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High Velocity, Low-Voltage Collective In-Plane Switching in
(100) BaTiO3 Thin Films

Trygve M. Ræder,* Shuyu Qin, Rama K. Vasudevan, Tor Grande, Joshua C. Agar,*
and Michael J. Zachman

Ferroelectrics are being increasingly called upon for electronic devices in
extreme environments. Device performance and energy efficiency is highly
correlated to clock frequency, operational voltage, and resistive loss. To
increase performance it is common to engineer ferroelectric domain structure
with highly-correlated electrical and elastic coupling that elicit fast and
efficient collective switching. Designing domain structures with advantageous
properties is difficult because the mechanisms involved in collective
switching are poorly understood and difficult to investigate. Collective
switching is a hierarchical process where the nano- and mesoscale responses
control the macroscopic properties. Using chemical solution synthesis,
epitaxially nearly-relaxed (100) BaTiO3 films are synthesized. Thermal strain
induces a strongly-correlated domain structure with alternating domains of
polarization along the [010] and [001] in-plane axes and 90° domain walls
along the [011] or [01̄1] directions. Simultaneous capacitance–voltage
measurements and band-excitation piezoresponse force microscopy revealed
strong collective switching behavior. Using a deep convolutional autoencoder,
hierarchical switching is automatically tracked and the switching pathway is
identified. The collective switching velocities are calculated to be ≈500 cm s−1

at 5 V (7 kV cm−1), orders-of-magnitude faster than expected. These
combinations of properties are promising for high-speed tunable dielectrics
and low-voltage ferroelectric memories and logic.

1. Introduction

The emergence of correlated domain dynamics in ferroelectrics
have enabled low-loss tunable dielectrics, negative capacitance,
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and high clock frequency.[1–6] The increas-
ing need for memory and logic devices
for extreme environments has made these
properties important figures of merit for
ferroelectric devices. Domain structure en-
gineering is a powerful tool to tune these
properties, but there are challenges in cor-
relating properties to collective switching
dynamics.[7]

To understand collective switching dy-
namics a multitude of macroscopic and
nanoscale characterization techniques have
been employed. On the macroscale, fer-
roelectric hysteresis, positive-up negative-
down (PUND),[8] and capacitance–voltage
measurements provide insight into collec-
tive switching dynamics. On the nanoscale,
a range of scanning-probe-based switching
spectroscopes have observed local switch-
ing dynamics.[9–11] For example, studies
have utilized a conductive cantilever-
mounted tip to apply a bipolar triangular
switching waveform while imaging the do-
main structure using piezoresponse force
microscopy (PFM).[12–14] When measuring
switching dynamics directly under the
tip, it is not possible to observe collective
switching behavior as switching occurs

over length scales of micrometers.[15] Furthermore, these mea-
surements are not applicable to in-plane switching dynamics as
it is difficult to determine and decouple lateral electric fields
when bias is applied between a conductive-PFM tip and bottom
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Figure 1. a) Annular dark field (ADF) STEM image of the 210 nm BaTiO3 film; Periodic edge dislocations at the interface are highlighted in the inset.
b) Conventional PFM image (driving voltage applied to the tip) that shows the amplitude of the piezoresponse along the [001] direction. a2 domains
appear as diagonal bright lines separated by dark a1 domains. The image shows the amplitude of a2. c) Types of superdomains in an a1/a2 domain
structure. The superdomains are categorized based on whether the a1 domains have polarization left or right and the direction of the domain walls, with
𝛼 superdomains having domain walls along the [011] direction, and 𝛽 superdomains having domain walls along the [01−1] direction. d) Polarization-
electric field hysteresis loops from 0.1 Hz to 3 kHz.

electrode. From a device perspective, in-plane polarization is fa-
vorable as this keeps the polarization in the plane where the elas-
tic boundary conditions are enforced by the substrate, yielding
stronger collective behavior. Tensile strain can produce different
dense in-plane domain structures,[16,17] while compressive strain
produces monodomain states or domain structures with both in-
plane and out-of-plane components.[18]

One modern approach to investigate in-plane switching is to
use coplanar electrodes, as demonstrated in BiFeO3 thin films[12]

and LiNbO3
[19] single crystals. These studies investigate switch-

ing in a step-wise fashion by alternating between voltage pulses
and PFM scans. This approach cannot avoid domain structure re-
laxation between images and thus cannot reveal transient states
stable under an applied voltage. In contrast, imaging the do-
main structure in situ, while a voltage is applied, better mim-
ics operational conditions, but has so far only been performed
using TEM.[20,21] TEM is plagued by the requirement that the
sample is thin enough to be electron transparent, which re-
laxes the elastic boundary conditions along one axis in the film
and introduces additional surfaces. It is vital for comparison
that the film is under the same boundary conditions in micro-
scopic and macroscopic characterization. Similar false conclu-
sions may be drawn if different techniques are not performed
at the same frequency, because important parameters such as
the coercive field are frequency dependent. Finally, many ferro-
electrics experience wake-up and ageing behaviors,[22,23] which
can lead to different results if experiments are not carried
out concurrently. Combining data from different sources there-
fore requires that nondestructive experiments are conducted
in situ.

Here, we develop an in situ correlated capacitance–voltage
and band-excitation PFM imaging technique to directly corre-
late collective switching dynamics to functional properties in
a BaTiO3 thin film. Nearly-relaxed epitaxially film are fabri-
cated using chemical solution deposition producing a strongly
coupled a1/a2 domain structure[24] as the result of thermally-
induced tensile strain. Ferroelectric hysteresis loops reveals fast
switching events, significantly faster than would be expected
for clamped films.[25–27] Simultaneous capacitance–voltage and
band-excitation piezoresponse force microscopy (PFM) measure-
ments reveal strong collective switching behavior. Using a deep
convolutional autoencoder we automatically track hierarchical
switching and identify the switching pathway. We calculate the
collective switching velocities to be ≈500 cm s−1 at 5 V (7 kV
cm−1), orders-of-magnitude faster than expected. These com-
binations of properties are promising for high-speed tunable
dielectrics and high-speed low-voltage ferroelectric memories
and logic.

2. Results

BaTiO3 films were grown using chemical solution deposition.
Each of the 16 layers of BaTiO3 were individually calcined to form
an epitaxial film. Scanning transmission electron microscopy
(STEM) images of the interface show individual layers (Fig-
ure 1a). The epitaxial strain at the substrate–film interface is re-
laxed by edge dislocations. Further details are provided in ref. [28].

To understand the domain structure we conducted detailed
PFM studies. PFM studies reveal an a1/a2 superdomains (Fig-
ure 1b,c) with alternating domains of polarization along the [010]
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Figure 2. a) Illustration of the experimental setup. The driving potential, VAC, and bias, VDC, used to control the PFM were combined using a bias tee, and
connected to the interdigitated electrodes via relays. By switching the relays, the IDEs would instead be connected to an LCR meter. b) Measurement
scheme. The bias voltage was swept in a stepwise fashion, an at each step a BEPFM frame was recorded, followed by a capacitive measurement. A
simplified schema with two steps on the rising edge and a single bias sweep is shown. For the experiment, 16 steps were used on the rising edge, and
two bias sweeps were performed.

and [001] in-plane axes and 90° domain walls along the [011] or
[011̄] directions.[16] In-plane ferroelectric hysteresis loops mea-
sured using interdigitated electrodes (IDEs) reveal square hys-
teresis loops with sharp switching at frequencies from 0.1 Hz to
3 kHz (Figure 1d).

We have estimated the collective switching velocity from the
switching current and electrode spacing according to Equa-
tion (1).

v =
(

1
dP∕dElf

− 1
dP∕dEhf

)−1
dE
dt hf

a
2Pm

(1)

Here dP/dEhf and dP/dElf are the maximum slopes of the high-
frequency and low-frequency curves (Figure 1d), a is the electrode
spacing and Pm is the maximum polarization. The difference in
slope between high and low frequency measurements corrects
for the small (<±0.2 μ m) nonuniformity in the electrode spacing
across the IDE area (1×1 mm) and other similar features which
cause dP

dE
to plateau at low frequencies. With this data (Figure 1d,

Equation (1)) we estimate a domain wall velocity of ≈500 cm s−1.
This is higher than velocities observed at the coercive field in bulk
single-crystals of BaTiO3,[29] which is surprising due to the strong
clamping that suppresses irreversible domain wall motion in epi-
taxial thin films,[25–27] and we attribute this to the strongly corre-
lated domain structure.

In situ images were collected by band-excitation piezore-
sponse force microscopy (BEPFM)[30] using the same IDEs. A
DC bias voltage VDC was applied together with the driving volt-
age VAC to the electrodes (Figure 2). The electric field distribution
was confirmed using Kelvin-probe force microscopy (KPFM—
Section S1, Supporting Information).

Images were constructed by measuring the lateral deflection of
the cantilever associated with the lateral piezoresponse driven by
the band excitation waveform. The raw data in the time domain
was translated to the frequency domain using a Fourier trans-
formation. The frequency-dependent piezoresponse was fit to an
simple harmonic oscillator using a neural network approximate
that was refined by least-squares curve fitting.[31]

To automate the detection of ferroelectric switching dynam-
ics with minimal user bias we deployed a custom convolutional
neural network (CNNs) concept (Figure 3). Prior to training, each
image was normalized to have a mean of zero (0) and a standard
deviation of one (1). This eliminates image variations that occur
due to reconstruction of the PFM tip during imaging. The data
was parsed into 15×15 pixel images by convolving a kernel with a
stride of one (1). These kernels were analyzed using a deep convo-
lutional autoencoder. Autoencoders consist of three parts, an en-
coder, embedding layer, and decoder. In this architecture the en-
coder seeks to identify a compressed statistical distribution of the
training data. This abstract representation is passed to the em-
bedding layer which compresses this information into an inter-
pretable latent space. The output of the embedding layer is then
decoded by the decoder which seek to reconstruct the original im-
age. Autoencoders are optimized to learn and identify function
f(x) = x, with consideration for other regularization constraints.

In our model, the encoder ingests a single channel image us-
ing a convolutional layer with a kernel of three (3) and a stride
of one (1). The output is then passed to three identical blocks.
Each convolutional block has two parts. The first is a convolu-
tional layer with a layer normalization and rectified linear activa-
tion functions (ReLu) as nonlinearities. The second part is a resid-
ual block that has two (2) convolutional layers, a layer normaliza-
tion layer, and a ReLu activation function. The input of the resid-
ual block is added to the output of this block forming a residual
network (ResNet). ResNets are commonly used to improve opti-
mization and increase model performance.[32] At the end of the
encoder there is a single convolutional neuron which restores the
dimensionality to a single (15 × 15) image. This downsampled
image is then flattened and passed to a single fully-connected
layer that compressed each image to a vector of size 64.

The decoder is constructed as the inverse of the encoder. There
is a fully-connected layer that restores the embedding layer to a
vector of size 225, which is then reshaped to a 15 × 15 image.
This is followed by a convolutional layer, and three convolutional
blocks with residual layers. The last layer of the model is a sin-
gle convolutional neuron that restores the dimensionality to the
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Figure 3. a) Schematic depiction of deep neural network architecture used to detect ferroelectric switching. b,c) Median image of primary switching
event between 2.6 and 3.0 V.

original image size. The model was optimized using ADAM for
86 epochs reaching a final reconstruction loss of 0.06.

Following training the output from the embedding layer was
extracted. This represents a compact representation of the en-
semble of images. To determine the point of ferroelectric switch-
ing we identified the voltage step within each convolution where
there was the largest change in the embedding. The time step
where the embedding has the largest Euclidean distance between
time steps in the latent space represents where the image, and
thus the domain structure changed the most, a marker for ferro-
electric switching. This was used to create the switching projec-
tions (Figure 4). To confirm that the maximum change in the em-
bedding represents a switching event, we, for each voltage step
selected the median pixels from the embedding that were classi-
fied as switching. As an example, we show the change, from the
median switching event as determined from the embeddings, in
the primary switching event that occurred between voltages of 2.6
and 3 V (Figure 3a,b).

In the experiment, the voltage was cycled twice, switching the
film four times (two times left to right, and two times right to
left). All four switching events show similar dynamics, and all
PFM images are included in Section S2, Supporting Information.
PFM images recorded at increasing bias voltage during the third
switching event are shown in Figure 4. From the neural network,
we plot the polarization superimposed on the PFM image of the
domain structure. Regions with the polarization aligned opposed
to the electric field are shaded in blue (unswitched) while regions
aligned with the electric field are shaded in red (switched). We
indicate the capacitance using a red circle in the plot to the right
of the domain structure image. No bias was applied in the im-
age shown in Figure 4a. In Figure 4b–d sub-coercive fields were
applied and the capacitance increases significantly although no
switching is observed. The domain structure in Figure 4e,f re-
mained very similar to that in Figure 4a, but a nucleated domain
of reverse polarization by the right electrode has been identified.
Increasing the field past the coercive field, Figure 4g shows a sig-
nificant switching event spanning between the electrodes in the

bottom part of the frame. This is associated with a significant
drop in the capacitance.

From Figure 4g,h major sections of the film switch and the
capacitance drops further. At the left side of the image the film
is now completely switched. However, the switched region splits
and connects to the other electrode in the bottom right of the
image and top-right just out of the frame, leaving a smaller re-
gion of the film not-yet-switched. This major switching event is
used to define the coercive field, 3.75±0.62 kV cm−1, where the
uncertainty is given by the voltage step. By comparing the local
domain structure in inset (g) and (h), it can be seen that switch-
ing rotates the domain walls by 90° from 𝛼 superdomain to a 𝛽

superdomain (described in Figure 1d) and identified by the neu-
ral network (Figure 3b,c). Switching continues from Figure 4h
through m as the not-yet-switched region shrinks and eventually
disappears. This demonstrates that switching continues beyond
the coercive field, and nonswitched regions are present up to Fig-
ure 4l (1.5 times the coercive field). No significant changes to the
domain structure is observed in Figure 4m–p.

3. Discussion

These results demonstrate that nucleation takes place at the elec-
trodes prior to reaching the coercive field. This is expected in a
coplanar electrode geometry as the electric field will be highly
concentrated at the edge of the electrodes.[33] Domain switch-
ing in major parts of the film were only initiated after the maxi-
mum capacitance was reached, indicating that the coercive field
did not align with a maximum in the average dielectric constant.
This is expected as the largest dielectric response should be at the
precipice of ferroelectric switching. The drop in the capacitance
as the film switches corresponds roughly to the fraction of the
film where domain switching had occurred. This suggests that
the capacitance is determined by the volume fraction of domains
pointing right and left, as well as the applied bias. Domains
pointing opposite of the applied bias increases the capacitance,
while domains pointing along the applied bias decreases the
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Figure 4. BEPFM images at different bias voltage. The corresponding capacitance is circled in the C–V curve associated with each PFM image. In the
images, the color represents the polarization direction and the shade is the real part of the complex piezoresonse.

capacitance. We observe from our studies that the superdo-
main structure switches as a nearly-coherent unit. This is consis-
tent with previous reports observed in multiple systems.[34] The
Landau–Lifshitz–Kittel domain model[34–36] can therefore not be
used to describe the switching. A preferable switching mecha-
nism is observed, where multiple superdomains switch together
as a band connecting the two electrodes. Based on our macro-
scopic studies (Figure 1) these domain appear to switch in a sin-
gle collective event. Switching in a band connecting the two elec-
trodes is shown in Figure 5. In the sketch it can be seen that when
a band switches by a 90° rotation of the domain walls (switching
from an 𝛼 to a 𝛽 superdomain), the band may switch without in-
troducing charged domain walls.

Domain pinning was observed in the top right of the image
(Figure 4, where switching was observed at much greater fields
than in the remainder of the film. The area was surrounded by
regions that had already switched, and could therefore not switch
as a band connecting the two electrodes. This precludes collective
switching mechanisms, effectively pinning the domains. Switch-
ing induces a 90° rotation of the domain walls in the superdo-

mains, and when large sections of the film has been switched,
it can be seen that the distribution of superdomains is similar
before and after switching. Whether the distribution of superdo-
mains is preserved because it is favored by an immobile defect, or
because the kinetics of the switching event preserves the super-
domains remains an open question. That being said, switching
does not preserve the superdomains perfectly (Section S3, Sup-
porting Information).

4. Conclusion

A novel PFM configuration for studying in-plane switching dy-
namics of thin films is developed. Fast switching dynamics were
established based on P–V curves. Correlated C–V curves and
PFM images of a BaTiO3 thin film with IDEs were presented.
Neural networks were used in both preprocessing of the data
and to infer the polarization direction and switching dynamics.
Switching occurred in bands that connected the two electrodes,
and was associated with 90° rotation of domain walls inside su-
perdomains, while the distribution of superdomains was largely
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Figure 5. Sketch of the proposed switching mechanism where switching
occurs as bands connecting the two electrodes. a) The poled state show-
ing a single superdomain. b) By applying a potential difference to the elec-
trodes, a band connecting the two electrodes is switched. When switching
from an 𝛼 superdomain to a 𝛽 superdomain, no charged domain walls are
introduced as the band switches. c) By applying a larger potential differ-
ence, the remainder of the film is switched.

preserved. Simultaneous capacitance–voltage measurements in-
dicated that the capacitance peaked before the coercive field was
reached. The shape of the C–V curves was a result of the switch-
ing kinetics, where the capacitance decreased as sections of the
film switched. We determine that the collective switching mecha-
nism drives low-voltage 5 V (7 kV cm−1), fast-switching at veloci-
ties greater than ≈500 cm s−1, orders-of-magnitude faster than ex-
pected. These combinations of properties are promising for high-
speed tunable dielectrics and high-speed low-voltage ferroelectric
memories and logic.

5. Experimental Section
Experimental: BaTiO3 films were synthesized on (001)-oriented

SrTiO3 using aqueous chemical solutions from titanium-isopropoxide and
barium nitrate precursors.[24] Epitaxy was induced by heating each layer
to 1000 °C. Reciprocal space mapping has shown residual tensile strain
associated with a relaxed film under thermal strain.[16] 16 layers pro-
duced 210 nm of BaTiO3. The strain relaxation was attributed to edge
dislocations induced at high temperature that were observed using cross-
sectional transmission electron microscopy.

PFM images were measured using BEPFM with the driving voltage con-
nected to the electrodes. The PFM tip was electronically insulated from
the circuit so that it would not short-circuit the in situ voltage or otherwise
disturb the domain structure. A multifunction PXI system (National In-
struments) running a custom Labview program was used to generate the
BE waveform (VAC), while the DC bias (VDC) was supplied from the PFM
control unit via a 10× amplifier (F10A, FLC Electronics AB, Göteborg, Swe-
den). The experimental configuration is illustrated in Figure 2a. The relays
were controlled by a multifunctional PXI system. An Agilent E4980A LCR
meter (Agilent Technologies, Santa Clara, CA, USA) was used for capac-
itive measurements (1 kHz). An ElectriMulti75-G (BudgetSensors, Sofia,
Bulgaria) PFM tip was used. A Python script was used to automate the im-

age acquisition, capacitive measurements, and adjusting the bias voltage
according to the measurement scheme illustrated in Figure 2b.

Neural Network: Neural networks were trained in Pytorch as described
in the main text. Models were trained on a Lambda Labs workstation with
128 GB ram and two (2) Nvidia Titan RTX graphics processing units. Mod-
els were trained with a batch size of 512. The models were optimized using
ADAM with a learning rate of 3 × 10−5.

Supporting Information
Supporting Information is available from the Wiley Online Library or from
the author.
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