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Abstract: CSF from unique groups of Parkinson’s disease (PD) patients was biochemically profiled
to identify previously unreported metabolic pathways linked to PD pathogenesis, and novel
biochemical biomarkers of the disease were characterized. Utilizing both 1H NMR and DI-LC-MS/MS
we quantitatively profiled CSF from patients with sporadic PD (n = 20) and those who are
genetically predisposed (LRRK2) to the disease (n = 20), and compared those results with age and
gender-matched controls (n = 20). Further, we systematically evaluated the utility of several machine
learning techniques for the diagnosis of PD. 1H NMR and mass spectrometry-based metabolomics,
in combination with bioinformatic analyses, provided useful information highlighting previously
unreported biochemical pathways and CSF-based biomarkers associated with both sporadic PD (sPD)
and LRRK2 PD. Results of this metabolomics study further support our group’s previous findings
identifying bile acid metabolism as one of the major aberrant biochemical pathways in PD patients.
This study demonstrates that a combination of two complimentary techniques can provide a much
more holistic view of the CSF metabolome, and by association, the brain metabolome. Future studies
for the prediction of those at risk of developing PD should investigate the clinical utility of these
CSF-based biomarkers in more accessible biomatrices. Further, it is essential that we determine
whether the biochemical pathways highlighted here are recapitulated in the brains of PD patients
with the aim of identifying potential therapeutic targets.

Keywords: metabolic pathways; Parkinson’s disease; 1H NMR; targeted mass spectrometry;
metabolomics; machine learning

1. Introduction

Parkinson’s disease (PD) is a progressive, adult-onset neurodegenerative disorder associated with
the degeneration of dopaminergic (DAergic) neurons and the presence of proteinaceous inclusions
such as α-synuclein [1]. PD is the second most common neurodegenerative disorder after Alzheimer’s
disease with a prevalence of 1% in people over 60 years of age [2]. The etiology of PD is thought to
be multifunctional in that genetic factors, environmental exposures, and aging contribute to disease
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development [3]. Genetic studies revealed several causative monogenetic mutations that account for
a small portion (10%) of PD cases, while the remaining cases are sporadic [4]. The exact underlying
mechanism for selective DAergic cell loss in PD remains elusive [5].

Clinically, the diagnostic criteria for PD are overwhelmingly based on impaired motor and
non-motor functions and confirmed following improvements with dopamine treatment [6]. However,
the accuracy of such diagnostic criteria is low, as 40% to 50% of DAergic neurons have already
degenerated by the time a clinical diagnosis is made [7]. Moreover, premotor symptoms, including
olfactory deficiency, obstipation, sleep disorders, and depression are very unspecific to PD, further
complicating early diagnosis [8].

The development of molecular biomarkers, specific to PD, in body fluids such as urine, saliva,
blood, and CSF, would prove invaluable, allowing detection of the disease at the preclinical stage,
monitoring the progression of the disease, and evaluating the therapeutic impacts of disease modifiers.
Metabolomics, or metabolic profiling, is the quantitative measurement of metabolites in cells, biofluids,
tissues, or organisms, and accurately represents the biochemical phenotype of the organism in diseased
and healthy states [9]. In recent years, metabolomics has been widely applied for the study of PD
and has shown great potential for early diagnosis [10,11]. CSF is a widely used biomatrix used for
developing biomarkers of CNS disorders, such as brain injury [12], Alzheimer’s disease [13], and PD [7],
due to its close localization to the extracellular space in the brain. To the authors’ knowledge, this is the
first targeted metabolomics study combining two complimentary metabolomics platforms to provide
a holistic view of the CSF metabolome, and inversely, the brain metabolome to gain insight into PD
pathophysiology and preclinical diagnosis

2. Materials and Methods

2.1. CSF Samples

The study was approved by the Institutional Review Board at the Beaumont Research Institute
and at St. Olav’s Hospital (IRB# 201 2016/541, PD and markers for progression). Written informed
consent was obtained from all participants who presented in the morning following an overnight
fast with a stable neurological condition. All participants were sequenced for the main pathogenic
Leucine-Rich Repeat Kinase 2 (LRRK2) mutations prior to sample collection. A total of 80 subjects
with no known history of liver dysfunction were enrolled in this study; CSF specimens were obtained
via lumbar puncture from participants suffering from sPD (n = 20), those genetically predisposed to
the disease (LRRK2 acquired PD) (n = 20), and age and gender-matched controls for each group to
include patients with the G2019S mutation in the LRRK2 gene (n = 20) and those without (n = 20).
Samples were immediately processed according to the Parkinson’s Progression Markers Initiative
(PPMI) recommendations [14] that include removal of cells to avoid any contamination originating
from potential blood cells.

2.2. 1H NMR Analysis

Samples were thawed at room temperature. CSF samples were filtered through 3-kDa cut-off

centrifuge filter units (Amicon Micoron YM-3; Sigma-Aldrich, St. Louis, MO, USA) to remove any
protein. Centrifugal filters were washed 7 times prior to filtering CSF specimens to remove excess
glycerol [15] An aliquot of 350 µL of each CSF sample was filtered at 13,000× g for 30 min to remove
large macromolecules. The samples were prepared by transferring a 300 µL aliquot of filtered CSF fluid
to a 1.5 mL Eppendorf tube followed by the addition of 35 µL of D2O, and 15 µL of a standard solution
(3.73 mM disodium-2,2-dimethyl-2-silapentane-5-sulphonate [DSS]), 233mM imidazole, and 0.47%
NaN3 in H2O (Sigma-Aldrich, St. Louis, MO, USA). The CSF sample (200 µL) was then transferred to a
standard 3 mm NMR tube. In total, 80 CSF samples were prepared in this manner, each containing
0.16 mM DSS, 10 mM imidazole, and 0.02% NaN3 at a pH of 7.3 to 7.7. All 1H NMR spectral data were
acquired at 300 (± 0.05) K using a Bruker Ascend III HD NMR spectrometer (Bruker-Biospin, Billerica,
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MA, USA) operating at 600 MHz equipped with a 5 mm TCI cryo-probe and a z-gradient system;
a Bruker SampleJet sample changer was used to transfer samples; samples were kept at 4 ◦C while
queued for analysis. Prior to analysis, samples were heated to room temperature over 3 min before
being transferred to the magnet. 1H NMR spectra were acquired at 300 K using the first transient
of a standard NOESY-presaturation pulse sequence, chosen for its high degree of high quantitative
accuracy [15]. The duration of the 90-degree pulses was automatically calibrated for each individual
sample using a homonuclear gated nutation experiment on the locked and shimmed samples after
automatic tuning and matching of the probe head. Spectra were collected with 256 transients using a
5.1 s acquisition time and a 5 s recycle delay. Prior to spectral analysis, all FIDs were zero-filled to
64k data points, and a line broadening of 0.5 Hz was applied. The methyl singlet of DSS served as an
internal standard for chemical shift referencing (set to 0 ppm) and for quantification. All 1H NMR
spectra were processed and analyzed using the Chenomx NMR Suite Professional software package
version 8.1 (Chenomx Inc., Edmonton, AB, Canada). Prior to statistical analysis, all NMR spectra were
manually inspected for technical faults.

2.3. Targeted Mass Spectrometry Analysis

Using the commercially available AbsoluteIDQ p180 Kit (Biocrates Life Sciences AG) [16] we
biochemically profiled the CSF specimens. The samples were processed according to the manufacturer’s
instructions. In brief, 30 µL of each CSF sample was mixed with isotopically labeled internal standards
in a 96-well plate. Amino acids and biogenic amines were derivatized using 5% phenylisothiocyanate
(PITC), and subsequent separation was performed on a BEH C18 column (2.1 × 75 mm, particle size of
1.7 µm) on a Waters iClass coupled to a Waters Xevo TQ-S (Waters, Milford, MA, USA) operating in
the multiple reaction mode. The subsequent lipid fraction was analyzed using direct flow, operating in
multiple reaction monitoring mode. Metabolite concentrations were calculated and expressed as µM.
Any metabolites below the limit of detection (LOD) were excluded from our analysis.

2.4. Bile-Acid Analysis

Bile acids were analyzed using the commercially available Biocrates Bile Acids Kit (Biocrates
Life Science AG, Innsbruck, Austria) as described by Marksteiner et al. [16]. This assay allows
identification and quantification of primary and secondary bile acids and their taurine and glycine
conjugated derivatives. The metabolite panel included 17 individual bile acids, corresponding internal
standards, and calibration ranges. Data analysis was performed with TargetLynx (Waters) and Biocrates
MetIDQ software.

2.5. Statistical Analysis

2.5.1. Univariate Data Analysis

Using MetaboAnalyst (v. 4.0) [17–19], the data were analyzed using a two-tailed Student t-test
and ANOVA to determine statistical significance (p-value) and false discovery rates (FDR; q-value).
To assess the distribution of our data and to check for any spurious/inflated results, quantile-quantile
plots (Q–Q-plots) were generated. For non-normal distributions, p-values were calculated using a
Mann–Whitney U test. Bonferroni corrected p-values (p = 0.05/number of metabolites) were used to
correct for multiple comparisons.

2.5.2. Multivariate Data Analysis

To ensure no violation of the normality assumption, data were standardized by sum normalization,
followed by scaling to mean zero and unit variance, and log transformed. Before performing pattern
recognition, metabolomics data from each individual group were subjected to explorative multivariate
statistical data analysis by PCA to check for potential outliers or systematic variation (p < 0.05). This was
further investigated by plotting T2-values (distance to model) against residual Q2 (the variance not
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covered by the model) for each group. Following outlier detection, orthogonal projections to latent
structure discriminant analysis (O-PLS-DA) was employed to determine if it would be possible to
differentiate LRRK2 PD from the LRRK2 control, sPD from the sPD control, and LRRK2 PD from
sporadic PD, and to identify features responsible for the observed separation. For each model,
the optimum number of components was assessed by a single 10-fold venetian blind cross-validation.
The validity of the group separation for each model was evaluated through permutation testing with
2000 repeats. The raw metabolomics data were also subjected to unsupervised hierarchical clustering
modelling to generate heat map representation between each group.

2.5.3. Machine Learning-Based Regression Analysis

Before starting an intensive investigation on the predictive performance of various machine
learning algorithms, missing values in the dataset were imputed by using a KNN algorithm.
Sum normalized data were subjected to log transformation and auto-scaling was applied for each
metabolite. A recursive feature elimination (RFE) method using logistic regression was applied to each
pair-wise comparison (LRRK2 control vs. LRRK2 PD, sPD control vs. SPD, and LRRK2 PD vs. sPD) to
find the most discriminative variables [20–22]. Feature selection using the RFE method and subsequent
model training were performed using 60% of the data. The remaining 40%, which were excluded
from both the feature selection and model training phases, were used to test the models. We used the
top 5 discriminant variables to avoid overfitting. Following variable selection, numerous machine
learning models were built. To find the optimal combination for each algorithm, hyper-parameters
such as cost values, kernel functions, and the numbers of trees to train the data set were tuned; 10-fold
cross validation was performed during model development. Once an optimal model was developed,
prediction was carried out through 5-fold cross validation. Using optimal hyperparameters, models
were trained on 4 folds and tested on the remaining fold. This was repeated 5 times across all datasets.
In small datasets, one potential pitfall is that randomly splitting the data into training and test sets may
bias the models, giving overly optimistic results. In order to prevent this, 5-fold cross validations were
used for prediction.

The synthetic minority over-sampling technique (SMOTE) method from the imbalanced-learn
library in python and KNN were used to account for oversampling. Different number of neighbors
and different number of data points for oversampling were tested to determine the best combination.
Using the k-fold approach, only the training portion was oversampled, and the test set was kept original.
Model performance was assessed by classification accuracy rate, using the area under the receiver
operating characteristic (AUROC) curve, and by the identification of true discriminating features.

2.5.4. Metabolite Pathway Enrichment Analysis

Metabolite pathway enrichment analysis (MSEA) was completed using MetaboAnalyst (v4.0) [23].
Metabolite names were converted to Human Metabolite Database (HMDB) identifiers, and the raw
data were imported in rows, normalized to the sum, and subjected to log transformation and auto
scaling. The pathway-associated metabolite set was the chosen metabolite library, and all compounds
in this library were used. Pathways with a Holm corrected p value and a q value < 0.1 were considered
altered due to parkinsonism.

3. Results

3.1. Statistical and Metabolite Pathway Enrichment Analysis

Using both 1H NMR (Supplementary Figure S1) and targeted mass spectrometry we accurately
identified and quantified 162 metabolites in CSF to include an additional 12 bile acids. Of the recorded
metabolites, 17 were measured across both platforms and an average concentration was used. As shown
in Supplementary Figure S2, for each group, the PCA score plots and T2 vs. Q2 plots clearly demonstrate
that no patient sample was considered to be an outlier. The Q–Q plots and corresponding λ-values
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(a measure of inflated p-values) reveal that the majority of data points fell within the expected range
(λ ≈ 1). Further, our analyses identified some non-normally distributed metabolites which require their
statistical significance to be calculated using non-parametric testing (Supplementary Figure S3). Table 1
reports the results of multi-group comparisons of important demographic factors, such as age and
gender. The results of the ANOVA revealed that neither gender nor age were statistically significantly
different between the groups.

Table 1. Multi-group comparison of available demographic information.

sPD Control sPD LRRK2 Control LRRK2 PD p-Value

n 20 20 20 20

Age, mean (SD) 57.65 (9.56) 58.85 (8.95) 60.05 (9.39) 59.43 (9.11) 0.45 a

Gender

Male 10 11 10 10
0.26 b

Female 10 9 10 10
a One-way ANOVA. b Chi-square test.

Supplementary Figure S4 displays the box plot representative of all the metabolites detected
and quantified in CSF. Using these metabolite concentrations, four pair-wise univariate analysis were
carried out (sporadic PD (sPD) vs. sPD controls, LRRK2 PD vs. LRRK2 controls, sPD vs. LRRK2 PD,
and sPD controls vs. LRRK2 controls).

Supplementary Table S1 lists the results of the univariate analysis, thereby comparing the mean
concentrations of all metabolites from LRRK2 PD vs. LRRK2 control participants. As shown in the table,
of the recorded metabolites, 18 metabolites reached statistical significance (p < 0.05; q < 0.1). We also
identified six biochemical pathways to be significantly perturbed in LRRK2 PD CSF as compared
with LRRK2 controls (p < 0.05; q < 0.1; Supplementary Table S2) and these include: spermidine and
spermine biosynthesis, fatty acid metabolism, mitochondrial beta oxidation of long chain fatty acids
(LCFAs), methionine metabolism, bile-acid metabolism, methionine metabolism, and beta oxidation of
short chain fatty acids (SCFAs). Supplementary Table S3 lists the results of the univariate analysis,
comparing the mean concentrations of all metabolites from sPD vs. sPD control participants. As shown
in the table, of the recorded metabolites, 19 metabolites reached statistical significance (p < 0.05;
q < 0.1). Following the univariate analysis, pathway enrichment analysis highlighted five metabolic
pathways to be significantly disturbed in sporadic PD as compared to their controls. These include fatty
acid biosynthesis, ethanol degradation, ketone body metabolism, bile acid synthesis, and propionate
metabolism (p < 0.05; q < 0.1; Supplementary Table S4).

The univariate analysis comparing the mean concentrations of all metabolites from sPD vs.
LRRK2 PD participants revealed that 10 metabolites showed statistically significant concentration
changes between the two groups (p < 0.05; q < 0.1; Supplementary Table S5). MSEA also showed that
metabolic pathways, namely, propionate metabolism, inositol metabolism, and inositol phosphate
metabolism, were significantly disturbed when sPD was compared with LRRK2 PD CSF (p < 0.05;
q < 0.1; Supplementary Table S6). The results of the pair-wise comparison of PD controls vs. LRRK2
controls indicated that none of the metabolites were at statistically significant different concentrations
(Supplementary Table S7).

Figure 1a,c illustrates the O-PLS-DA) score plots for all the pair-wise comparison models and
corresponding loading plots driving the separation. As evidenced from the score plots, classification
of each group was successfully achieved. However, following 2000 permutations (Supplementary
Table S8) only the score plot comparing LRRK2 PD with corresponding controls reached statistical
significance (p = 0.032).
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Figure 1. (a) The O-PLS-DA score plot of LRKK control vs. LRRK2 sufferers; (b) top 13 metabolites on
loadings driving the separation; (c) O-PLS-DA score plot of sporadic Parkinson’s disease (sPD) controls
vs. sPD sufferers; (d) top 13 metabolites on loadings driving the separation; (e) the O-PLS-DA score
plot of sPD vs. LRKK2 sufferers; (f) top 13 metabolites on loadings driving the separation.

3.2. Machine Learning-Based Classification Analysis

The utility of different machine learning approaches for diagnosing parkinsonism was intensively
evaluated. Performance metrics, model specific tuning parameters, and the panel of metabolites
used for each approach are listed in Supplementary Tables S8–S10. When comparing the traditional
multivariate approach with machine learning, we found the latter to works best for diagnosing
PD. In particular, we found logistic regression, random linear support vector machine algorithms,
and kernel support vector machine algorithms produced the best diagnostic accuracy (Figure 2).
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Figure 2. AUC values of various machine learning algorithms evaluated for the prediction of LRRK2
PD as compared LRRK2 controls, sPD as compared to sPD controls, and LRRK2 PD as compared to
sPD on both test and training sets, respectively.

4. Discussion

To the authors’ knowledge, this is the first reported study to identify sPD and LRRK2 PD-specific
metabolic signatures in CSF using a targeted metabolomics approach employing both 1H NMR
spectroscopy and mass spectrometry. Using complementary techniques allowed us to detect and
quantify many more metabolites, and as such we required much more robust and accurate analytical
data tools to help us discriminate between sample types. Further, we compared our values recorded
herein with existing metabolite CSF concentration values in the literature [24]. Wishart et al. (2008)
reported a variation of 20–30% between all metabolites in CSF between various studies. Our data
conform to these values, as reported in the literature [25].

The primary objective of this study was to identify a panel of biomarkers which could accurately
diagnose PD using CSF and to gain an insight into the biochemistry behind PD. To ensure we got the
most accurate snapshot of the disease’s metabolome, only samples from unmedicated participants
were utilized to minimize any confounding factors.

When diagnosing LRRK2 PD, logistic regression (AUC = 0.89), linear support vector machine
(SVM) (AUC = 0.92), and SVM kernel (AUC = 0.92) performed similarly and outscored the other
ML-based algorithms (Supplementary Figure S5). For distinguishing sPD from their corresponding
controls, logistic regression (AUC = 0.92), linear SVM (AUC = 0.92), and kernel SVM (AUC = 0.94)
performed best (Supplementary Figure S6). Kernel SVM (AUC = 0.89), linear SVM (AUC = 0.87),
and logistic regression (AUC = 0.87) approaches were superior when distinguishing between sPD and



Cells 2020, 9, 2394 8 of 13

LRRK2 PD (Supplementary Figure S7). In a recent study, Stoessel et al. (2017) investigated PD-specific
metabolic changes in CSF using non-targeted mass spectrometry and identified a panel of biomarkers
for the diagnosis of PD [24]. Using random forest and PLS-DA, they reported models with AUCs of
0.74 and 0.73, respectively. Goldstein et al. (2012) reported models using biomarker candidates in CSF
with 0.89 sensitivity and 0.80 specificity [26]. In another study, Hong et al. (2010) reported a predictive
model using DJ-1 and α-synuclein levels in CSF provided with a predictive accuracy equal to 0.77,
a sensitivity of 0.94, and a specificity of 0.50 [27]. In a recent study by Mondello et al. (2014), α-synuclein
and ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) levels in CSF were used to discriminate PD
from controls. Both biomarkers discriminated PD from controls well with an AUC of 0.82, a sensitivity
of 0.87, and a specificity of 0.79 [28]. In our study we go one step further. We profiled sporadic
and LRRK2 positive patients and produced powerful models with an AUC of 0.88 (sensitivity = 1;
specificity = 0.75) for diagnosing sPD and a model with an AUC = 0.94 (sensitivity = 0.88; specificity = 1)
for diagnosing LRRK2 PD patients (Supplementary Table S8). To the authors’ knowledge these are
some of the most robust diagnostic models in the current literature.

Of note, when we ran a comprehensive pathway analysis, we had to be sure that the observed
differences in the metabolic profiles were in fact due to the disease. As such, we compared the metabolic
profiles from both control groups and found no metabolites to be at statistically significant different
concentrations (p < 0.05; q < 0.1). MSEA also highlighted several metabolic pathways perturbed in
the CSF harvested from LRRK2 PD patients (Supplementary Table S2). One such pathway was fatty
acid metabolism. Perturbation in fatty acid metabolism in PD has also been previously reported [29].
An enzymatic deficiency in either fatty acid breakdown or disturbance of fatty acid transport across the
mitochondrial membrane due to defects in the carnitine transport system results in dysregulation of fatty
acid [30]. Supported by the significant change in the level of carnitines in CSF, we hypothesize that lipid
metabolism is directly perturbed as a result of the change in carnitine levels. Brain acylcarnitines support
lipid biosynthesis and the activity of antioxidants; they also enhance cholinergic neurotransmission [31].
Further, when oxygen levels are low, the brain transitions from glucose metabolism to anaerobic
respiration. Alternatively, it can also shift from glucose metabolism entirely, using fatty acids or ketones
during pathological conditions such as neurodegeneration, hypoxia/ischemia, or post-traumatic brain
injury [32]. Therefore, the perturbation in fatty acid metabolism we observed could be a potential
attempt at attenuating neuronal cell death, further supported by a significant change in the level of
1-methylhistamine which is a metabolite in histamine metabolism. Histamine is a neurotransmitter
which is widely distributed throughout the human brain, and an increase in it has been reported to be
involved in the histaminergic system in PD [33]. Notably, both mitochondrial beta oxidation of LCFA
and mitochondrial beta oxidation of SCFA were significantly disturbed in LRRK2 PD. Taken together,
these results suggest a profound change in energy metabolism.

Consistent with an essential role in cellular function, lack of inositol in cells leads to a rapid loss of
viability [34]. As inositol metabolic pathway was found to be perturbed, the association between the
LRRK2 gene and inositol metabolism needs to be further elucidated.

As is evident from the violin plots, we can see that there are dysregulations in several metabolite
groups due to parkinsonism (Figure 3).

Close examination of the heat map revealed perturbations in the carnitine, glycerophospholipid,
sphingolipid, and amino acid metabolism in PD. MSEA further identified a marked alteration in bile
acid metabolism in sPD (Supplementary Table S4). Bile acids are forms of cholinic acids synthesized
from cholesterol in the liver [35]. They are involved in many essential biological and metabolic
cascades, including glucose, lipid, cholesterol, and drug metabolism, and closely associated with
intestinal hormones, microbiotas, and energy balance [36]. However, very little is known about the
molecular mechanisms of bile acids in the central nervous system [35]. Previously, changes in bile acid
concentrations have been associated with liver damage/dysfunction for some time [37,38]. Following a
screening of their medical records and after speaking with the PI of the study, our patients had no
reported incidence of liver problems. Changes in bile acid concentrations in PD also validate previous
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studies by our group, wherein we reported significant changes in bile acid concentrations in both the
brain and the serum of a prodromal mouse model of PD [1,39]. A recent study by Bustos et al. (2020),
who performed a “hypothesis-free,” exome-wide, burden-based analysis of different variant frequencies,
predicted the functional impacts and age of onset classes, in an attempt to explain rare variants in PD.
Bustos et al. (2020) report that the top enriched hallmark pathway was for nonsynonymous within the
bile acid metabolism M5948, P = 1.63 × 10−8 [40].Cells 2020, 9, 2394 9 of 14 
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Figure 3. Violin plots comparing the median concentrations of the different metabolite species as
identified in the CSF of sPD (n = 20), sPD controls (n = 20), LRRK2 PD (n = 20), and LRRK2 controls
(n = 20). The data were analyzed using a Student’s t-test where ns: p > 0.05, *: p ≤ 0.05, **: p ≤ 0.01,
***: p ≤ 0.001. A point in one of the violin plots is representative of a patient sample. Each p-value
shown on a plot is an ANOVA p-value for all the patient groups.

Another important biochemical pathway found to be aberrant in the CSF of PD patients was
taurine and hypotaurine metabolism. Taurine is a major intracellular free β-amino acid in mammalian
tissues and intervenes in many physiological functions, such as neuromodulation, maintenance of
calcium homeostasis, and antioxidant and anti-inflammatory processes. The level of taurine has been
reported to be elevated in the region of the brain controlling the dopamine release and dopaminergic
neuron activity [41]. Moreover, taurine has been reported to reduce dopaminergic neurodegeneration
and α-synuclein oligomerization through suppression of microglial M1 polarization via NOX2-NF-κB
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pathway in a pesticide-induced PD model [42]. Thus, one may hypothesize that the perturbation of
this particular metabolic pathway could be a neuroprotective reaction by the brain.

It is also noteworthy that this is the first metabolomics study to report ethanol degradation to be
significantly perturbed in the CSF of PD patients. Interestingly, one of the key enzymes involved in the
ethanol degradation pathway is alcohol dehydrogenase (ADH). Mutations in ADH genes could play
a role in the etiology of Parkinson’s disease (PD) because of the important function they undertake,
particularly in retinoid and dopamine metabolism and/or aldehyde detoxification [43]. In support of
our hypothesis, Tan et al. (2001) reported that a polymorphism at allele A1 for ADH was correlated
with an increased risk of PD [44].

Interestingly, propionate metabolism was found to be significantly disturbed between sPD and
corresponding controls. (Supplementary Table S4). Propionate, the end-product of the microbial
digestion of carbohydrates, presents together with other SCFA in the gastro-intestinal tract.
Gut microbiota and their metabolic products are among the potential candidates that could ignite a
process that eventually leads to Lewy body formation in the enteric nervous system. In recent studies,
differences in the abundances of certain gut microbiota and their metabolic products such as SCFA and
propionate were reported [45].

We also report inositol-related metabolic pathways to be perturbed when LRRK2 PD CSF was
compared to sPD (Supplementary Table S6). Inositol is an essential metabolite that plays a fundamental
role in regulating cellular processes. Many of inositol phosphates and phosphoinositides serve as
signaling molecules that control membrane trafficking [46], calcium mobilization [47], chemotaxis [48],
ion channel activity [49], cytoskeletal organization [50], and gene expression [51]. Furthermore,
phosphatidylinositol is a precursor for the synthesis of sphingolipids, which play important roles in
signal transduction and trafficking [52]. Consistent with an essential role in cellular function, lack of
inositol in cells leads to a rapid loss of viability [34]. As several inositol related metabolic pathways were
perturbed, the association between LRRK2 gene and inositol metabolism needs to be further elucidated.

Our study is not without its limitations. Firstly, our small sample size limits what we can deduce
from the results. Secondly, the available clinical information is lacking, such as UPDSR. This precluded
us from considering key clinical variables in the models to optimize performance and to determine
whether there are other confounding factors that could affect the metabolic profile.

5. Conclusions

This study introduces a novel approach to identify potential metabolic pathways and unique
biochemical profiles associated with PD pathogenesis using CSF samples. Whereas conventional
approaches utilize only one multivariate statistical method, here, the utility and predictive performances
of several machine learning methods were investigated. The machine learning predictive model
provided highly discriminating models for distinguishing LRRK2 PD from LRRK2 controls, and sPD
from sPD controls, respectively. Results suggest, for the first time, that inositol-related metabolic
pathways might be the key for better understanding the LRRK2 PD. Future studies for the prediction
and diagnosis of those at risk of developing PD should investigate whether the biochemical pathways
highlighted here are recapitulated in the brain of PD patients and whether the CSF panel of biomarkers
identified are also as effective for diagnosing or predicting those at greatest risk of developing PD in
less invasively harvested biomatrices.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-4409/9/11/2394/s1,
Figure S1: Representative 1D 1H NMR spectrum of CSF; identified and quantified metabolites are displayed,
Figure S2: Investigation of outliers for each group by PCA (a-d) and Q2 vs. T2Hotelling plots(e-f), Figure S3:
QQ-plots used to determine whether the metabolomics data for each metabolite are normally distributed and/or
the corresponding p-value is inflated, Figure S4: Box-plots showing pair-wise comparisons of the concentration
values of all metabolites in CSF, Figure S5: AUROC plot for the top three ML predictive models for the classification
of LRRK2 PD as compared to their corresponding controls, Figure S6: AUROC plot for the top three ML based
predictive models for the classification of sPD as compared to their corresponding controls, Figure S7: AUROC
plot for the top three ML based predictive models for classification of sPD as compared to LRRK2 PD. Table S1:
Results of univariate analysis comparing the mean concentration of metabolites in CSF obtained from LRRK2
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control and LRRK2 PD patients, Table S2: The results of the Metabolite Set Enrichment Analysis showing the
metabolic pathways that were significantly perturbed when LRRK2 PD CSF was compared with their respective
controls, Table S3: Results of univariate analysis comparing the mean concentration of metabolites in the CSF
obtained from LRRK2 control and LRRK2 PD patients, Table S4: The results of the Metabolite Set Enrichment
Analysis showing the metabolic pathways that were significantly perturbed when sPD CSF was compared with
their respective controls, Table S5: Results of univariate analysis comparing the mean concentration of metabolites
in CSF obtained from sPD and LRRK2 PD patients, Table S6: The results of the Metabolite Set Enrichment analysis
showing the metabolic pathways that were significantly perturbed when LRKK2 PD CSF was compared with
sPD, Table S7: Results of univariate analysis comparing the mean concentration of metabolites in CSF obtained
from sPD controls and LRRK2 PD controls, Table S8: Pairwise O-PLS-DA model performance metrics, Table S9:
Optimized model parameters for each machine learning algorithm evaluated for prediction of sPD and LRRK2 PD
in this study, Table S10: The panel of metabolites as chosen using the RFE feature selection algorithm to generate
our predictive models.
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