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Abstract—In the offshore industry, unmanned autonomous sys-
tems are expected to have a permanent role in future operations.
During offshore operations, the unmanned autonomous system
needs definite instructions on evaluating the gathered data to
make decisions and react in real-time when the situation requires
it. We rely on video surveillance and sensor measurements
to recognize early warning signals of a failing asset during
the autonomous operation. Missing out on the warning signals
can lead to a catastrophic impact on the environment and a
significant financial loss. This research is helping to solve the
issue of trustworthiness of the algorithms that enable autonomy
by capturing the rising risks when machine learning uninten-
tionally fails. Previous studies demonstrate that understanding
machine learning algorithms, finding patterns in anomalies, and
calibrating trust can promote the system’s reliability. Existing
approaches focus on improving the machine learning algorithms
and understanding the shortcomings in the data collection.
However, recollecting the data is often an expensive and extensive
task. By transferring knowledge from multiple disciplines, diverse
approaches will be observed to capture the risk and calibrate the
trust in autonomous systems. This research proposes a conceptual
framework that captures the known risks and creates a safety
net around the autonomy-enabling algorithms to improve the
reliability of the autonomous operations.

Index Terms—autonomous systems, machine learning, reliabil-
ity engineering, risk assessment, calibrated trust

I. INTRODUCTION

The advancements in technology are changing the way the
industry handles risk. What used to be a tedious or dangerous
job for a human can be replaced by an unmanned autonomous
system (UAS). This replacement can enhance safety, work
efficiency, and knowledge of the operating environment. As a
type of artificial intelligence [1], machine learning (ML) is at
the forefront of research in the context of reliable UAS. Auton-
omy is ”an unmanned system’s own ability of integrated sens-
ing, perceiving, analyzing, communicating, planning, decision-
making, and acting/executing to achieve its goals” [2]. Recent
research on autonomous systems identifies common challenges
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within risk and trust of ML algorithms that enable autonomy
[3], [4]. Formal definitions of technical tests and evaluation
of UAS [5] highlight challenges of lacking the quantitative
definitions of emergent behavior, human trust, reliability and
resilience [3]. However, to ensure the UAS’s ability to act and
make decisions to achieve the mission’s goal, it is critical to
explore the concept of calibrated trust [6]. Calibrated trust is
the process of adjusting the trust level of human operators with
the actual reliability of a system [6], - or trusting the machine
will do as intended within a specific environment [7].

ML allows computing systems to learn how to do tasks from
significant amounts of data, rather than being programmed
(human instructed) [1]. Therefore, there is a rising need
to understand how ML capabilities can be integrated into
existing systems engineering, and design processes [3]. The
performance of ML algorithms can measure the majority of
UAS’s capabilities, inevitably measuring the system’s reliabil-
ity. However, the software and system reliability engineering
for UAS incorporating ML is not a trivial task. ML integration
is experiencing significant limitations, including black box
algorithms or algorithm explainability [8], scalability, and
limited structural approach to problem-solving. The data, often
impacted by biases, is another limitation related to ML. Bad
quality data can lead the ML algorithms to result in poor
predictions or decisions, and eventually, unintended harm [9].

During offshore operations, the UAS relies on integrated
sensors and video input for surveillance, intervention, and
inspection of the assets and the environment. The role of the
UAS is to recognize warning signals from the environment or
the inspected asset, trigger warning signals, and report them to
the offshore control center or operator control rooms in real-
time. Unintended ML outcomes can significantly impact the
environment, the asset, and the UAS itself. The environmental
disruptions can stay unnoticed and develop to critical states,
such as disruptive water states or chemical leaks. Similarly,
unobserved corrosion, chemical leaks, material degradation,
cracks, misplaced objects, and biological growth on assets are
just a few examples of the potential issues. This problem



can lead to a catastrophic impact on the environment and
significant financial loss for the industry. Knowing how to
respond and prepare the data for anticipated insights is a
challenge in dynamic operations. The industry needs more
knowledge on reliable, and time-efficient UAS operations [10].

The contribution of this paper is a Warning Identification
Framework (WIF) for UAS incorporating ML. The WIF incor-
porates managing resilience, ensuring the system’s ability to
plan, prepare and react to the potential occurrence of unwanted
and disruptive events. While designing this framework we
consolidate knowledge on reliability and resilience engineer-
ing, risk assessment, and human-machine teaming approach to
UAS. In this paper, we:

1) Provide a multidisciplinary approach to the safety con-
cerns of current systems incorporating ML through the
lenses of risk assessment’s future.

2) Propose a global framework based on a shared un-
derstanding of gaps in ML of a particular application
instead of solutions based on specific ML algorithm
enhancements or global change of data gathering pro-
cesses.

Section II gives an overview of the background and related
work. Section III details the reliability and resilience engineer-
ing, risk assessment, and human-machine teaming theories and
concerns. Section IV formalizes the concepts from Section
III and illustrates the WIF’s role in mitigating risks. Finally,
Section V concludes the paper and addresses future work.

II. BACKGROUND AND RELATED WORK

A. Trust Calibration

Recent research shows potential in alleviating risks, enhanc-
ing reliability, and influencing trust in autonomous systems.
Reliability is an ability to perform as required, without failure,
for a given time interval, under given conditions (IEC 192-
01-24) [11]. The reliability of an autonomous system directly
impacts trust. However, over-trust and under-trust often occur
in highly dynamic environments and can pose serious safety
and efficiency concerns [6]. Over-trust in the system implies
that the human operator overestimated the reliability of a
system. Under-trust in the system implies that the human
operator estimates that the system should not be trusted with
a given task. Okamura et al. [6] describe the trust calibration
in autonomous systems in a dynamic environment as an
essential process for successful collaboration between humans
and systems. Trust calibration incorporates system reliability
and continuous system transparency. Okamura et al. [6] argue
that trust is a latent construct and therefore challenging to
measure. The authors [6] observe human behavior to determine
the trust calibration status. They experimented with a drone
simulator and observed seventy participants who performed
inspection tasks manually or relied on the inspection by an
autonomous drone. In the experiment, the participants ob-
served the changing weather conditions in the drone simulator.
The participants were required to actively make decisions
whether they trust or rely on the autonomous drone to perform

inspection tasks within the environmental conditions presented
on the simulator. The experiment’s goal was to capture the
under-trust and over-trust of the participants in the autonomous
drone operations. The experiment demonstrated successful
detection of miscalibration of trust and adjustment of partici-
pants’ behaviors, showing trust gaps in collaboration between
humans and autonomous systems. The results showed that
understanding how the system functions and makes decisions
is crucial when trusting the autonomous systems.

B. Explainable Machine Learning

ML is taking over many high-stakes decision-making
throughout society [8]. The author [8] defines black box ML
algorithms as either functions that are too complicated for
any human to comprehend or as proprietary functions. Past
research highlights that developing explainable algorithms will
mitigate some of the problems caused by the black box
algorithms [8]. Rudin [8] argues that trying to explain black
box algorithms rather than developing explainable ones can
support a bad practice and therefore cause harm to society.

The author [8] singles out some of the most prominent
challenges of black box and explainable algorithms:

1) Complexity: There is a belief that black box algorithms
result in top predictive performance when compared to
the explainable algorithms that are easier to understand.
The author claims that when the data is structured and
contains meaningful features, complex classifiers (such
as neural networks, random forest, boosted decision
trees) and more straightforward classifiers (such as lo-
gistic regression and decision lists) perform similarly.
Complexity does not imply accuracy, which is also valid
for computer vision or image processing algorithms that
are often particularly complex.

2) Faithfulness of explainable algorithms: Explainable ML
algorithms provide interpretations that are not faithful to
what the black box algorithm computes. The explainable
algorithm does not mimic the black box algorithm but
instead tries to interpret it as accurately as possible
and provide an explainable alternative to the black box
algorithm. The difficulty in creating this interpretation
can lead to misalignment with the black box algorithm
and endanger the trust in the black box algorithm.
Rudin [8] proposes calling these interpreted algorithms
‘summary statistics’, ‘summary predictions’ or ‘trends
of the algorithm’ to avoid confusion with the belief that
the interpretation should mimic the black box algorithm.

3) Challenge to incorporate risk estimation within black
box algorithms: The database is a definite collection of
data or information that the algorithms learn from and
train on to make predictions. Black box algorithms are
often incompatible with the situation where information
outside the database needs to be combined with a risk as-
sessment. Rudin [8] argues that the black box algorithms
are challenging to calibrate with additional information
on estimated risk manually. Another downside of these



algorithms is that it is not transparent as to what the risk
estimation is.

4) Explainability leading to human error: Additional expla-
nations to the black box algorithm can lead to compli-
cated decision-making and leave space for other human
error.

5) Hidden patterns in data: There is a myth that only black
box algorithms can uncover hidden patterns in data.
This myth can lead to less trust in the performance of
explainable algorithms. The author [8] claims that if the
pattern were significant enough, it would be possible to
obtain it with an explainable algorithm.

6) Explainability is difficult to design and develop: Cre-
ating explainable algorithms for specific domains often
involves constraints on data dimensions, meaning that
explainability requires low-dimensional space. It is chal-
lenging to troubleshoot the algorithm or agree on the
explainable algorithm’s reasoning process for a specific
domain. The main challenge lies in the difficulty of
developing and designing explainable algorithms.

Explainable ML algorithms lead to increased transparency
that is crucial in measuring the fairness of the advanced
system’s decision-making processes. The fairness notion tells
if the output of a predicting system is fair or discriminating
[12]. Fairness is a rising problem due to the predictive sys-
tem’s tendency towards efficiency and sacrificing anomalies as
tolerable collateral damage [12].

C. Errors and Biases in Machine Learning

There is a growing worry about the errors of ML in sensitive
domains [13]. Pleiss et al. [13] describe cases of ML errors
due to biases in data that have directly impacted human lives.
The authors examine the cases of ML classification algorithms
and frameworks that constrain these algorithms such that no
false-positive or false-negative predictions affect any classified
group or that there exists fairness in the classified groups. Their
study demonstrated unsettling results that any algorithm with
one error constraint (i.e., equal false-negatives across groups)
is almost equal to randomizing the percentage of predictions
for an existing classifier.

Knowing when to react is critical during remote operations.
A timely reaction can prevent accidents saving the environ-
mental impact and significant amounts of money. Galaz et
al. [4] provide recent research of machine intelligence risks
that include algorithmic bias and harms, unequal access and
benefits, cascading failures and disruptions, mis- and disin-
formation, and trade-offs between efficiency and resilience.
The authors imply that many foreseeable risks can be acted
upon proactively. However, they do not propose actions or
algorithms to intervene with ML outcomes’ foreseeable risks.
The authors [4] highlight that these risks are related to algo-
rithmic biases and their allocative harms. The authors group
these biases into training data bias, transfer context bias, and
interpretation bias:

1) Training data bias is the erroneous data from which
machines learn.

2) Transfer context bias occurs when using ML algorithms
and dataset created in/for one environment in another.

3) Interpretation bias is a conflict between ML interpreted
results and expected or needed results for further func-
tioning of a system.

Suresh et al. [9] discuss important choices generated over
extensive data and build a framework for understanding un-
intended consequences of ML. The authors identify ‘biases’
as the most common reason from which unwanted ML con-
sequences arise. The bias represents an unintended or even
malicious property of the data [9]. The authors [9] curate
through recent work of known ML issues and identify six
sources of harm that represent a framework for understanding
the unintended ML consequences:

1) Historical bias occurs when the machine learns on
historical or available data samples that do not reflect
an accurate picture of the world.

2) Representation bias occurs when there is an imbalanced
representation of all the data samples in the data set.

3) Measurement bias occurs when what we choose to
measure does not relate well to the data samples the
machine learns on or when the machine learning task is
oversimplified.

4) Aggregation bias occurs when using a one-size-fits-all
algorithm for cases with different conditional distribu-
tions.

5) Evaluation bias occurs when the evaluation or bench-
mark data for the ML algorithm does not represent the
target measurement.

6) Deployment bias occurs when there is a mismatch
between the problem an algorithm is intended to solve
and how the algorithm is used.

The authors [9] advise tweaking ML algorithms to mitigate
aggregation and evaluation biases in data. They indicate that
the framework can communicate knowledge on ML outcomes
and possibly facilitate productive solutions on dealing with the
harmful consequences.

D. Applications
A significant number of applications are developed for

autonomous systems incorporating ML for mitigating risks
during operations. As a major task in offshore operations,
the UAS are increasingly popular to gather information for
risk assessment of the assets or the environment. Condition-
monitoring data is often used as additional information for
evaluating risk [14]. In offshore operations, monitoring of
assets can give real-time information on degradation of the
asset material, and the condition-monitoring data provides
information on individual degradation process [14]. Some of
the applications regarding data assessment on degradation pro-
cesses such as oxidation, corrosion, fatigue, crack growth are
[14]–[17]. Improved design and tweaking of ML algorithms
and reconsideration of data gathering and pre-processing meth-
ods are the most notable research topics for enhancing the
reliability of autonomous systems, and understanding error
measurements [5], [18]–[22].



Anomaly detection is an essential process for recognizing
unexpected events in the data during operations. Liu et al.
[23] explore background biases for anomaly detection in
surveillance videos. Their study shows that the algorithms
are biased to capture a considerable amount of background
information as the basis of predictions. The authors [23]
argue that background bias is a problem that exists in the
majority of the action recognition algorithms, particularly in
deep neural networks. They propose a trainable, area-guided
framework for the anomaly detection algorithms to recognize
anomalous regions and learn the essence of the anomaly
instead of simply remembering the background [23]. Related
concerns around anomaly detection algorithms are prominent
in research, such as trade-offs and analysis of the algorithms
[24], bottleneck identification [25], and large-scale anomaly
detection in surveillance videos [26].

III. MULTIDISCIPLINARY VIEW ON RELIABLE
AUTONOMOUS SYSTEMS

A. Risk Assessment

Risk assessment is a discipline that incorporates structured
analysis and identification of possible hazards/threats, their
causes and consequences, risk description, quantification, and
representation of uncertainties [14]. The terms risk and warn-
ing are often used together or interchangeably. According to
[1], risk is the possibility of something bad happening at
some time in the future, a situation that could be dangerous
or have a bad result. Moreover, a warning is a statement or
an event telling somebody that something bad or unpleasant
may happen in the future so that they can try to avoid it [1].
Additionally, a warning is a sign that indicates approaching
or threatening risk and may require immediate intervention.
Therefore, it is crucial to understand a specific environment
or assets’ potential risks of failure to understand warning
signs and act upon them. The risk assessment should provide
a coherent increase of the awareness on risk and attention
to safety. The fourth industrial revolution, particularly the
internet of things, big data, and artificial intelligence that
enables autonomy, changes how we design and develop sys-
tems and monitor our environment. This complex network
of cooperative systems provides opportunities to improve the
systems that monitor, intervene, and inspect the environment
or the industrial assets to become more efficient, faster, more
flexible, and resilient. However, these systems also generate
new weaknesses, hazards and create new risk, somewhat
due to new and unknown functional dependencies in and
among the systems [14]. Scibilia et al. [27] describe the
industry perspective on the definition of autonomy and divide
autonomy into six levels, from no automation to a fully
autonomous system that does not require human interaction.
The authors [27] highlight that the fully autonomous system is
multidimensional and incorporates autonomy/automation, data
deliberation, and risk assessment. Data deliberation signifies
the system’s capability to continuously gather data from the
environment, analyze it, and compare historical data to make
predictions. Risk assessment signifies the system’s capability

to continuously assess the risk and adjust the criticality of the
warnings accordingly, deciding the best risk mitigation policy
[27].

Naturally, the digital future is shaping the future of risk
assessment. According to [14], six underlying factors impact
the advancement of risk assessment:

1) Knowledge, information, and data available for analyz-
ing and computing the risk are continuously growing.

2) Modeling capabilities and computational power are con-
tinuously advancing, making more accessible simula-
tions and large-scale data analysis.

3) The increasing complexity of the advancing systems
made of heterogeneous elements (hardware, software,
human) leads to system behaviors challenging to predict
or explain.

4) The risk assessment extends to cover managing risk in a
systematic way that includes the occurrence of the risk,
prevention, mitigation, emergency crisis management,
and restoration [14].

5) Recognition that risk varies over time and accordingly,
the effectiveness of the mitigation measures changes.

6) Cyber-physical systems require solid frameworks for
safety and security assessment.

Zio [14] highlights that description of the risk and future risk
assessment is conditioned on available knowledge. However,
it is equally important to address the incomplete knowledge
or the unknowns within the risk assessment. According to the
available knowledge, Flage et al. [28] classify the events in
risk assessment to:

1) Unknown-unknown events that are new and unknown to
everyone.

2) Unknown-known events that are new to risk analysts but
have been recognized by someone else.

3) Known-unknown events with weak background knowl-
edge and justified indications that a new, unknown type
of event or scenario could occur in the future.

4) Known-known events that are known to the analysts
performing the risk assessment and for which there is
existing evidence.

In autonomous systems that incorporate ML, unknown
events require novelty detection and anomaly detection ap-
proaches. Novelty detection is the task of classifying test data
that differ in some respect from the data that are available
during training [29]. Anomaly detection detects the anoma-
lies unrelated to the training data [30]. Both anomalies and
novelties occur rarely and are dealing with unexpected events
in the data. We can argue that the most dangerous events are
the unknown ones because otherwise, we can take action to
prevent them. Accordingly, Flage et al. [28] argue that known-
unknown events are representative of known risks that become
apparent in new conditions. However, the unknown-unknown,
unknown-known, and known-known events can be associated
with negligible probabilities of occurrence.



B. Reliability Engineering for UAS
The system reliability engineering and reliability assessment

are practical ways to manage risk and support decision-making
for safe, reliable, and efficient operation of complex engineer-
ing systems [31]. According to [32], reliability engineering
is an engineering discipline for applying scientific know-
how to a component, product, plant, or process in order to
ensure that it performs its intended function, without failure,
for the required time duration in a specified environment.
Reliability engineering involves an iterative process of re-
liability assessment and improvement, and the relationship
between the two processes [33]. Autonomous systems can
change their behavior in response to unanticipated events
during operation [34]. However, assessing the reliability of an
autonomous system varies depending on the autonomy levels
of the system. Previous research on autonomy levels includes
the work of Huang et al. [35] who developed Autonomy
Levels for Unmanned Systems that specifies metrics to assess
autonomous systems capabilities. As the enablers of autonomy,
the reliability engineering approach to ML algorithms is sim-
ilar to traditional software reliability assessment. Abstractly,
ML performs perception tasks and informed decision-making;
thus, most systems that incorporate ML will naturally include
standard software components [3]. Reliability growth model-
ing that characterizes how the reliability of a system increases
during testing [3] is one of the standard approaches to software
reliability assessment. In ML, the reliability growth measures
the accuracy as a fraction of correct predictions divided by a
total number of predictions [3]. Consequently, reliability and
accuracy in ML are commonly synonymous terms [3].

According to [36], there are four technical components of
reliable software:

1) Fault prevention - avoiding faults during design and
development of systems through enforcement of good
design methods.

2) Fault removal - the process of enforcing formal inspec-
tion and testing systems until eliminating all visible
faults while not creating any new faults.

3) Fault tolerance - the survival attribute of a system.
4) Fault/failure forecasting - the process of establishing

reliability models, failure data, fault/failure relationships,
analysis, and interpretation of system behavior.

A reliable system has a capability to function until the system
desists under expected circumstances. Moreover, a reliable
system is a representation of the resilience engineering results.

C. Resilience Engineering for UAS
Resilience engineering brings together the system safety

concepts, reliability of a system, analysis and handling un-
certainties, risks, and survivability of a system. According to
[1], resilience is the ability to recover quickly after something
unpleasant, such as shock or an injury, the ability to return to
its original shape. Hollnagel [37], who was at the forefront
of resilience engineering, has developed three premises of
resilience engineering that showcase limitations and issues in
resilience engineering:

1) The conditions of performance are underspecified.
2) Unfavorable events can be attributed to a combination

of normal performance uncertainties.
3) Safety management cannot be based on error probabili-

ties and calculations.
These premises demonstrate the limitations within current
safety engineering and pose guidelines for the continuous
evolution of resilience engineering.

Fig. 1. Basic functions of a resilient system, adopted from [38]

Vachtsevanos et al. [38] illustrate the expected basic func-
tioning of a resilient system through anticipation of undesir-
able events, the monitoring of performance, and the response
to warnings or threats (see Figure 1). This kind of system
implies proactive measures and readiness to adapt to the
variability of circumstances making it less susceptible to a
hazardous environment. As a result, a resilient UAS is flexible
and capable of returning to a normal functioning state after
experiencing disturbances.

D. Human-Machine Teaming Perspectives
Human-Machine Teaming (HMT) is a relationship between

humans, the machine, and their interdependencies. The goal
of HMT is to build trustworthy, transparent, predictable,
adaptable, and reliable systems that incorporate artificial in-
telligence, to create effective human-machine teams [7]. HMT
requirements [7] for an adaptable autonomous system include:

1) Multiple options or paths for recovery from a single
problem (among which allowing humans to specify
problem at different levels of abstraction);

2) On-demand adjustment of autonomy;
3) System degradation and failure resistance (the system

shall be tolerant and fail gracefully maintaining its safety
[7]).

For highly effective HMT, the most relevant requirements
during the development and design stage of the autonomous
systems are to ensure safe and effective systems during oper-
ations in complex, contested, unanticipated, and dynamic en-
vironments [7]. Calibrated trust (i.e., trusting the autonomous



system will do what it is supposed to do within a particular
environment) and shared understanding (i.e., shared perception
between human-to-machine and machine-to-human) are fun-
damental HMT concerns. A long-term strategy is to achieve an
intuitive, shared, and bidirectional information flow between
humans and machines [7].

IV. WARNING IDENTIFICATION FRAMEWORK

The UAS incorporating ML can understand the operating
environment and decide their reactions to the changes in the
environment. During asset surveillance, the UAS can detect
anomalies in sensor measurements that can suggest possible
risks or early warning signals. A risk indicates the possibility
of asset disturbance, and a warning signifies the early sign of
a disturbance that can require immediate reaction. The anoma-
lous events during remote operations, such as a measured
crack on the pipeline during surveillance for the offshore oil
and gas industry, can be extreme and unlikely. The rarity of
such measurements leads to very little evidence in data. The
rare measurement can be dismissed or even unnoticed by the
anomaly detection ML algorithm (as discussed by [23]). The
autonomous systems’ ability to detect warnings or risks is not
merely about building a tool; it is about creating a long-term
strategy. The UAS needs to have the possibility to react to
these warnings when the situation requires it.

This section proposes an early concept of a Warning
Identification Framework (WIF) to guide the planning of
UAS incorporating ML in addressing the known risks and
recognizing the warning signals accordingly (see Figure 2).
The process of development and integration of ML into a
system is referred to as the ML lifecycle [39]. The ML lifecycle
consists of four stages: Data Management, Model Learning,
Model Verification (as the activities during which machine-
learned models are produced), and Model Deployment (the
deployment of ML component along with the other software
components in the system) [39]. The Data Management stage
is responsible for the acquisition of the data that can be used
to predict future data or to perform other kinds of decision
making under uncertainty [40]. The planning of the Data
Management stage is often underestimated. However, with the
trust, reliability, and explainability issues that ML encounters,
it is critical to have a clear understanding of the purpose of ML
incorporated into a more extensive system. The WIF intends to
address trust calibration, errors and biases, and explainability
for the UAS that depend on ML algorithms (as shown in Figure
2). This framework bases on concepts and mitigation methods
from Risk Assessment, Reliability Engineering, Resilience En-
gineering, and Human-Machine Teaming (as shown in Figure
2). Two of the factors of future risk assessment, according to
[14], are the recognition of knowledge and data growth and
the need for solid frameworks for the safety assessment of
cyber-physical systems.

Therefore, the WIF consists of three segments:
1. Identifying the Risk: The first step in WIF is iden-

tifying the risk of experiencing disturbances in the form of
rare anomalies (i.e., concerning pipeline surveillance) from

available knowledge, historical insights, and domain expert
inputs. In this step, Risk Assessment provides insights into
risk definition based on available knowledge [14] and focusing
on known events that become apparent in new conditions
[28]. Known risks or vulnerabilities provide knowledge on the
sequence of events that can lead to the asset or environmental
disruption, frequency of occurrence of these events, and con-
sequences of the disruption. These factors are a part of formal
characterizations and representations of risk described in [41].
An extended definition, by [42], describes the knowledge of
risk through defining the set of disturbance scenarios, set of
consequences and, quantified uncertainties. Furthermore, a re-
liable system is capable of normal functioning under expected
or ordinary circumstances. These circumstances are a part
of the risk scenario definition. This step requires developing
models based on existing knowledge to identify risks.

2. Hierarchy of Warning Signals : Hirerachization or
ranking of the warning signals is a description of the sequence
of the events that may evolve into a disturbance that requires
immediate intervention. This hierarchy provides the early-to-
late-warning evolution of a disturbance by defining the criti-
cality of a warning signal. Adjusting the criticality of warning
signals is a part of Risk Assessment. This adjustment allows
for fault forecasting, as a characteristic of a reliable system
that incorporates the analysis of warning signal relationships.
Finally, as a resilient system, analysis and adjustment of the
criticality of warning signals allow the system to incorporate
a shared understanding of anticipation and monitoring of the
disruptions. This step requires domain experts to develop
models based on existing knowledge for describing risks.

3. Orchestration of Actions : Knowing how to respond
to the emerging disturbance is one of the critical elements of
reliable UAS [27], [38]. The orchestration of UAS actions is
an essential task in remote operations. This step incorporates
the reliable system capabilities to prevent, remove or tolerate
the disruptions and a resilient system capacity to respond to
the emerging situation. This step satisfies the requirement and
expectation of HMT for an autonomous system to adjust the
autonomy on demand. The ability for the UAS to systemati-
cally and intelligently recognize and act upon warning signals
gives the system the capability of being proactive and reactive.
A proactive UAS expects and captures weak signals before
anomalies occur. A reactive UAS communicates and responds
to the emerging situation.

Finally, the three steps of WIF satisfy the HMT require-
ments for an explainable functioning of a system with a shared
understanding of intentions and multiple approaches to a single
problem.

Warning Identification Process: Inspired by the concep-
tual model of Process Performance Indicator (PPI) [14], Figure
3 illustrates the Warning Identification Process (WIP). PPI
reflects on the degree of system objective satisfaction and
describes the disruptive events leading to unwanted disruptions
of the operation. The WIP demonstrates the development and
identification of the warning signals by the UAS, guided by
the WIF Hierarchy of Warning Signals. Displayed are stages



Fig. 2. Multidisciplinary approach formalized in WIF to address challenges in UAS ML

Fig. 3. Warning Identification Process

of warning from one to four, where one represents the earliest
stage of the warning sensed by UAS, and four represents the
latest and recognized warning that requires action. Anomaly
Response State is the period from when the UAS detects
an anomaly until it recognizes it as a warning. During the
Warning Response Trigger, the UAS takes action and responds
to the disturbance following the WIF Orchestration of the
actions. Finally, the Response State is when the UAS returns
to the natural flow of the operation, between the recognized
disturbance and a new expected disturbance.

Application : The complexity of algorithms that enable
autonomy makes it challenging to control, identify and char-
acterize potential disruptions and react to the consequences.
As a future factor in risk assessment, [14] highlights the need
for extending the frameworks of risk assessment for complex,
interconnected systems that support critical infrastructures.

Disruptive events and safety barrier failures typically occur due
to degradation processes [14]. Introduction of the condition-
monitoring or surveillance data in WIF can give insight into
the disruptive process, such as degradation, and prioritize
the monitored variables. The WIF can complement the ML
processes incorporated in UAS towards condition monitor-
ing, surveillance, and intervention-based risk assessment. The
proposed WIF provides a scalable, explainable and structural
approach to dynamic risk assessment alongside ML.

V. CONCLUSION AND FUTURE WORK

Implementing machine learning techniques in a
standardized practice that incorporates reliability is still a
matter of early development. During remote UAS operations,
any unintended misbehaviors of the UAS can have severe
environmental and financial consequences. With an increase in
UAS employment in remote offshore operations, we observe
a noticeable need to validate and improve the ML processes
that enable autonomy, further supporting critical decisions
during the UAS operations. The proposed framework, the
Warning Identification Framework, attempts to improve the
warning signal detection of UAS during remote operations,
address the shared understanding of UAS ML intentions, and
prevent unintentional consequences of machine learning.

Future research will further identify suitable tools to apply
in each step of the Warning Identification Framework and ap-
ply the technical approach to the use-case of pipeline surveil-
lance in the offshore oil and gas industry. The relationship be-
tween reliability and resilience engineering, risk management,
and human-machine teaming expectations, such as calibrated
trust, is an emerging area that plays a critical role in developing
reliable autonomous systems incorporating machine learning.
The authors will expand the proposed framework from the
novelty and anomaly detection perspectives as a part of future
research.
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