; tÞÞ ¼ gN; 8x 2 @ON ; t > t0;

u0ðx; tÞ ¼ u0; 8x 2 O; t ¼ t0;

ð3Þ

where the vesicle concentration gD 2H1/2 (@OD) and the vesicle flux gN 2H−1/2 (@ON) are

imposed along a Lipschitz continuous boundary @O = @OD [ @ON, i.e. the cell membrane,

with n as the exterior normal unit vector to @ON, together with the initial vesicle concentration
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in the cytoplasm u0 2 L2(O). In addition, f 2 L2(O) is a smooth source term corresponding

to the relative number of produced or destroyed vesicles in the cytoplasm, and D0 = (D0)T 2

(L1 (O))d×d is the a priori unknown effective diffusion tensor representing the underlying

microscopic properties at (and around) the position x satisfying 9λ, Λ> 0 : λ|z|2� zT D0 z�

Λ|z|2, 8z 2 Rd. Here, the superscript 0 signifies that the corresponding variable is related to

the (homogenized) macroscopic length scale. For this macroscopic problem a standard finite

element method was chosen as a macroscopic solver (as introduced in S1 Appendix), where

the element size of the macroscopic mesh H is allowed to be larger than ε, see Fig 4A.

Thereby, for each macroscopic quadrature point x̂ ip the missing macroscopic data, i.e. the

effective diffusion tensor D0ðx̂ ipÞ, needs to be estimated. This marks the second essential part

of the multiscale model of the diffusive vesicle transport and is performed by solving the origi-

nal microscale model problem, sometimes called the cell problem, locally around each quadra-

ture point x̂ ip within the sampling domain Kd ¼ x̂ ip þ d=2ð� 1; 1Þ
d
, d = {1, 2, 3}, and δ> 0, see

Fig 4B and 4C. Note that the sampling domain Kδ contains holes, which represent the inacces-

sible domains due to the finite vesicle size. It is assumed that vesicles are not able to penetrate

the actin filaments.

From the theory of asymptotic expansion the strong formulation of the j = {1, . . ., d} cell

problems is obtained, as presented in Allaire [63], i.e.

� r � ðDεðxÞrwjðxÞÞ ¼ � r � ðDεðxÞejÞ; 8x 2 Kd;

wjðxÞ; Kd � periodic;
1

jKdj

Z

Kd

wj dx ¼ 0;

ð4Þ

where ej are the orthonormal basis vectors of Rd
, DεðxÞ is the microscopic diffusion tensor as

introduced above, and the auxiliary function wjðxÞ needs to be periodic in Kδ. The zero mean

condition of the microfunction wjðxÞ is necessary to obtain a unique solution. Note that the

formulation of the microscopic boundary conditions is a key component in multiscale analy-

ses. Numerical studies by Yue and Weinan [64] have shown that for a two-phase composite

material, with a random checker-board distribution of the two phases, the periodic boundary

Fig 4. Schematic of the proposed two-scale FE model for the diffusive vesicle-mediated cell transport.

(A) Macroscopic discretization T H of the domainO into triangular finite elements. (B) Macroscopic linear finite

element K with the sampling domain Kδ of size |Kδ| = δ2 located at the quadrature point x̂ ip. (C) Microscopic

discretization T h of the domain Kδ into triangular finite elements. For illustrative purposes, 30 circular obstacles with a

diameter of 60 nm were positioned inside the sampling domain Kδ, and the inaccessible areas were determined for

vesicles with a diameter of 120 nm. The periodic boundary conditions along the edges of the sampling domain are

highlighted in blue and green color.

https://doi.org/10.1371/journal.pcbi.1008784.g004
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conditions for the local microscale problems perform better than Dirichlet and Neumann

boundary conditions. In general, the Neumann formulation underestimates the resulting

effective tensor, while the Dirichlet formulation results in an overestimation. In S1 Appendix,

the weak discretized form of the j cell problems and the corresponding finite element imple-

mentation are described in detail.

Finally, the homogenized diffusion tensor D0ðx̂ ipÞ at the current macroscopic quadrature

point xip can be computed as

D0
ij x̂ ip

� �
¼

1

jKdj

Z

Kd

Dε
ij xð Þ �

Xd

k¼1

Dε
ik xð Þ

@

@xk
wj xð Þ

 !

dx; ð5Þ

by means of the solutions χj of the j microscopic problems, as presented in Eq (4). This compu-

tation can either be done in advance or alternatively in parallel for the quadrature points

within all macroscopic finite elements, since all the microscale problems are decoupled.

Hence, the homogenized diffusion problem, as introduced in Eq (3), can be solved. For prob-

lems with scale separation, this multiscale method offers substantial savings of computational

costs by choosing the size of the sampling domain Kδ appropriately. Since it is assumed that

the cytoskeleton stays constant over the time of interest for the vesicle transport, the homoge-

nized diffusion tensors D0ðx̂ ipÞ need to be computed only once with respect to time.

If necessary, the accuracy of the macroscopic solution u0 (x) can be improved in a post-pro-

cessing step to resolve the ongoing effects at the local microstructure. A general strategy for

constructing uε (x) from u0 (x) is to use the method of local corrections, which is basically the

first order asymptotic expansion, i.e.

uε xð Þ ¼ u0 xð Þ �
Xd

j¼1

wj xð Þ
@

@xj
u0 xð Þ; ð6Þ

and to periodically extend it within the current element, as used in the special case of periodic

homogenization.

The energy equivalence, the macro-homogeneity or the Hill-Mandel condition. This

section aims to show that for periodic boundary conditions at the microscopic length scale the

Hill-Mandel condition is fulfilled. Hence, for the thermodynamically coupled quantities, the

flux j = −Dru and the concentration u, it must hold that

j0ðx̂Þ � ru0ðx̂Þ ¼
1

jKdj

Z

Kd

jε xð Þ � ruε xð Þdx

¼
1

jKdj

Z

Kd

jε xð Þdx �
Z

Kd

jε xð ÞJTdx
� �

� ru0 x̂ð Þ;
ð7Þ

at each macroscopic point x̂ 2 O with the linearized derivative of Eq (6), i.e.

ruε xð Þ ¼ ru0 �
Xd

j¼1

rwj xð Þ
@

@xj
u0 ¼ I � JTð Þru0; ð8Þ

where Jij ¼ @w
iðxÞ=@xj. The first integral in Eq (7) yields the definition of the macroscopic flux

j0 as the volume average of the microscopic flux jε, which is given as

j0 x̂ð Þ ¼ � D0 x̂ð Þru0 x̂ð Þ ¼ �
1

jKdj

Z

Kd

Dε xð Þruε xð Þdx ¼
1

jKdj

Z

Kd

jε xð Þdx; ð9Þ

using Eqs (5) and (8), whereas the second integral in Eq (7) needs to be zero in order that
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the Hill-Mandel condition holds true. By means of Green’s first identity and by introducing

q(x) = jε (x) � n as the normal component of the flux jε (x), where n is the exterior normal unit

vector to @Kδ, we obtain

Z

Kd

jεðxÞJT � ru0dx ¼

�

�

Z

Kd

½w1ðxÞ; w2ðxÞ�Tr � jεðxÞdx

þ

Z

@Kd

½w1ðxÞ; w2ðxÞ�T qðxÞ dsx

�

� ru0 ¼ 0;

ð10Þ

for a two-dimensional problem, which holds if the continuity equation on the sampling

domainr � jε (x) = 0 is satisfied, the microfluctuations wiðxÞ are periodic, i.e.

wiðxÞj@Kþ
d

¼ wiðxÞj@K�
d

on opposite boundaries @Kþ
d

and @K �
d

of the sampling domain Kδ, as

well as the normal components of the flux q(x) are anti-periodic on opposite sites of the sam-

pling domain @Kδ, i.e. qðxÞj
@Kþ

d

¼ � qðxÞj
@K �

d

. Hence, it can be seen that for periodic boundary

conditions at the microscopic scale the Hill-Mandel condition, as given in Eq (7), is fulfilled.

Validation and verification

The effective diffusion coefficients D0
ij, computed by the heterogeneous multiscale method at

the sampling domain Kδ, were compared with the coefficients ~D0
ij obtained by a Monte Carlo

simulation of vesicles undergoing random walks on the same domain Kδ, according to Novak

et al. [33, 65], Bressloff and Newby [42]. Furthermore, the implementation of the proposed

multiscale method was verified by means of a one-dimensional steady-state diffusion problem

with an oscillatory diffusion coefficient originating from a fine scale ε, for which an analytical

solution can be computed. A detailed description and results of the validation and verification

process are presented in S2 Appendix.

Results

Based on the developed parametrized 3D actin cytoskeleton model, the proposed method was

used to analyze the computed effective diffusion tensor as a function of the inaccessible area

fraction, and to quantify how alterations of the actin network density may affect the diffusive

vesicle-mediated transport within an A549 cell. All simulations were performed under isother-

mal conditions at 37˚C. Furthermore, it was assumed that the temperature is homogeneously

distributed throughout the cell.

Approximating the effective diffusion coefficients by a simple power law

Novak et al. [33] have shown that the dependence between the effective diffusion tensor

obtained by numerical homogenization and the inaccessible volume fraction is accurately

described by means of a two-parameter power law for a variety of differently shaped overlap-

ping obstacles (spheres, cylinders and disks) randomly placed in a 3D sampling domain. By

assuming that an almost isotropic effective diffusion tensor D0 is obtained, Novak et al. [33]

proposed the relationship

trD0=d
Din vitro

¼
ð1 � �=�cÞ

m

1 � �
; ð11Þ

where d is the dimension of the problem, Din vitro is the diffusion coefficient of the isotropic

solvent, ϕ is the inaccessible area fraction due to the obstacles and the finite size of the vesicles,

ϕc is the critical inaccessible area fraction at which the vesicles are trapped by the obstacles,
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and μ is an empirical constant. To study whether Eq (11) is a good approximation for the diffu-

sion of vesicles having a radius of R = 10 nm within the cytoplasm, a set of microscopic actin

filament network models was generated having different filament densities. For each network

model, the inaccessible domains within a single 2D slice of the 3D network model were esti-

mated, as described above and shown in Fig 2. Afterwards, the resulting 2D sampling domains

were discretized using linear triangular finite elements and the effective diffusion tensor D0 was

computed for each sampling domain, according to Fig 4. The mesh size of the microscopic tri-

angulation was chosen such that the obtained effective diffusion coefficients exhibited a con-

verged behavior. The in vitro diffusion tensor of the cytosol was assumed to be isotropic, i.e.

D0 = Din vitro I. For spherical vesicles with a radius R = 10 nm, the in vitro diffusion coefficient

estimated by the Stokes–Einstein relation is given as Din vitro = kBT/(6πηR) = 32.8μm2/s

assuming that the viscosity of the cytoplasm is roughly the same as that of pure water at a tem-

perature of 37˚C, i.e. η� ηwater = 0.692 mPas at T = 310.15 K, and the Boltzmann’s constant

kB = 1.34 � 10−23 J/K.

The resulting diffusion coefficients of the tensor D0 were collected and analyzed with

respect to the inaccessible area fraction ϕ. In Fig 5 it can be seen that the diffusion coefficients

D0
11

and D0
22

were both monotonically decreasing with increasing inaccessible area fractions.

The values of D0
12

were close to 0 for all computed effective diffusion tensors. Furthermore,

Fig 5 highlights that the obtained relative effective diffusion coefficients D0
11

and D0
22

can be

approximated accurately by means of Eq (11) with ϕc = 0.6209 and μ = 1.183 corresponding to

the experimentally observed obstacle geometries in an A549 cell, which is in relatively good

agreement with the values presented in Novak et al. [65] for the effective diffusion in 2D amid

elliptical obstacles with different aspect ratios. The parameters ϕc and μ were estimated by

means of a nonlinear least squares approximation with the restrictions 0� ϕc� 1 and μ� 0.

An R2 value of 0.9999 was achieved. Considering the obtained values of ϕ, as presented in

Fig 3, the effective diffusion coefficients are reduced only by maximum 10% due to the in vitro
actin filament network compared to the unobstructed diffusion case.

In addition, the anisotropy of the obtained diffusion tensors D0 was analyzed by means of

the fractional anisotropy, defined as FA ¼ ðl1 � l2Þ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l
2

1
þ l

2

2

q

, where λ1 and λ2 are the two

eigenvalues of D0 with λ1� λ2. Note that a fractional anisotropy close to zero means isotropic

Fig 5. Relationship between the effective diffusion coefficients and the inaccessible area fraction. Some

representative relative effective diffusion coefficients (normalized by the in vitro diffusion coefficient Din vitro) for

experimentally observed obstacle geometries in eukarytic cells obtained by the homogenization strategy as well as the

approximation by means of a power law (see Eq (11)). Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g005
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diffusion, whereas anisotropy is given if one of the eigenvalues is higher than the other. Results

in Table 1 show that the obtained diffusion tensors are in general almost perfectly isotropic.

However, with increasing inaccessible area fractions the fractional anisotropy is marginally

increasing, compare also with Fig 5. Hence, the assumption D0
11
¼ D0

22
and D0

12
¼ 0 seems to

be legit, especially in the domain ϕ< 0.4. Therefore, the effective diffusion tensor D0 can be

fully determined by Eq (11).

Fig 6 indicates a strong impact of the vesicle radius onto the inaccessible area fraction for a

sampling domain Kδ having a specific actin filament density. It can be seen that the diffusion

of vesicles through an actin filament network is sensitive to the vesicle size, especially if the

vesicle radius is comparable to or greater than the filament radius (R� 5 nm). With further

increasing vesicle radius R, the inaccessible area fraction approaches the maximum ϕ = 1,

whereby the slope of the sigmoidal function depends on the filament network density. Less

dense networks exhibit a less steep increase of the inaccessible area fraction with increasing

vesicle size. By means of Eq (11), the corresponding relative effective diffusion coefficient can

be estimated. Note that for inaccessible area fractions ϕ� ϕc the vesicles are trapped by the

Table 1. Selected effective diffusion coefficients D0
11

, D0
22

and D0
12

normalized by the diffusion coefficient of the cytosol Din vitro for different realistic sampling

domains having inaccessible area fractions ϕ. The anisotropy of the obtained diffusion tensors is analyzed by means of the fractional anisotropy (FA). Furthermore, the

number of used elements and degrees of freedom (DOFs), as well as the required computation time are presented.

ϕ
(-)

Elements DOFs D0
11
=Din vitro

(-)

D0
22
=Din vitro

(-)

D0
12
=Din vitro

(-)

FA

(-)

Comp. time

(min)

0.0336 21 620 11 263 0.9703 0.9689 0.0015 0.0024 17.5

0.0659 21 261 11 313 0.9368 0.9336 −0.0011 0.0030 17.6

0.0996 21 122 11 494 0.9049 0.9049 −0.0019 0.0030 18.4

0.1622 20 597 11 659 0.8347 0.8461 −0.0075 0.0159 19.2

0.2252 19 892 11 731 0.7664 0.7752 0.0010 0.0083 19.6

0.3029 18 821 11 646 0.6594 0.6327 0.0048 0.0311 18.9

0.3991 17 473 11 501 0.5032 0.4728 0.0048 0.0553 18.5

0.4808 16 172 11 177 0.3490 0.3229 0.0210 0.1038 16.9

https://doi.org/10.1371/journal.pcbi.1008784.t001

Fig 6. Impact of the vesicle size on the inaccessible area fraction. Resulting inaccessible area fraction ϕ as a function

of the vesicle radius R for three different 2D sampling domains cut out of the 3D cytoskeletal actin network model

containing a specific amount of filaments per μm3, compare also with Fig 2. Data used in this figure can be found in

S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g006
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filament network, whereby ϕc = 0.6209. Hence, the maximum vesicle radius for the passive

vesicle transport can be estimated. Assuming a maximum number of 1430 actin filaments per

μm3 in the cell cortex, a maximum vesicle diameter of approximately 90 nm is predicted,

which corresponds well to experimentally observed values published by Vigers et al. [2].

The computation of the effective properties of a single sampling domain took approxi-

mately 18.3 minutes on average. One key aspect of the present study was to compute the

required traveling time of vesicles to reach a specific location within an A549 cell, e.g., the

Golgi apparatus or the endoplasmic reticulum located in the proximity of the nucleus, and

how this traveling time is affected by filament density alterations. Therefore, the macroscopic

A549 cell model has to be discretized by means of finite elements and an effective diffusion

tensor needs to be computed for each macroscopic element due to the highly heterogeneous

distribution of the actin filament density, see Fig 1. Discretizing the macroscopic cell model

into approximately 4000 finite elements, see Fig 4A, and using the proposed homogenization

strategy is still prohibitively expensive from a computational point of view even if it is run in

parallel mode. Hence, Eq (11) is used for the subsequent simulations to predict the effective

diffusion tensors D0 (x) on the basis of the inaccessible area fraction ϕ(x), as shown in Fig 3.

The influence of cytoskeletal density alterations on the diffusive vesicle

transport in A549 cells

The cytoskeletal filament network is known to be able to adapt in response to changed loading

conditions or genetic defects and disorders. This includes alterations of the number of fila-

ments per μm3 and the cross-linking capability, which both influence the actin filament den-

sity of the cytoskeletal network. A sustained increase of equi-biaxial mechanical loading may

lead to a homogeneously distributed elevation of the filament density. On the other hand, a

genetic disorder of the cross-linking protein Arp2/3 leads to sparser filament networks. To

analyze the effects of actin filament density alterations on the diffusive vesicle-mediated trans-

port mechanisms inside an A549 cell, the (normal) in vitro actin filament density distribution

p(x), as introduced in Eq (1), with the fitted parameter set (bk, Σk, μk) according to Fig 1B, was

altered by systematically changing the parameters bk and Σk. Hence, the modified density dis-

tribution reads pðxÞ ¼
P

k
�bkN ðxjμk;

�ΣkÞ with k = {1, . . ., K}. While the parameter bk is a

purely multiplicative scaling factor, an increase of the coefficients in Σk leads to a higher dis-

persion but also to a decrease in the peak values of the function p(x) and vice versa. Thus, nine

Table 2. Impact of alterations of the parameters bk and Σk in Eq (1) onto the maximum number of filaments per μm3, the cumulative filament density (i.e. summa-

tion overO), the cumulative inaccessible area fraction, and the time which the vesicles need to generate a concentration u0 (xA) = 0.9 at the position xA = [30, 30]T

μm within the A549 cell. All values are presented as relative differences measured and normalized with respect to the in vitro case, i.e. �Σk ¼ Σk and �bk ¼ bk.

Case Parameters Relative changes with respect to the in vitro case (%)

bk �Σk Max. filaments per μm3 Cum. filament density Cum. inaccessiblearea fraction Required time for u0 (xA) = 0.9

I 0.5bk Σk −50.0 −50.0 −49.2 −2.90

II 2bk + 100.0 + 100.0 + 93.8 + 6.26

III 5bk + 400.0 + 400.0 + 337.7 + 35.00

IV bk 0.5Σk + 78.3 −2.5 −3.5 + 0.16

V 2Σk −1.9 + 0.4 + 0.8 −0.09

VI 5Σk −13.6 −1.2 −0.7 −0.13

VII 5bk 0.5Σk + 791.1 + 387.3 + 301.1 + 39.3

VIII 2Σk + 390.3 + 402.2 + 347.9 + 33.1

IX 5Σk + 332.2 + 393.8 + 346.4 + 30.8

https://doi.org/10.1371/journal.pcbi.1008784.t002
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different density distribution functions p(x) were generated in total and analyzed with respect

to the in vitro case, see Table 2.

Therefore, the macroscopic A549 cell geometry was discretized into 4074 linear triangular

finite elements with a maximum mesh element size of 1 μm, i.e. the length of the longest edge

in the mesh, see Fig 4A. For each macroscopic integration point, a microscopic actin filament

network was generated on the basis of the given filament density distribution p(x), and the

resulting inaccessible area fraction ϕ(x) was computed for a single 2D cut (sampling domain)

through the 3D microscopic network, as described above. Again, the vesicle radius was set

to R = 10 nm thereby. The resulting distributions of the inaccessible area fraction ϕ(x) are

Fig 7. Resulting inaccessible area distributions for different actin filament distributions. Influence of modifications of the fitted parameters bk and Σk in Eq (1) onto

the distribution of the area fraction ϕ(x) for nine cases, (A)–(I), see Table 2. Compare with the in vitro distribution in Fig 3. Data used in this figure can be found in

S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g007
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shown in Fig 7. As expected, an increasing bk leads to an almost linear increase of the inaccessi-

ble area fractions due to the uniformly rising filament density, see Fig 7A–7C. Note that with

increasing coefficients in Σk the domains with relatively high inaccessible area fractions are

damped while the area fractions in the surroundings are slightly lifted, especially in the prox-

imity of the cell membrane, compare with Fig 7D–7F. This smoothing effect gets even more

emphasized when the parameter bk is increased four-fold and the coefficients in Σk are gradu-

ally increased, as shown in Fig 7G–7I. The relative changes of the maximum number of fila-

ments per μm3, the cumulative filament density, and the cumulative inaccessible area fraction

computed with respect to the in vitro case are summarized in Table 2.

Thus, to study the impact of the different actin filament density distribution models p(x)

onto the required traveling time which the vesicles need to generate a concentration u0 (xA) =

0.9 at the position [xA] = [30, 30]T μm, the passive vesicle-mediated transport in the strongly

heterogeneous cytoplasm of the A549 cell is modeled as a time dependent diffusion problem,

as introduced in Eq (3). It is assumed that the vesicles are constantly taken up by the cell dur-

ing the time of interest such that the vesicle concentration along the whole cell membrane is

defined as gD = 1. Furthermore, it is assumed that there were initially no vesicles inside the

cell and vesicles are neither created nor destroyed inside the cell during the time of interest, i.e.

u0 = 0 and f(x) = 0, 8x 2 O. For each case, the distribution of the effective diffusion tensor

D0 (x) = D0 (x) I was estimated by means of Eq (11), assuming that the in vitro diffusion tensor

of the cytosol is isotropic, i.e. D0 = Din vitroI, with Din vitro = 32.8 μm2/s, as used above.

Fig 8. Spatial distribution of the vesicle concentration u0(x, y) for the in vitro actin filament density distribution

plotted at different points in time. (A) At t = 0.1 seconds. (B) At t = 2.5 seconds. (C) At t = 5 seconds. (D) At t = 10

seconds. It is assumed that there were initially no vesicles inside the cell and that vesicle are constantly taken up by the

cell during the time of interest such that the vesicle concentration along the cell membrane equals to one throughout

the simulation. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g008
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Fig 8 depicts the smooth spatial distribution of the homogenized vesicle concentration

u0 (x) for different points in time between 0.1 and 10 seconds of the diffusion process in the

A549 with an in vitro actin filament density distribution. The time evolution of the vesicle con-

centration at position xA, i.e. in the proximity of the nucleus, is presented in Fig 9A for the in
vitro case along with the nine different cases, I to IX, as introduced in Table 2. Note that cases

III and VII to IX exhibit a significantly flatter slope compared to the other cases. All cases

reach a steady-state value after approximately 25 seconds. The numerical simulations have

shown that for the in vitro case it takes approximately 6.4 seconds until a vesicle concentration

of 90% is reached at the position xA, as can be seen in Fig 9B in comparison to required travel-

ing times for the cases I to IX. The corresponding relative time differences for the nine studied

cases are presented in Table 2.

It can be seen that the required time increases monotonically with increasing bk and con-

stant Σk, i.e. the cases I to III. Since bk is a purely multiplicative scaling factor, a four-fold

increase of bk leads to a four-fold increase of the maximum number of filaments per μm3 as

well as the cumulative filament density. This uniformly increased filament density may, e.g., be

related to an altered mechanical environment. The cell may have sensed significantly higher

stresses and stretches, and therefore mechanotransduction has led to an increase of the actin

filament density and the cross-linking capacity in order to reach a homeostatic stress level

again. Hence, the cumulative inaccessible area fraction is increased by 337.7% for case III
which results finally in a 35% increase of the required traveling time compared to the in vitro
case. Case II follows the same line of reasoning, while case I exhibits a reduced traveling time

due to a depolymerization of the actin network, e.g., as a response to a reduced mechanical

loading state.

However, the same relative alterations of the coefficients in Σk revealed only insignificant

changes of the traveling time when bk is kept constant, i.e. the cases IV to VI. The reason for

this is that the parameter Σk modifies not only the width of the corresponding density distribu-

tion but also its height. Hence, a 50% decrease of the coefficients in Σk (see case IV) exhibits a

78.3% increase of the maximum number of filaments per μm3. On the other hand, the cumula-

tive filament density was slightly decreased by 2.5%, and the cumulative inaccessible area frac-

tion by 3.5%. For increasing coefficients in Σk and constant bk, the maximum number of

filaments assigned per μm3 decreases. Note that even though the cumulative filament density

Fig 9. Impact of cytoskeletal actin filament density alterations onto the diffusive vesicle-mediated transport in an

A549 cell studied by means of ten different cases in total, see Table 2. (A) Time evolution of the vesicle

concentration u0(xA) at position [xA] = [30, 30]T μm. (B) Required traveling time which the vesicles need to generate a

concentration of u0 = 0.9 at position xA. The horizontal line denotes the traveling time of the vesicles for the in vitro
actin filament density distribution. Data used in this figure can be found in S1 Data.

https://doi.org/10.1371/journal.pcbi.1008784.g009
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and the cumulative inaccessible area fraction are slightly increased for a one-fold increase of

Σk (case V), the required traveling time is reduced by 0.09%. A further increase of Σk (case VI)
revealed a decrease of the cumulative filament density, the area fraction and the required trav-

eling time compared to the in vitro case. In general, for uniformly increasing coefficients in Σk

and for keeping bk constant, the traveling time tends to slightly decrease.

This phenomenon gets more pronounced when bk is increased four-fold and Σk is altered

by the same amounts as before, see cases VII to IX. While the total number of actin filaments

within the whole A549 cell model remains almost constant (an approximately four-fold

increase compared to the in vitro case), the required traveling time decreases with increasing

Σk compared to the case VII. This can be explained by the fact that macroscopic diffusion bar-

riers are smoothed out by keeping the total number of filaments almost constant, compare also

with the distributions of the inaccessible area fraction in Fig 7G–7I. Hence, locally very dense

filament networks become sparser, which means that the same amount of filaments is distrib-

uted over a larger domain compared to the case VII. This can, e.g., be related to a reduced

capability to form cross-links due to genetic defects of the cross-linking proteins Arp2/3 or

filamin. However, an overactivation of these proteins would lead to significantly denser net-

works and increased traveling times.

Discussion

The vesicle-mediated cell transport plays an important role in the metabolism, the transport

and the temporary storage of food and enzymes. Vesicles also serve as chemical reaction cham-

bers inside the eukaryotic cells. Hence, sustained alterations of the precise manner of the vesi-

cle transport mechanism may directly lead to pathological consequences on the cellular, tissue

and organ level [31]. In general, the motion of vesicles inside the cytoplasm is a rather complex

phenomenon. They either bind to motor proteins and move along microtubules or undergo

hindered diffusion in the gel-like heterogeneous cytosol which is surrounded by a complex 3D

cytoskeletal network, where they experience and exert thermal and hydrodynamic forces.

Because the cytoskeleton provides the cell with strength and resilience, the cytoskeleton is con-

stantly reorganized, triggered by growth factors in order to maintain homeostasis [25, 27].

This growth and remodeling processes may include modifications of the total filament amount

and the cross-linking capability leading to alterations of the filament network density and

porosity or the filament orientation. However, changes of the mechanical environment most

likely also trigger adaptations of the surrounding extracellular matrix in soft tissues. Thus, it is

hypothesized that increases of the cytoskeletal filament density slow down the diffusive vesicle-

mediated cell transport and, therefore, affect important physiological cellular and tissue main-

tenance processes such as the synthesis of collagen, whereby the collagen pre-cursors are trans-

ported by means of vesicles from the endoplasmic reticulum to the Golgi apparatus and finally

undergo exocytosis [7, 23]. Furthermore, a significant increase of the cortical actin network

may slow down the release of neurotransmitters into the presynaptic region of nerve cells,

resulting in a delayed signal transduction. These examples already highlight the clinical rele-

vance and importance of investigating the impact of cytoskeletal filament alterations onto the

vesicle-mediated cell transport in order to gain better insights into possible causes and conse-

quences of many related diseases and disorders, such as Parkinsons’s and Alzheimer’s disease,

amyotrophic lateral sclerosis, and a variety of severe neurological, immunological, liver and

cardiovascular diseases, as well as intestinal, blood, renal, muscular or multi-systemic disor-

ders, cancer and diabetes. Given that the motor protein-assisted vesicle transport occurs typi-

cally over large distances and is much faster than the diffusive vesicle transport, functional

changes of the motor proteins or any structural adaptations of the microtubule network may
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have a more pronounced impact on the intracellular transport processes. Nevertheless, the

influence of cytoskeletal alterations on the purely diffusive part of the vesicle-mediated cell

transport must not be underestimated, in particular, related to cells with no active transport

mechanism by nature or cells with functional disorders of the active transport components.

In the present study we addressed this issue by means of a systematic numerical approach

focusing on the diffusive part of the vesicle transport within a eukaryotic cell. A realistic

parametrized 3D geometrical model of the actin filament network within an A549 cell was

generated, based on an experimental study of Meindl et al. [43] and additional microstructural

information about the actin filament organization. The implemented code allowed to alter the

filament density and orientation distribution, the filament branching angles, and finally, it

considered the excluded volume effect due to the finite size of the vesicles. Due to a lack of

microstructural information, other cytoskeletal filaments and organelles were neglected. Thus,

in the present study we focused purely on the actin filament network. Since actin filaments

occupy almost twice as much volume as intermediate filaments and microtubules in a typical

eukaryotic cell, it is assumed that alterations of the actin filament organization have a more

considerable impact on the diffusive properties [14].

While a detailed consideration of all the structural complexities within the cytoplasm would

yield prohibitive computational costs when using standard numerical methods, a naive disre-

gard of the fine scale features would lead to questionable results even on the macroscopic (cel-

lular) scale. To overcome this problem, a multiscale model for the diffusive vesicle transport

was implemented on the basis of the concept of homogenization. Numerical studies revealed

that the effective diffusion coefficients obtained by the proposed multiscale method are in

good agreement with the results obtained by a purely stochastic method, the Monte Carlo

method [42], which is in line with the findings of Novak et al. [33] and Donovan et al. [66].

Due to the significantly smaller computational costs, the proposed multiscale method seems to

be a valuable tool to study the impact of various cytoskeletal alterations onto the diffusivity

within the cytoplasm of a whole eukaryotic cell. However, it has been shown that in multiscale

FE analyzes, the size of the sampling domain as well as the micro- and macroscopic mesh sizes

need to be chosen carefully to obtain good approximations of the effective properties and an

accurate homogenized solution.

An application of the proposed multiscale FE model onto the parametrized geometrical

cytoskeleton model allowed the analyses of computed effective diffusion tensors and the result-

ing inaccessible area fractions within the cell. Interestingly, for various sampling domains

within the cytoplasm the resulting homogenized diffusion tensors were almost perfectly isotro-

pic, even if the filament density was artificially increased. Hence, the hypothesis whether the

relation between the computed effective diffusion coefficients and the inaccessible area frac-

tion can be approximated by means of a two-parameter power law, as suggested by Novak

et al. [33] and shown in Eq (11), was tested to be statistically true for the experimentally

observed obstacle geometries in eukaryotic cells.

The well-known exact representation of the effective tensor D0 is a series representation

involving the geometric autocorrelation functions of all orders [67, 68]. In contrast, Eq (11)

involves only the area fraction, which is the autocorrelation function of order zero. Comparing

this with Golden and Papanicolaou [67], one could conjecture that Eq (11) is in fact an empiri-

cal closure that approximates high-order autocorrelation functions in terms of the average

using the fitted parameters ϕc and μ. A possible objection to this line of reasoning is that

Golden and Papanicolaou [67] as well as Torquato [68] deal with a finite contrast case, mean-

ing that the ratio between the diffusion coefficients of the two phases is finite. In the obstructed

diffusion case, the contrast is infinite. Nevertheless, it is well known that for both finite and

infinite contrasts, the volume fraction alone does not, in general, define D0 uniquely.
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Otherwise, mixing two materials with prescribed volume fractions would always yield the

same effective material properties. This contradicts a large body of literature on the effective

property bounds, see, e.g., Milton [69]. However, Fig 5 emphasizes that Eq (11) yields a

remarkable statistically accurate approximation of the relation between the relative diffusion

coefficients and the inaccessible area fraction for the experimentally observed obstacle geome-

tries in eukaryotic cells.

Once the parameters of the power law were estimated, it was possible to predict the effective

diffusion tensor for a given inaccessible area fraction by means of Eq (11). In case of a direc-

tion-dependent growth and remodeling process of the cytoskeleton, the resulting effective dif-

fusion tensor is expected to be anisotropic and can therefore not be predicted by the simple

two-parameter power law accurately.

In general, validation of thermodynamical models by means of experimental data is a diffi-

cult task. In the context of the present study, Luby-Phelps et al. [70], e.g., published a relative

diffusion coefficient of Dcyto/Daq = 0.167 ± 0.009 (mean ± standard error) for the diffusion of

inert tracer particles (FTC-Ficoll) having a radius of 10.6 nm in the cytoplasm of Swiss 3T3

fibroblasts. Thereby, the diffusion coefficient for the cytoplasm Dcyto is normalized by the

aqueous diffusion coefficient Daq. Similar values are presented in Popov and Poo [71] for the

diffusional transport of globular proteins with a comparable hydrodynamic radius in the neur-

ite cytoplasm. In the present study, relative effective diffusion coefficients D0
11
=D0 and D0

22
=D0

ranging between 1 and 0.9 were computed using the generated in vitro cytoskeleton model. At

the first glance this discrepancy, however, is multicausal, including, e.g., the obvious fact that

the present study only considers the actin filament network. Microtubules, intermediate fila-

ments as well as different organelles that are usually found in eukaryotic cells were neglected.

Hence, it can be concluded that the actin filament network itself is not able to slow down the

diffusive transport of vesicles inside the cell by approximately 85%, as obtained in experimental

studies. On the other hand, it is unclear to which extend the diffusion of nanoparticles in an

aqueous solution, as used in Luby-Phelps et al. [70], differs from the diffusion of the same

nanoparticles in pure cytosol, given that the cytosol consists of water and various biomolecular

solutes.

Therefore, Luby-Phelps et al. [70] compared the diffusion of FTC-Ficoll fractions in cyto-

plasm with the diffusion in differently concentrated solutions of proteins, e.g., 10, 20 and 24%

ovalbumin or 26% bovine serum. Computing the effective diffusion coefficient of the cyto-

plasm normalized by the diffusion coefficient of the concentrated protein solution (mimicking

the cytosol), a relative value of approximately 0.83 is obtained for the 26% bovine serum albu-

min or 0.56 for the 24% ovalbumin solution. This, in fact, results in a much better agreement

with the numerically obtained relative diffusion coefficients, where the homogenized diffusion

coefficients D0
11

and D0
22

were normalized by the diffusion coefficient of the cytosol D0. Fur-

thermore, it emphasizes that concentrated protein solutions, such as the cytosol, exhibit a sig-

nificantly higher effective viscosity than water. Nevertheless, the main focus of the present

study was to investigate the role of specific actin filament density alterations onto the diffusive

part of the vesicle-mediated cell transport.

Hereof, the numerical study on the impact of cytoskeletal alterations onto the vesicle trans-

port inside an A549 cell finally revealed that a uniform four-fold increase of the amount of

actin filaments together with a proportional increase of the network cross-linking proteins sig-

nificantly slow down the diffusive vesicle transport. A hypothetical genetic defect or underex-

pression of filament network cross-linking proteins, such as Arp2/3 or filamin, results in an

unbalanced proportion between the amount of filaments and cross-links, which ultimately

yields a sparser and mechanically less stiff actin filament network. This, in turn, leads to a

PLOS COMPUTATIONAL BIOLOGY Diffusive vesicle-mediated cell transport

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008784 May 3, 2021 21 / 26

https://doi.org/10.1371/journal.pcbi.1008784


faster vesicle motion due to the disruption of local diffusion barriers, as demonstrated by the

numerical multiscale model for the diffusive vesicle transport. Even though, this numerical

study was focused on the vesicle-mediated cell transport, the developed concepts and achieved

experience summarized in this article are expected to be useful for the simulation of alternative

intracellular diffusion processes which are necessary to ensure the optimal functionality of

eukaryotic cells.

In summary, we introduced a very efficient numerical tool for modeling the diffusive vesicle

transport inside a eukaryotic cell. We verified and validated the model by comparing the pre-

dicted effective diffusion coefficients with experimental data presented in Luby-Phelps et al.

[70], and finally utilized the proposed multiscale method to analyze the influence of actin fila-

ment network alterations—as typically seen in cells experiencing increased or decreased

mechanical loadings—onto the diffusion properties and the transport time of vesicles inside

the cell. The presented model predictions in this study need to be validated in future experi-

mental studies, e.g., where living cells are forced to increase their actin filament density by

means of mechanical stimulation and the diffusion properties can be obtained using singe-ves-

icle tracking, as presented in Zhang et al. [13]. Note that the presented results only consider

the diffusive part of the vesicle transport. Hence, the active transport along the microtubules

needs to be chemically disabled in the experiments or cell without active transport need to be

utilized, e.g., red blood cells.

According to Kaether et al. [72], the maximum vesicle velocity, experimentally quantified

in cultured hippocampal neurons, is 5 μm/s, which is significantly faster than estimated in the

current study. Hence, in order to model the vesicle dynamics more realistic, the consideration

of the active transport via motor proteins along microtubules needs to be taken into account.

This could, e.g., be realized by adjusting the proposed multiscale FE method such that the vesi-

cle motion is modeled by means of a diffusion-advection problem instead of a pure diffusion

problem. Furthermore, to make the model validation easier and to study the relationship

between cytoskeletal alterations and a dysfunctional vesicle transport in more detail, the com-

plete 3D structural information of the cytoskeleton needs to be considered in subsequent

numerical analyzes. However, in the context of model validation via experimental studies, one

major remaining limiting factor of current fluorescence microscopy imaging techniques is the

fact that fluorescence-labeling of individual cell components directly affects the vesicle-medi-

ated cell transport. Consequently, it is impossible to capture all the necessary structural infor-

mation of the cytoskeleton and the vesicle dynamics at the same time. Finally, perhaps most

importantly, this study has shown that the proposed multiscale FE model in combination with

the approximation method of the effective properties on the basis of the inaccessible area or

volume fraction seems to be a fast and powerful simulation tool to gain better insights into the

microscopic effects of nanoscopic cytoskeletal alterations onto the vesicle transport within the

whole cell.

Supporting information

S1 Data. Underlying numerical data for graphs. Excel spreadsheet containing the underlying

numerical data of Figs 1, 3, 5, 6, 7, 8 and 9.

(XLSX)

S1 Appendix. Finite element implementation. In this appendix, we provide some details on

the implementation of a finite element method to find unique solutions of the diffusion prob-

lem and the cell problem, as introduced in Eqs (2) to (4).

(PDF)
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