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We study the local load sharing fiber bundle model and its energy burst statistics. While it

is known that the avalanche size distribution of the model is exponential, we numerically

show here that the avalanche size (s) and the corresponding average energy burst (〈E〉) in

this version of the model have a non-linear relation (〈E〉 ∼ sγ ). Numerical results indicate

that γ ≈ 2.5 universally for different failure threshold distributions. With this numerical

observation, it is then possible to show that the energy burst distribution is a power law,

with a universal exponent value of −(γ + 1).
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1. INTRODUCTION

It is well-known experimentally that quasistatically stressed disordered solids produce intermittent
response statistics [1], particularly in terms of acoustic emissions, that show scale-free size
distributions. These intriguing dynamics is seen universally across scales from microscopic
laboratory samples to the geological scale of earthquakes [2–6]. Empirically, the scale-free size
distribution of breaking progression is known in different communities for decades. For example,
in geoscience, this is known as the Gutenberg-Richter law, in magnetic domain walls as crackling
noise, and so on.

The interests of statistical physicists in this context stems from the universal nature of the
dynamics across length and energy scales. The scale-free variations of acoustic emissions, waiting
time statistics, etc., are independent of the microscopic details of the underlying systems, which
are very different from each other. Such behavior indicates critical dynamics, particularly self-
organized critical dynamics for the system, where the universality hypothesis is still applicable,
without having to fine-tune a driving parameter [7]. Such a phenomenon is therefore open for
analysis with the tools of critical phase transitions, universality and therefore is an important step
toward predictability of imminent failure [8–10].

As a consequence of the scale-free dynamics and potential applicability of the universality
hypothesis, many generic models were proposed over the years that reproduce such a scale-free
behavior. Such models include the fiber bundle model, random spring network, random fuse
model, the Burridge-Knopoffmodel, and so on [5, 11–13]. The common underlying feature of these
models is that they are threshold activated, driven, dynamical models. Particularly, for an external
driving parameter crossing a pre-assigned threshold value for a single unit of these models, that
unit is activated and influences the units in its “neighborhood,” which may in-turn get activated
and thereby initiating an “avalanche.” As can be guessed, this type of dynamics is often related to
sandpile models of self-organized criticality [14] and indeed such associations extensively explored
in the past [15].

The twomajor parameters that influence the nature of the response in suchmodels are the range
of interaction [16] and the strength of the disorder [17, 18]. It was explored, particularly in the fiber
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bundle model that for a moderate disorder, a scale-free avalanche
statistics is only recovered for a “sufficiently” long-range of
interaction [16, 19, 20]. In the random fuse model, where the
interaction range is not parameters to be tuned, it was shown
that the avalanche statistics is not a power-law in the large system
size limit [21, 22]. This is in apparent contradiction with the fact
that in reality, the interaction range in disordered elastic samples
is not infinite i.e., not a mean-field-like interaction. However,
experiments routinely reveal scale-free statistics.

One important distinction between the analytical and
numerical results of avalanche dynamics and that of the
experiments is that in the former it is the number of elements
failing in an avalanche that is the measurable quantity, while in
the latter it is the energy released in the avalanche. Now, in the
mean-field limit of the fiber bundle model, it is straightforward
to show that the avalanche size and the energy avalanche
size are proportional, hence the two distributions are identical
in shape. But this relation is no longer valid for local load
sharing variants. In those cases, therefore, it is crucial to explore
the size distributions of the energy emissions and compare
that with experiments. In this work, we consider the simplest
possible variant of the local load sharing fiber bundle model and
analyze the energy avalanche statistics of that model. We then
compare the results with experiments and also present a plausible
argument for its form.

2. DESCRIPTION OF FIBER BUNDLE
MODEL

After being introduced by Pierce [23], the fiber bundle model has
been proven to be important yet arguably the simplest model
to study failure processes in disordered solids. A conventional
fiber bundle model consists of a set of linear elastic fibers or
Hookean springs, attached between two parallel plates. The
plates are pulled apart by a force F, creating a stress σ =

F/L on L fibers. Once the stress crosses the breaking threshold
of a particular fiber, chosen from a random distribution, that
fiber breaks irreversibly. The stress of broken fibers is then
redistributed either globally among all surviving fibers (global
load sharing or GLS scheme) or among the surviving nearest
neighbors only (local load sharing or LLS scheme). For the GLS
scheme [23, 24] no stress concentration occurs anywhere around
the failed fibers as the stress of the failed fibers is shared among
all surviving fibers. On the other hand, in LLS scheme [25–
30], stress concentration is observed near a broken patch (set of
neighboring broken fibers) and increases with the size of such
patches. After such redistribution, the load per fiber increases
initiating failure of more fibers starting an avalanche. At the end
of an avalanche, either all fibers are broken (suggesting global
failure) or the bundle comes to a stable state with few broken
fibers where an increment of external stress is required to make
the model evolve further. The last applied stress just before
global failure is considered to be the nominal stress or strength
σc of the bundle. The fraction of fibers that survive at σc just
before global failure is defined as the critical unbroken fraction
of fibers (Uc).

3. NUMERICAL RESULTS

We have studied the fiber bundle model numerically in both
mean-field limit and with local load sharing scheme in one
dimension, though the major part of the paper will deal with
the latter only. Numerical simulations are carried out for system
sizes ranging in between 103 and 107 and are averaged over 102–
104 configurations. Our motive is to understand the dynamics
of avalanches and corresponding energy bursts emitted during
these avalanches as the model evolves with increasing externally
applied stress. Unless otherwise stated, we will use a uniform
distribution ranging from 0 to 1 in order to assign threshold
values to individual fibers beyond which it breaks.

3.1. Relation Between s and E
Figure 1 shows a comparison between different avalanches and
energy emitted during different avalanches for a bundle of size
105. The results are produced for a single configuration. As usual,
an avalanche is defined as the number of fibers broken in-between
two consecutive stress increments; k is the number of such stress
increments in this case. While presenting the energy spectrum
and the avalanches we have excluded the final avalanche leading
to global failure.

The left panel of Figure 1 shows the results for the GLS fiber
bundle model while on the right panel, we have shown the results
with the local load sharing (LLS) scheme. Note that the range of
k for the LLS model is much less than the range of k with the
GLS scheme. This is understandable since with the LLS scheme,
the model is more unstable due to stress concentration and a
large number of fibers are broken during the final avalanche.
The model evolves with a lesser number of stress increments in
this case prior to a global failure where the average size of the
avalanches are smaller compared to that in the GLS scheme. Now,
for an avalanche of size s, if n fibers with threshold values τ1, τ2,
τ3, · · · , τn break, then the amount of energy emitted during this
avalanche will be:

E(s) =
1

2

n
∑

i=1

τ 2i . (1)

This follows from the assumption of linear elastic (stress∝ strain)
behavior of individual fibers up until their individual (brittle)
failure points. With above formalism, for each stress increment
k, we will obtain an avalanche s(k) and a corresponding energy
burst of magnitude E[s(k)].

The energy spectrum follows a particular trend in the case of
the GLS scheme. Since with the GLS scheme the fibers break in
the increasing order of their threshold values, the energy emitted
at k+ 1-th load increment will be higher than the energy emitted
at k-th increment, even if the avalanche sizes happen to be the
same at k and k + 1. Due to this, the variations of s and E with
increasing k looks exactly the same, only the values are scaled
by a constant when we transfer from s to E. Such correlation
between s and E is not present in the case of the LLS fiber bundle
model. In the case of the LLS scheme, the fibers break due to the
interplay between the local stress profile and the threshold values
of the fibers themselves. Due to such dynamics, the fibers do not
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FIGURE 1 | The left panel, from top to bottom, shows the spectrum of energy values (E) with increasing number of avalanches k, avalanche sizes (s) with k and E vs.

s for a certain avalanche for a GLS FBM. The right panel does the same but for a LLS FBM. We can see that, in case of a GLS FBM, there is a direct correspondence

between the s and E values for a certain k. This means, higher s gives higher E. Since in case of GLS FBM, the fibers break in an increasing order of threshold values,

we get, E(k + 1) > E(k) even if s(k + 1) = s(k). We do not see this direct correspondence between the s and E values with local load sharing scheme. For example, the

red eclipses show the parts where only 1 fiber breaks at each k value but the corresponding E values show many different values without any particular order as the

fibers themselves do not follow any order while breaking. This uncorrelated behavior between s and E.

FIGURE 2 | The figure shows the variation of average energy 〈E〉 with

avalanche size s for both GLS and LLS fiber bundle model. We observe

〈E〉 ∼ s, for GLS FBM. On the other hand, for LLS scheme, 〈E〉 ∼ sγ , with

γ ≈ 2.5.

break in increasing order of their thresholds. Then, there might
be scenarios where E(k+ 1) < E(k) when s(k+ 1) = s(k) or even
s(k + 1) > s(k). The red ellipses in the right panel of Figure 1
shows this absence of correlation between s(k) and E[s(k)]. For

both ellipses, s = 1 for that period. In spite of that, we see a
fluctuation in energy values without a particular trend. This can
be clearly understood from the lower row of Figure 1 where E is
expressed as a function s. Clearly, in case of GLS FBM, E increases
in a linear manner with s while for LLS, the values of E and s
are completely uncorrelated. In the following, we will discuss this
relation between s and E in detail.

Figure 2 highlights how average of emitted energy 〈E〉 behaves
as a function of avalanche size s for a bundle of size 105 and
configuration 104. Results for both GLS and LLS schemes are
shown in the figure. We observe the following behavior:

〈E〉 ∼

{

s , for GLS,
sγ , with γ = 2.5 for LLS.

(2)

This behavior can be used to understand the relation between
distributions P(s) of avalanche size s and Q(〈E〉) of average
emitted energies 〈E〉. For this we simply need to implement a
change in variable1 scheme as follows:

Q(〈E〉) ∼ P[s(〈E〉)].|s′(〈E〉)| = P[s(〈E〉)].|
ds(〈E〉)

d〈E〉
| (3)

1Let’s assume x and y are a continuous functions with p.d.f f (x) and g(y). Also,

y = u(x) is a function with inverse, which means it is possible to find x = v(y). In

this circumstances, g(y) and f (x) can be expressed as: g(y) = f [v(y)].|v′(y)|, where

|v′(y)| = |dv(y)/dy|.
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Change in variable: GLS scheme

In case of GLS scheme, we observe

〈E〉(s) ∼ s

s(〈E〉) ∼ 〈E〉 (4)

This makes

s′(〈E〉) =
ds(〈E〉)

d〈E〉
∼ 1 (5)

We also know that the avalanche size distribution in case of GLS
scheme is a scale free distribution with an exponent 2.5 [31].

P(s) ∼ s−β , with β = 2.5 (6)

Then, combining Equations (3), (4), (5), and (6), we get,

Q(〈E〉) ∼ P(〈E〉).1 ∼ 〈E〉−β , with β = 2.5 (7)

Change in variable: LLS scheme

In case of LLS scheme, we observe

〈E〉(s) ∼ sγ

s(〈E〉) ∼ 〈E〉−γ (8)

This makes

s′(〈E〉) =
ds(〈E〉)

d〈E〉
∼ (−γ )〈E〉−(γ+1) (9)

where γ = 2.5. We also know that the avalanche size distribution
in case of LLS scheme is an exponential distribution [32].

P(s) ∼ e−s/s0 (10)

Then, combining Equations (3), (8), (9), and (10), we get,

Q(〈E〉) ∼ P(〈E〉).γ 〈E〉−(γ+1) ∼ γ e
−
〈E〉−γ

s0 E−(γ+1) (11)

In the limit of high E value, Equation (11) can be simplified
as follows

Q(〈E〉) ∼ 〈E〉−α where α = γ + 1 = 3.5 (12)

Above treatment shows that, in case of LLS scheme, in spite of
an exponential distribution for avalanche sizes, the distribution
of average emitted energy is still observed to be scale-free.
Numerically we have found that this scale free behavior holds
good for instantaneous values of E as well.

3.2. Distribution of s and E: Uniform
Distribution
Figure 3a shows the avalanche size distribution P(s) for a GLS
fiber bundle model with system size ranging from 103 to 105.
This scale-free decrease of P(s) with s is already known in the
literature. We also observe the same universal exponent 2.5 [31].
Figure 3b shows the corresponding distribution for the energy
emitted. We observe the same scale-free distribution for the
energy as well, with the same exponent 2.5. This behavior is
consistent with Equations (6) and (7), respectively.

Figure 4a, on the other hand, shows the avalanche size
distribution with the LLS scheme. The distribution is exponential
as derived analytically by Kloster et al. [32]. The inset of
the same results in log scale in order to compare them
with the previous claim by Zhang and Ding [33], that
P(s) shows a scale-free behavior with a very high exponent
closer to −4.8. This claim of scale-free nature is not
substantiated and the exponential form for P(s) is accepted in
the literature.

The distribution of energy in Figure 4b shows
a scale-free distribution, in spite of the fact that
the avalanche size distribution is an exponential
distribution. The exponent of the scale-free distribution
is observed to an increasing function of the size of
the bundle

Q(E) ∼ E−α(L) (13)

The above behavior is similar to Equation (12), but with a L
dependent exponent instead of a constant value. To compare
this L dependent exponent with the value in Equation (12), we
have to study the variation of α in Equation (13) in details
as the size of the bundle is increased. We have discussed
this next.

Figure 5 shows the system size scaling of the behavior in
Equation (13) as the size of the bundle is increased from 103 to
107. The behavior of Q(E) in Figure 4b tells us that the slope of
the distribution increases andQ(E) itself decreases as we increase
the size of the system. We assume this decrease in Q(E) with L to
be scale-free in nature and observed a nice collapse for all system
sizes. The scaling we adopted is as follows:

Q(E) = L−ξE−α(L) (14)

where α(L) scales to its value in the thermodynamic limit is a
scale free behavior: α(L) = α(∞)−L−η .Wewill show this scaling
explicitly later in this article. Taking logarithmic on both sides of
Equation (14) we get,

lnQ(E) = −ξ ln L− [α(∞)− L−η] lnE (15)

Figure 5a shows a good collapse with the results of Figure 4b
using the following values of the fitting parameters: α(∞) =

3.47, η = 0.14, and ξ = 0.55. In addition, Figure 5b also
shows the scaling of the exponent α explicitly as the model
starts approaching the thermodynamic limit. We observe the
following scaling,

α(∞)− α(L) ∼ L−η (16)
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FIGURE 3 | Distribution of energies for an uniform distribution (0,1) and system sizes ranging in between 103 and 105. The results are shown for GLS FBM. (a) We

already know that in the mean-field limit P(s) ∼ s−β , with β ≈ 2.5. (b) We observe Q(E) ∼ E−α where α ≈ 2.5 as well independent of the system size.

FIGURE 4 | Distribution of energies for an uniform distribution [0:1] and system sizes ranging in between 103 and 107. The results are shown for LLS FBM.

(a) Avalanche size distribution for LLS FBM is an exponential function: P(s) ∼ e−s/s0 , where s0 depends weakly on the system size. (b) Scale free distribution for

energy emitted: Q(E) ∼ E−α , where α is observed to increase slightly with system size.

FIGURE 5 | (a) The finite size effect of Q(E) is shown for uniform threshold distribution, which follows a scaling: lnQ(E) = −ξ ln L− [α(∞)− L−η ] lnE with η = 0.15,

ξ = 0.55, and α(∞) = 3.47. (b) System size scaling of the exponent α as we approach the thermodynamic limit: α(∞)− α(L) ∼ L−η , with η = 0.15 and α(∞) = 3.47.

(c,d) The least square fit error as a function of exponent η and α(∞), both with a minimum at a certain value. We consider the value of α(∞) and η which produces the

minimum error. This same procedure has been followed next while exploring the same thing for different threshold distributions.

Frontiers in Physics | www.frontiersin.org 5 April 2021 | Volume 9 | Article 643602

https://www.frontiersin.org/journals/physics
https://www.frontiersin.org
https://www.frontiersin.org/journals/physics#articles


Roy and Biswas Energy Distribution in LLS FBM

where η = −0.15 and α(∞) (= 3.47) has a value close to
γ + 1 (see Equation 12). The fitting and the exponent η is
calculated from the minimization of least square fit error. This
is shown in Figures 5c,d. We choose a certain value of η and
fit our numerical results. This in turn will produce a value of
α(∞) and corresponding least square fit error. The opposite
can also be done where we can fix a certain α(∞) value and
the least square fit gives us the value of η and error associated
with it. If we repeat this for a number of α(∞) or η values,
then we can express the error as a function of either of this
parameters η (see Figure 5c) or α(∞) (see Figure 5d). The dotted
line in Figure 5a corresponds to the value of α(∞) (= 3.47)

and η (= 0.15) for which the least square fit error is minimum
independent of whether the error is calculated with a constant
α(∞) or η.

3.3. Universality
So far, we have generated the numerical results where a
uniform distribution from 0 to 1 is used to assign random
thresholds to individual fibers. In this section, we will verify
the universality of our results. For this purpose, we will mainly
explore 4 other distributions: (i) linearly increasing from 0
to 1, (ii) linearly decreasing from 0 to 1, (ii) a Weibull

FIGURE 6 | (a) Distribution of energies for four different threshold distributions: (a) Linearly increasing [0:1], (b) Linearly decreasing [0:1], (c) Scale free distribution of

exponent 2 between 0 and 1, (d) Weibull distribution with scale factor 1.0 and Weibull modulus 1.0. The system sizes varies in between 103 and 107. The results are

shown for LLS FBM. We observe a scale free distribution for E: Q(E) ∼ E−α for all thresholds. The insets of figures (a–d) shows the system size collapse given by

Equation (15). (e–h) Shows the exponent α(L) to obey the scaling showed in Equation 16. The value of η for above mentioned distributions are 0.14, 0.12, 0.13, and

0.11 respectively, similar to what is observed in the system size collapse.
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FIGURE 7 | The figure shows the variation of average energy 〈E〉 with

avalanche size s for LLS fiber bundle model. We have produced the study for

five different threshold distributions. We observe for all distributions, 〈E〉 ∼ sγ ,

where γ has a value 2.5 independent of the nature of the distribution.

distribution with scale parameter 1 and Weibull modulus
1, and (iii) A power law distribution from 0 to 1 with
exponent 2.0.

In all these cases, the energy burst size distributions
were found to be scale-free with an exponent value
close to −3.5 (see Figures 6a–d), as is predicted from
Equation (12). The variation with system size also
universal across these different threshold distributions. The
insets of Figures 6a–d shows the same scaling given by
Equation (15) and observed in Figure 5a. These results
suggest that the scale-free nature of the energy burst size
distribution in the local load sharing fiber bundle model is a
universal feature.

Moreover, Figures 6e–h shows the system
size scaling of the exponent α(L) (see Equation
16) for all four threshold distributions: linearly
increasing, linearly decreasing, power law and
Weibull, respectively.

We have further checked that the relation between
an avalanche size and average energy burst size i.e.,
〈E〉 ∼ s2.5 is valid for all these threshold distributions,
as can be seen from Figure 7. This holds good with
the scale-free nature of energy burst distribution
that we observed in Equations 6(a)–(d) for all four
threshold distributions.

Finally, we have discussed in Table 1, all exponents that
we observed in relation to burst size distribution for all five
threshold distributions.

4. DISCUSSIONS AND CONCLUSIONS

The local load sharing fiber bundle model is known to be
lacking in reproducing the scale-free avalanche statistics
often seen in the experimental setup of fracturing brittle

TABLE 1 | The table shows the exponents α(∞) (Equation 16), η (Equation 15),

and ξ (Equations 14, 15) related to the system size scaling of the energy

size distribution.

Distributions α(∞) ξ η

Uniform 3.47 0.55 0.15

Linearly increasing 3.65 0.55 0.14

Linearly decreasing 3.62 0.55 0.12

Power law 3.55 0.60 0.13

Weibull 3.60 0.65 0.11

solids. In all the interpolation schemes between global
(equal) and local load sharing versions of fiber bundles,
the avalanche size distribution P(s) only show a cross-
over between the mean-field (P(s) ∼ s−β ) and local
load sharing (P(s) ∼ e−s/s0 ) limits. The mean-field limit,
however, is a rather idealized condition for modeling
real samples.

However, one important distinction between avalanche sizes
(s) of the fiber bundle model and what is usually measured
in the experiments is that in the latter case it is the energy
burst (E) emitted in an avalanche that is measured. However,
that distinction is not at all significant in the mean-field i.e.,
the global load-sharing limit of the model, because in that
limit 〈E〉 ∼ s. However, in the local load sharing version,
we numerically find 〈E〉 ∼ sγ . Given an exponential nature
for the avalanche size distribution in the local load sharing
limit and this numerical observation, it is possible to show
that the size distribution of the energy bursts is scale-free
[Q(〈E〉) ∼ 〈E〉−α] with α = γ + 1 (see Equation 12).
Moreover, we have numerically established that this same scale
free distribution exists for instantaneous values of the energy
emitted and not only for the average emitted energy. We have
then numerically checked that γ ≈ 2.5 for various different
threshold distributions (see Figure 6) and independently checked
that the size distribution exponent for the energy bursts are
close to −3.5 (see Figures 4, 7). Indeed, there are indications
in experiments with sandstones that the avalanche amplitude
distribution was exponential while the energy burst distribution
was found to be a power law (see e.g., [34, 35]). Our
results reproduce the same for the local load sharing fiber
bundle model.

In conclusion, the local load sharing fiber bundle
model is shown to have a non-trivial relation between
the avalanche size (number of fibers broken) and the
energy burst size (elastic energy released from the broken
fibers). Consequently, the energy burst size distribution is
shown to have scale-free nature, with an exponent value
independent of the threshold distributions of the fibers.
Given that experimentally one measures the energy released,
these results indicate that local load sharing fiber bundles
can have a significant role in modeling fracture of brittle
solids without having to resort to the equal load sharing
mean-field limit.
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