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Abstract: The inhibiting effect of Gum Arabic-nanoparticles (GA-NPs) to control the corrosion of
reinforced concrete that exposed to carbon dioxide environment for 180 days has been investigated.
The steel reinforcement of concrete in presence and absence of GA-NPs were examined using various
standard techniques. The physical/surface changes of steel reinforcement was screened using weight
loss measurement, electrochemical impedance spectroscopy (EIS), atomic force microscopy and
scanning electron microscopy (SEM). In addition, the carbonation resistance of concrete as well
screened using visual inspection (carbonation depth), concrete alkalinity (pH), thermogravimetric
analysis (TGA), SEM, energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). The
GA-NPs inhibitor size was also confirmed by transmission electron microscopy (TEM). The results
obtained revealed that incorporation of 3% GA-NPs inhibitor into concrete inhibited the corrosion
process via adsorption of inhibitor molecules over the steel reinforcement surface resulting of a
protective layer formation. Thus, the inhibition efficiency was found to increase up-to 94.5% with
decreasing corrosion rate up-to 0.57 × 10−3 mm/year. Besides, the results also make evident the
presence of GA-NPs inhibitor, ascribed to the consumption of calcium hydroxide, and reduced the
Ca/Si to 3.72% and 0.69% respectively. Hence, C-S-H gel was developed and pH was increased
by 9.27% and 12.5, respectively. It can be concluded that green GA-NPs have significant corrosion
inhibition potential and improve the carbonation resistance of the concrete matrix to acquire durable
reinforced concrete structures.

Keywords: GA-NPs; green corrosion inhibitor; carbonation resistance; rebar corrosion; depth
carbonation; morphology

1. Introduction

The design of concrete structure must have durability, safety, aesthetics and service-
ability for entire life duration. Consequently, the most significant aspects of a construction
material success are mechanical and durability of the concrete’s performance [1]. In the
global construction industry, the major apprehension about reinforced concrete structure
is its early deterioration as a result of corrosion of the reinforcement [2,3]. The existence
of corrosion in concrete structures is due to the steel surface’s depassivation, and this
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occurs throughout the penetration of reinforced concrete by one or both of the factors; chlo-
ride ions (Cl−) or carbon dioxide (CO2), and such issues result in major costs in concrete
structures maintenance globally [4,5].

Amongst the most corrosive factors, concrete carbonation is one of the significant rea-
sons that have a negative impact on the concrete’s durability. This process takes place when
the CO2 gas dissolved in water or from the atmosphere is reacting with free hydroxides,
which are mainly made up of Ca(OH)2 (calcium hydroxide) in concrete, to develop calcium
carbonate [5,6]. Besides, CO2 gas also reacts with calcium–silicate–hydroxide gel in the
concrete matrix thus further forming calcium carbonate [7]. Since the majority of concrete
structures are in contact with the atmosphere, corrosion due to carbonation is a significant
worry. In brief, the carbonation process occurs by the following stages: (i) diffusion of CO2
into the concrete, (ii) reaction of the CO2 with Ca(OH)2 (calcium hydroxide) in the presence
of moisture, (iii) a reduction in pH from around 12.5 to 8.0 and (iv) de-passivation of the
steel at this lowered pH.

To control such defects, varied prevention strategies have been proposed, all aimed
to stop, delay or slow down the corrosion mechanism including cathodic protection sys-
tems [8], stainless steel bars [9], treatment of concrete surface using low permeability
concrete [10] and galvanized steel bars [11]; and is also used in silica fumes [12], fibre
glass [13], epoxy-coatings [14,15], super-hydrophobic anti-corrosion coating [16], adding
lauric acid into concrete [17] and corrosion inhibitors [18,19].

One of the renowned ways of controlling and reducing the corrosion rate of the low
carbon steel is to apply organic inhibitors [15,20–27]. These organic corrosion inhibitors are
either simple or mixtures that are added to the aggressive environments in low quantities in
order to reduce, control or even hinder reactions from occurring between the metal and its
surroundings [28]. The effectiveness of organic corrosion inhibitors is due to the presence
of N, O or S atoms that are the core of the formation of adsorption process; of which
that prevents the active sites of metals from corrosive media exposure thus decreasing
the corrosion rate [29–32]. However, avoiding the use of commercial corrosion inhibitors
to protect the mild steel in harsh environments is related to their being hazardous to
the environment and highly toxic [31,33–35]. Consequently, due to safety concerns, the
researchers have focused extensively on developing effective organic inhibitors from
natural ingredients, such as extracts from fruits, plants and peels, that are eco-friendly and
harmless, which are also known as green corrosion inhibitors. Several studies have been
conducted and published on the application of natural products as corrosion inhibitors
on mild steel in different harsh environments such as, Artemisia pallens [34], Neolamarckia
cadamba [36], Rhizophora apiculate [37], Musa paradisiac [38], aloe vera [29], apricot juice [39],
Juglans regia [40], Asafoetida [41] and Pomelo [42]. Results have shown that the organic
green corrosion inhibitors have an inhibition efficiency of 65–97%. The inhibitive impact of
natural compounds is ascribed to the ability of green inhibitor molecules to adsorb over
metal surfaces thus, formation of a thin preventive layer and blocking the active sites.

Pertaining to the application of green inhibitor upon the reinforced concrete (RC),
Abdulrahman and Ismail [43,44] have studied the effects whereby 2–4% of the green
inhibitor known as Bambusa Arundinacea is applied onto contaminated concrete by sulfate
and chloride. Loto et al. [45] have also studied the effects of another green inhibitor,
Vernonia amygdalina (bitter leaf extract) with concentrations of 25–100% being applied onto
steel reinforcement in concrete with exposure to 3.5% sodium chloride. The results have
shown that the bitter leaf extract has fair corrosion inhibition concentrations of 50% and
75%. While the optimum inhibition efficiency of 90% was achieved when the inhibitor
concentration examined is at its lowest at 25%. Meanwhile, the effect of another corrosion
inhibitor, Vernonia amygdalina was studied by Eyu et al. [46] along with sodium and calcium
nitrate onto steel-reinforced concrete exposed to 3.5% NaCl solution for 70 days. The
authors noted that the Vernonia amygdalina inhibitor is more effective compared to calcium
or sodium nitrate in terms of reduction of corrosion rate for steel within concrete for the
duration of the immersion. Another study by Okeniyi et al. [47] was conducted where
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admixtures of different concentration levels of Anthocleista djalonensis leaf extract were
incorporated into steel reinforced concrete exposed to the saline medium. They detected
that the maximum inhibition efficiency of 97.43% was achieved at 0.4167% of a green
inhibitor concentration. Our research team successfully reported the incorporation of 5%
Elaeis guineensis/AgNPs into the reinforced concrete that found resulting in improving
inhibition efficiency up to 95% [48]. This is due to the formation of additional C-S-H gel,
which is responsible for blocking the pores within the concrete matrix. Gular et al. [49]
investigated the impact of incorporation of different percentages (0.5, 1 and 1.5%) of
nanomaterials in the concrete matrix such as nano-Fe2O3, nano-TiO2, nano-Al2O3 and
nano-SiO2 on mechanical properties. They concluded that the presence of 1.5% of nano-
Al2O3, and nano-SiO2 indicated enhanced mechanical properties of concrete by up to 22%
at 28 days in comparison with other nanoparticles. Moreover, several [50–56] authors
have been studying the effect of nanoparticles on mechanical properties and corrosion
of reinforced concrete with a variety of percentages (1–5%), and they found that adding
the nanoparticles of concrete can be increased the mechanical properties and the concrete
durability at different ages.

In continuation of our earlier investigation, the present study reports Arabic gum-
nanoparticles as corrosion inhibitors for reinforced steel in concrete that exposed over
carbonated environment. Gum Arabic (GA) investigated was extracted in the form of
exudate from the stem and branches of the trees, Acacia senegal tree [57,58]. The GA consists
of mixture of biopolymers, which includes amphiphilic polysaccharide-protein complexes
that leads to the stabilisation and formation of emulsions [59,60]. As a hydrocolloid,
GA has low-viscosity when its concentration is high with exceptional water solubility
in comparison with other gums [61,62]. GA was one of the earliest biopolymers being
applied in both food and non-food products especially within the cosmetics and medicine
industries as thickening, stabiliser and emulsifier agents due to its beneficial properties
such as pH stability, non-toxic, renewability, biocompatibility, gelling, low cost and high
solubility [63,64]. Additional application of GA includes the synthesis and modification
of numerous metallic nanoparticles (metal oxides, gold and silver nanoparticles) [65].
Further, GA has been reported as a green corrosion inhibitor that displays inhibition
efficiency of 97% for mild steel being exposed to acidic substances [66–69]. However,
to the best knowledge to date, there has been no study of the inhibition efficiency on
the GA upon reinforced concrete. Hence, the present study is attempted to analyse the
corrosion inhibition potential of GA-nanoparticles on reinforced steel in concrete structures
that are exposed to carbon dioxide environment. Standard techniques like weight loss,
electrochemical impedance spectroscopy, pH and carbonation depth tests were carried out
to study the mechanism of corrosion inhibition for reinforced concrete specimens exposed
to CO2 environment. Further, morphology of steel reinforcement surfaces was screened
via SEM and AFM and also the morphology of concrete specimens was examined by SEM,
EDX, XRD and TGA. Finally, the powder of GA-NPs was characterized via transmission
electron microscopy (TEM) to detect the particle size.

2. Materials and Methods
2.1. Green GA-NPs Inhibitor Preparation

The dried Gum Arabic (GA) specimens were procured from Acacia Senegal trees ex-
uded was locally available and directly purchased from Alsaadi Company for Aromatics
and spices, Basra, Iraq, was kindly provided by Dr. Mohammad Ali Asaad (Iraq University
College, Basra, Iraq), and ground into powder. In order to obtain the fine size of extracted
(nanoparticles), 1000 g of resultant powder was dissolved in 4000 mL distilled water for
24 h at ambient temperature (28 ± 2 ◦C). Afterward, the suspension was stirred for 3 h at
45 ◦C and then filtered using filtration paper (Whatman) grade 1 (Whatman, Taufkirchen,
Germany). Lastly, the resulting mixture was centrifuged (Hettich, EBA 21 Model, Tokyo,
Japan) at 4500× g rpm for 30 min to achieve the GA-nanoparticles inhibitor. The character-
istics of Acacia Senegal (gum Arabic) are listed in Table 1 [70]. According to Ali et al. [71], the
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arabinogalactan is the most component of the GA with 88.4% in total. The arabinogalactan
possesses a low molecular mass and low protein content of 3.8 × 105 (g/mol) and 0.35%
respectively. The molecular structure of arabinogalactan is depicted in Figure 1 [67].

Table 1. The chemical composition of Acacia Senegal (gum Arabic).

Element g/kg

Crude fibre 73.2–79.8
Protein 25.0–37.1

Dry matter 870–877.9
Nitrogen free extract 851.5–868.1

Ether extract 1.8–4.3
Ash 24.7–27.3
pH 4.69

Galactose 389
Arabinose 257

Glucuronic acid 215
Rhamnose 95
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2.2. Transmission Electron Microscope (TEM)

The morphology (shape and size) of the GA-NPs powder was determined using
BIO-TEM, model Hitachi-HT 7700, Tokyo, Japan. Distilled water was used to disperse the
nanoparticles of the green GA inhibitor under ultrasonic treatment, and then a drop of the
solution was placed onto the carbon-coated copper grids (Hitachi-HT 7700, Tokyo, Japan)
and was investigated at 120 kV accelerated voltage.

2.3. Materials and Concrete Specimens Preparation

First phase, OPC—ordinary Portland cement (type I) (Falcon Cement Company, Hafi-
rah, Bahrain) was prepared in accordance with ASTM C 150 [72] as a concrete component
and used for all mixes design. The physical property and chemical composition of such
OPC were summarised in our earlier studied [48]. River sand (Al-faw, Basra, Iraq) having
a specific gravity of 2.55, a density of 1630 kg/m3 and fineness modulus of 2.57 was sieved
by sieve (W.S. Tyler, Mentor, OH, USA) number of 4.57 mm and used as a fine aggregate.
The crushed stone (Al-faw, Basra, Iraq) had a minimum and maximum particle size as
well as bulk density of 5 mm, 9.5 mm and 2700 kg/m3 respectively, was used as coarse
aggregate. Normal fresh water in a w/c ratio of 0.55 and water content of 217 kg/m3 was
used in all concrete mixtures.

Second phase, a concrete slab with dimensions of 200 mm (length), 180 mm (width)
and 66 mm (thickness) was designed for corrosion examinations. Steel reinforcement bars
(Ransheng Steel, Tianjin, China) specimens of 225 mm in length and 16 mm diameter acting
as a working electrode were cut by metal cutting machine (Jiangsu Goldmoon Industry Co.,
Jiangsu, China) and then polished using different grades (600, 800, 1000, 1200 and 1600)
of emery papers (Jiangsu Goldmoon Industry Co., Jiangsu, China). Next, the steel bars
specimens were degreased with concentrated acetone (70%) (Qrëc, Chonburi, Thailand),
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washed in distilled water, air-dried and then embedded in the middle of the concrete slab,
thus a 25 mm of concrete cover was provided around the steel bar on both sides and from
the base, in order to provide limited corrosion prevention for steel reinforcement.

In the third phase, based on the mass of cement, GA-NPs (3%) were mixed with water
and added into concrete mix components during the mixing process and then cast into
desired moulds (Ransheng steel, Tianjin, China). The mix proportion of concrete specimens
was indicated in Table 2. In order to protect the steel bars from crevice corrosion after
concrete casting, the protrusion of steel bar (5 cm—the rest of working electrode) was
isolated with silicone sealant (McCoy Soudal, Delhi, India). Furthermore, concrete cube
specimens of dimension 100 mm3 were also cast, which were further used to investigate
the influence of green GA-NPs inhibitor on accelerated carbonation and carbonation depth.
Finally, after one day of casting, all concrete specimens were demoulded, and then cured in
fresh water at 25 ◦C and relative humidity of 75% ± 5% for 28-day prior to move to CO2
gas chamber (MR, Sharjah, U.A.E). The compressive strength of concrete was designed for
30 MPa at 28 days using 1:1.73:2.8 concrete mix design.

Table 2. Concrete mix design per cubic metre.

Item
Cement
(kg/m3)

Aggregate (kg/m3)
w/c (kg/m3)

Inhibitor
(kg/m3)Coarse Fine

Control concrete 395 682 1106 217 -
Green GA concrete 395 682 1106 217 11.85

2.4. Electrochemical Impedance Spectroscopy Test

Electrochemical impedance spectroscopy (EIS) (Ametek Scientific Instruments, Seat-
tle, WA, USA) was conducted in a three electrode cell comprising of saturated calomel
(SCE), steel specimens and platinum wire as reference, working and counter electrodes
respectively, while NaCl of 3.5% (Green Research scientific, Basra, Iraq) was used as an
electrolyte for EIS experiments. Every measurement was examined using an electrochem-
ical workstation model VersaStat 3 (Princeton, Singapore) at 25 ± 2 ◦C, following the
EOCP—open-circuit potential was stabilised for 30 min over perturbation of 10 mV (AC sine
wave, peak-to-peak), a frequency range of 1000–100 Hz. Next, ZSimpWin software 3.2 was
utilised for fitting impedance data with several sets of equivalent circuit. Furthermore,
the electrochemical impedance spectroscopy parameters were calculated by inserting the
following data: the density and the equivalent weight of rebar specimens is 7.85 (g·cm−3),
and 27.92 (g) respectively, while the area of exposure of steel reinforcement is 68.36 (cm2).
In addition, the EIS test were carried out for steel reinforcing bars in concrete that subjected
to CO2 gas environment for 28, 90 and 180-day in the absence and presence of 3% GA-NPs
inhibitor. The charge transfer resistance (Rs) and double-layer capacitance (Cdl) data were
obtained from the diameter of the semicircles of the Nyquist plot. Based on the charge
transfer resistance (Rct) data, the inhibition efficiency (IE%) of reinforced concrete was
calculated from the following formula [73]:

IE% =

(
1− Ro

ct

Ri
ct

)
× 100 (1)

where Ri
ct and Ro

ct denote the charge transfer resistance of reinforcing steel with and without
GA-NPs inhibitor respectively.

2.5. Gravimetric Measurements for Concrete Slab

Gravimetric or weight loss measurements was carried out to determine the corrosion
rate and inhibitor efficiency of concrete slabs exposed to CO2 gas at 28, 90 and 180 days.
The slabs were broken using the splitting tensile machine (3000 kN capacity NL Scientific,
Selangor, Malaysia). Afterward, the steel specimens extracted from the slabs and cleaned
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using cleaning solution in accordance with ASTM G1 [74], which is consisted of 500 mL
of 37% (concentrated grade) HCl acid (Quality Research Chemicals, Selangor, Malaysia)
with 3.5 g of hexamethylenetetramine (Sigma-Aldrich, Taufkirchen, Germany) added with
distilled water to make the volume up to 1000 mL. Each specimen was cleaned several
times, after which the weight loss was evaluated by calculating the difference between the
initial and final weights of the specimens. From the results, the inhibitor efficiency (IE%),
corrosion rate (CR, mm/year) and surface coverage (θ) were obtained using the following
equations respectively [32]:

IE% =

(
1− Wi

Wo

)
× 100 (2)

where Wi and Wo are the weight loss values of reinforcement bar in the presence and in
the absence and GA-NPs.

CR =
87, 600 W
ρ× t×A

(3)

where W is the weight loss of the rebar (g), ρ is the rebar density (7.85 g·cm−3), t is the time
of exposure (h) and A is the rebar surface area (cm2).

θ = (IE%)/100 (4)

The term “surface coverage (θ)” refers to the “inhibitory zone/area over the metal
surface” covered by the inhibitor via the adsorption process.

2.6. Carbonation Depth Test

After 28-day of curing the specimens in normal water, all the concrete cube specimens
were removed and placed in the chamber. In line with the recommendations outlined
by Sawada et al. [75], concrete specimens were subjected to accelerated carbonation by
creating an atmosphere of 65–75 relative humidity (RH) in enclosed plastic tanks (MR,
Sharjah, U.A.E), passing through carbon dioxide (CO2) gas (Almansour, Basra, Iraq) for
a period of 30 min, conducting this two times each day at a temperature of 25–30 ◦C. A
pressure gauge was affixed to the carbon dioxide gas cylinder to observe the pressure
inside the chamber. Next, the chamber was tightly closed and vacuumed for 2 min under
a pressure of around 600 mmHg. Then, CO2 gas was allowed to pass to the chamber
at a pressure of 750 Psi. A regulator (Tianjin Sure Instrument Co., Tianjin, China) was
affixed to the CO2 gas cylinder to control the pressure of CO2 inside the chamber. The
specimens were subjected to this treatment for 28, 90 and 180 days. Once the carbon
dioxide exposure had been completed, three specimens of untreated and treated concrete
with GA inhibitor were subjected to splitting at 28, 90 and 180 days and their centres were
sprayed with phenolphthalein solution to evaluate carbonation. Here, carbonation depth
was identified as being the length of space between the coloured area’s edge and the outer
surface of the concrete, the indicator of carbonation depth serves as a useful marker of
the degradation that the specimens have incurred from carbonation attacks [76]. Whereas
normal concrete treated with 1% of phenolphthalein solution will turn pinkish purple
in colour, concrete that has undergone carbonation will show no colour change [77]. A
1% solution of phenolphthalein (Sigma-Aldrich, Taufkirchen, Germany) was prepared by
dissolving 1 mg of phenolphthalein indicator powder in 90 cc of 2-propanol (Iso-propanol,
Qrëc, Chonburi, Thailand) and distilled water was added to make the solution volume
up to 100 cc. The concrete specimens were split into two parts and instantly sprayed
via phenolphthalein solution. The depth of the uncoloured (carbonated) layer below the
external surface was measured to the nearest mm at four locations, and the mean value
was recorded.

2.7. PH Measurement

The alkalinity variation of carbonated concrete specimens was evaluated by calibrating
the pH value of concrete powder at depths of 2–20 mm at 180-day of exposure to CO2.
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The concrete specimens were drilled from the external to the internal surfaces, and 1 g of
powder at each different depth was collected. Next, the collected powder was added to
50 mL of distilled water as a solvent and the entire mixture was stirred for 24 h at 25 ◦C. A
pH meter (Mettler-Toledo AG, Columbus, OH, USA) was used to calibrate the pH value of
specimens exposed to carbon dioxide at different depths.

2.8. Morphological Analysis of Rebar Surface

The surface morphology of steel reinforcement specimens in the absence and presence
of 3% GA-NPs was carried out using SEM-scanning electron microscope model Jeol, JSM-
IT300, Tokyo, Japan, and atomic force microscope (AFM) model Nano-Wizard 3, Tokyo,
Japan. Following 180 days of exposure to CO2, the concrete slabs were split and the
embedded carbon steel bars were carefully removed, rinsed in distilled water, air-dried,
cut into small pieces with 16 mm in diameter and 10 mm thickness, and then used for
morphologies scanned.

2.9. Morphological Analysis of Concrete
2.9.1. Thermal Gravimetric Analysis (TGA)

Following 180 days of exposure to CO2 gas, concrete specimens were broken and
small pieces of dimensions 10 × 10 × 7 mm were extracted from the core of specimens
and then ground into powder. The powder specimens in the presence and absence of
GA-NPs inhibitor were subjected to TGA/DTA thermograms analyser model TGA–Q 500,
Cincinnati, OH, USA in order to detect the percentage of weight loss during the thermal
degradation. Next, concrete powder of 2 g was placed in a ceramic pan having a height
and diameter of 5 and 6 mm, respectively, and then subjected to heating at a temperature
of 30–1000 ◦C. The decomposition of Ca(OH)2 concentrates was observed at temperature
range of 400 to 500 ◦C and the C-S-H dehydration was also resulted in the weight loss
at temperature range of 600–700 ◦C [78,79]. In addition, the percentages of the presence
of both C-S-H gel (calcium silicate hydrate) due to the dehydroxylation of Ca(OH)2 and
calcium hydroxide Ca(OH)2 content in the concrete matrix were determined according to
the following formula [80]:

C− S−H(%) = Total LOI− LOICC − LOICH (5)

whereas LOICH represents the dehydration of Ca(OH)2 at a temperature of 400–550 ◦C,
and LOICC represents the loss of CO2 at a temperature of 600–750 ◦C range. According to
Singh et al. [81] the amount of CH (calcium hydroxide) can be determined precisely from
the TGA curve according to the formula:

CH(%) = WLCH(%)× MWCH

MWH
(6)

whereas MWH and MWCH represent the molecular weights of water (18 g/mol) and CH
(74 g/mol), respectively, while WLCH represents the weight loss of CH dehydration.

2.9.2. SEM and XRD Analysis for Concrete

SEM (Jeol, JSM-IT300, Tokyo, Japan) equipped with EDX-energy dispersive spec-
troscopy, was utilised to examine the morphology of concrete specimens with and without
GA-NPs inhibitor after 180-day of exposure to CO2. Small pieces of crushed carbonated
concrete having a dimension of 14 mm × 14 mm × 5 mm were collected from the core of
concrete cubes after subject them to split. Then, the specimens were transferred to vacuum
environment up to 50 ◦C, till the constant mass of specimens was observed. Finally, the
specimens were placed on cylinder stub and subjected to an automated platinum sputter
coater (Model-Quorum (Q150R), Henan, China) for 1.5 min prior to testing.

The XRD pattern for concrete specimens treated and untreated with GA-NPs inhibitor
was measured using model Rigaku, SmartLab 3 kW, Tokyo, Japan. The specimens were
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collected and ground into powder using a grinding machine (Panasonic, Osaka, Japan).
The powder was located on the sample holder, run at (30 mA/40 kV), scanned at 2-theta
angle from 20–80◦ by scanning rate of 5◦/min, and X-rays of (k = 1.5406 Å) created by a Cu
Kα source.

3. Results and Discussion
3.1. Transmission Electron Microscope (TEM)

Figure 2 illustrates the TEM micrograph of GA-NPs inhibitor, whereas the GA-
nanoparticles were distributed in a non-agglomerated with spherical shapes, and having a
scale ranging from 9.27–123.69 nm. However, the distributions of nanoparticles were fitted
using a Gaussian fit curve as shown in Figure 3 in order to determine the average size of all
particles. The peak value of GA-NPs distribution size was found at 40.24 nm. This size can
be considered as a nano-scale according to Ye et al. [82] which is defined the nanomaterials
as materials consisting of particles less than 100 nm in size.
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3.2. Weight Loss

Table 3 shows the results of non-electrochemical measurements which are included
weight loss, corrosion rate, the inhibitor efficiency and coverage area for the concrete
specimens following 28, 90 and 180 days of exposure to carbon dioxide gas. The contact
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between concrete structure and atmosphere allowed the carbonation process to initiate
according to the following equations [7]:

CO2 + H2O→ H2CO3 (7)

Ca(OH)2 + CO2 → CaCO3 + H2O (8)

Table 3. Weight loss parameters for steel reinforcement in the absence and presence of green GA-NPs
inhibitor.

Weight Loss Parameters

Time (day) Specimen Weight Loss
(g)

CR × 10−3

(mm/year) IE (%) Surface
Coverage (θ)

28
Control 0.0953 5.63 - -
GA-NPs 0.0171 1.02 81.95 0.820

90
Control 0.2363 6.98 - -
GA-NPs 0.0315 0.93 86.67 0.867

180
Control 0.6775 9.87 - -
GA-NPs 0.0393 0.57 94.20 0.942

As a consequence of these reactions, the alkalinity (pH) of the concrete is lowered,
which is led to producing voluminous rust over steel reinforcement. This can impact
the reduction in the thickness of the steel reinforcement, and general degradation [83],
hence, the steel reinforcement bar is losing its own weight. The maximum weight loss
(0.6775 g) and corrosion rate (CR) (9.87 × 10−3 mm/year) were obtained for the control
specimen. These results indicate that CO2 penetrated the concrete cover and reached the
streel reinforcement surface. Hence, destroyed the passive film and initiated of corrosion
process. By contrast, the minimum weight loss value (0.0393 g), minimum corrosion
rate (0.57 × 10−3 mm/year), and maximum end-of-test inhibitor efficiency (94.2%) were
obtained for the specimen treated with 3% GA-NPs inhibitor. The observed increase in
efficiency (%) with exposure time is attributed to the increasing surface coverage (θ) by
adsorbed inhibitor molecules over the steel reinforcement bar to form a corrosion resistant
layer during the exposure period [35]. Thus, the formation of a resistant layer over the steel
reinforcement led to the isolation of the corrosive agents to reach the steel surface and react
with the iron, which inhibited the corrosion process.

3.3. Electrochemical Impedance Spectroscopy

Nyquist plots (Figure 4) represent the EIS results of reinforced steel in concrete with the
presence and absence of 3% GA-NPs inhibitor that were obtained after 28, 90, and 180 days
of exposure to CO2. According to literature [38,84,85], the small high-frequency semicircle
obtained both in the absence and presence of GA-NPs constitute a characteristic response of
the time constant of the double-layer capacitance (Cdl) and charge-transfer resistance (Rct).
However, the semi-circle loops that appeared in the high-frequency region demonstrated
the function of the charge transfer process in controlling the electrode reaction, while the
presence of a large depressed semicircle (depressed capacitive loops) of modified steel
reinforcement with GA-NPs that exposed to CO2 for 180 days extending from the high to
low-frequency regions, indicating that the primary effect of the charge-transfer resistance
on the corrosion reaction results from the development of a protective film due to the
adsorption of inhibitor molecules onto the steel surface. Besides, the depressed nature of
the semicircles is usually related to the roughness and inhomogeneity of the solid surface.
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Figure 4. Nyquist plots of steel rebars embedded in concrete exposed to CO2, (a) control and (b) treated concrete with green
GA-NPs inhibitor.

Figure 5 depicts the equivalent Randles circuit which is utilised to fit the impedance
results of Nyquist plots for the rebars embedded into concrete with and without the
inhibitors, in which resistor (Rs) represents the ohmic resistance of the system, and resistor
(Rct) represents the resistance of the inhibitor to the charge transfer process during metal
oxidation, whereas (Q) is introduced as the double layer capacitance (Cdl). In fact, various
equivalent circuits were generated and fitted against the experimental impedance values,
while the circuit that having lowest fitting error was selected and reported here.
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Figure 5. Equivalent circuit employed for fitting the impedance results.

The precise examination of the impedance parameters at 28, 90 and 180 days are
presented in Table 4. From the results, it is evident that concrete specimens treated with
3% GA-NPs found reduced the Cdl-double layer capacitance and enhances the Rct-charge
transfer resistance, so that a great diameter semicircle is detected in the Nyquist plots,
while the ability of GA-NPs corrosion inhibitor to adsorb upon the electrode surface may
explain the observed decrease in Cdl.

Table 4. EIS data for reinforcing steel-concrete slabs in the absence and presence of 3% GA-NPs
exposed to CO2 environment.

Exposure
Time
(Day)

Specimen
EIS Data

Rs (Ω cm2) Rct (Ω cm2) × 102 Cdl (µF cm−2) × 10−5 IE (%) θ

28
Control 10.8 35.06 3.06 - -
GA-NPs 11.6 204.00 0.0243 82.8 0.83

90
Control 11.1 33.84 3.19 - -
GA-NPs 11.9 276.70 0.0213 87.8 0.88

180
Control 11.7 27.12 7.68 - -
GA-NPs 12.8 496.00 0.0138 94.5 0.95

The observed increase in Rct values with time from 20,400 to 49,600 Ω·cm2 (Table 4)
following treatment of the concrete with 3% GA-NPs inhibitor may be due to the precipita-
tion impact of the solid Ca(OH)2 layer which is led to the reduction of concrete permeability
and the diffusion of carbon dioxide due to the development of C-(A)-S-H gel [86], and by
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the formation of a barrier film at the steel-concrete interface. The formation of a barrier
film has been demonstrated by the increasing surface coverage values (θ) from 0.83 to
0.95 in the presence of the 3% GA-NPs inhibitor, hence the present results confirm that
the GA-NPs extract hindered the corrosion agents to reach the embedded steel in concrete
by means of a surface adsorption mechanism. The corrosion inhibition potential of Gum
Arabic inhibitor is most likely related to its adsorption abilities over the reinforcement
steel surface. In the present study, Gum Arabic inhibitor adsorbed on the steel surface
and the interactions between the electron pairs of phytoconstituents and the reinforcement
material that forming a protective layer, and preventing the reinforcement steel from the
direct attack of the aggressive substances surrounding it [87]. Adsorption process can be
described via following mode of interaction: (a) physisorption mode–electrostatic forces of
interaction between Gum Arabic molecules and the electric charge over the steel reinforce-
ment /solution interface; (b) chemisorption mode–electrons/sharing from Gum Arabic
molecule to the reinforcement steel surface that resulted in covalent type bonding [88].
After the Gum Arabic molecules are adsorbed over the reinforced steel surface, that can
shield the whole steel surface, when the amount of Gum Arabic molecules are sufficient
enough to form a protective layer adsorption structure on the steel surface, immaterial
that it may be an anodic/cathodic zone. Hence, the shielding effect of protective film,
electrons/aggressive ion transferring from the electrolytes in and out of reinforcement
structures is obstructed that resulted in efficient corrosion protection for reinforcement
components [89].

Furthermore, the results presented in Table 4 indicate a higher inhibitor efficiency and
lower double-layer capacitance over the whole exposure period in the presence of the GA-NPs.
The maximum inhibition efficiency (94.5%) and minimum Cdl (0.0138 × 10−5 µF·cm−2) were
obtained in the presence of GA-NPs inhibitor after 180 days of exposure. These results may
be explained by the hydrophobic capacitive nature of γ-Fe2O3 film that established upon
the surface of reinforcing steel, which gives a huge time constant indicating passivation
of the steel. This can be compared with increased the Cdl of (7.68 × 10−5 µF·cm−2) for
control specimens at the end of test due to diffusion of CO2 in concrete. The regions
of continuously increasing real and imaginary impedance (Figure 4), have the effect of
shielding the steel from corrosion, hence providing corrosion resistance. The observed
impedance of the GA-NPs inhibitor is due to slow oxygen diffusion through the concrete
matrix and to the solid hydroxide layer at the steel-concrete interface providing a dielectric
film component [90–92].

Aguiar and Júnior [7] confirmed that 50% of CO2 penetration into concrete reacts with
C-S-H while the other 50% reacts with calcium hydroxide which is mainly attributed to
reduce the pH of concrete. Therefore, the Nyquist plot (Figure 4) for the control concrete
specimen presents a shortened depressed semicircle. This indicates break-down of the
rebar passive film due to reduce of concrete alkalinity by carbon dioxide diffusion, leading
to the observed reduction in the charge transfer resistance.

3.4. Morphology of Rebar Surface
3.4.1. SEM Analysis

SEM micrographs of steel reinforcement surface of concrete treated with and without
3% GA-NPs following 180-day of exposure to CO2 are depicted in Figure 6. From Figure
6a, it is evident that the surface of reinforcing steel without GA-NPs inhibitor exhibited
rough, damaged and corroded surface, as well as the cracks were also formed. In contrast,
the SEM morphology of reinforcing steel surface treated with green GA-NPs inhibitor at
same magnification exhibited a smooth surface without any cracks which is indicated that
the adsorption of inhibitor molecules. Hence, providing a prevention layer that hindered
or reduced the diffusion of CO2 to react with Fe and de-passivate the steel reinforcement
film. Carbon monoxide can be reacted with iron dioxide in many processes to produce
carbon dioxide and iron as follows:

3Fe2O3 + CO→ 2Fe3O4 + CO2 (9)
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Fe3O4 + CO→ 3FeO + CO2 (10)

FeO + CO→ Fe + CO2 (11)
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3.4.2. Atomic Force Microscopy (AFM)

The 2D and 3D AFM morphologies of the steel reinforcement surface for untreated
and treated concrete with GA-NPs inhibitor are depicted in Figure 7 respectively. From
Figure 7a,b, it can be seen that the surface of steel reinforcement in the absence of GA-
NPs inhibitor suffered from being severely corroded and highly damage with an average
surface roughness of 2.186 µm. The high average surface roughness can be ascribed to the
development of corrosion products, essentially, magnetite-Fe3O4 and iron (II) carbonate-
FeCO3 due to the diffusion of CO2. Conversely, the image of steel reinforcement surface
(Figure 7c,d) in the presence of GA-NPs inhibitor was significantly enhanced, so that
the average surface roughness was reduced to 546.6 nm with an improvement of 75%
with respect to control steel reinforcement (without inhibitor). This observation further
evident that the adsorption of inhibitor and the formation of a thin film that hindered
the penetration of CO2 to reach the steel reinforcement surface. These findings robustly
support the outcomes obtained by weight loss and EIS experiments.

3.5. Visual Inspection on Accelerated Carbonation of Concrete

Figure 8 illustrates the visual inspections of accelerated carbonated specimens (includ-
ing and not including GA-NPs inhibitor) after 180 days of exposure to CO2. It can be seen
that the cube concrete specimen (cube) is associated with smaller carbonation depths when
3% GA-NPs inhibitor is present and when compared to control specimen. Figure 9 shown
the carbonation depths (mm) for concrete specimens exposed to CO2 gas for 28, 90 and
180 days with and without GA-NPs inhibitor. The carbonation depths of control specimens
were measured as 4.1 mm, 19.6 mm and 34.4 mm at 7, 28 and 180 days of exposure, respec-
tively, while 3.0, 6.2 and 12.3 mm carbonation depths were recorded for modified concrete
specimens with GA-NPs inhibitor at the same period of exposure. This implies that the
GA-NPs inhibitor is linked to the clearest impact to enhance the concrete matrix which led
to lowering carbonation depth by 64.42% following 180 days of exposure to CO2 gas with
respect to control specimens. Moreover, the high carbonation depth of control specimens
is not surprising. The reason is that control concrete is inclusive of numerous internal
pores especially with a high w/c ratio (0.55), and this means that it can be subjected to
carbonization is a clearer way. Kim et al. [93] observed that the increasing of w/c ratio
of concrete causes increasing in concrete porosity, hence diffusion of carbon dioxide gas
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is greater in control concrete. Nevertheless, it should be noted that the incorporation of
tiny size (40.24 nm) of GA inhibitory to concrete can act as a nano-filler reduced and/or
blocked the internal microstructure porosity of the concrete [94–96], thereby enhancing
anti-carbonation resistance.
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3.6. Carbonation Resistance (Carbonation Coefficient)

According to Valcuende and Parra [97], the concrete resistance towards carbonation
is inversely proportional to the carbonation coefficient according to Fick’s first law of
diffusion, this relationship can be expressed as follows:

X = K(t)0.5 (12)
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where K, X and t are the carbonation coefficient (mm/
√

month), carbonation depth (mm)
and exposure time (months), respectively, the results are listed in Table 5. Figure 10
presents the experimental results which display very good correlation factors with the
regression lines and clearly demonstrate a linear variation of the carbonation coefficient
with the square root of exposure time. The correlation coefficients of modified concrete
with GA-NPs have a great value of 0.9093 while that of the control specimen was 0.7877,
indicating a strong correlation of the carbonation depth with exposure time in the presence
of inhibitors. Moreover, the increasing of the carbonation coefficient in the presence of GA-
NPs inhibitor (Table 5) from (3–5.02) compared to that of control specimens (4.1–14.04) after
1 to 3 months of exposure respectively, revealing that the modified specimens exhibited
high resistance to carbonation and strengthen the concrete matrix by 64.25%. According to
Shaikh and Supit [56], the structure of nanoparticles can assist to affect the improvement
of durability properties and strength development. Furthermore, the high surface area of
nanoparticles can be consumed the Ca(OH)2 in the concrete during the hydration process
and development of further C-S-H gel. Moreover, the aggregate structure can be also
enhanced in the presence of nanoparticles, resulting in a strong bond between cement paste
and aggregates.

Table 5. Parameters of carbonation resistance.

Specimens t (month) X (mm) K (mm/
√

month)

Control concrete
1 4.1 4.1
3 19.6 5.54
6 34.4 14.04

GA-NPs concrete
1 3.0 3
3 6.2 3.58
6 12.3 5.02
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3.7. Effect of pH Value of Concrete

The pH values of concrete specimens exposed to carbonation for 180 days in the
absence and presence of GA-NPs inhibitor at a variety of depths are depicted in Figure 11.
In general, the pH values of control specimen are significantly lower than that of concrete
treated with green GA-NPs inhibitor. The pH value of the carbonated control specimen
dropped to 9.2 at depth of 2 mm which was measured from the cube’s surface and in-
creased slightly to 10.4 at depth of 20 mm. This means that the control concrete specimens
have undertaken rapid deterioration, and have been decalcified in a harsh condition, in
comparison to the concrete treated with green inhibitor. The accelerated deterioration
can be attributed to an extra intense decalcification of control concrete and increasing the
penetration of carbon dioxide. The latter reacts with calcium ions in the concrete matrix
which leads to consuming more calcium hydroxide and C-S-H, as a result, formation of
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CaCO3. In another meaning, during the carbonation process, the content of Ca2+ ions in
the pore solution becomes reduced. This, in turn, triggers dissolution of calcium hydroxide
and diffusion of Ca2+ from the interior of the concrete to the site of carbonation, where
the concentration of both components will be at a minimum due to the low solubility of
calcium carbonate. Moreover, following long-term degradation, the cementitious materials
of the concrete pore to the surface of the specimens was nearly free of calcium. This leads
to a reduction in the alkalinity of the pore solution and may lead to decomposition of the
hydration products which, in turn, generally leads to increased porosity of cement-based
materials. This increased porosity due to leaching, along with the lowered pH values, can
enhance the rate of ingress of aggressive substances or the rate of corrosion of reinforcing
steel. The chemical reactions of carbonation process may explained as follows [90]:

CO2 + H2O→ HCO−3 + H+ (13)

HCO−3 → CO2−
3 (carbonate ions) + H+ (14)
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In the pore solution, the CO2−
3 can be reacted with calcium ions as follows,

Ca2+ + CO2−
3 → CaCO3 (15)

As a result of the above reaction, the concentration of calcium ions reduced and
dissolution of essentially Ca(OH)2.

CaOH2 ↔ Ca2+ + 2HO−
(

solubility 9.95× 10−4
)

(16)

Ca2+ + CO2−
3 → CaCO3

(
solubility 0.99× 10−8

)
(17)

This leads to dissolved and precipitation of Ca(OH)2 and CaCO3 respectively until
the Ca(OH)2 is totally consumed.

Conversely, the carbonation effect on GA-NPs specimens was negligible, since the
pH remains as high as 12.5 at a depth of 18 mm (Figure 11) which is comparable to pH
in normally hydrated concrete. Obviously, the tendency of the curve is higher in the
GA-NPs specimens demonstrating that the effectiveness of nanoparticles on the decreasing
of diffusivity. Besides, the high surface area of nanoparticles can be acted as pozzolanic
materials, which is enhanced the reaction of concrete compounds [98,99], hence, increased
the concrete’s durability by decreasing levels of free calcium hydroxide and developing
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C-S-H gel. This is reflected in greatly enhanced pH values by up to 18.4% at a depth of
20 mm relative to the control specimen.

3.8. Morphologies of Concrete Specimens
3.8.1. Thermogravimetric Analysis (TGA) and Differential Thermal Analysis (DTA)

Figure 12 illustrates the TGA/DTA curves for concrete powder specimens with and
without GA-NPS exposed to CO2 gas for 180 days. These analyses indicate three character-
istic temperature ranges in which weight loss occurs during heating. From Figure 12a,b, the
components of powder specimens exhibit a continual weight loss which denotes a change
in the mass of the powder. Melar et al. [100] acknowledged that the first region of weight
loss of concrete powder appeared at 25 ◦C to 120 ◦C is related to the loss of moisture which
is mainly absorbed from the atmosphere, in addition to a partial loss of the bound water
such as dehydration of the ettringite and interfacial layer (C-S-H). According to Heikal
et al. [101] and Kinoshita et al. [102], the second region of weight loss of specimens occurred
at a temperature of 400 ◦C to 550 ◦C is associated with dehydroxylation of Ca(OH)2, while
the weight loss of the third region at 600–750 °C is assigned to decomposition of amor-
phous calcium carbonate (CaCO3) and crystalline. The dehydrogenation of Ca(OH)2 can be
briefly described as follow; the amount of the molecules of water are rapidly reduced in the
dehydration process, with not much change in the amounts of hydroxyl. However, when
the degree of hydration is decreased to half, just a small quantity of water has remained in
the C-S-H matrix. Additional reduction of hydration degree can occur by the decreasing of
Ca-OH and Si-OH groups “dehydroxylation stage”. Thereafter, a single molecule of H2O
separates and awards a single of its own H atoms to the deprotonated Silanol, as a result,
the development of double hydroxyls, Ca-OH and Si-OH. Moreover, in the presence of
deprotonated hydroxyl groups, the H2O atoms are thermodynamically unsteady. Hence,
the dehydroxylation of calcium–silicate–hydroxide takes place.

Si−OH + Si−OH = Si−O− Si + H2O (18)

Si−OH + Ca−OH = Si−O−Ca + H2O (19)

Ca−OH + Ca−OH = Ca−O−Ca + H2O (20)
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Table 6 depicts the amount of CH and C-S-H components of concrete specimens after
exposure to CO2 for 180 days. The calcium hydroxide content of GA-NPs specimens
was decreased significantly from 10.20% to 3.72% in comparison to the specimen without
GA-NPs. The presence of the lesser weight-loss values of treated concrete with GA-
NPs inhibitor at a temperature range of 400 to 550 °C proposed that the consumption of
Ca(OH)2 (portlandite) resulted from the significant pozzolanic activity of GA-NPs concrete
and formation of extra C-S-H gel (9.72%). The improvements of portlandite consumption
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and formation of C-S-H gel were 63.53% and 67.63% respectively, with respect to control
concrete. Nevertheless, it should also be noted that the particularly high amounts of
portlandite in control concrete (10.20%) which was determined at the same temperature,
can be resulted due to the susceptibility of the concrete to high carbon dioxide gas because
of the porous nature of the concrete. Moreover, the modified concrete specimen with
GA-NPs has displayed a decrease in the mass loss at a temperature range of 600 to 800 °C,
which is strongly confirmed that the incorporation of green GA-NPs inhibitor made the
concrete denser, less porous and less permeable to diffuse the CO2 gas, thus, enhanced the
durability of concrete.

Table 6. Amount of CH and C-S-H gel in the concrete matrix after exposure to CO2 environment for
180 days.

Specimen CH (%) C-S-H (%)

Control concrete 10.20 3.00
GA-NPs concrete 3.72 9.27

3.8.2. SEM-EDX

Following 180 days of exposure to accelerated carbonation conditions, the SEM mor-
phologies of the control specimen and the specimen treated with green GA-NPs inhibitor
were as presented in Figure 13. Figure 13a, reveals that the hydrated product calcite has
formed at the expense of portlandite consumption in the control specimen. Cracks linked
to the increase in internal deterioration due to CO2 attack are observed on the surface of
the control specimen. According to Ekolu [103], diffusion of CO2 into the concrete lowers
the pH to around 9–10, leading to breakdown of the natural protective passive layer, so
that corrosion begins to occur. The CH (calcium hydroxide) and (C-S-H) both react with
CO2 to form poorly soluble calcite, which precipitates within the pore space, affecting the
properties of the concrete and increasing the corrosion rate of the embedded steel.
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In contrast, Figure 13b indicates that the incorporation of 3% GA-NPs inhibitor re-
sulted in total improvement of the concrete surface morphology, revealing a smooth
concrete surface with the complete absence of calcite or cracks. According to Mukharjee
and Barai [104], the nanoparticles can be reacted rapidly with crystalline (CH) to form
C-S-H, i.e., the crystals can be absorbed. This decreases the size and quantity of CH crystals
while the C-S-H gel makes up about 70% of the hydration products and contributes towards
filling the voids and so enhancing the binding paste matrix and the density of the interfacial
transition zone (ITZ). The nanoparticles are able to fill the remaining voids in the C-S-H gel
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structure, thus further enhancing the density of the binding paste matrix. Furthermore, the
nanoparticles create a strong bond with C-S-H gel particles via acting as a nucleus in the
C-S-H gel structure.

Figure 14 presents the EDX spectra of the concrete specimens, while Table 7 lists the
percentage atomic content of various elements in the concrete surface, as determined by
EDX. The penetration of CO2 gas into the concrete surface reduces both the pH value and
the concentration of Ca2+ ions, leading to dissolution of the calcium–silicate–hydroxide gel
due to consumption of CH. Decomposition of monosulfate and ettringite occur respectively
at pH 11.6 and 10.6, after which most of the Ca2+ ions from the C-S-H gel bind to CaCO3
leaving just a minor amount of Ca2+ ions in the silica gel. Hussain et al. [105] attribute this
to the reduction in the quantity of portlandite by carbonation, resulting in low Ca/Si ratios
in the C-S-H gel, and Pelisser et al. [106] pointed to an increase in concrete durability when
the Ca/Si molar ratio of the C-S-H gel fell below 1.65. Examining Table 7 and Figure 14a in
the light of this hypothesis, the Ca/Si ratios of control specimens (3.22%) are seen to be
greater than the normal acceptable value, thus explaining the observed pore structures. By
contrast, the EDX spectrum presented in Figure 14b confirms that the Ca/Si ratio of 0.69%
obtained in the presence of GA-NPs inhibitor is due to the incorporation of alkali metal
into the C-S-H gel.
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Table 7. The percentage atomic content of various elements in the concrete surface exposed to CO2

gas for 180 days.

Specimen
Components (%)

O Ca C Si Al Mg Fe Na K Ca/Si %

Control 46.7 25.1 13.3 7.8 2.9 1.1 2.3 0.8 0.0 3.22
GA-NPs 49.5 11.6 17.2 16.7 1.8 0.0 1.5 0.0 1.7 0.69

3.8.3. X-ray Diffraction (XRD)

The X-ray powder diffraction (XRD) results for the control concrete specimen and the
specimens treated with green GA-NPs inhibitor, following 180-day of exposure to CO2
gas, are presented in Figure 15. Each concrete specimen showed peaks at 2θ◦ = 20.9◦,
26.9◦, 39.8◦, 50.5◦ and 60.2◦ due to the presence of quartz (Q), at 2θ◦ = 36.1◦, 54.4◦ and
63.6◦ due to portlandite (P) and at 2θ◦ = 29.7◦, 40.3◦, 67.7◦, 73.4◦ and 75.6◦ due to calcite
(C). Nevertheless, the specimen treated with GA-NPs inhibitor showed reduced peaks for
portlandite and calcite along with increased peaks for quartz in comparison with the control
specimen under the same curing conditions. This suggests that the incorporation of the
GA-NPs inhibitor could influence both the degree of portlandite and calcite crystallisation
and the crystal sizes by filling and obstructing the pore structure in the concrete surface
layer. The resulting reduction in connectivity and pore size would reduce the permeability
of the concrete to diffusion of CO2.
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4. Conclusions

The impact of the developed green gum Arabic inhibitor upon the behaviour of
reinforced concrete exposed to carbonation for 180 days was investigated. The conclusions
are set out according to the results of various tests as follows:

i. The results of weight loss and EIS evidenced that the incorporation the GA-NPs
inhibitor into concrete increased the inhibition efficacy and decreased the corro-
sion rate up to 94.5% and 0.57 × 10−3 mm/year respectively, by increasing the
surface coverage area led to increasing the adsorption of inhibitor molecules on
steel reinforcement. In addition, the results of EIS revealed that the double-layer ca-
pacitance of steel reinforcement was decreased while the charge transfer resistance
was increased in the presence of inhibitor due to the formation of a protective layer.

ii. The morphology of steel reinforcement by SEM and AFM studies confirmed the
formation of a protective layer. In addition, AFM images of rebar in the presence of
GA-NPs inhibitor confirmed low surface roughness which is strongly promoted
the ability of the inhibitor to adsorb over rebar.

iii. The carbonation depth tends to increase with increased time of accelerated curing.
Nevertheless, the lowest level of carbonation was clearly observed for the specimen
modified with GA-NPs, indicating that the tiny scale of green inhibitor molecules,
which was 40.24 nm according to TEM, can block the capillary pores of concrete to
form an impermeable barrier against the ingress of CO2.

iv. The best linear relationship was observed for the concrete modified with 3% GA-
NPs inhibitor, with a correlation coefficient of 0.9093, compared to a minimum
value of 0.7877 for the control specimen.

v. The alkalinity of control specimens was reduced after 180 days of exposure to CO2
gas by dropping the pH value to 10.4 at depth of 20 mm. In contrast, the high
surface area of nanoparticles was capable to fill the porous of concrete, which led to
enhancing the pozzolanic reaction and formation of extra C-S-H gel, hence, the pH
value of modified concrete was raised to 12.5 at a depth of 20 mm.

vi. Finally, the microstructural morphologies of concrete specimens in the presence of
GA-NPs inhibitor including TGA/DTA, SEM-EDX and XRD confirmed the ability
of green GA-NPs inhibitor to increase the durability of concrete by reducing the
ratio of Ca/Si to 0.69, consumption of portlandite, and increased the peaks of quartz,
thus the development of extra C-S-H gel.
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