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The parameters that influence slope stability and their criteria of failure are fairly understood but
over-conservative design approaches are often preferred, which can result in excessive overburden
removal that may jeopardize profitability in the context of open pit mining. Numerical methods such
as finite element and discrete element modelling are instrumental to identify specific zones of stability,
but they remain approximate and do not pinpoint the critical factors that influence stability without
extensive parametric studies. A large number of degrees of freedom and input parameters may make
the outcome of numerical modelling insufficient compared to analytical solutions. Existing analytical
approaches have not tackled the stability of slopes using non-linear plasticity criteria and three-
dimensional failure mechanisms. This paper bridges this gap by using the yield design theory and the
Hoek-Brown criterion. Moreover, the proposed model includes the effect of seismic forces, which are
not always taken into account in slope stability analyses. The results are presented in the form of rigorous
mathematical expressions and stability charts involving the loading conditions and the rock mass prop-
erties emanating from the plasticity criterion.
� 2022 Published by Elsevier B.V. on behalf of China University of Mining & Technology. This is an open

access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Slope stability is indispensable in surface mining and various
geotechnical engineering applications [1–3]. Unlike service prob-
lems where the prediction of stresses/deformations around tun-
nels, excavation and open pits are predicted using linear elastic
and/or elastic–plastic behavior, slope design deals with the condi-
tion of ultimate failure where perfect plasticity applies. There are
essentially four approaches of slope stability modelling, namely
the limit equilibrium method (LEM) [4–6], limit analysis method
(LAM) [7–15], and computational mechanics methods (CMMs)
[16–18]. LEM is a popular approach to analyze slopes both in
two- and three-dimensional spaces by creating simplified failure
mechanisms that make it possible to obtain safety factors based
on simple equations of statics. LAM develops and applies
approaches that use the conservation of energy to derive upper
and lower bounds of collapse loads in engineering materials and
structures. Those upper and lower bounds are also known as the
kinematic and static limits [12] or plastic limit theorems [19].
The concept of collapse was defined by Drucker et al. as the ‘‘con-
ditions for which plastic flow would occur under constant load if
the accompanying change in geometry of the structure or body
were disregarded”, which is consistent with the fact that slope sta-
bility deals with the condition of ultimate failure. This paper focus
on a sub-category of LAM, which known as the yield design theory
(YDT) that shares many attributes with LAM except that it uses the
duality between failure criteria and their support functions (also
called p-functions) in predicting the upper (kinematic) bound
[20]. The common point between LEM and LAM is the use of simple
perfect plasticity (without hardening) and postulated failure mech-
anisms. CMMs are approximate predictive approaches based on
forward numerical modelling. CMMs include the finite element
method, finite difference method, discrete element modelling,
and discontinuous deformation analysis, which proved to be
instrumental to simulate geo-materials and geo-structures [21–
28]. It is noted that many limit analysis solutions (e.g., [18]) use
the finite element approach to find either the kinematically admis-
sible velocity field or statically admissible stress field, but this does
not make them CMM solutions, because they are still based on the
theorems of limit analysis (LAM).
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In recent years, new non-linear criteria of plasticity have
attracted considerable interest as they overcome the limitations
of classic linear criteria such as Mohr-Coulomb, Tresca or quadratic
criteria such as Drucker-Prager and von Mises. For example, it has
been indicated that the criterion of Mohr-Coulomb is insufficient
to describe the behavior of rocks [29], because it overlooks the
influence of loading history on the friction and the non-linear rela-
tion between stress components on the yield envelope. The more
practical criterion of proved to be popular among the rock mechan-
ics community [30]. This empirical criterion of Hoek-Brown
assumes isotropic behavior and applies to intact and weathered/
fractured rocks [31].

In recent years, the generalized Hoek-Brown (GHB) criterion
has attracted an extensive research interest. For instance, Deng
[32] investigated the stability of rock slopes using GHB by taking
into account the coupling between shear dilatancy and strain soft-
ening. In addition, Liu et al. [33] studied the stability of slopes
using the finite element limit equilibrium method and GHB rather
than Mohr-Coulomb as accustomed. Similarly, Wei et al. [34] used
the strength reduction method along with GHB to predict the opti-
mal set of parameters triggering rock failure. Three dimensional
slopes have also been studied using GHB [35,36]. The work of Xu
and Yang [36] is particularly relevant to the current paper as they
used Michalowski’s 3D failure mechanism [5] along with GHB.
However, their LAM application used the strength reduction
method along with strong assumptions leading to a factor of safety
that does not explicitly depend on the GHB parameters.

The generalized version of this criterion is used in this paper for
slope stability analysis. Table 1 summarizes the key LEM, LAM, YDT
and CMMs contributions to solving slope stability problems and
indicates that most of the existing research is limited to 2D spaces
and linear plasticity criteria (Mohr-Coulomb). A careful survey of
the literature indicates that non-linear criteria of plasticity such as
the Hoek-Brown criterion have not been used yet to solve 3D slope
stability problems. Therefore, this paper fills out this gap and inves-
tigates the behavior of 3D slopes using the generalized Hoek-Brown
criterion, based on LAM. In addition, this paper takes into account–in
a simplistic way–the influence of earthquakes on the stability of
slopes, which is often ignored in existing formulations.

2. Mathematical formulation

2.1. Kinematic approach of YDT

In this paragraph, we consider a 3D slope subjected to various
external forces including gravity and seismic actions. To investi-
Table 1
Summary of literature survey on the multi-dimensional modelling of slope stability using

References Plasticity criterion

Mohr Coulomb

2D Bishop [4]
p

Chen [7]
p

Salençon [12]
p

Michalowski [5]
p

Collins et al. [8]
Yu et al. [6]

p
Yang et al. [9]
Saada et al. [13]
Griffiths & Lane [16]

p
Zheng et al. [17]
Ukritchon & Keawsawasvong [18]

p
Belghali & Saada [14]

3D de Buhan & Garnier [15]
p

Michalowski and Drescher [10]
p

Xu & Yang [11]
p

Current work
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gate the slope stability, it is convenient to use the principle of vir-
tual power, which can be written:ð

X
f � vdXþ

ð
C
t � vdCþ

X
i

qðxiÞ � vðxiÞ
Virtual power of external forces;PeðvÞ

�
ð
X
r : ddXþ

ð
Cv
½jv j� � r � ndC

� �
Virtual power of internal forces; PiðvÞ

¼
ð
X
qa � vdX

Virtual power of inertia forces; PaðvÞ

ð1Þ

where f is a body force acting within the domain X; v a kinemati-
cally admissible virtual velocity which is a small, continuously dif-
ferentiable velocity that satisfies the boundary conditions; t the
traction force acting on the surface C of the composite; q(xi) the
ith concentrated force applied at the point xi; r Cauchy’s stress ten-
sor; d the strain rate tensor (the symmetric part of the gradient of
the virtual velocity); [|v|] the jump of velocity on the discontinuity
surface Cv having a normal n; q the density; and a the acceleration.
The acceleration term in Eq. (1) is important because earthquakes
can cause slope instability by generating inertial forces. The sim-
plest approach to model seismic slope stability is the pseudo-
static method that consists of replacing the potential inertia forces
generated from ground accelerations by the horizontal and vertical
static seismic forces [37]. These seismic forces are represented by
horizontal and vertical forces that are proportional to the external
forces acting on the rock mass with proportionality coefficients Kh

and Kv, respectively. In this study, we assume that Kv is negligible
unless otherwise specified, which is a commonly adopted hypothe-
sis [14,38]. For simplification, we also consider gravity as the body
force and ignore concentrated and surface forces. Hence the princi-
ple of virtual power can be rewritten as:

ð
X
f þ Khk f kehð Þ � vdX ¼

ð
X
r : ddXþ

ð
Cv
½jvj� � r � ndC ð2Þ

where eh is a horizontal direction. In both Eqs. (1) and (2), Cauchy
stress should not exceed an elasticity envelope, w(r), that can be
identified experimentally. This reflects the material’s capacity of
resistance that is limited by w at every stress state r. Based on this
concept, the yield design theory Salençon introduced the following
expressions known as p-functions [12]:

PðdÞ ¼ sup r : djr 2 wf g
P ½jv j�;nð Þ ¼ sup ½jv j� � r � njr 2 wf g

�
ð3Þ

Combining Eqs. (2) and (3) leads to the following inequality:
linear and non-linear criteria and various theories.

Methods

Hoek-Brown LAM LEM YDT CMMs
p

p
p

p
p p

p p
p p
p p

p
p p

p
p p

p
p
p

p p
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ð
X
f þ Khk f kehð Þ � vdX

Modified power of external forces; PmeðvÞ

6
ð
X
PðdÞdXþ

ð
Cv
P ½jv j�;nð ÞdC

Maxiumum resisting power; Pmr ðvÞ

ð4Þ

The expression Pme(v) � Pmr(v) is known as the kinematic
approach or the upper bound of limit analysis. This method is
effective when the virtual velocity v is kinematically admissible
and the modified power of external forces Pme(v) is finite.

2.2. Support function of the Hoek-Brown plasticity envelope

To calculate the maximum resisting power Pmr, it is important
to identify the p-function of interest. In the current study, we con-
sider a homogeneous isotropic behaviour and focus on the gener-
alised Hoek-Brown criterion of plasticity [30,31]. The
corresponding envelope of elasticity reads w={r/f(r) � 0}, where
the criterion is defined as follows:

r1 � r3

rc
¼ �mr1

rc
þ s

� �n

ð5Þ

where r1 is the major principal stress; r3 the minor principal stress;
rc the uniaxial compressive strength; and the convention of posi-
tive stress in tension is adopted. The parameters of the Hoek-
Brown expression Eq. (5) depend on the geological strength index
(GSI) as follows:

m
mi

¼ exp GSI�100
28�14D

� �
s ¼ exp GSI�100

9�3D

� �
n ¼ 1

2 þ 1
6 exp � GSI

15

� �� exp � 20
3

� �� �
8><
>: ð6Þ

where mi is a material property of intact rocks; and D a distur-
bance factor that varies from 0.0 to 1.0 corresponding to undis-
turbed in-situ rock masses to very disturbed rock masses,
respectively. Note that mi is roughly related to the ratio between
compressive and tensile strengths and GSI describes structural
blockiness and the conditions of joint systems as perceived at
the surface of a rock mass. The Hoek-Brown criterion was pro-
posed to fit the results of several triaxial tests conducted on a
wide range of rocks; it is expressed in terms of major and minor
principal stresses. It was criticized for ignoring the intermediate
stress, which proved to influence rock strength [39–41]. As is,
the criterion is insufficient to describe the three-dimensional
constitutive behavior and flow of geomaterials through numeri-
cal integration. To overcome these limitations, generalized mod-
els were proposed in terms of stress invariants [42,43]. In
general, these modified criteria were expressed in terms of first
Cauchy stress invariant, I1, second deviatoric stress invariant, J2,
third deviatoric stress invariant, J3, and Lode angle, hd, defined
by:

I1 ¼ trr ¼ r1 þ r2 þ r3

J2 ¼ s:s
2 ¼ r1�r2ð Þ2þ r2�r3ð Þ2þ r3�r1ð Þ2

6

J3 ¼ detðsÞ ¼ trðs : s : sÞ
hd ¼ 1

3 arcsin � 3
ffiffi
3

p
2

J3ffiffiffi
J32

p
� �

¼ arcsin 1ffiffi
3

p 2r2�r1�r3
r1�r3

8>>>>>><
>>>>>>:

ð7Þ

where s = r�(I1/3)�1 is the deviatoric stress and 1 is the unit tensor
[44]. The Lode angle varies from �p/6 and p/6. The three-
dimensional version of Hoek-Brown’s criterion can be expressed as:

f ðrÞ ¼ 2coshd
ffiffiffiffi
J2

p
� rc sþ m

rc
� I1

3
þ sinhd �

ffiffiffi
3

p
coshd

h i ffiffiffiffi
J2
3

r !( )n

ð8Þ

The triaxial tests are usually conducted either under triaxial
compression (r1 = r2 > r3) or triaxial extension (r3 = r2 < r1) cor-
responding to hd = p/6 and �p/6, respectively. A smooth transition
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between the triaxial compression and triaxial extension conditions
is possible by using an elliptic Lode dependence to describe the
failure of rocks under multi-axial loading states [45].

The support p-functions Eq. (3) of Hoek-Brown’s Eq. (8) can be
calculated by maximizing r:d and/or [|v|]�r�n depending on the
mode of dissipation. Based on the concept of plastic collapse
explained in the introduction [19], it is convenient to assume that
the significant permanent displacements (and deformations) occur
at the interfaces of the failure mechanism. Therefore, P([|v|], n)
governs the dissipation process. Knowing the stress tensor, this
expression can be obtained by decomposing the jump of velocity
[|v|] on the discontinuity surface Cv into vn, vt and vs where the
subscripts ‘‘n”, ‘‘t” and ‘‘s” denote the normal and tangential direc-
tions, respectively. At the discontinuity surface, the strain rate ten-
sor d takes the form:

1
2

½jv j� � nþ n� ½jvj�ð Þ ¼
vn

vt
2

vs
2

vt
2 0 0
vs
2 0 0

0
B@

1
CA ð9Þ

which results in the following expression:

P ½jv j�;nð Þ ¼ rnvn þ sv t ð10Þ
Given that vs is zero because the problem is symmetric. It can be

verified that the expression of P(|[v|], n) verifies all the properties
of support functions since it is positive (given that stress and strain
are co-axial), homogeneous of degree one (it can be easily verified
that P(a[|v|], n) = aP([|v|], n) for all a > 0), and convex (it can be
verified that P(a[|v1|]+(1-a)[|v2|], n) = aP([|v1|],n)+(1-a)P([|v2|],
n) for all a in the interval [0,1]).

2.3. Failure mechanism

We investigate the slope depicted in Fig. 1, characterized by a
height H and an inclination angle b ranging from 0� to 90�. The
slope is subjected to the body force of gravity and seismic inertial
forces. The failure mechanism considered in this study is a three-
dimensional curvilinear cone (horn shape) inspired by [10] and
containing a planar insert. The velocity in 3D curvilinear cone is
expressed as follows:

v ¼ rx ð11Þ
where r is the radius of curvature; and x the angular velocity
around the axis e3 passing through O. The failure mechanism is
uniquely determined knowing the crest and toe angles hA and hC,
respectively, as well as the log-spiral arcs AC and A’C’, which are
both characterised by an angle / and focus O, as shown in Fig. 1a.
The lower and upper lo-spirals describing AC and A’C’ are:

r ¼ rAeðh�hAÞtan/

r0 ¼ r0Ae
ðh�hAÞtan/

(
ð12Þ

where rA and r’A are the polar radii to the points A and A’.

2.4. Power of external loading and resisting power

The rate of infinitesimal power done by the gravity and inertial
forces within small element dX belonging to the horn shaped fail-
ure mechanism (Fig. 1) is as follows:

cvðcoshþ KhsinhÞdX ¼ cvðcoshþ KhsinhÞdxdyðrm þ yÞdh ð13Þ
where c = qg is the specific weight; g the gravity constant; rm = 0.5
(r + r’) the distance between point O and the axis of the failure
mechanism; and R = 0.5(r-r’) the radius of the cross section as indi-
cated in Fig. 1a. The velocity at the surface of discontinuity is v = x
(rm + y). Note that the difference between the expressions obtained
in this study and the expression of external work rate obtained by



Fig. 1. Schematic representation of the three-dimensional slope failure mechanism.
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[11] is due to the effect of seismic forces. Integrating Eq. (13) leads
to:

2xc
Ð hB
hA

Ð x1
0

Ð ffiffiffiffiffiffiffiffiffiffi
R2�x2

p
d1

coshþ Khsinhð Þdxdyðrm þ yÞ2dhþ

2xc
Ð hC
hB

Ð x2
0

Ð ffiffiffiffiffiffiffiffiffiffi
R2�x2

p
d2

coshþ Khsinhð Þdxdyðrm þ yÞ2dh
ð14Þ

where x2i ¼ R2 � d2
i ði ¼ 1;2Þ as indicated in the circular section cut

depicted in Fig. 1a. Eq. (14) can be simplified to obtain the following
expression:

2xcr4A
Ð hB
hA
w1ðhÞ coshþ Khsinhð Þdhþ Ð hChBw2ðhÞ coshþ Khsinhð Þdh

n o
¼ 2xcr4Aðf 0 þ Khf

s
0Þ

ð15Þ
where the dimensionless constants f0 and f s0 are expressed in more
detail in Appendix B. When a planar insert is considered, the corre-
sponding rate of work done by gravity and inertial forces is:

xcbr3A f 1 � f 2 � f 3 þ Kh f s1 � f s2 � f s3
� �
 � ð16Þ

where the dimensionless terms f1, f2, and f3 have been derived by
[7] and the dimensionless terms f s1, f

s
2 and f s3 have been derived

by [46]. Note that both references treated two dimensional slopes
of unit thickness, hence the width constant b that appears in our
expression. These expressions are listed in Appendix B for conve-
nience. Therefore, the left-hand side (LHS) of Eq. (4) representing
the external work of the gravity and seismic forces can be obtained
as follows:

Pe ¼xcr4A 2ðf 0þKhf
s
0Þþ

b
rA

f 1� f 2� f 3þKh f s1� f s2� f s3
� �
 �� 

ð17Þ

Combining Eq. (A.4) with the expression of P([|v|], n) in Eq.
(10), we obtain:

P ½jv j�;nð Þ ¼ n
n

1�n � n
1

1�n

� � 1� sin/t

2sin/t

� � 1
1�n

m
n

1�n þ s
m

( )
rctan/tv t

ð18Þ
In addition, substituting for the support function Eq. (18) into

Eq. (4), we obtain the expression of maximum resisting power
Pmr, as follows:

Pmr ¼ 2xRcrc

Ð hB
hA

Ð a1
0 Rðrm þ RcosaÞ2dadh

n
þÐ hChB Ð a20 Rðrm þ RcosaÞ2dadh

o
þxbr2ARcrc

Ð hC
hA
e2ðh�hAÞtan/dh

ð19Þ

where ai = arcos(di/R)(i = 1,2), and,

Rc ¼ n
n

1�n � n
1

1�n

� � 1� sin/tð Þ
2 sin/t

� � 1
1�n

m
n

1�n þ s
m

( )
tan/t
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Integrating Eq. (19) shows that:

Pmr ¼ xRcrcr3A g0 þ
b
2rA

cot/ e2 hC�hAð Þ tan/ � 1
� �� �

ð20Þ

where g0 is a dimensionless parameter that is detailed in Appendix
B.

2.5. Safety factor

The factor of safety (or safety factor) is used to quantify a mar-
gin of safety based on intrinsic strength against prescribed loading
conditions. Usually, the safety factor is computed in terms of stres-
ses (ratio of yield stress over working stress). In this paper, we use
an energy-based ratio because energy encompasses stress and
strain which makes it physically more meaningful. The factor of
safety is defined as:

FoS ¼ Pmr

Pe
ð21Þ

By definition, the FoS should be greater or equal to 1, which is a
necessary condition of slope stability. The definition of FoS requires
that Pe be strictly positive. Combining Eqs. (17), (20), and (21)
shows that

FoS ¼
RcH
rA

g0 þ b
2rA

cot/ e2 hC�hAð Þ tan/ � 1
� �n o

cH
rc
� 2 f 0 þ Khf

s
0

� �þ b
rA

f 1 � f 2 � f 3 þ Kh f s1 � f s2 � f s3
� �
 �� �

ð22Þ
The term g = cH/rc that appears in Eq. (22) is known as the sta-

bility factor, which is a key slope design parameter [18]. Apart from
g, FoS depends on the slope geometry (H, b, b, rA, r0A, hA and, hC) and
the material properties (rc, m, mi, s, n, and, GSI). The critical safety
factor can be obtained by minimising FoS with respect to the prob-
lem variables rA, hA, hC, and /, while taking into account the con-
straints 0 < / < p/2, 0 < hA < hC < p-b, sin(b + hA)-e(hA-hC )tan/�sin
(b + hA) > 0, and rA > 0.

3. Results and discussion

3.1. Model verification

To verify the proposed model, we first considered the models
proposed by [8,9] who focused on the behavior of two-
dimensional slopes obeying the Hoek-Brown criterion. Both
research teams described the stability of slopes in the absence of
seismic forces using a static stability factor. The stability factor cor-
responding to the linear yield criterion of Mohr-Coulomb is
NL = �cHc/c where Hc is the critical slope height and c is cohesion.
The non-linear stability factor corresponding to the original Hoek-
Brown criterion has been defined as NN = cHc/(s0.5rc). Collins et al.



Fig. 2. Mohr plane representation of Hoek-Brown’s criterion.
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[8] related the linear stability factor NL obtained based on the
Mohr-Coulomb criterion to the non-linear stability factor NN

obtained based on the original Hoek-Brown criterion using a rela-
tionship of the form NN = NL(/t)�ct(/t)/(s0.5rc) where ct(/t) is the
intercept of the tangent to the yield function as shown in Fig. 2.

Yang et al. [9] proposed to use the same expression for the gen-
eralized Hoek-Brown criterion. In this study, we use the concept
safety factor (Eq. (22)) rather than stability factor to assess stabil-
ity. As discussed by Belghali & Saada [14], the two factors are
equivalent in estimating the critical slope conditions when
FoS = 1 in Eq. (22). Hence, to compare our results to those of Collins
et al. [8] and Yang et al. [9], we use the following non-linear stabil-
ity factor:

NN ¼
RcH
rA
ffiffi
s

p g0 þ b
2rA

cot/ e2 hC�hAð Þ tan/ � 1
� �n o

2 f 0 þ Khf
s
0

� �þ b
rA

f 1 � f 2 � f 3 þ Kh f s1 � f s2 � f s3
� �
 �� � ð23Þ

which we minimize with respect to hA, hC, and /. Since this analysis
is based on a kinematic upper bound that leads to a critical slope
factor, NN, expressed by Eq. (23) should be minimized to identify
the failure mechanism parameters. The minimization procedure
has been implemented in python using the Nelder-Mead optimiza-
tion method, a downhill simplex approach that is available in the
scipy module of python. It can be seen that our 3D expression gen-
eralizes the expression obtained by Belghali & Saada [14] in 2D. This
can be verified easily by tending b/rA to infinite to recover the planar
discussed by Collins et al. [8], Yang et al. [9], and Belghali & Saada
[14] under various conditions. As such, Table 2 shows a comparison
between our results and previous calculations. It can be seen that
our approach is in close agreement with the result of Collins et al.
[8], Yang et al. [9] when we consider b�rA. It is important to com-
pare Eq. (23) with the results of Xu and Yang [36]; it can be seen
that our expression is explicitly dependent on Rc, which is a func-
tion of m, n, s, and rc that appear in the generalized Hoek-Brown
criterion. This is direct consequence of using an energetic approach
to express the maximum resisting power via the p-function Eq.
(18). In the absence of a model that uses a 3D failure mechanism
and Hoek-Brown’s criterion, we compared our results to those of
Table 2
Comparison between the stability factors obtained for b�rA and the solutions of Collins e

b Reference Parameters s, m

s=1.0 s=0.1
m=15.7 m=6.638

60o Yang et al. [9] 8.78 10.97
Collins et al. [8] 8.80 10.97
Current work 8.94 11.10

50o Yang et al. [9] 15.32 19.95
Collins et al. [8] 15.36 19.93
Current work 15.75 20.33

45o Yang et al. [9] 20.22 26.60
Collins et al. [8] 20.28 26.64
Current work 20.86 27.20
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Michalowski & Drescher [10] and Xu & Yang [11] who both used
the linear Mohr-Coulomb criterion as a plasticity envelope. This
has been achieved by varying b/rA to progressively move away from
the 2D case presented in Table 2. Fig. 3 shows that when B/H
increases (i.e. b�rA), the stability factor tends asymptotically to
the values presented in Table 2. However, when B/H is small
(around unity), the stability factor increases hyperbolically in agree-
ment with the results of Michalowski & Drescher [10] and Xu &
Yang [11]. As indicated by Michalowski & Drescher [10], admissible
mechanisms passing through the toe cannot be achieved for very
small B/H, which is physically meaningful since a minimum size
is required to move materials from the crest across the toe.

By way of summary to this subsection, we transformed the
safety factor expressed by Eq. (22) into a stability factor expressed
by Eq. (23) by postulating that the slope is critical when FoS is
equal to unity as suggested by Belghali & Saada [14] who used
the same approach in 2D. Our results are in good agreement with
the results Collins et al. [8] Yang et al. [9] as shown in Table 1. In
addition, our model is in agreement with the models Michalowski
& Drescher [10] and Xu & Yang [11] in terms of behavior of stability
factor with respect to the mechanism’s width as shown in Fig. 3,
despite the difference in magnitude which is attributed to the dif-
ference in failure criterion. In fact, the magnitudes obtained in this
study are valid because the curves tend asymptotically to the val-
ues listed in Table 2. After this verification of the model’s validity
and accuracy, we will discuss its implications in the next
subsection.

3.2. Design charts

The geometry of the problem has a considerable effect on the
slope stability; as shown in Fig. 3, the stability factor increases as
the ration B/H decreases. This means that two-dimensional slope
stability models can be over-conservative and may result in unnec-
essary waste removal in the context of surface mining. In this sec-
tion, we consider the particular case of B/H = 2.5 since the planar
insert has to be decided by the designer. In other words, the geol-
ogist or the engineer would estimate the insert width based on
geological features or field experience, knowing that larger fea-
tures result in smaller stability factors (i.e. entail higher risks).
The geometrical attributes of the failure mechanisms are all
obtained by minimization as discussed in Subsection 4.1. Hence,
the remaining variables of the problem that influence the slope
stability are essentially rock properties, seismic forces, slope angle,
which are investigated in this subsection.

3.3. Effects of rock properties

The rock properties investigated in this paper are encompassed
by the Hoek-Brown criterion, given that the yield design theory
focuses on plastic collapse. As can be seen in Eq. (6), the parame-
t al. [8] and Yang et al. [9] when Kh = 0 and n = 0.5.

s=0.0044 s=0.0001 s=0.00001
m=1.7117 m=0.2822 m=0.0786

13.57 14.07 12.61
13.89 13.89 12.38
13.54 13.77 12.18

15.34 26.37 23.26
25.18 26.00 22.89
25.54 25.95 22.67

34.00 35.41 31.28
33.89 35.01 30.73
34.24 34.94 30.43



Fig. 3. Model verification – slope stability factor for various geometries and material properties.
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ters of the Hoek-Brown criterionm, s, and n depend on the material
constant for intact rocks, mi, the geological strength index, GSI, and
the disturbance factor, D. Note that the uniaxial compressive
strength, rc, is not included in the expression of slope stability fac-
tor as shown in Eq. (23). However, it can be used to estimate the
critical slope height as explained in the subsequent paragraphs.
Assuming undisturbed rocks, the coefficient D is considered zero
in this section, without loss of generality. The left-hand side curves
of Fig. 4 depict the variation of the non-linear stability factor, NN

with the Hoek-Brown variable, mi. As indicated by Zhang [47], mi

depends on the rock type and texture. For example, it tends to be
higher in igneous rocks than in sedimentary and metamorphic
rocks and increases as the grain size increases. Our result indicate
that the stability factor increases systematically whenmi increases,
irrespective of other properties or geometrical considerations. The
right-hand side curves of Fig. 4 represent the variation of the non-
linear stability factor, NN, with the geological strength index, GSI.
The geological strength was introduced by Hoek [31] to replace
Bieniawski’s rock mass rating (RMR) classification; it reflects the
structural blockiness of rocks and their joint conditions. The figure
indicates that NN increases then decreases with respect to GSI, sug-
gesting that the optimum stability occurs between 30 and 50, irre-
spective of other material properties. The figure also indicates that
the optimum GSI increases as the slope angle increases. While this
behavior may appear counterintuitive, it is mathematically justifi-
able given that NN is proportional to Rc/(s

0.5), which depends non-
linearly on GSI.

3.4. Effects of seismic forces

Seismic forces are often ignored in slope stability models,
despite the significance of seismic activities in most mining sites
(including in ears with low risk of earthquakes). For example, close
242
to blast zones, inertial forces can be significant and may affect the
local rock mass stability. For simplification, we limited this analysis
to horizontal seismic forces, but vertical components can be imple-
mented following a similar procedure. Seismicity is dealt with
using static equivalent forces represented by the coefficient Kh as
shown in Eq. (2). Fig. 4 shows the results obtained for Kh = 0.1,
0.2 and 0.3 for various slope angles and material properties. These
results show that increasing the coefficient Kh by an increment of
0.1 almost halves the stability condition at each step. This means
that increasing the seismic forces systematically decreases the
non-linear stability factor, which increases the risk of failure as
expected.
3.5. Effect of slope angle

The slope angle strongly influences rock stability in open pits,
along hill roads or even in naturally occurring geological struc-
tures. These angles are generally selected depending on the mate-
rial conditions to avoid large failures and rockfalls. Slopes play
various roles including the definition and protection of cut surfaces
and may vary with depth as weathered rocks that are close to the
surface often require shallower slope angles than rocks at depth. To
simplify this analysis we considered a single slope angle, but the
results can be generalized by using an inclined top surface [9,14].
As shown in Fig. 4, the non-linear stability factor decreases system-
atically as the slope angle increases, which confirms that steeper
slopes provide lower stability. Interestingly, the left-hand side of
the figure indicates that the optimum GSI value increases as the
slope angle increases. For example, this optimum is obtained at
GSI = 30 for b = 45� and at GSI = 40 for b = 70�. The maximum NN

decreases non-linearly in between.



Fig. 4. Effects of Hoek-Brown parameters on the slope stability factor for various horizontal coefficients of seismic forces.
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4. Conclusions

A new model that uses the non-linear plasticity criterion of
Hoek-Brown, the yield design theory and a three-dimensional fail-
ure mechanism has been introduced to predict the behavior of rock
mass slopes that can be encountered in mining and civil engineer-
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ing applications. The proposed model takes into account the effect
of seismic forces by using an equivalent static approach. By apply-
ing the principle of virtual power and maximizing dissipation, a
non-linear stability factor is obtained which takes into account
the parameters of the failure mechanism, geometry of the slope,
the material properties, and the coefficients of seismic forces. To
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eliminate the failure mechanism influence, the non-linear stability
factor is minimized using the Nelder-Mead optimization method.
The proposed model is verified using special cases that have been
investigated previously; the results of this model showed excellent
agreement with the studies used to benchmark it. Hence, the fol-
lowing remarks can be made:

(1) Two dimensional models are over-conservative since they
under-estimate the stability factor. Using them for slope sta-
bility modelling may result in unnecessary rock waste
removal in the context of surface mining that can jeopardize
profitability.

(2) The slope stability improves as the Hoek-Brown coefficient
mi increases (i.e. may be interpreted as increasingly favor-
able compression to tension strengths) and/or the slope
angle decreases (i.e. the slope becomes shallower).

(3) The optimum geological strength index ranges from 30 to 40
depending on the slope angle.

(4) Ignoring seismic forces can be misleading since the stability
factor reduces when the seismic coefficient increases. Exist-
ing design methods that overlook seismic activities related
to earthquakes or blasting are insufficient since they over-
estimate the stability factor. The model developed in this
paper shows that an increment of 0.1 in the seismic coeffi-
cient almost halves the stability factor.

Appendix A. p-functions

Fig. 2 depicts the Hoek-Brown yield surface in the Mohr space
(rn, s). Assuming an associated flow rule, the plastic strain rate
( _ep; _cp) must be normal to the yield surface as indicated in the fig-
ure and the _ep is calculated as:

_ep ¼ tan/t _cp ðA:1Þ
where tan/t=os/orn. A tangential line to the yield surface in Fig. 2
indicates that s = ct�rn�tan/t. According to Yang et al. [9], the
pseudo-cohesion, ct, can be expressed as follows:

ct
rc

¼ cos/t

2
mn 1� sin/tð Þ

2sin/t

� � n
1�n

� tan/t

m
1þ sin/t

n

� �
mn 1� sin/tð Þ

2sin/t

� � 1
1�n

þ s
m

tan/t ðA:2Þ

The shear and normal strain rates _ep and _cp are equal to vt/e and
vn/e, respectively, where e is the thickness of the narrow transition
area between the stable and unstable regions of the slope. The
members of strain tensor are assumed uniform within this transi-
tion area, which means that thickness is as small as required.
Hence, Eq. (A.1) indicates that dvn = tan/t�dvt. Using the support
function expressed by Eq. (10) and the above results shows that:

P ½jv j�;nð Þ ¼ rnvn þ sv t ¼ rntan/t þ sð Þv t ¼ ctv t ðA:3Þ
The expression of the pseudo-cohesion coefficient ct shown in

Eq. (A.2) can be simplified as follows:

ct
rc

¼ 1� sin/t

2sin/t

� � 1
1�n

m
n

1�ntan/t n
n

1�n � n
1

1�n

� �
þ s
m

tan/t ðA:4Þ
Appendix B. Dimensionless constants in the expressions of
work

To define the dimensionless constants of external work and
maximum resistance, we first define the following expressions:
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h1 ¼ rm
rA
¼ rþr0

2rA
¼ 1

2 e h�hAð Þtan/ þ r0A
rA
e� h�hAð Þtan/

� �
h2 ¼ R

rA
¼ r�r0

2rA
¼ 1

2 e h�hAð Þtan/ � r0A
rA
e� h�hAð Þtan/

� �
h3 ¼ d1

rA
¼ sinhA

sinh � rm
rA
¼ sinhA

sinh � h1

h4 ¼ d2
rA
¼ sinhAsin hBþbð Þ

sinhBsin hþbð Þ � h1

8>>>>>>><
>>>>>>>:

ðB:1Þ

From Eq. (15), it can be seen that:

f 0 ¼ Ð hBhAw1 hð Þcoshdhþ Ð hChBw2 hð Þcoshdh
f s0 ¼ Ð hBhAw1 hð Þsinhdhþ Ð hChBw2 hð Þsinhdh

8<
: ðB:2Þ

where,

wi hð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
h2
2 � h2

iþ2

q
h22hiþ2

8 � h3iþ2
4 � hiþ2h

2
1

2 � 2h2iþ2h1
3 þ 2h22h1

3

h i
þ h22 h22þ4h21ð Þ

8 arccos hiþ2
h2

; and i ¼ 1 or 2

The dimensionless terms in Eq. (16) are:

f 1 ¼ 3tan/coshCþsinhCð Þe3 hC�hAð Þtan/� 3tan/coshAþsinhAð Þ
3 1þ9tan2/ð Þ

f 2 ¼ f 2coshA � fð ÞsinhA=6
f 3 ¼ H

rA
sin hCþbð Þ

6sinb e hC�hAð Þtan/ coshCe hC�hAð Þtan/ þ coshA � f
� �

f s1 ¼ 3tan/sinhC�coshCð Þe3 hC�hAð Þtan/� 3tan/sinhA�coshAð Þ
3 1þ9tan2/ð Þ

f s2 ¼ fsin2hA=3

f s3 ¼ H
rA

sin hCþbð Þ
6sinb e hC�hAð Þtan/ sinhCe hC�hAð Þtan/ þ sinhA

� �

8>>>>>>>>>>>>><
>>>>>>>>>>>>>:

ðB:3Þ

where

f ¼ sin hA þ bð Þ � sin hC þ bð Þe hC�hAð Þtan/

sinb

From Eq. (19), it can be seen that:

g0 ¼
ðhB
hA

w3 hð Þdhþ
ðhC
hB

w4 hð Þdh ðB:4Þ

where,

hB ¼ arctan
sinhA

coshA � f

wiþ2 hð Þ ¼ h2 h2
2 þ 2h2

1

� �
ai þ h2 4h1 þ h2cosaið Þsinai

� �
; i ¼ 1 or 2;

and, ai ¼ arccos hiþ2
h2
.
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