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Abstract

Spousal comparisons have been proposed as a design that can both reduce confounding

and estimate effects of the shared adulthood environment. However, assortative mating,

the process by which individuals select phenotypically (dis)similar mates, could distort asso-

ciations when comparing spouses. We evaluated the use of spousal comparisons, as in the

within-spouse pair (WSP) model, for aetiological research such as genetic association stud-

ies. We demonstrated that the WSP model can reduce confounding but may be susceptible

to collider bias arising from conditioning on assorted spouse pairs. Analyses using UK Bio-

bank spouse pairs found that WSP genetic association estimates were smaller than esti-

mates from random pairs for height, educational attainment, and BMI variants. Within-

sibling pair estimates, robust to demographic and parental effects, were also smaller than

random pair estimates for height and educational attainment, but not for BMI. WSP models,

like other within-family models, may reduce confounding from demographic factors in

genetic association estimates, and so could be useful for triangulating evidence across

study designs to assess the robustness of findings. However, WSP estimates should be

interpreted with caution due to potential collider bias.

Author summary

There is growing evidence that genome-wide association studies capture associations

relating to environmental factors, such as indirect effects from parental genotypes.

Within-family models such as sibling comparisons can be used to disentangles these dif-

ferent sources of association but are limited by the paucity of sibling data in large bio-

banks. Within-spouse pair models are a potentially tractable model because spouses share

environmental factors in adulthood and may also share early-life environmental factors.

Here, we evaluated the application of within-spouse models in genetic association studies,

specifically considering assortative mating, a phenomenon whereby individuals may select

a phenotypically similar partner. We found that within-spouse pair models can detect
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genuine confounding in genetic association estimates but are potentially susceptible to

collider bias induced by comparing assorted pairs. Within-spouse pair estimates could be

useful when combining evidence from different study designs.

Introduction

Within-sibship models have been widely used in genetic association studies for many decades

[1–6]. Genotypic differences between siblings are the consequence of random segregation at

meiosis, rather than parental or ancestral differences, and so within-sibship genetic association

models control for demography (assortative mating, population stratification) and indirect

genetic effects of parents [4,5,7]. However, there is a paucity of genetic data from siblings with

limited availability for many phenotypes. Furthermore, while siblings are matched on the

early-life environment, their environments in adulthood, when many phenotypes are mea-

sured, may differ.

In contrast, spouses may have different early-life environments but are likely to share an

environment for much of adulthood while cohabiting [8]. This may act to increase phenotypic

similarity, such as for behavioural (e.g., physical activity and alcohol use) or personality traits

[9,10]. The shared adulthood environment between spouses has prompted their use in a vari-

ety of contexts in genetic and epidemiological research using a model that we refer to as the

“within-spouse pair” (WSP) model. The WSP model involves modelling the similarities and

differences of spouses, either by analysing the differences between each pair or by modelling

spousal relationships as a covariate in a fixed-effect model. For example, previous studies have

used the WSP model to estimate phenotypic variance explained by the shared adulthood envi-

ronment [11–17]. The WSP model has also been proposed as an approach to reduce con-

founding in aetiological research, with environmental confounders likely to be strongly

correlated between spouses [18]. Here, we describe the strengths and limitations of within-

spouse (WSP) designs for genetic studies.

A caveat of the WSP model is that spousal similarities are not just consequences of sharing

an adulthood environment. There is evidence that for some phenotypes, spouses do not

become much more similar during a relationship [19]. Another cause of spousal similarities is

assortative mating–a phenomenon where humans are generally more likely to select a pheno-

typically similar [9,10,20–26] or, in some instances [27], dissimilar [28,29] mate. For example,

height and years in schooling are often fixed prior to partnership formation, suggesting that

spousal similarities for these phenotypes reflect assortment rather than effects of the shared

adulthood environment. Furthermore, geographical, ancestral, and cultural factors often have

strong influences on both phenotypic variation and partner selection patterns, as illustrated by

the ancestral similarities of spouses [30]. Therefore, some degree of spousal phenotypic simi-

larities is likely to be explained by spousal assortment on factors not typically defined as phe-

notypes, such as place of birth or religion.

The WSP model may be susceptible to collider bias, which can occur when conditioning on

a variable which is influenced by two or more upstream factors. Collider bias can induce spuri-

ous associations between these factors where the collider variable is conditioned on in analysis

either by analytical model design or sample selection. For example, if a school grants scholar-

ships to either individuals who are exceptional at sport or exceptional academically, then sport-

ing and academic ability will be negatively correlated amongst individuals with scholarships.

Similarly, spousal samples by definition condition on spousal compatibility, a pairwise mea-

sure of how likely two individuals are to enter a relationship. If several phenotypes influence
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spousal compatibility, then collider bias could potentially arise in the WSP model [31–33]. For

example, if similarities for age and educational attainment influence compatibility then

spouses with larger age differences are more likely to have similar educational attainment (Fig

1). Previous spousal studies have acknowledged assortative mating, but whether assortment

could distort WSP comparisons has not been investigated in detail. For example, the possibility

of collider bias has been little discussed. We aimed to investigate the utility of the WSP model

in genetic epidemiology and assess its robustness to collider bias.

We used causal diagrams (allowing double-headed arrows signifying correlated variables

that may be influenced by variables outside the model [34]) and simulated data to illustrate

two important characteristics of the WSP model. First, the WSP model can reduce confound-

ing if spouses are correlated for confounders. Second, the WSP model is susceptible to collider

bias induced by conditioning on spousal compatibility. We then applied the WSP model using

47,435 spouse-pairs in UK Biobank [35] to estimate associations between genetic variants and

phenotypes (e.g. height). We then estimated effect size shrinkage (% decrease) in the WSP esti-

mates compared to within-pair estimates from random non-assorted pairs, which were

derived by reordering the spouse-pair sample. For comparison, we also estimated within-sib-

ship shrinkage using 19,523 sibling pairs from UK Biobank. Finally, as a negative control anal-

ysis, we used the WSP model to estimate the effects of age on systolic blood pressure (SBP) and

coronary artery disease (CAD).

Results

Within-spouse pair model: Assortative mating, spousal correlations and

collider bias

Here, we present results from simulations evaluating the WSP model under assortative mating.

In the first simulation model (A), the relationship between an exposure and an outcome is

confounded by an unmeasured factor. Spouses are positively correlated for the unmeasured

confounder, either because of assortative mating or because of shared environmental factors

during cohabitation (Fig 2A). Simulations demonstrated that under this model, WSP

Fig 1. Causal diagram illustrating collider bias in within-spouse pair and within-sibship models. A) To illustrate collider bias in the context of spouses,

consider a model with age and educational attainment (E) which are assumed here to be independent. Assuming that spouses assort on similarities for age and

education, it follows that spousal assortment (A) is a common effect of age and education similarities. In a within-spouse pair model, adjusting or accounting

for A would induce associations between age and education similarities. For example, if a spouse-pair have a large difference in age, then they must be similar

for education. B) Contrastingly, for a within-sibship model, it is less plausible that age and education influence the sibling’s family F, as age and education are

post-birth phenotypes. Therefore, adjusting for F is unlikely to induce an association between age and education.

https://doi.org/10.1371/journal.pgen.1009883.g001
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estimates of the effect of the exposure on the outcome are less biased and converge to the simu-

lated unbiased estimate as the spousal correlation for the confounder tends to 1 (S1 Fig and S1

Table).

In the second simulation model (B), two independent exposures influence an outcome.

These exposures could be two phenotypes, a phenotype and a genetic score, or two indepen-

dent genetic scores such as height genetic scores constructed from odd and even chromo-

somes. Since there is assortment on the two exposures, assortment acts as a collider, which

induces associations between variables that would otherwise be independent in the population.

For example, in the WSP model, positive assortment on height and educational attainment

phenotypes could induce a negative correlation between height and educational attainment

genetic scores. The strength of this spurious correlation will depend on the underlying data

generating process and the degree of assortment on the exposures. Indeed, assortment on

height across multiple generations has resulted in positive correlations between height increas-

ing genetic variants on different chromosomes [22]. These correlations could lead to bias in

WSP estimates of either exposure on the outcome. However, WSP estimates will only be

affected by collider bias if both exposures influence the outcome and if the effects of the expo-

sures on the collider are not perfectly multiplicative (Fig 2B).

Simulations showed that the degree of bias in the effect estimate is a function of the degree

of assortment on the two exposures, with more bias when spouses assort strongly on both

Fig 2. Causal diagrams of simulated models for assortative mating, spousal correlations, and collider bias. The WSP design uses pairwise spousal

differences (e.g. XM1−XF1 & YM1−YF1) in regression models, fitting each spouse pair as a single observation. A) Within-spouse pair: spousal correlations for
confounders. Exposure X; Outcome Y; Unmeasured confounder E; Spousal assortment A; WSP exposure X� (X� = XM−XF); WSP outcome Y� (Y� = YM−YF);
WSP environmental confounder (the non-shared portion of the set of confounders) E� (E� = EM−EF). This figure illustrates the effect of an exposure on an

outcome in the presence of an unmeasured confounder. Here, spousal pairing is determined by an assortment variable correlated with the confounder

(indicated by A, a child of the confounder E). It follows that the value of spouses’ confounders will be correlated. In this example, a WSP model will reduce

simulated bias in the estimate of the effect of X on Y (S1 Fig). Here we assume that spousal correlations for the confounder reflect assortment but in practice

they could also relate to the shared spousal environment. B) Within-spouse pair: assortative mating and collider bias. Exposures X1 X2; Outcome Y; Spousal

assortment A; WSP exposures X�
1
, X�

2
ðX�i ¼ XiM � XiFÞ; WSP outcome Y� (Y� = YM−YF). This figure illustrates the effect of an exposure on an outcome when

two, otherwise independent exposures influence both the outcome and spousal assortment. It follows that associations will be present in the WSP model

between the two exposures, which will distort the WSP estimated effect of the exposure on the outcome. We quantify the effect of potential collider bias in the

WSP model at different levels of assortment on the two exposures. Dashed lines indicate associations induced by spousal assortment.

https://doi.org/10.1371/journal.pgen.1009883.g002
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traits. For example, under this model and using plausible assortment estimates for educational

attainment (spousal phenotypic correlation: 0.5) and height (spousal phenotypic correlation:

0.2) [25], the expected bias would be around 13% when estimating the effect of education on a

trait which is also influenced by height. If both exposures have the same direction of effect on

the outcome and assortment, then the WSP estimate would be biased downwards (S1 Fig and

S2 Table).

Empirical analyses using spouse pairs in UK Biobank

Within-spouse pair: genetic and phenotypic associations. Although the WSP model is

susceptible to collider bias, the model could be useful in re-calibrating associations that might

be biased due to confounding. Genetic data are particularly useful for evaluating aetiological

models because genotypes are measured accurately and fixed from conception, largely remov-

ing the possibility of reverse causation. Here we aimed to evaluate if WSP genetic association

estimates are less confounded than estimates from population studies of unrelated individuals.

Estimates of genetic associations using unrelated individuals can be distorted by demogra-

phy (e.g. assortative mating, fine-scale population structure) and indirect effects of parents

[6,7,36]. WSP estimates may be less affected by these sources of association, particularly popu-

lation structure, because of environmental and ancestral similarities between spouses [30].

Using 47,435 spouse-pairs from UK Biobank (S3 Table and S2, S3 and S4 Figs), previously

derived using household sharing information [24], we first explored the extent to which spouse

and sibling pairs are correlated for the first 10 principal components and birth coordinates

(north-south, east-west) to inform the extent of pairwise spousal ancestral similarities. Spouse

pairs were correlated for both birth coordinates and the first 10 principal components with

correlations ranging from 0.10 for PC6 to 0.32 for PC4 across the principal components and

strong correlations observed for both north-south (0.62; 95% C.I. 0.61, 0.62) and east-west

(0.46; 95% C.I. 0.46, 0.47) birth coordinates. As expected, sibling pairs were very strongly cor-

related for birth coordinates and the first 10 principal components with correlations ranging

from 0.74 for PC10 to 0.98 for PC4 (S4 Table). The spousal correlations for birth coordinates

and principal components illustrate how assortative mating and social homogamy induce

ancestral similarities between spouses.

We then estimated the effects of genetic variants on six different traits using the WSP design

and between unrelated non-spouse pairs. We then estimated the shrinkage (% attenuation)

from the non-spouse pair genetic association estimates to the WSP estimates. For comparison,

we also applied the same approach to a sample of 19,523 sibling pairs (i.e. within-sibship

model). Within-sibship models are a gold standard within family design for estimating genetic

associations because they control for demographic and parental effects [4,6,36,37]. Compari-

sons between WSP and within-sibship shrinkage estimates would provide insight into the

accuracy of WSP genetic association estimates.

We found strong evidence of smaller effect sizes in the WSP model for height (shrinkage:

19%; 95% CI 17%, 22%), educational attainment (shrinkage: 72%; 95% CI 64%, 79%) and BMI

(shrinkage: 16%; 95% CI 6%, 25%). Contrastingly, there was limited evidence of shrinkage for

SBP and CAD variants. The within-sibship analysis provided strong evidence of shrinkage for

height (shrinkage: 15%; 95% C.I. 11%, 20%) and educational attainment (shrinkage: 53%; 95%

C.I. 35%, 71%) variants, but limited evidence for BMI variants (shrinkage: 5%; 95% -12%,

22%). WSP shrinkage estimates were generally higher than within-sibship estimates, but

imprecision prevented stronger conclusions regarding heterogeneity. Including principal

components in the random-pair models did not greatly affect results except in the alcohol

analysis where there was only evidence for shrinkage in the unadjusted models. This suggests
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that population stratification is unlikely to entirely explain the observed shrinkage in these esti-

mates (Table 1). We note that the alcohol analysis included only a single SNP which is known

to be strongly associated with population structure in UK Biobank [24].

We compared the within-sibship and WSP shrinkage estimates from this study (using UK

Biobank data only) to within-sibship shrinkage estimates from a recent within-sibship GWAS

of 17 cohorts [5], which included over 4x as many siblings as this study. The within-sibship

shrinkage estimates from the multi-cohort GWAS were highly consistent with the within-sib-

ship shrinkage estimates from UK Biobank only but were much more precise. The multi-

cohort within-sibship shrinkage estimates were smaller than the WSP shrinkage estimates for

height, BMI, and educational attainment, with non-overlapping confidence intervals, provid-

ing some evidence that WSP shrinkage is larger than within-sibship shrinkage for these pheno-

types (S5 Table).

Within-spouse pair: age, SBP and CAD. As a negative control analysis, we next used the

WSP model to estimate the effects of increasing age on outcomes known to be related to age

(CAD and SBP), using random pair estimates for comparison. Age cannot be influenced by

other phenotypes, so analyses are unlikely to be susceptible to reverse causation or confound-

ing. However, collider bias in the WSP model with age is plausible because spousal compatibil-

ity is influenced by age similarities. For example, couples with large age differences may

systematically differ to couples with smaller age differences. It follows that differences between

WSP and random pair estimates (with age as the exposure) are likely to reflect collider bias.

This is a similar premise to autosomal GWAS of sex, where genetic associations are likely to

reflect participation bias because autosomal genetic variation cannot influence sex [38].

Pairwise age differences were found to be greater between random pairs, consistent with

individuals preferring a partner of a similar age. We did not find strong evidence for differ-

ences in age effect estimates on CAD and SBP between the spouse and random pair samples

suggesting that any collider bias effects are modest in this context (Table 2).

Discussion

In this study, we used causal diagrams, simulations, and empirical data to evaluate the use of

the WSP model in genetic epidemiology. We showed that the WSP model can account for

Table 1. Estimates of genetic association shrinkage from within-spouse pair and within-sibship models.

Phenotype Number of

SNPs

Covariates Within-spouse pair shrinkage: %

(95% C.I.)

Within-sibship shrinkage: %

(95% C.I.)

Heterogeneity P for spouse and sibling

shrinkage estimates

Height 381 No PC 19% (17%, 22%) 15% (11%, 20%) 0.18

PC1-10 17% (14%, 20%) 13% (8%, 18%) 0.19

Educational

attainment

69 No PC 72% (64%, 79%) 53% (35%, 71%) 0.06

PC1-10 71% (62%, 79%) 51% (33%, 70%) 0.06

Body mass index 68 No PC 16% (6%, 25%) 5% (-12%, 22%) 0.28

PC1-10 16% (6%, 25%) 5% (-12%, 22%) 0.28

Coronary artery

disease

41 No PC -4% (-23%, 15%) -1% (-36%, 34%) 0.90

PC1-10 -4% (-23%, 16%) -1% (-35%, 34%) 0.83

Systolic blood

pressure

242 No PC 0% (-7%, 8%) 5% (-7%, 18%) 0.53

PC1-10 0% (-8%, 7%) 5% (-7%, 18%) 0.50

Alcohol

consumption

1A No PC 29% (14%, 43%) 20% (-20%, 59%) 0.40

PC1-10 14% (-5%, 33%) 4% (-46%, 54%) 0.42

A: rs1229984 in ADH1B

https://doi.org/10.1371/journal.pgen.1009883.t001
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unmeasured confounding if spouses are correlated for the confounder but that comparing

assorted spouses can induce collider bias. Using empirical data, we found evidence that genetic

association estimates for height, educational attainment, and BMI shrink in the WSP model

when compared to a within-pair model using random individuals.

Within-sibship models in UK Biobank, which control for demographic and parental effects

[6,36], also provided evidence of shrinkage for height and educational attainment variants but

not for BMI, consistent with previous studies [4,5,37]. WSP shrinkage point estimates for

height, BMI and education were larger than the UK Biobank within-sibship shrinkage esti-

mates although confidence intervals overlapped. However, there was strong statistical evidence

that WSP shrinkage is greater than within-sibship shrinkage for height, BMI and educational

attainment when using more precise within-sibship shrinkage estimates from a recent within-

sibship GWAS [5]. The consistent evidence of shrinkage between the two models for height

and education suggests that WSP models may be removing associations relating to

demography.

Simulated data illustrated that if spouses assort on a confounder of the exposure and out-

come, then the WSP association provides a less biased estimate of the causal effect than a con-

ventional model unadjusted for the confounder. An example of a potential confounder in

genetic association studies is ancestry, which we showed to be more correlated between

spouses than for non-spouse pairs by illustrating birth coordinate and principal component

correlations between spouses. However, we note that including principal components as

covariates did not greatly affect shrinkage estimates except for alcohol consumption where, as

noted earlier, the single variant used is known to be strongly associated with population struc-

ture [24]. The WSP shrinkage estimates being higher than the sibling estimates suggests that

the shrinkage cannot be explained by adjustment for confounding alone. If the only source of

shrinkage is adjustment for confounding, then WSP shrinkage estimates should be smaller

than within-sibship estimates because spouse models are unlikely to fully control for demo-

graphic or family-level (e.g. parental nurture) effects. Collider bias induced by comparing

assorted pairs is one potential explanation for the observed WSP shrinkage.

Collider bias could contribute to the observed shrinkage depending on the interactive

model between the colliding effects and the degree of assortment. Assuming a linear additive

model, collider bias is likely to shrink rather than inflate genetic associations because assort-

ment would induce negative correlations in the WSP model between factors influencing the

assorted trait in the same direction. For example, assortment could induce negative correla-

tions between height increasing genetic variants and height increasing environmental factors

in the WSP model, leading to shrinkage when estimating WSP genetic associations. This is in

contrast to the population-level effects of assortative mating which inflate associations because

of induced positive correlations between trait-increasing variants on different chromosomes

Table 2. Within-spouse pair estimates of the effect of age on SBP and CAD.

Phenotype Spouse-pairs

(N = 47,435)

Random pairs (N = 47,435): Median

estimate from 100 simulations

Average age difference (years); Median (Q1,

Q3)

2.0 (1.0, 4.0) 7.0 (3.0, 13.0)

Systolic blood pressure (Change in mmHg per

1-year increase in age; 95% C.I.)

0.74 (0.69, 0.80) 0.80 (0.78, 0.83)

Coronary artery disease (OR per 1-year

increase in age; 95% C.I.)

1.05 (1.04, 1.05) 1.05 (1.04, 1.05)

All analyses were adjusted for sex of the index individual.

https://doi.org/10.1371/journal.pgen.1009883.t002
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[22]. However, in the negative control example of age on health outcomes, we found little evi-

dence of collider bias; within-pair effect estimates of age on CAD and SBP were consistent

between spouse and non-spouse pair samples. Another potential source of WSP shrinkage is

the spousal environment. The spousal environment could be influenced by individual’s geno-

types leading to reduced spousal phenotypic differences. For example, if an individual has high

genetic liability to increased alcohol consumption this could lead to their partner consuming

similar amounts of alcohol independent of their genotype.

A key implication of these analyses is that spousal similarities and differences are not neces-

sarily random or attributable solely to the shared adulthood environment. WSP similarities are

likely to reflect a combination of social homogamy, assortative mating and the shared adult-

hood environment. Amidst growing evidence that genetic epidemiological studies can capture

effects of fine-scale population structure, parental nurture and assortative mating [4,6,39–46],

there is considerable interest in using genotype data from pedigrees to more accurately esti-

mate direct genetic effects and trait heritability as well as to explore parental effects on off-

spring phenotypes [11–14,39–41,44,45,47–51]. Family designs such as the transmission

disequilibrium test [52] and within-sibship models are protected from many of these biases by

random segregation at meiosis [53,54]. However, in contrast, inferences from spousal analyses

are not as robust, thus it is important to understand and model the assortment in spousal

designs. A further implication is that assortative mating is likely to contribute to the pheno-

typic and genetic structure of epidemiological studies. Large studies such as the UK Biobank,

frequently incidentally sample participants who are partnered with another study participant

[24]. The non-randomness of study participation in UK Biobank has been previously dis-

cussed as a possible cause of selection (participation) bias [31]. Our findings illustrate that

assortative mating is likely to contribute to the non-random distribution of phenotypes (and

genotypes) in population biobanks.

Our study has several important limitations. First, as described in our previous study [24],

derived spouse-pairs were identified using household sharing information so may be suscepti-

ble to a degree of classification error with non-spouse pairs being incorrectly identified as

spouses. Second, the mechanisms by which spouses jointly participate in UK Biobank may

have induced selection bias into empirical analyses as these pairs could be more similar than

pairs that did not jointly participate. Third, given that the exact mechanisms of assortment are

not widely understood, our simulations and assumptions may not accurately capture the

mechanisms underlying spousal assortment. In simulations we assumed that factors influenc-

ing assortment are independent across the population but in practice, factors influencing

assortment are often correlated (e.g. height and education). Future research could use more

complex simulations to evaluate models that can distinguish the effects of social homogamy,

migration and measurement error. Fourth, it is important to note that educational attainment

as defined by qualifications when study participants are aged over 40 will also capture individ-

uals with degrees obtained during adulthood, suggesting that educational similarities could

also plausibly relate to the shared adulthood environment.

To conclude, the WSP model can reduce confounding from environmental factors but may

also be susceptible to collider bias. An empirical example using genetic associations suggested

that WSP estimates may be downwardly biased. Contrastingly, WSP estimates for effects of

age did not seem to be affected by collider bias. An advantage of WSP models is that they may

have increased power for genetic studies relative to other within-family designs because (non-

consanguineous) spouses are less likely than first degree relatives to share long segments of the

genome identical by descent. The WSP model could be a complimentary orthogonal design to

other within-family models when triangulating evidence from different study designs [33].
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Methods

Data sources

UK Biobank. Study description

UK Biobank is a large-scale prospective cohort study which sampled 503,325 individuals

aged between 38–73 years at baseline, recruited between 2006 and 2010 from across the United

Kingdom. The cohort has been described in detail previously [35,55]. For the purposes of this

study, we used two subsamples of the cohort; spouse-pairs [24], and full-sibling pairs [6].

Potential spouses were estimated using household sharing information in a previous publi-

cation [24]. We started with a European subsample of UK Biobank, consisting of 463,827 indi-

viduals based on a k-means cluster analysis on the first 4 genetic principal components. We

then used phenotype data to extract pairs of individuals who reported (a) living with their

spouse (field ID: 6141–0.0), (b) the same length of time living in the house (field ID: 699–0.0),

(c) the same number of occupants in the household (field ID: 709–0.0), (d) the same number

of vehicles (field ID: 728–0.0), (e) the same accommodation type and rental status (field IDs:

670–0.0, 680–0.0), (f) identical home coordinates (rounded to the nearest km) (field IDs:

20074–0.0, 20075–0.0) and (g) are registered with the same UK Biobank recruitment centre

(field ID: 54–0.0) and (h) both have available genotype data. We considered pairs with identi-

cal information across all household variables as putative spouses. When more than two indi-

viduals shared identical information (observed in 18,145 instances), then these individuals

were removed. 53 closely related pairs (IBD > 0.1) were identified and removed using a

genetic relationship matrix. We excluded 4,866 potential couples who were the same sex (9.3%

of the sample) as they were deemed to be more likely to be false positives and because of possi-

ble heterogeneity in same-sex assortment patterns. The original paper identified 47,549 male-

female pairs believed to be cohabitating spouses. In this study, we used an updated version of

the genetic data after removing individuals who had opted out of the study resulting in a

slightly reduced sample of 47,435 complete pairs.

Full-sibling relationships were derived using UK Biobank provided estimates of pairwise

identical by state (IBS) kinships (>0.5–21�IBS0, <0.7) and IBS0 (>0.001, <0.008), the propor-

tion of unshared loci [6]. This approach identified 40,275 siblings from 19,523 families. For the

purposes of within-sibship analyses, we restricted the sample to 2 siblings from each family,

selecting siblings at random. The analysis sample included 39,046 individuals from 19,523

families.

Phenotype data

At baseline, the height of study participants was measured using a Seca 202 device at the

assessment centre (field ID: 12144–0.0), body mass index was derived manually from measures

of standing height and weight (field ID: 21001.0.0), systolic blood pressure was measured

using an automated reading from an Omron Digital blood pressure monitor (field ID: 4080–

0.0). Educational attainment was defined as in a previous study [56], using questionnaire data

on qualifications to estimate the number of years spent in full-time education (field ID: 6138).

Coronary artery disease cases were diagnosed using International Classification of Disease

(10th edition) (ICD10) and Operating Procedure System (OPS) codes from either hospital

events (Hospital Episode Statistics) or underlying cause of death from the death register. The

following ICD10 (I21, I22, I23, I24, I25, Z955) and OPS codes (K40-K46, K471, K49, K50,

K75) [57] were used to classify diseased cases. North-south (field ID: 129) and east-west (field

ID: 130) birth coordinates were derived from self-reported town of birth.

Alcohol consumption was defined as in a previous study [24]. In brief, participants were

asked to estimate their current alcohol intake frequency (daily or almost daily, three or four

times a week, once or twice a week, one to three times a month, special occasions only, never,
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prefer not to say) (ID: 1558–0.0). Individuals reporting a current intake frequency of at least

once or twice a week were asked to estimate their average weekly intake of a range of different

alcoholic beverages (red wine, white wine, champagne, beer, cider, spirits, fortified wine) (ID:

1568–0.0, 1578–0.0, 1588–0.0, 1598–0.0, 1608–0.0). We converted intake frequencies to weekly

alcohol consumption in units by converting the questionnaire measurements to units: mea-

sures for spirits (1 unit), glasses for wines (2 units) and pints for beer/cider (2.5 units). Individ-

uals reporting current intake frequency of “one to three times a month”, “special occasions

only” or “never” (for whom this phenotype was not collected), were assumed to have a weekly

alcohol consumption volume of 0. We removed 189 pairs with outlying values (>5 S.D from

the mean) from one or more members.

Genotyping

UK Biobank study participants (N = 488,377) were assayed using the UK BiLEVE Axiom

Array by Affymetrix1 (N = 49,950) and the UK Biobank Axiom Array (N = 438,427). Directly

genotyped variants were pre-phased using SHAPEIT3 [58] and then imputed using Impute4

using the UK10K [59], Haplotype Reference Consortium [60] and 1000 Genomes Phase 3 [61]

reference panels. Post-imputation, data were available for approximately ~96 million genetic

variants. More detail is contained in previous publications [35,62].

Genome-wide association studies. Summary statistics from previous published GWAS,

independent from UK Biobank, were used for information on SNPs associated with coronary

artery disease [63], body mass index [64], educational attainment [56] and height [65].

Genome-wide summary data were not available for a recent systolic blood pressure GWAS

[66], so we performed a GWAS of systolic blood pressure using UK Biobank. To remove sam-

ple overlap, we excluded the 47,435 spouse pairs from the analysis and used the remaining

sample of 367,963 individuals of self-report European descent. A GWAS was conducted on

this sample using a linear mixed model (LMM) association method as implemented in

BOLT-LMM (v2.3)[67]. To model population structure in the sample we used 143,006 directly

genotyped SNPs obtained after filtering on MAF > 0.01; genotyping rate> 0.015; Hardy-

Weinberg equilibrium p-value< 0.0001 and LD pruning to an r2 threshold of 0.1 using

PLINK v2.0 [68]. We included the age and sex of participants as covariates in the model.

A set of Genome-wide significant SNPs were generated for each trait by LD clumping relevant

summary statistics (P<5×10−8, r2<0.001, clumping distance = 10000 kb) using the 1000 Genomes

Phase 3 GBR samples [61] as the reference panel. For alcohol consumption, we used a missense var-

iant (rs1229984) inADH1B strongly associated with alcohol behaviour, as in a previous study [24].

Theory of within-spouse pair comparisons

The phenotype P of individual I can be modelled as a function of independent factors; genetics

G, the environment E, age, sex and a stochastic variance term 2.

PI ¼ GI þ EI þ AgeI þ SexI þ 2I

When considering male-female spouse pairs, we can decompose the influence of the envi-

ronment E on P into effects of the shared environment between spouses SE (e.g. during cohab-

itation) and effects of the non-shared environment NSE. For example, for the male M and

female F in pair K:

PKM ¼ GKM þ ðSEK þ NSEKMÞ þ AgeKM þ SexKM þ 2KM

PKF ¼ GKF þ ðSEK þ NSEKFÞ þ AgeKF þ SexKF þ 2KF
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We then define the WSP model across spouse pairs as:

P� ¼ G� þ E� þ Age� þ Sex� þ 2�

where the differences between the spouses for each factor are included in the model (e.g. for

pair K, P�K ¼ PKM � PKF, G�K ¼ GKM � GKF; E�K ¼ NSEKM � NSEKF). The shared environmental

terms are by definition equal for men and women and drop out of the model.

For the WSP model to generate an unconfounded estimate of the causal effect of G on P, we

require that the genetic and environmental difference terms in the between-spouse model are

independent, i.e. Corr(G�, E�) = 0. This assumption could be violated by several factors includ-

ing assortative mating and indirect genetic effects. For example, if parental genotypes influence

their offspring phenotype, then the offspring’s genotype would be positively correlated with

their parental environment.

Random and non-random mating. Consider the WSP model applied to three distinct sets

of pairs: a) a random set of males and females (non-spouses), b) spouse pairs under random mat-

ing (random spouses), and c) spouse-pairs under assortative mating (assorted spouses). In theory,

the environmental differences between pairs would decrease with cohabitation and under assort-

ment on environmental factors such as place of birth and socio-economic status:

E�NonSpouse > E�RandomSpouse > E�AssortedSpouse

Note that as the environmental differences between pairs tends to zero (E�!0), the bias in the

estimated association between P andGwill also tend to zero (bias(P~G)!0) even ifG� and E� are

correlated in the WSP model (Corr(G�, E�)6¼0) because the pair would be matched for the con-

founder, suggesting that comparing assorted pairs could reduce the effect of environmental biases.

We define the mechanism by which spouses assort as spousal compatibility A, a pairwise

measure of the likelihood that two individuals enter a relationship. If several phenotypes influ-

ence assortment, then assortative mating can induce collider bias. For example, assortment on

a phenotype influenced by genetic and environmental factors could induce spousal correla-

tions in both genetic and environmental determinants of the phenotype, i.e. Corr(GKM, GKF)>
0 & Corr(EKM, EKF)>0. It follows that in the WSP model, spousal genetic differences could be

inversely associated with spousal environmental differences, i.e. Corr(G�, E�)<0.

Statistical methods

Simulations. Model A: Within-spouse pair: spousal correlation for confounders

In model A, an exposure X influences an outcome Y but the relationship is confounded by

life-course exposure to an environmental factor E which influences both X and Y. We evalu-

ated the effect of spousal correlations for E on the WSP estimates of the effect of X on Y.

Spousal correlations for E were generated by simulating E and a spousal assortment mea-

sure A such that Corr(E, A) = C. Male-female pairs were defined by ordering A such that

AM1�AM2�..AM1000 and AF1�AF2�..AF1000 and matching respective males and females, i.e.

AM1 with AF1. This matching induces a spousal correlation for E which converges to C as the

sample size increases to infinity.

Using 2,000 simulated individuals (1,000 males and 1,000 females), we generated WSP esti-

mates at a range of values of C (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Code for model (A) can

be found at https://github.com/LaurenceHowe/Between-spouse/blob/master/simulations.R.

Model B: Within-spouse pair: assortative mating and collider bias

In model B, individuals assort on two independent phenotypes X1 and X2, that also influ-

ence an outcome O such that Y~X1+X2+2. We evaluated the effects of assortment on X1 and

X2 on the WSP estimate of the effect of X1 on Y. We simulated A, X1 and X2 such that Corr(X1,
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A) = C1 & Corr(X2 A) = C2. As above, we then defined pairs by ordering A which induces spou-

sal correlations for X1 and X2.

Using 2,000 simulated individuals (1,000 males and 1,000 females), we generated WSP esti-

mates used varying degrees of spousal assortment (Ci = 0, 0.1, 0.2, 0.3, 0.4, 0.5: i �(1,2)). The

WSP regression model is defined as Y�~X1
� where Y� = YKM−YKF and X1

� ¼ X1KM � X1KF for

each assorted pair. Code for model (B) can be found at https://github.com/LaurenceHowe/

Between-spouse/blob/master/simulations.R.

Empirical analysis in the UK Biobank

Within-spouse pair: Genetic and phenotypic differences. We estimated the correlations

between spouses for birth coordinates (north-south, east-west) principal components using a

linear regression model in R. Given that the regression model includes the same variable from

different individuals, the association estimates are approximately equivalent to correlations.

We defined the genotypic differences at a variant for spouse pair K with individuals A and

B as:

GenotypeDifK ¼ GenotypeKA � GenotypeKB

WSP effect estimates of each genetic variant on the relevant phenotype of interest (height,

body mass index, systolic blood pressure, educational attainment, coronary artery disease or

alcohol consumption) were generated using linear or logistic regression. In the context of

binary outcomes, the pair were rearranged so that the phenotypic difference could take the

value of either 0 or 1 (for logistic regression), with other variables rearranged accordingly. The

sex of the reference individual and the age difference between the spouses were included as

covariates:

PhenotypeDifK � GenotypeDifK þ AgeDifK þ SexKA

where PhenotypeDifK ¼ PhenotypeKA � PhenotypeKB

and AgeDifK ¼ AgeKA � AgeKB

Using the models described above, we generated associations using the WSP model with

the spouse-pairs. For comparison, we generated 100 distinct datasets of random-male female

pairs which were generated by randomly rearranging the 47,435 spouse-pairs and ensuring

that pairs were of different sex. We applied the same within-pair models to the random male-

female pairs, taking the median effect estimate and standard error for each variant from the

100 random-pair estimates. To compare WSP and random-pair genetic association estimates,

we used an inverse-variance weighted (IVW) approach [69,70]. The IVW approach uses sum-

mary data to estimate the effect of a polygenic score from the discovery GWAS, where the

genetic variants were selected from, on the phenotype in both models. Using betas from the

discovery GWAS as “weights” and betas and standard errors from the WSP and random-pair

models, the IVW estimates are calculated across N variants as follows.

Beta IVWð Þ ¼

Pn
1

Weight�Beta
SE2

Pn
1

Weight2

SE2

SE IVWð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Pn
1

Weight2

SE2

s
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Shrinkage in genetic associations for each phenotype, defined as the percentage difference

between the random pair IVW estimate and the WSP estimate, was calculated using the delta

method assuming no covariance between the estimators.

As we investigated only a single genetic variant for alcohol consumption, we were unable to

investigate a trend across genetic variants. Instead we tested for a difference between two

means for the WSP and median random-pair estimate [71].

Within-sibship birth coordinate correlations, principal component correlations and shrink-

age estimates were generated using very similar methods to the spousal analyses [4,6,36].

Unlike the male-female spouse-pairs, siblings can be different sexes, so we included a sex dif-

ference term in the regression models for the shrinkage analysis. Within-sibship estimates

were compared with random-pair estimates as in the spousal analysis. Shrinkages in genetic

associations for each phenotype were estimated as above.

PhenotypeDifK � GenotypeDifK þ AgeDifK þ SexDifK

where SexDifK ¼ SexKA � SexKB

We investigated heterogeneity between WSP and within-sibship shrinkage estimates using

the difference for two means test [71] assuming no covariance.

As a sensitivity analysis, we included an analysis adjusting for principal components in the

random-pair samples to account for population structure differences. We included differences

for the first 10 principal components in the random pair models as below. Principal compo-

nent differences were not included in the WSP or within-sibship models.

PhenotypeDifK � GenotypeDifK þ AgeDifK þ SexDifK þ PC1DifK ::þ PC10DifK

where PC1DifK ¼ PC1KA � PC1KB

For comparison, we also considered within-sibship shrinkage estimates from a recent

within-sibship GWAS preprint [5]. This preprint reported shrinkage for genetic variants at

genome-wide significance (5x10-8) and a more liberal threshold (1x10-5) for height, BMI, edu-

cational attainment, SBP and alcohol consumption. Coronary heart disease was not analysed

in this study. As the shrinkage estimates were broadly similar between the two thresholds for

the 5 phenotypes in this preprint, we considered the shrinkage estimates from the liberal

threshold.

Within-spouse pair: age, SBP and CAD. The WSP effect estimates of age on CAD and

SBP were estimated using the following regression model (linear or logistic dependent on the

outcome of interest), including sex of the reference individual and the age difference between-

spouses as covariates:

PhenotypeDifK � AgeDifK þ SexKA

As above, we repeated analyses using the datasets of random male-female pairs, reporting

the median effect size and standard error across the 100 simulated datasets for each model.

Supporting information

S1 Table. Model 1: Spousal correlations controlling for confounding. Results from simula-

tion analyses investigating how the WSP model can control for confounding if spouses assort
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S2 Table. Model 2: Assortment and collider bias. Results from simulation analyses investigat-

ing how the WSP model may be susceptible to collider bias induced by spousal assortment.
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S3 Table. Characteristics of the spouse sample (N�94,870). A table containing summary-

level phenotype information on the characteristics of the UK Biobank spouses, stratified by

sex.
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S4 Table. Spouse and sibling pair correlations for birth coordinates and principal compo-

nents. A table containing within-pair correlations for spouses and siblings for north-south

and east-west birth coordinates as well as the first 10 principal components.

(DOCX)

S5 Table. Comparisons of WSP and within-sibship shrinkage estimates. A table containing

WSP and within-sibship shrinkage estimates from this study for height, educational attain-

ment, BMI, SBP and alcohol consumption as well as within-sibship shrinkage estimates from

an external preprint.
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S1 Fig. Simulation results for Within spouse-pair models. A–Simulations for model (A):

Spousal correlations controlling for confounding. As the strength of spousal assortment (spou-

sal correlation) on the confounder (E) increases, the within-spouse pair (WSP) estimate of X
on Y unadjusted for E (in blue) moves from the confounded unadjusted estimate of 0.45 to the

unbiased estimate of 0.30. B–Simulations for model (B): Within spouse-pair: assortment and

collider bias. Spousal assortment can induce collider bias in WSP estimates. If spouses assort

on two phenotypes X1 and X2 which both affect outcome Y, then the association of X1 and Y
(or X2 and Y) estimated from the WSP model is a biased estimate of the causal effect of X1 on

Y (or X2 on Y). This bias monotonically increases in the degree of assortment on either X1 or

X2.
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S2 Fig. Height of UK Biobank spouse pairs. Scatter plot showing male spouse height on the

X axis and female spouse height on the Y axis for each spouse-pair.

(PNG)

S3 Fig. BMI of UK Biobank spouse pairs. Scatter plot showing male spouse BMI on the X
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