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A B S T R A C T   

An integration of Artificial Neural Networks (ANNs) and thermodynamics through the application of Neural 
Network Programming (NNP) is proposed. Thermodynamic consistency is achieved because the thermodynamic 
relationships and constraints are transcribed into a specially crafted ANN. Moreover, the developed models allow 
predicting and extrapolating the model outside the experimental data boundaries. 

The Wilson and NRTL models are used as case studies. Modifications to these models based on sigmoid 
functions are rigorously assessed in order to perform the simultaneous modelling of VLE and excess enthalpy. The 
automatic differentiation together with the ANN optimization algorithms can find sets of parameters that are 
better than the ones obtained with traditional gradient-based optimizers. 

The frequently disregarded concepts of thermodynamic modelling with ANNs are discussed in-depth. A 
mathematical analysis of the impossibility of typical fully connected ANNs to formulate thermodynamically 
consistent equilibrium models is discussed and their use is discouraged (e.g., VLE, LLE, or adsorption.).   

1. Introduction 

Research on machine learning (ML) and artificial neural networks 
(ANNs) has been a trend for some years now mainly because of their 
outstanding predictive features or perhaps because of the excessive 
media coverage. Although the development of self-driving artificial in-
telligence (AI) and the creation of complex decision-making AIs [1,2] 
are quite impressive feats, it is not necessarily an indication that uti-
lizing data-driven-only models is always appropriate. One example of 
this is in phase equilibria modelling, where it has been common to 
substitute established thermodynamic models with ANNs. Although 
ANN models may have better accuracy, it is not necessarily an indication 
that they are better thermodynamic models than those given by 
semi-empirical models. 

It is a fact that both traditional VLE models and ANNs are approxi-
mations of the behavior of matter and energy in equilibrium conditions. 
However, it should not be forgotten that concepts like partial pressures 
are measured because of the thermodynamic framework. Therefore, 
reducing the thermodynamics models to “correlations that fit the ther-
modynamic data best” understates the essence of equilibrium thermo-
dynamics. The quintessential conclusion that ML models are better than 
semi-empirical models is “the proposed ML modelling approach is 

superior to the semi-empirical thermodynamic models because it rep-
resents the experimental data more accurately”. It is unfair to compare 
ML and semi-empirical models in this fashion since the former are un-
constrained and, therefore, have more degrees of freedom to fit the data. 
Constraints and thermodynamic consistency are rarely discussed in the 
ML literature and are often overlooked. For example, in a recent review 
of ML-based thermodynamic modelling for ionic liquids [3], the ther-
modynamic consistency is not even mentioned. 

If ANNs and machine learning in general are to be recognized as an 
actual alternative for thermodynamics modelling, the models should be 
developed within the established thermodynamics laws. The thermo-
dynamic framework includes mathematical relationships between 
thermodynamic properties that otherwise may seem like unrelated 
concepts (e.g., the relationship between vapor pressure and enthalpy of 
vaporization with the Clausius-Clapeyron equation). 

The objective of this work is to address the question: “can ANNs be 
utilized to formulate thermodynamically consistent VLE models?” To 
address this question, section 2 presents a discussion, with emphasis on 
thermodynamic consistency, about ML-based approaches that can 
potentially be used for VLE modelling. Section 3 shows that VLE equa-
tions can be transcribed into Algorithmically Structured Neural Net-
works (ASNNs) by applying the Neural Network Programming (NNP) 
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method [4]. In order to provide an example that thermodynamics re-
searchers can relate to, the NNP method was applied to transcribe the 
Wilson and NRTL activity coefficient models as well as some ANN-based 
modifications. Section 4 presents the application of the ASNNs for 
modelling VLE and simultaneous VLE and excess enthalpy. We show that 
machine learning models and thermodynamics consistency are not 
mutually exclusive concepts. 

This work does not present a machine learning method that predicts 
the binary interaction parameters of unmeasured mixtures. Rather it 
aims at highlighting the importance of considering thermodynamic re-
lationships instead of only focusing on accuracy. This work will help 
other researchers towards a more thermodynamics-oriented applica-
tions of ML algorithms. Since one of our goals is to make the neural 
network technology accessible for researchers new in ML, the Matlab 
codes containing the ASNN-based implementation of the Wilson and 
NRTL models are presented in the supporting information or can be 
accessed in github.com/AndresCA91/Non-reactive-VLE-ASNNs. 

2. VLE modelling approaches 

Three different approaches for VLE modelling have been identified, 
namely, mechanistic models, data-driven models, and hybrid models. 
This work restricts the discussion to systems without electrolytes. 

Models whose equations are based on first principles are known are 
mechanistic. These models are of semi-empirical nature because they 
utilize fitting parameters that allow a better description of VLE. Some 
examples of mechanistic VLE models are the Equations of State (EoS) 
based on the van der Waals EoS [5] (e.g., Soave-Redlich-Kwong (SRK) 
[6] and Peng-Robinson (PR) [7]) or the EoS based on associating the-
ories (e.g., Cubic Plus Association (CPA) [8], and the perturbed chain 
SAFT (PC-SAFT) [9]). Alternatively, there are models based on excess 
functions that utilize the concept of ideal solution as a reference state. 
The first instances of models based on the excess molar Gibbs energy 
(GE) were done by Margules in 1895 [10,11], and by van Laar in 1910 
[12]. However, the local composition models such as the Wilson model 
[13], non-random two-liquid model (NRTL) [14], and the universal 
quasi-chemical theory (UNIQUAC) [15] dramatically improved the ac-
curacy and applicability to more complex problems like liquid-liquid 
equilibria (LLE). We recommend the available literature [16,17] for a 
more in-depth review of the theory and applicability of mechanistic 
models. 

2.1. Data-driven models 

Machine Learning (ML) is a set of algorithms and tools that find 
accurate correlations between the input data and can perform prediction 
and classification tasks. These data-driven algorithms are classified in 
supervised learning, unsupervised learning, and reinforcement learning. 
A supervised learning algorithm is more convenient for thermodynamics 
because the experimental datasets are labeled, and the input / output 
relationships are known through the thermodynamic framework. From 
all the supervised learning methods, we consider that Artificial Neural 
Networks (ANNs) are the most robust ML-based modelling method for 
VLE. This is due to their universal approximator feature, autodiffer-
entiability and, with the proper selection of transfer functions, contin-
uous. Because of this, this work focuses on ANNs. 

ANNs have been utilized in the literature as black boxes to estimate 
the equilibrium behavior of several thermodynamic systems. The black- 
box denomination is because the model is not transparent and implies 
that it is only based on the data and not on a priori knowledge [24] (on 
the contrary, mechanistic models are known as white-boxes). The first 
formal attempt in the literature at modelling VLE with ANNs was done 
by Petersen et al. in 1993 [25]. Back then, they concluded that the 
UNIFAC model estimations were better than the ANN because the 
mechanistic model had more knowledge embedded into it. This 
conclusion is in contradiction with several research contributions that 

argue that the ANNs provided better accuracy than semi-empirical or 
empirical models (e.g., [26–30]). It must be remarked that Petersen 
et al., 1993 modelled the activity coefficients while the other studies 
modelled the component fugacities; which may explain the difference 
between the conclusions. Other researchers have also discussed the 
possibility of utilizing ANNs for VLE modelling (e.g., [26,27,36–40, 
28–35]). However, these studies are focused towards analyzing and 
validating the models from a consequential-statistical perspective rather 
than from a thermodynamic standpoint. Few attempts have considered 
thermodynamics while using ANNs for VLE modelling. The first of them 
was done by Guimaraes and McGreavy [41], who highlighted that un-
derstanding the information flow in the ANN is paramount in order to 
properly utilize them for the description of VLE. Sadly, no other research 
efforts in this direction have been taken since. 

In our previous work [45] we developed a surrogate 
neural-network-based model for mixtures containing CO2 and a liquid 
solvent. We emphasized the importance of considering the Gibbs phase 
rule in order to be able to replicate the underlying thermodynamic re-
lationships (e.g., relationship between the heat of absorption and partial 
pressure). It was reported that even if the molar fraction of CO2 is set to 
0, the model estimated a positive value the fugacity of CO2. This suggests 
an important structural flaw of the fully connected neural networks 
(shallow or deep) for VLE modelling. 

2.1.1. Fundamentals of ANNs 
ANNs are mathematical models that were designed to represent the 

cognitive processes in biological brains [18]. ANNs are constituted by 
three types of objects known as layers: input layers, hidden layers, and 
output layers. Input layers transfer the information fed by the user to the 
neural network, hidden layers transform the input signal to an output 
signal, and the output neurons gives the predictions back to the user. 
Hidden layers are constituted by an arbitrary number of hidden neurons. 
Each hidden neuron performs a linear or product combination of the 
inputs and then usually applies a non-linear transformation. Considering 
this, the number of hidden neurons in a hidden layer can be seen as the 
number of equations that are evaluated in parallel. 

ANNs are well known of being universal approximators [19–22], 
however, in order to be considered as such, they must have at least have 
two hidden layers. A neural network with 2 hidden layers in series is 
known as a shallow neural network (SNN). The first layer usually has a 
non-linear transfer function (e.g., hyperbolic tangent transfer function) 
and the last layer linearly combines the results of the preceding layer. 
The linking of two hidden layer nodes in series is known as MultiLayer 
Perceptron (MLP). 

Fig. 1 shows two graphical representations of the same SNN that 
models the VLE of a binary mixture. Note that there are two degrees of 
freedom according to the Gibbs phase rule. The fugacity of component 1 
in the vapor phase (f1) is computed as a function of the liquid molar 
fraction of component 1 (x1) and temperature (T). The typical repre-
sentation shown in Fig. 1a shows that the nodes of the input and output 
layers are connected to the second layer. However, it provides little 
information about the neural network. Because of this, this work utilizes 
the graphical representation of Fig. 1b. 

This work represents neural network layers as in Fig. 1b: blue circles 
are the input layers, red hexagons are the output layers, and squares are 
the hidden layers. Each input and output layer represent an input or 
output vector, respectively (e.g., the input vector in Fig. 1 b) is [xi,T]T). 
The name of the hidden layers is the text in bold and, unless stated 
otherwise, the hidden layer output variable name is the same as the layer 
name. For each hidden layer there can be up to two subscripts and two 
superscripts. The first superscript provides information if the input 
layers are combined through a linear combination (+ ) or an element- 
by-element product (⊙). The second superscript tells whether the 
layer has a bias β or not (no second superscript). The first subscript in-
dicates the number of hidden neurons, and the second subscript is the 
transfer function utilized. In this work we present the application of the 
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models proposed by Argatov and Kocherbitov [23]. Therefore, the 
relevant transfer functions are symbolized with an f for the hyperbolic 
tangent function (tanh), f ′ for sech2 (note that the derivative of tanh is 
sech2), e for the exponential function exp, ⊘ for an element-by-element 
division, and blank for a linear transfer function. 

By considering that every hidden layer corresponds to one equation, 
the SNN shown in Fig. 1 is described with 

L1 = tanh((WI)+ (β)) [3]. (1)  

L2 = (VL1) + (δ) = f1 [1], (2)  

where W and V are the weight matrices, β and δ are the biases, I is the 
input vector, and L is the output of each layer. The numbers inside the 
square brackets([1] and [3]) indicate the number of hidden neurons in the 
neural network layer (a vector of equations evaluated simultaneously). 
The output of every hidden layer should always have as many elements 
as hidden neurons. Therefore, L1 is a vector of 3 × 1 dimensions, L2 is a 
scalar, W has 3 × 2 dimensions, β has 3 × 1 dimensions, V has 1 × 3 
dimensions, δ is a scalar. The role of the weight matrices is not only to be 
used as fitting parameters but also to reshape the input vectors (e.g., I or 
L1) so that the output vector has as many elements as hidden neurons. 

Fig. 1. Graphical diagrams of a SNN that models f1 of a binary mixture as a function of the independent variables x1, T: a) typical representation (the redlines 
connect MLP #1), and b) this work. 

Fig. 2. Model structure and optimization backpropagation algorithm of different ANN-based VLE models: a) data-driven-only, b) serial, c) parallel, d) gradient-based, 
and e) NNP. The input layers (X) and output layers (Ycalc) contain an arbitrary number of thermodynamic properties (e.g., molar fractions or fugacities). 
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2.2. (In)applicability of ANNs to VLE 

The black-box VLE modelling approach utilizes the model structure 
and the optimization algorithm shown in Fig. 2 a). The optimization is 
done by minimizing a loss function L using a traditional minimization 
function μ (e.g., Mean-Squared Error (MSE)), and backpropagation 
method (more details about this method can be found elsewhere 
[42–44]). The goal of the optimization is to reduce the difference be-
tween the calculated VLE (Ycalc) and the experimental VLE data (Yexp) 
by tuning the parameters of the ANN. 

To visualize this, let us consider the SNN shown in Fig. 1 where x1 is 
the CO2 molar fraction and the CO2 fugacity is f1 (the SNN is described 
by Eqs. (1) and (2)). Considering this, the objective of this exercise is to 
verify whether if model can be consistent with the limiting conditions (i. 
e., x1 = 0 ∀ f1 = 0) or not. 

Assuming that δ ∕= 0, implies that the operation WL1 = − δ for a finite 
number of combinations. However, the number of combinations in 
which f1 = 0 is infinite (by varying T). This means that there is an 
infinite set of simulations in which the model is not consistent with the 
limits. Moreover, the existence of δ in the model does not make sense 
from a thermodynamic perspective. It is known that the fugacity of a 
component in a mixture is a function of the molar compositions, tem-
perature, and pressure. Therefore, δ must be 0 and should not be an 
optimizable parameter. 

Considering δ = 0, the limiting condition x1 = 0, merging Eqs. (1), 
(2). The following equation is obtained by expressing the result in scalar 
terms 

f1 = V1tanh
(
W1,T T + β1

)
+ V2tanh

(
W2,T T + β2

)
+ V3tanh

(
W3,T T + β3

)
= 0,

(3)  

where the first subscript in W, V, and β refers to the MLP number, and 
the second subscript (W) the input variable they are multiplying. The 
objective is to verify whether Eq. (3) can be equal to 0 or not. The weight 
matrices must be W ∕= 0 and V ∕= 0 if the trivial solution is to be avoided. 
Therefore, the argument of the hyperbolic functions should be 0. 
Considering that tanh(u) = 0 ⇔ u = 0, there is only one temperature in 
each hyperbolic tangent term where they can be 0 (e.g., T = − β1 
/W1,T). This suggests that the perceptron will be 0 only if β1 and W1,T 

have opposite signs (assuming that T is absolute). The first scenario in 
which all the hyperbolic tangent terms can cancel out is if − β1 / W1,T =

− β1/ W2,T = − β3/ W3,T. The second possible scenario is if the overall 
calculations done by the hyperbolic tangent cancel out (i.e., VL1 = 0). 
The number of conditions at which the second condition occurs is infi-
nitely small (tanh function is monotonic) considering that there are 
infinite scenarios where f1 should be 0. Therefore, a fully connected 
shallow neural network or deep neural network cannot be thermody-
namically consistent if the composition-dependent variables and tem-
perature are linearly combined. 

2.3. Hybrid models 

This subsection discusses different hybrid modelling approaches 
[24] that might be relevant for VLE modelling namely, serial, parallel, 
gradient-based, and Neural Network Programming (NNP) [4]. The 
model structure and their optimization are shown in Fig. 2 b) to e). 

Serial hybrid models (Fig. 2 b)) are metamodels composed of an ANN 
that feeds a mechanistic model. In simple terms, serial hybrid models 
generally substitute low-dimensional parametrizations of semi- 
empirical models with ANNs (e.g., an ANN can be used instead of 
Antoine’s equation for computing the pure component saturation pres-
sure). Although not labeled as hybrid models, this approach has been 
utilized for VLE modelling in the literature by reparametrizing already 
established semi-empirical models such as NRTL [46], PR EoS [47] or 
PRSV EoS [48]. 

Parallel hybrid models (Fig. 2 c)) are a metamodel structure 

constituted of an ANN and a mechanistic model. In these models the 
input is fed independently to the mechanistic and the ANN. This 
arrangement is discouraged for VLE modelling because parallel models 
“add” a correction to the mechanistic model instead of fitting the pa-
rameters within the thermodynamic framework. Therefore, the ANN 
part of the model is thermodynamically inconsistent and the overall 
metastructure cannot be consistent. 

Despite having different structures, serial and parallel hybrid models 
share a common feature: both utilize a similar performance function L 

based on an error function μ. In both cases, the optimization algorithm 
(or training) seeks to minimize the value of L by modifying the ANN 
parameters. This is not the case for gradient-based hybrid models which, 
utilize an error function μ and additional ν functions that account for the 
departure between physics laws and the calculations done by the neural 
network (Fig. 2 d)). In this way, the gradient-based algorithm tries to 
guide the neural network by reducing the difference between the 
calculated values and the experimental data while still retaining some 
physics coherence. These type of hybrid models have become quite 
popular since the advent of Physics Guided Neural Networks (PGNNs) 
[49,50] and Physics Informed Neural Networks (PINNs) [51]. More 
recently, Masi et al. proposed [52] the Thermodynamic-Based Neural 
Networks, which are based on a similar concept as PINNs. However, 
they were developed for constitutive modelling and the approach ap-
proximates thermodynamic consistency but not completely achieve it 
(they utilize an error function associated to the departure between the 
consistency and the calculations done by their neural network model). 

Despite their interesting nature and high accuracy, gradient-based 
hybrid models do not achieve exact coherence with physics laws (i.e., 
there is a difference between the computations done by the ANN and the 
first principles equations). Exact coherence is crucial for some research 
fields like equilibrium thermodynamics, in which their foundation is the 
exact representation of first principles. Therefore, we consider that in 
fields like in thermodynamics the coherence with physics laws is equally 
important as accuracy. 

The last hybrid modelling approach is NNP (Fig. 2 e)), which consists 
in decomposing the equations of a mechanistic models in order to 
transcript them to the carefully crafted architecture of an Algorithmi-
cally Structured Neural Network (ASNNs). Transcribing an equation 
implies that it is the exact representation of said equation and not a close 
approximation. This means that the ASNNs are extrapolable, coherent 
with physics laws (thermodynamically consistent) and automatically 
differentiable. This last feature implies that the error derived from the 
computation of the derivatives during the optimization process is only 
induced by the limitations given by computer precision. Conversely, 
since the mechanistic part of the serial hybrid models is generally not 
autodifferentiable, the overall structure is not autodifferentiable either. 
This implies that serial hybrid models use numerical differentiation 
which can lead to truncation errors and extended optimization times due 
to the numerical differentiation algorithms [56]. Another practical 
advantage of ASNNs over serial models is their parallelization feature. 
This feature allows computing multiple VLE systems in a single step 
instead of utilizing “for” or “while” cycles. 

Although not labeled as hybrid models, the works done by Focke 
[53] utilized a model based on neural network averaging, which was 
crafted to resemble excess functions. Later, Argatov and Kocherbitov 
[23] took this concept and developed neural networks that resembled 
the excess functions for the NRTL and Wilson models. They also pre-
sented the rigorous derivation of the activity coefficients, however, due 
to the complexity of the equations, they fitted the data using the excess 
Gibbs function. Later, Toikka et al. [54] performed an analysis of VLE 
data in multicomponent systems and they noted that at the limits of the 
concentration range, the magnitude of the deviations is large. We 
consider that this error is because the values located in the edges of an 
excess function are expected to be close to 0, hence, if the value is too 
small, the uncertainty provided by the experiment will be large. One of 
the main challenges of these approaches is their lack of robustness for 
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considering non-isothermal data. Nonetheless, in our opinion, these 
approaches are a step in the right direction towards the actual integra-
tion of thermodynamics and machine learning. 

3. Methodology 

Sections 3.1 and 3.2 describe the ASNNs that transcribe different 
versions of the Wilson and NRTL models. Section 3.3 describes the 
transcription of Raoult’s and Dalton’s law to an ASNN. Section 3.4 
presents the solution algorithm for each one of the models. 

3.1. Wilson model 

Activity coefficients (γ) are defined as the logarithmic transformation 
of the excess partial molar Gibbs free energy (GE) [55]. The equation 
that defines the activity coefficient of component i is 

lnγi =

(∂ηt⋅
[
GE
/

RT
]

∂ηi

)

T, P,ηj∕=i

, (4)  

where R is the ideal gas constant, T is temperature, ηt is the total number 
of moles in the mixture, ηi is the number of moles of component i in the 
mixture and the superscript E stands for excess property. The activity 
coefficient quantifies the difference between the actual behavior of a 
liquid mixture with respect to the ideal mixture behavior. The excess 
partial molar Gibbs free energy and activity coefficient models analyzed 
in this work are of symmetric nature and use the binary interaction 
concept. 

The first activity coefficient model that is analyzed is the Wilson 
excess function [13]. However, in this work we utilize the equivalent 
form of the Wilson model [23]. Therefore, the excess molar Gibbs free 
energy is given by 

GE

RT
= α

∑n

i=1
xif

(
1

∑n
j=1Wijxj

− 1

)

, (5)  

where n is the number of components in the mixture, Wij are binary 
interactions, f is a transfer function (tanh or linear), and α is a constant 
scaling factor (proposed in this work). The corresponding activity co-
efficient model was obtained by applying Eq. (4) to Eq. (5) and yielded 

lnγk = αf

(
1

∑n
j=1Wkjxj

− 1

)

+ α
∑n

i=1
xif

′

(
1

∑n
j=1Wijxj

− 1

)
⎛

⎜
⎝

∑n
j=1Wijxj − Wik
(∑n

j=1Wijxj

)2

⎞

⎟
⎠. (6) 

This work proposes the utilization of the scaling factor α as an 
analogous factor for the “non-randomness” factor of the NRTL model. 
We observed that by scaling the Wilson GE/RT function, the model ac-
curacy could be improved as long as the same scaling factor is used for 
every activity coefficient. It must be remarked that this does not affect 
the thermodynamic consistency of the model because the GE /RT and lnγ 
functions are equally scaled. For example, let us consider the Gibbs- 
Duhem equation for a binary mixture that is scaled with the α constant 

x1

(
∂[αlnγ1]

∂x1

)

T,P
+ x2

(
∂[αlnγ2]

∂x1

)

T,P
= 0. (7) 

Considering that the activity coefficient equations lnγ1 proposed by 
Argatov and Kocherbitov are thermodynamically consistent, it can be 
readily seen that the scaling constant α is not affected by the partial 
derivative. Consequently, the thermodynamic consistency of Eq. (7) is 
independent of α. 

As previously mentioned, the robustness of NNP allows the cus-
tomization of neural network architectures. Therefore, the Wij can be set 

as a function of temperature with the proper architecture. A parame-
trization of the Wilson models is 

τij = Aij +
Bij

T
+ CijT (8)  

Wij = exp
(
τij
)
. (9) 

There are p = 2 temperature-dependent parameters in Eq. (8). At the 
pure component limit every Wii must be 0 so that GE/RT = 0. Therefore, 
Aii, Bii and Cii must be 0 as well. For every VLE system, there are 
s1 = n(n − 1) non-zero temperature independent binary interactions, 
s2 = n(n − 1)p non-zero temperature-dependent binary interactions, and 
s3 = n2p temperature-dependent binary interactions (including the ones 
where i = j). 

NNP was applied to the activity coefficient equation (Eq. (6)) in 
order to transcript the Wilson-based model to the architecture of an 
ASNN. The corresponding ASNN is presented in Fig. 3 and the set of 
equations is 

α = βα [1] (10)  

A = βA [s1] (11)  

B = βB [s3] (12)  

BT = (κ1t) ⊙ (κ3B)
[
n2] (13)  

W = exp(κ2A+ κ4BT)
[
n2] (14)  

L1 = (κ6x) ⊙ (κ5W)
[
n2] (15)  

L2 = κ7L1 [n] (16)  

L3 = 1 ⊘ (κ8L2) [n] (17)  

L4 = tanh(κ8L3 − κ9) [n] (18)  

L5 = κ8L3 [n] (19)  

L6 = − κ10W + κ6L2
[
n2] (20)  

L7 = sech2(κ8L3 − κ9) [n] (21)  

L8 = (κ6x) ⊙ (κ6L3) ⊙ (κ6L5) ⊙ (κ5L6) ⊙ (κ6L7)
[
n2] (22)  

L9 = κ8L4 + κ7L8 [n] (23)  

L10 = exp(κ8L9 ⊙ κ9α) [n]. (24) 

The input vector x contains the molar fractions, t is a temperature- 
dependent input vector (it may have as many elements as the user 
specifies), function f is tanh, and function f ′ is sech2. It can be seen that 
Eq. (10) corresponds to the scaling factor, Eq. (11) to the temperature 
independent parameters, and Eq. (12) to the temperature-dependent 
parameters. The weight matrices κ have fixed values in order to tran-
script the Wilson model. In general, the κ weight matrices are used to 
transform the optimizable parameters (Eqs. (10)− (12)) to a form that 
ensures that every Wii is equal to 0 or to perform the sums shown in Eq. 
(6). The description of the weight matrices is summarized in Table 1. 
The implementation of the κ matrices (in Matlab code) can be consulted 
in the supporting information. 

As seen in Eqs. (10), (11), and (12), the number of elements in the 
vector is equal to the number of non-zero parameters. The ASNN is 
formulated so that it is not necessary to modify the optimization 
gradient in order to maintain the parameters zero parameters equal to 
0 (e.g., Aii = 0). 

Note that the Wilson model with a linear transfer function can be 
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easily obtained by applying the linear transfer function to L4, removing 
layer L7, and using 

L8 = (MAx) ⊙ (MAL3) ⊙ (MAL5) ⊙ (I2L6)
[
n2] (25)  

instead of Eq. (22). The generalized form of the Wilson ASNN allows the 
quick modification of the transfer function by only changing the transfer 
function in layer L4, the transfer function in L7, and the associated biases 
in L4 and L7. 

3.2. NRTL model 

3.2.1. Polynomial Parametrization 

3.2.1.1. Activity coefficient. The general form of the excess molar Gibbs 
free energy of a degree-2 homogeneous neural network is [23] 

GE

RT
=
∑n

i=1
xif

(∑n
j=1Vijxj

∑n
j=1Wijxj

)

, (26)  

and its associated activity coefficient model is 

lnγk = f

(∑n
j=1Vkjxj

∑n
j=1Wkjxj

)

+
∑n

i=1
xif

′

(∑n
j=1Vijxj

∑n
j=1Wijxj

)
⎛

⎜
⎝

Vik
∑n

j=1Wijxj − Wik
∑n

j=1Vijxj
(∑n

j=1Wijxj

)2

⎞

⎟
⎠. (27) 

In this case, there are two sets of parameters Wij and Vij (Wii = 1 and 
Vii = 0). However, the original NRTL model developed by Renon and 
Prausnitz utilized the following parameter definitions [56] 

Wij = exp
(
− ατij

)
(28) 

Fig. 3. Architecture of the ASNN that transcripts the Wilson-based activity coefficient models. Some connections were colored differently to make the diagram easier 
to follow. 

Fig. 4. Algorithm to generate the MC matrix. Note that the algorithm indexes 
the matrix κ10 as if it were a vector. 

Table 1 
Definition of the κ weight matrices of the Wilson and NRTL models. 
The last column shows an example of the matrix when n = 2, p = 1, s1 = n(n −

1) = 2, s2 = n(n − 1)p = 2, and s3 = n2p = 4.  

Var. Description Dimensions Example 

κ1 Every row of an identity matrix of p x p 
dimensions is repeated n2 number of 
times 

s3 x p 
⎡

⎢
⎢
⎣

1
1
1
1

⎤

⎥
⎥
⎦

κ2 An identity of matrix of s1 x s1 dimensions 
is modified by placing an n number of all- 
zeros rows vectors with s1 elements every 
n + 1 rows starting above the first row of 
the identity matrix. 

n2 x s1 
⎡

⎢
⎢
⎣

0 0
1 0
0 1
0 0

⎤

⎥
⎥
⎦

κ3 A block diagonal matrix formed of p 
number of κ2 matrices 

s3 x s1p 
⎡

⎢
⎢
⎣

0 0
1 0
0 1
0 0

⎤

⎥
⎥
⎦

κ4 κ5 is horizontally stacked p times n2 x s3 
⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

κ5 Identity matrix of n2 x n2 dimensions n2 x n2 ⎡

⎢
⎢
⎣

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎤

⎥
⎥
⎦

κ6 Every row of κ8 is repeated n times n2 x n 
⎡

⎢
⎢
⎣

1 0
1 0
0 1
0 1

⎤

⎥
⎥
⎦

κ7 Horizontally stacking κ8 times n x n2 [
1 0 1 0
0 1 0 1

]

κ8 Identity matrix of n x n elements n x n 
[

1 0
0 1

]

κ9 Column vector of n elements n x 1 
[

1
1

]

κ10 See the algorithm in Fig. 4 n2 x n2 ⎡

⎢
⎢
⎣

1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1

⎤

⎥
⎥
⎦
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Vij = τijWij. (29) 

This parametrization is convenient since it reduces the number of 
fitting parameters and scales the function with the non-randomness 
parameter (α). In a similar fashion as with the Wilson model, τij is usu-
ally a temperature-dependent polynomial (e.g. [57,58]). 

The NNP method was applied to decompose the NRTL (considering 
that the function f in Eqs. (26) and (27) is tanh). The NRTL ASNN is 
shown in Fig. 5 and the set of equations is 

α = βα [s1] (30)  

A = βA [s1] (31)  

B = βB [s3] (32)  

BT = (κ1t) ⊙ (κ3B)
[
n2] (33)  

τ = κ2A + κ4BT
[
n2] (34)  

W = exp((− κ2α) ⊙ (κ5τ))
[
n2] (35)  

V = (κ5τ) ⊙ (κ5W)
[
n2] (36)  

L1 = (κ6x) ⊙ (κ5W)
[
n2] (37)  

L2 = κ7L1 [n] (38)  

L3 = (κ6x) ⊙ (κ5V)
[
n2] (39)  

L4 = κ7L3 [n] (40)  

L5 = 1 ⊘ (κ8L2) [n] (41)  

L6 = f ((κ8L4) ⊙ (κ8L5)) [n] (42)  

L7 = κ8L5 [n] (43)  

L8 = (κ10W) ⊙ (κ6L4)
[
n2] (44)  

L9 = (κ10V) ⊙ (κ6L2)
[
n2] (45)  

L10 = − κ5L8 + κ5L9
[
n2] (46)  

L11 = f ′

((κ8L4) ⊙ (κ8L5)) [n] (47)  

L12 = (κ6x) ⊙ (κ6L5) ⊙ (κ6L7) ⊙ (κ5L10) ⊙ (κ6L11)
[
n2] (48)  

L13 = exp(κ8L6 + κ7L12) [n]. (49) 

The κ matrices have the same definition as for the Wilson model (see 
Table 1). The classic NRTL model can be obtained by removing Eq. (47), 
applying the linear transfer function in Eq. (42) and utilizing 

L12 = (MAx) ⊙ (MAL5) ⊙ (MAL7) ⊙ (I2L10)
[
n2] (50)  

instead of Eq. (48). 
For the sake of generality, the ASNN was developed so that the non- 

randomness factor α can be utilized as a binary interaction. Therefore, as 
seen in Eq. (30), the number of hidden neurons is s1. However, the user 
can set α to one of the “recommended” non-randomness values by 
assigning this parameter value to the layer and not optimizing the layer. 
Alternatively, if a symmetric α (i.e., α12 = α21) wants to be optimized, 
the number of hidden neurons in Eq. (30) should be set to 1 and the κ2 
weight matrix should be modified. The new weight matrix is calculated 
by summing every row of k2 to produce a column vector of n2 elements. 

3.2.1.2. Excess enthalpy. Utilizing the NRTL model for the estimation of 
both VLE and excess enthalpy (HE) has been suggested and done pre-
viously [57,59–62]. Therefore, it is paramount that the ASNN can utilize 
HE data to fit binary interaction parameters. The excess molar enthalpy 
can be estimated with the partial derivative of the excess molar Gibbs 
energy with respect to temperature 
(∂GE

/
RT

∂T

)

x, P
= −

HE

RT2 . (51) 

Differentiating Eq. (26) with respect to T, using the NRTL parame-
trization Eqs. (28) and ((29)), using a polynomial for the temperature 
dependency, and integrating the result into an ASNN yields 

BdT = (κ1tdT) ⊙ (κ3B)
[
n2] (52)  

τdT = κ4BdT
[
n2] (53)  

H1 = (κ5L1) ⊙
(
κT

7 L5
)
⊙ (κ5τdT)

[
n2] (54)  

H2 = (κ5L3) ⊙
(
κT

7 L5
)
⊙ (κ2α)

[
n2] (55)  

H3 = (κ5H2) ⊙ (κ5τdT)
[
n2] (56)  

H4 = (κ7H1) ⊙ (κ7H2) [n] (57)  

H5 = κ7H1 − κ7H3 + κ8H4 [n] (58)  

Fig. 5. Architecture of the ASNN that transcripts the NRTL-based activity coefficient models with the polynomial parametrization. Some connections were colored 
differently to make the diagram easier to follow. 
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H6 = (κ8x) ⊙ (κ8H5) [n] (59)  

H7 = κT
9 H6 = − HE/RT2 [1], (60)  

where tdT is an input vector that contains the derivative of the input t (e. 
g., if the input in t = 1000/T, tdT = − 1000/T2). Eqs. (54)− (60) are 
transferable to other parametrizations of the temperature dependency. 
Since the equations presented in this section are exact representations of 
the thermodynamic functions, the input or the output should NOT be 
normalized without modifying the ASNN correspondingly. 

3.2.2. Sigmoid function parametrization 
This parametrization stacks temperature-dependent sigmoid func-

tions with the general form 

τij = Cijtanh
(
Aij +Bij(T)

)
+ Dij, (61)  

where B(T) is an arbitrary function dependent on temperature. In 
essence, stacking more than one equation of this form implies that a SNN 
is being used to find τij instead of a polynomial. Note that the number of 
Dij parameters is independent of the number of hyperbolic functions. 
This parametrization aims at capturing highly nonlinear temperature 
dependencies; hence, it is more convenient for applications where there 
is available data for HE rather than only VLE. 

Generalizing Eq. (61) to an arbitrary number of sigmoid functions 
and an arbitrarily large Bij(T) function provides the following equations 

α = βα [s1] (62)  

A = βA [s4] (63)  

B = βB [s5] (64)  

C = βC [s4] (65)  

D = βD [s1] (66)  

BT = (κ11t) ⊙ (κ12B) [s6] (67)  

BdT = (κ11tdT) ⊙ (κ12B) [s6] (68)  

Q1 = κ13A + κ14BT [s7] (69)  

Q2 = tanh(κ15Q1) [s7] (70)  

Q3 = (κ13C) ⊙ (κ15Q12) [s7] (71)  

Q4 = sech2(κ15Q1) [s7] (72)  

Q5 = (κ13C) ⊙ (κ14BdT) ⊙ (κ15Q4), [s7] (73)  

τ = κ16Q3 + κ2D
[
n2] (74)  

τdT = κ16Q5
[
n2] (75)  

where q is the number of stacked hyperbolic functions, s4 = n(n − 1)q, 
s5 = n(n − 1)pq, s6 = n2pq, and s7 = n2q. Matrices κ11 - κ16 are used to 
transform the optimizable parameters of Eqs. (63)− (66) so that τii = 0 
and to set up the hyperbolic tangent functions in parallel. The form of 
Eqs. (54)− (60) are independent of the temperature-dependent 
parametrizations. 

3.3. VLE model 

The VLE data usually report liquid molar fractions (xi), vapor molar 
fractions (yi), temperature (T), partial pressures (pi), and/or total pres-
sure (P). Therefore, thermodynamic laws must be transcribed to the 
ASNN in order to relate all these variables. Specifically, Raoult’s law 

yiP = xiγip
sat
i (76)  

and Dalton’s law 

P =
∑n

1
yiP. (77) 

The transcription of these equations to an ASNN yields the following 
set of equations for an n number of components (Fig. 6) 

LR = (κ8x) ⊙ (κ8γ) ⊙ (κ8psat) = Pi [n] (78)  

LD = 1 ⊘
(
κT

9 LR
)
= 1
/

P [n] (79)  

Ly = (κ8LR) ⊙ (κ8LD) = y [n]. (80) 

This ASNN x, γ, and the pure component saturation pressure (psat) as 
inputs while the outputs are pi, P− 1, and y. 

3.4. Assembling the VLE and excess enthalpy ASNNs 

The VLE models analyzed in this work are summarized and presented 
in Table 3. The first column contains the identifier. The second column 
describes the scaling factor for the Wilson model and the non- 
randomness factor for the NRTL model. All optimizable α are uncon-
strained in the VLE models. The third column refers to the transfer 
function used in the excess function. Lastly, the “equations” column 
shows the hidden layer equations that correspond to the VLE ASNN. The 
VLE + HE models analyzed in this work are the classic formulation of the 
NRTL model with polynomial parametrization and the NNRTL model 
with a SNN parametrization. In this case, the non-randomness factor is 
constrained to α ≥ 0. 

Table 4 

4. Results and discussion 

4.1. VLE modelling 

This subsection compares the different VLE models summarized in 
Table 3. The thermodynamic systems and the number of datapoints used 
are shown in Table 5. Since the operating pressures shown in Table 5 are 
low, it is reasonable to assume ideal gas law for modelling the vapor 
phase behavior, hence, the component partial pressure pi is numerically 
equivalent to its fugacity. The pure liquid component fugacities were 
calculated with the extended Antoine equation 

psat
i = exp

(

K1 +
K2

T + K3
+K4T +K5ln(T)+K6TK7

)

, (81)  

where the empirical parameters K were taken from Aspen Plus v8.6 (the 
parameters are reported in the supporting information). 

Before training the ASNN, the temperature-dependent input vector 
should be defined. This section defines t as 

t = [1000 / T]. (82) 

In order to train ASNNs, the data must be divided into three subsets: 
training, validation and testing. From these 3 datasets, only the training 
dataset is used for fitting the parameters, the rest are used for verifying 
that the model is being overfitted. In this work, 80 % of the datapoints 
were used for training, 10 % for validation and 10 % for testing. The 
performance function L used to train the ASNNs is 

L =
∑N

1

(
Yexp − Ycalc

Yexp

)2

, (83)  

where Y is any output from the ASNN model (p, P, and/or y) and N is the 
total number of datapoints. This performance function is indirectly set 
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up by dividing each datapoint weight by (Yexp)
2 and calculating the 

MSE. We want to remark that all thermodynamic properties (p, P and y) 
were utilized in order to show that the ASNN can utilize every type of 
data. 

After the data has been collected, divided and the performance 
function has been selected, the ASNNs for the 7 VLE systems were 
trained. Since the initial values of the fitting parameters and the training 
data are chosen randomly, the optimization yields different parameters 
in each run. Therefore, the procedure was done 20 times and the model 
with the lowest AARD was selected. The Levenberg-Marquardt training 
algorithm [67–69] provided the set of parameters with the best per-
formance for these VLE models. 

The model AARDs are shown in Table 6. The models that have 4 
fitting parameters (Aij, Bij) either do not have α (Wilson and Wilson (H)) 
or α was fixed (like the NRTL model). The models with 5 fitting pa-
rameters on the other hand, optimize the binary interaction parameters 
together with α. The non-randomness factor α in the traditional NRTL- 
based models is fixed to 0.45 in system 3 while for the remaining sys-
tems is 0.30. The ASNN models were programmed and optimized by 
using the machine learning framework available in Matlab 2020b 
(nntrain). The models in the last two columns were optimized with the 
numerical gradient optimization function “fmincon” also found in 
Matlab. The average absolute relative difference (AARD) presented in 
Table 6 is is computed with 

AARD

/

100 % =
1

3Np

∑Np

1

⃒
⃒
⃒
⃒
pexp

i − pcalc
i

pexp
i

⃒
⃒
⃒
⃒+

1
3NP

∑NP

1

⃒
⃒
⃒
⃒
Pexp − Pcalc

Pexp

⃒
⃒
⃒
⃒

+
1

3Ny

∑Ny

1

⃒
⃒
⃒
⃒
yexp

i − ycalc
i

yexp
i

⃒
⃒
⃒
⃒. (84) 

The results in Table 2 suggest that better sets of fitting parameters 
might be found by using the Levenberg-Marquardt training algorithm 
instead of the numerical gradient method. In every system using the 
ASNN-based NRTL or Wilson model provided either equal or better re-
sults than using optimizers with numerical gradients. For the case of the 
Wilson model, the ASNNs provided equal or better sets of parameters 
than the ones using a numerical optimizer in most cases. 

According to Table 2, modifying the Wilson and NRTL models with 
the sigmoid functions do to not improve the model performance 
significantly. The NRTL (H) has slightly better fittings because there is 
an there is an extra degree of freedom because α is optimizable. These 
results might suggest that the non-linearities caused by the mixture non- 
ideality are more related to the binary interaction modelling functions 
rather than the mathematical form of the excess function. In general, all 
models have reasonable performance for every studied VLE system, 
however, larger deviations are observed in system 3. P − xy diagrams of 
the different models are presented in Fig. 7 and their corresponding 
parameters are shown in Table 7. 

Fig. 7 a) – b) show that the Wilson and hyperbolic Wilson models 
have poor modelling performance. This can be attributed to the highly 

Fig. 6. ASNN that transcripts the modified Raoult’s and Dalton’s laws.  

Table 2 
Definition of the κ weight matrices of NRTL model with a SNN parametrization. 
The last column shows an example of the matrix when n = 2, p = 2, q = 2.
Therefore, s4 = 4, s5 = 8, s6 = 16, and s7 = 8.  

Var. Description Dimensions Example 

κ11 Vertically stacking q times κ1 s6 x p 
[

κ1
κ1

]

κ12 Block diagonal matrix formed of q 
number of κ3 matrices (Kronecker 
product of κ3 and and an identity 
matrix of q x q dimensions). 

s6 x s5 
[

κ3 0
0 κ3

]

κ13 Block diagonal matrix formed of q 
number of κ2 matrices (Kronecker 
product of κ2 and and an identity 
matrix of q x q dimensions). 

s7 x s4 
[

κ2 0
0 κ2

]

κ14 Block diagonal matrix formed of q 
number of κ4 matrices (Kronecker 
product of κ4 and and an identity 
matrix of q x q dimensions). 

s7 x s6 
[

κ4 0
0 κ4

]

κ15 Identity matrix s7 x s7 
⎡

⎢
⎢
⎢
⎢
⎣

1 0 0 ⋯ 0
0 1 0 ⋯ 0
0 0 1 ⋯ 0
⋮ ⋮ ⋮ ⋱ 0
0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎦

κ16 Horizontally stacking q times κ5 n2 x s7 [ κ5 κ5 ]

0 is a null matrix with the appropriate dimensions<

Table 3 
Characteristics of the VLE models analyzed in this work.  

Model α Transfer 
function f 

Equations 

Wilson 1 Linear (10)-(20),(25),(23),(24),(78)- 
(80) 

Wilson (H) 1 tanh (10) - (24), (78) - (80) 
Wilson (S) Optimizable Linear (10) - (20), (25), (23), (24), (78) 

- (80) 
Wilson (S – 

H) 
Optimizable tanh (10) - (24), (78) - (80) 

NRTL Fixed Linear (30) - (46), (50), (49), (78) - 
(80) 

NRTL (H) Optimizable 
(symmetric) 

tanh (30) - (49), (78) - (80)  

Table 4 
Characteristics of the VLE + HE models analyzed in this work.  

Model 
ID 

Parametrization Equations 

NRTL Polynomial (30) - (46), (50), (49), (78) - (80), (52) - 
(60) 

NNRTL Hyperbolic tangent 
functions 

(62) - (75), (35) - (46), (50), (49), (78) - 
(80), (54) - (60)  
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non-ideal interactions between the two components that cause the 
azeotropic singularity. Furthermore, it seems that the non-idealities also 
“push” the ethanol vapor fraction towards the positive azeotrope. It can 
be seen that both models struggle to model the VLE either by under or 
overestimating the experimental pressure over the entire experimental 
range. On the other hand, Fig. 7 c) and Fig. 7 d) show that adding a 
scaling factor to the Wilson model greatly enhance the performance of 
the model. The scaling factor adjusts the numerator of the mixing 
function in order to modify, as needed, the values of the excess molar 
Gibbs energy and the activity coefficients. This helps to distribute the 
effect of the molecule interactions between the binary interactions and 
the adjustable empirical scaling factor. 

The usefulness of scaling the numerator and denominator perhaps 
was the main inspiration for the addition of the non-randomness factor 
in the NRTL model. In fact, if we analyze the scaled Wilson and NRTL 
equations, it can be observed that the scaling and the non-randomness 
factors have an analogous purpose. In the NRTL model, α reduces the 
effect of the exponential term while increasing the effect of τij (see Eqs. 
(28), (29)). Conversely, the scaling factor in the modified Wilson model 

alters the effect of the exponential term. To illustrate this, Fig. 7 e), f) 
highlight the effect of the non-randomness factors in the NRTL model. 
Although both models seem to provide good modelling performance, the 
model in Fig. 7 f) has a smooth behavior in the azeotropic region while 
the model in Fig. 7 e) does not. In view of this, the non-randomness 
factor can be considered as an adjustable scaling empirical factor that 
scales the excess molar Gibbs energy model to better represent the 
azeotropic points and liquid phase splitting. 

The scaled Wilson model seems to have a better performance than 
the original Wilson model. On the contrary, the NRTL model properly 
estimates the ternary data because α multiplies the binary interaction 
parameters (Eq. (28)) instead of multiplying the entire excess molar 
Gibbs energy function. Therefore, the robustness of the scaled Wilson 
model is highly reduced. 

The P − xy diagrams shown in Fig. 7 g) and Fig. 7 h) correspond to 
the hyperbolic NRTL models where the main difference is that the model 
represented in Fig. 7 g) is thermodynamically consistent while the one 
shown in Fig. 7 h) is not (system 3* in Table 5). The inconsistency was 
set so that none of the binary interaction parameters were fixed (i.e., 
Aii ∕= 0 and Bii ∕= 0, therefore, there are 9 fitting parameters). Table 6 
shows that the inconsistent hyperbolic NRTL model outperforms its 
consistent counterpart. However, the P − xy diagrams do not show 
evident signs of thermodynamic inconsistency. 

In order to show a clearer picture about the effects of utilizing 
inconsistent thermodynamic models, Fig. 8 is presented. Fig. 8 b) shows 
that the inconsistent model does not comply with the definition of a 
symmetric excess Gibbs energy model (GE/RT when xi = 1). This is 
despite being statistically closer to the experimental data than the model 
used in Fig. 8 a). This points out that in the case of models based on 
neural networks, utilizing statistical figures only, is not enough to prove 
the validity of a thermodynamic model. Thus, the thermodynamic 
consistency must be checked to conclude that ANN-based models are 
better than traditional thermodynamic models. 

Another main criticism towards machine learning models can be 
their apparent lack of extrapolability. Although in strict terms, every 
semi-empirical model is only valid within the measured experimental 
data, the models developed with machine learning provide physically 
unfeasible results outside the experimental data boundaries. This is not a 
challenge for NNP-based VLE models since the basic thermodynamic 
relationships are integrated in the ASNN. This implies that the ASNNs 
may be capable of providing reasonable predictions even if it used 
outside the training operating conditions. For instance, Fig. 9 (dashed 
line) shows that the scaled Wilson model can provide thermodynami-
cally physically feasible VLE predictions outside the data training limits. 

Fig. 7. P − xy diagrams of the Ethanol (1) – Cyclohexane (2) system at T =
283 K with: a) Wilson, b) Wilson (H), c) Wilson (S), d) Wilson (S – H), e) NRTL 
1 (α = 0.3), f) NRTL 2 (α = 0.45), g) NRTL (H), h) NRTL (inconsistent, α =
0.45). Experimental data: [65]. 

Table 5 
VLE systems modelled  

System System Number of 
datapoints 

T / K P / 
kPa 

Refs. 

1 Benzene (1) - 
Isooctane (2) 

31 308 - 
348 

12 - 
86 

[63] 

2 Carbon 
Tetrachloride (1)     

- Cyclohexane 
(2) 

19 349 - 353 101.3 [64]  

3 Ethanol (1) - 
Cyclohexane (2) 

89 283 - 
347 

8 - 
101.3 

[64, 
65] 

4 Methanol (1) - 
Ethanol (2) 

11 338 - 
350 

101.3 [66] 

5 Ethanol (1) - Water 
(2) 

18 351 - 
362 

101.3 [66] 

6 Methanol (1) - 
Water (2) 

20 338 - 
370 

101.3 [66] 

7 Methanol (1) - 
Ethanol (2) - Water 
(3) 

49/86* 338 - 
370 

101.3 [66]  

* the model was trained with 49 binary VLE datapoints and tested against 86 
datapoints consisting of binary and ternary VLE 
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The accuracy-related advantages of the ASNN-based models are 
mostly likely to be caused by the automatic differentiation algorithm. 
Moreover, the ASNN training algorithm utilizes an arbitrary selected 
portion of the data to optimize the model while the other portion is used 
to avoid model overfitting. Both of these features are essential in ma-
chine learning modelling, and it seems that they can provide an 
advantage for VLE modelling because allows finding better sets of fitting 
parameters. This suggests that using all the experimental data for 
parameter fitting is not necessarily the best option. One of the inter-
esting features that can be exploited for VLE modelling while using 
ASNN-based VLE models, is the division of data. Although the data di-
vision ratios are fixed by the user, the algorithm chooses the datapoints 
for fitting the parameters randomly. Considering this, the data division 
algorithm can be used to automatically find them. This might be helpful 
to discriminate the datapoints without previous knowledge of which 
datapoint is “good” for the parameter fitting. Unfortunately, the sto-
chastic nature of the process also has the drawback of not guaranteeing 
that the model will find the same set of optimized parameters (although 
the values can be close). 

4.2. Simultaneous VLE and excess enthalpy modelling 

This subsection discusses the advantages of utilizing ANN optimi-
zation frameworks and sigmoid functions for the simultaneous fitting of 

VLE data and HE. Table 8 presents the modelled thermodynamic systems 
and the number of individual datapoints for each thermodynamic var-
iable. The same performance function (Eq. (83)) used in section 4.2 is 
used in this section. However, the temperature-dependent input vectors 
(t and tdT) are different for the models presented in this work. The 
temperature-dependent vectors for the NRTL model are 

t =
[

1000/T
0.01T

]

(85)  

tdT =

[
− 1000

/
T2

0.01

]

, (86)  

while for the NNRTL model t and tdT only contain the first element of 

Table 6 
AARD of the VLE models for the studied systems  

System ASNN fmincon 
Wilson Wilson 

(H) 
Wilson (S) Wilson  

(S) (H) 
NRTL NRTL 

(H) 
Wilson NRTL 

1 0.40 0.83 0.40 0.40 0.42 0.40 0.40 0.43 
2 1.16 1.31 1.10 0.96 1.20 1.04 1.26 1.44 
3 3.68 8.07 1.92 1.95 1.82 2.00 3.90 1.96 
3* 2.94 6.44 1.35 1.40 1.27 1.46 N/A N/A 
4 0.09 0.12 0.08 0.12 0.16 0.08 0.13 0.16 
5 0.67 2.23 0.42 0.41 0.43 0.35 0.79 0.45 
6 0.60 0.47 0.55 0.53 0.56 0.40 0.61 0.57 
7 1.46 2.67 1.46 1.88 1.30 1.40 2.14 2.13 
Average 1.15 2.24 0.85 0.89 0.84 0.81 1.32 1.02 
No. of fitting parameters 4 4 5 5 4 5 4 4  

Table 7 
Activity coefficient parameters for the ethanol (1) - cyclohexane (2) system (the 
parameters are presented in the form of Eq. (8))  

Model A21 A12 B21 B12 α 

Wilson -0.3015 -0.4121 -0.2185 -0.2845 1 
Wilson (H) -0.6428 -0.8404 -0.1927 -0.1679 1 
Wilson (S) 0.7656 0.0159 0.0840 0.2052 -1.3352 
Wilson (S - H) 0.7191 -0.0080 0.0722 0.2011 -1.4924 
NRTL 1 -0.6496 1.1809 0.6107 0.3698 0.45 
NRTL 2 -0.5330 2.1541 0.4219 -0.0361 0.30 
NRTL (H) 0.6509 0.1943 0.1176 0.1769 -0.7723  

Fig. 8. Excess molar Gibbs energy diagrams of the Ethanol (1) – Cyclohexane (2) system at 293.15 K. The solid lines were computed using the same models as: a) 
Fig. 7 g), and b) Fig. 7 h) respectively. *Calculated from the experimental data: [65]. 

Fig. 9. P − xy diagrams of the Benzene (1) – Isooctane (2) system. The dashed 
line values are calculated with the Wilson model at 363.15 K (extrapolated). 
Parameters: A12 = − 1.0486, A21 = 0.3153, B12 = 0.3183, B21 = 0.0797, βs

α =

− 1.080. Experimental data: [63]. 
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both vectors. This means that p = 2 for the NRTL model and p = 1 for the 
NNRTL model. The NNRTL models developed in this section have two 
stacked hyperbolic tangent functions (q = 2). 

Considering the above, the ASNNs were trained using the Bayesian 
regularization algorithm [69,76,77] (“trainbr” in Matlab 2020b). The 
AARD of the optimized models is presented in Table 9 together with the 
optimization of the NRTL model optimized with fmincon. The optimized 
parameters of the models with the lowest AARD are presented in 
Table 10. The AARD was computed using 

AARD

/

100 % =
1

4Np

∑Np

1

⃒
⃒
⃒
⃒
pexp

i − pcalc
i

pexp
i

⃒
⃒
⃒
⃒+

1
4NP

∑NP

1

⃒
⃒
⃒
⃒
Pexp − Pcalc

Pexp

⃒
⃒
⃒
⃒

+
1

4Ny

∑Ny

1

⃒
⃒
⃒
⃒
yexp

i − ycalc
i

yexp
i

⃒
⃒
⃒
⃒+

1
4NP

∑NH

1

⃒
⃒
⃒
⃒
HE,exp − HE,calc

HE.exp

⃒
⃒
⃒
⃒. (87) 

The ID column in Table 8 consists of a number that refers to the 
system number and a letter that indicates whether the model uses a non- 
optimizable α (the models whose ID have a suffix “a” fix the scaling 
factor to 0.3), a symmetric optimizable α (suffix “b”) or an unsymmetric 
α (suffix “c”). The addition of an optimizable symmetric α adds 1 degree 
of freedom while the unsymmetric α adds 2 (e.g., the NNRTL 8c model 
has 14 fitting parameters from the SNN functions and 2 from α). 

The Bayesian regularization algorithm (trainbr) showed better ac-
curacy (lower AARD) for training VLE + HE models than the trainlm. In 
fact, for VLE modelling the Bayesian Regularization is a competitive 
optimizer compared to the used Levenberg-Marquardt algorithm 
(however, this algorithm was slightly superior). 

The results show that models with unsymmetric α have 35 % lower 
AARD than those with fixed symmetric α and 10 % with respect to the 
ones with an optimizable symmetric α. In general, utilizing a SNN to 
parametrize the temperature (NNRTL) is better than utilizing 
polynomial-based parametrizations (NRTL). However, the advantages of 
the NNRTL model are more evident at systems where HE has a highly 
unsymmetrical and non-monotonic behavior of HE (e.g., Fig. 10 c) – d)). 

For simpler HE behaviors the advantages are diminished (Fig. 10 a)) or 
simply the polynomial parametrization is better (Fig. 10 b)). 

The results in Table 9 show that utilizing the ASNNs together with 
the neural network optimization framework is enough to improve the 
available thermodynamic models even if the same parametrization for 
the temperature-dependence is being utilized. This suggests that the 
reparameterization of established thermodynamic models with neural 
networks might be caused more by the optimization algorithms rather 
than from the ANN. In fact, we tried to increase the number of stacked 
sigmoid functions (q) to check whether the accuracy of HE could be 
improved. The results suggested that the maximum effective parameters 
used by the NNRTL is between 15 – 16 (out of 16). The number of 
effective parameters in the Bayesian regularization algorithm reports 
how many parameters are actually having an impact on the model 
output. 

As previously discussed, it is recommendable to check the thermo-
dynamic models in order to ensure that the model is thermodynamically 
correct. Fig. 11 shows that the ASNN model can estimate both the VLE 
and HE of the ethanol (1) – water (2) system over a wide range of 
temperatures, pressures, and molar compositions. In order to further test 
the method, we compared the model predictions against VLE data [78] 
that, in addition being above the maximum VLE temperature data, were 
not used for the parameter fitting of the ASNN. This demonstrates that 
the VLE model is capable of accurately predicting extrapolated “unseen” 
data (the AARD of P is 2.9 % and yi is 4.0 %) despite being a neural 
network. 

Table 8 
Modelled systems using VLE and excess enthalpy data.  

ID System Number of 
datapoints 

T / K P / kPa Refs. 

y P HE 

8 Acetone (1) - 
Hexane (2) 

124 50 49 253 - 
329 

10 - 
101.325 

[70,71] 

9 Dichloromethane 
(1) - Acetone (2) 

142 134 137 273 - 
348 

9 - 309 [70,71] 

10 Acetone (1) - Water 
(2) 

86 116 141 288 - 
401 

1 - 369 [70,71] 

11 Ethanol (1) - Water 
(2) 

676 354 154 273 - 
423 

12 - 988 [61,66, 
71–75]  

Table 9 
AARD / % of the VLE data (P, p, and y) and HE of the different NRTL model variants developed. The AARD values in bold correspond to the models used in the HE plots 
shown in Fig. 13.  

ID NRTL (fmincon) NRTL (ASNN) NNRTL 
VLE HE Overall VLE HE Overall VLE HE Overall 

8a 4.4 5.5 4.7 4.2 5.4 4.5 4.2 5.1 4.4 
8b 3.9 5.7 4.4 3.9 5.4 4.3 4.3 2.9 3.9 
8c 3.9 5.4 4.3 4.3 4.1 4.2 4.3 2.7 3.9 
9a 3.4 2.6 3.2 3.4 1.4 2.9 3.5 2.1 3.1 
9b 3.4 1.4 2.9 3.3 1.5 2.9 3.4 1.3 2.9 
9c 3.4 1.3 2.9 3.3 1.4 2.8 3.5 1.4 3.0 
10a 8.8 27.5 13.5 7.3 26.3 12.1 6.1 16.7 8.7 
10b 7.6 22.9 11.4 6.6 21.9 10.4 6.7 16.7 9.2 
10c 6.7 17.0 9.3 6.2 16.5 8.8 6.4 15.2 8.6 
11a 10.6 60.0 22.9 3.4 62.4 18.1 3.8 44.4 13.9 
11b 6.2 32.6 12.8 5.2 34.9 12.6 5.0 23.2 9.5 
11c 5.6 32.2 12.3 4.7 25.5 9.9 5.2 20.7 9.1  

Table 10 
Vectors containing the binary interaction parameters.  

ID α A B C D 

8b 0.4169 -5.4097 2.2558 1.9995 -0.3379  
-1.6853 0.4013 1.8285 0.9710  
6.3013 -1.5695 -0.4896   
0.2180 -0.2621 -1.1646  

9c 0.0266 0.5022 -0.5274   
0.5235 0.5880 0.1332     

-0.0370     
-0.0267   

10c -0.1971 -2.4321 1.2992 0.9532 0.5897 
-0.6958 -1.8265 1.0256 1.2459 -0.6404  

7.7666 -2.0550 -0.3967   
-2.1862 0.5955 -2.5575  

11c 1.6830 0.8750 1.5013 1.1558 1.5563 
0.1951 5.4679 -2.1492 -0.8690 2.5896  

-0.0039 -0.4357 3.8923   
6.9744 -2.1980 -0.5611   
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4.3. Applications to other systems 

4.3.1. Non-ideal vapor phase 
It is reasonable to assume that the vapor phase behaves as an ideal 

gas in the systems studied in this work. Nonetheless, this might not be 
acceptable for other VLE systems. If it is desired to include an equation 
of state for the vapor phase, the algorithms shown in Fig. 12 can be 
utilized. The algorithm shown in Fig. 12a can be utilized whenever T, P 
and all molar fractions of both phases are known. Conversely Fig. 12b 
can be utilized for cases in which the total pressure or vapor molar 
fraction values are missing. In the likely case that an ANN-based equa-
tion of state (EoS) is developed in the future, it will be enough to couple 
the ANN-based EoS with the ASNN shown in Fig. 6. Alternatively, a 
surrogate model can be utilized to transform the fugacities to molar 
fractions. 

Note that the algorithms shown in Fig. 12 are for parameter fitting 
only. Therefore, if the user wants to use the ASNN activity coefficient 
model for other phase-equilibria calculations, the ASNN should include 
the appropriate computational algorithms for them. 

4.3.2. Liquid-Liquid Equilibrium 
There are systems relevant to industrial applications which require 

Liquid-Liquid Equilibrium (LLE) calculations. LLE can be described for a 
system with two liquid phases as 

xI
i γ

I
i = xII

i γII
i , (88)  

where I and II are liquid phases 1 and 2, respectively. Utilizing feed-
forward ASNNs is not straightforward in LLE. This is because the activity 
coefficient γ is a function of the component molar fraction and the 
variables are not separable like in VLE. However, the semi-empirical 
parameters can be regressed with a feedforward ASNN by using an 
approximation. This approach would imply to utilize the ASNN shown in 
Fig. 13 and given in the following set of equations 

LI
a =

(
κ8xI)⊙

(
κ8γI) [n] (89)  

LII
a =

(
κ8xII)⊙

(
κ8γII) [n] (90)  

LΔa = κ8LR1 − κ8LR2 [n]. (91) 

The goal of the optimization algorithm is to minimize the difference 
between LI

a and LII
a by utilizing the experimental data and tuning the 

fitting parameters so that LΔa is minimized (LΔa ≅ 0). Therefore, the 
output Δ should be set equal to 0 for the experimental datapoints and xI, 
xII, and T are the inputs. It should be noted that the input nodes that 
contain the activity coefficients in Fig. 13 must utilize the same activity 
coefficient model and set of fitting parameters. 

This simplified approach should only be utilized to optimize the 
fitting parameters but not for performing LLE calculations. This is 
because the system is over-specified in accordance with the Gibbs phase 
rule. Over-specifying the LLE system was necessary since feedforward 
ASNNs cannot perform the iterative calculations needed in LLE. Because 
of this, more complex ASNN architectures such as Recurrent Neural 
Networks (RNNs) might be needed. 

5. Conclusions 

The application of Neural Network Programming (NNP) hybrid 

Fig. 10. Excess enthalpy plots of a) Acetone (1) – Hexane (2) [Model 8b], b) Dichloromethane (1) - Acetone (2) [Model 9c], c) Acetone (1) – Water (2) [Model 10c] 
and d) Ethanol (1) – Water (2) [Model 11c]. The fitting parameters are presented in Table 10. Experimental data: [71]. 

Fig. 11. VLE plot of the ethanol (1) – water (2) system. Experimental data at 
323.15 – 333.15 K [73] and at 353.15 – 363.15 K [78]. [Model 11c]. 
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modelling technique was utilized to develop thermodynamically 
consistent, accurate and extrapolable VLE models based on Algorith-
mically Structured Artificial Neural Networks (ASNNs). Utilizing NNP 
for developing thermodynamic models helps to guarantee that the 
thermodynamic consistency is preserved. Furthermore, it is ensured that 
the pure component thermodynamic properties (e.g., vapor pressure) 
and the definition of ideal mixture can be recovered from the model 
whenever the model is used under limiting conditions (e.g., for sym-
metric excess functions if xi = 1, GE/RT = 0). These conditions are 
paramount for any thermodynamic model to be regarded as such. 

By using established thermodynamic models as examples, it was 
demonstrated that it is possible to formulate thermodynamically 

consistent models based on ASNNs. This works provides the insight of 
the needed facets and paths for developing new and thermodynamically 
consistent models entirely based on neural network technology. The 
thermodynamic consistency can easily be overlooked when the data are 
separated from thermodynamic principles. Therefore, developing 
models within the ASNN framework can help to analyze which modifi-
cations can be performed on the model without altering the validity of 
the equations. 

It was shown that the utilization of ANN optimization frameworks is 
a feasible alternative for improving the available thermodynamic 
models without the need of flooding the model with dozens or hundreds 
of parameters. Thermodynamic models and parameterizations have a 
threshold on how many temperature-dependent parameters can be 
effectively utilized to fit the thermodynamic properties. 

Utilizing machine learning should not be considered as a substitution 
for thermodynamic modelling but rather a tool for its improvement. If a 
neural network model comply with thermodynamic constraints is 
because its architecture and parameters are not compatible with ther-
modynamics (as in typical fully connected ANNs). 

Thermodynamic models for mixtures that are based on data-driven 
techniques should be carefully developed and evaluated because the 
typical ANN architectures (shallow neural networks or fully connected 
neural networks) do not ensure thermodynamic consistency or proper 
behavior in the pure component limits. The validation of ANN-based 
thermodynamic models should not be created only with statistical fig-
ures like AARD or mean squared error since they can be misleading. The 
relevant limits and constraints should be tested as well since they are the 
core of the thermodynamic framework. 

Using machine learning training algorithms (ASNN training) might 
provide better sets of fitting parameters than regular gradient methods. 
Furthermore, several modifications for the Wilson and NRTL models 
were analyzed. Utilizing a hyperbolic tangent modification for the 
excess molar Gibbs free energy function (as proposed by Focke) does not 
significantly improve or reduce the accuracy of the NRTL model. Further 
evaluations are required for definite conclusions. 

Stacking hyperbolic tangent functions for substituting the typical 
low-dimensional polynomial temperatures is a feasible alternative for 
the simultaneous modelling of VLE and HE. For example, the AARD of 
the HE in the ethanol (1) – water (2) system was just 20.7 %. As opposed 
to conventional neural network models, the number of fitting parame-
ters did not increase drastically by using this modification (7 parameters 
are used in the original NRTL and up to 16 parameters with a NRTL with 
a neural-network-based parametrization). 

The ASNNs presented in this work might seem like complex or 

Fig. 12. Algorithms for training the activity coefficient ASNN for systems with a non-ideal vapor phase. The tolerance value ε is arbitrary.  

Fig. 13. ASNN that optimizes the fitting parameters by minimizing the dif-
ference between the activity of phase I and phase II. 
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extensive models. However, these representations allow the parallel 
calculation of multiple VLE steps in a single function call. This means 
that if 1,000 VLE datapoints are to be computed, the model will only be 
called one time instead of 1,000 times and avoiding the typical “for” 
cycles used. This proves quite convenient for situations in which large 
thermodynamic databases are utilized for parameter fitting. 

Due to the efficient matricial nature of the calculations performed in 
the ASNN, the simultaneous optimization of multiple VLE systems can 
be performed. This implies that large databases can be utilized to test 
different parametrizations of the VLE system (e.g., perhaps a SNN 
parametrization as shown in this work). A similar approach that the one 
presented here can be done to transcribe other activity coefficient 
models (e.g., UNIQUAC/UNIFAC) and perform a simultaneous optimi-
zation of all the fitting parameters. This would allow verifying whether 
there is a correlation between some component properties and the bi-
nary interactions. 
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