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Abstract: Computation of iron losses in transformers requires significant numerical efforts, particularly under magnetic
saturation when the magnetic non-linearity needs to be considered. This study proposes a Fourier method to calculate the
magnetic flux density used for the iron loss evaluation in transformers under saturation. It includes pre-processing of the non-
linear material. A permeability frequency spectrum is obtained from Fourier analysis, where the fundamental part is used as a
magnetisation definition and the harmonic components are used for core loss calculation. The proposed method offers a time-
efficient tool to calculate core loss under various saturation levels and non-sinusoidal excitation currents. The influence of the
definition of the core material on the leakage field and the stray loss calculation is studied and compared with existing methods.
The proposed methods have been implemented and validated in two- and three-dimensional finite-element models with
isotropic and anisotropic cores. The results yield accuracy comparable to that of a time-domain calculation. Furthermore, the
influences of various effective permeability methods on the leakage field and the associated stray loss are compared and
discussed.

1 Introduction
The finite-element method (FEM) is widely used to determine the
magnetic field for the calculation of the iron losses in power
transformers. In the linear region of ferromagnetic materials, time-
harmonic representation is proved to be both efficient and accurate.
However, e.g. at ferromagnetic resonance and geomagnetically
induced currents when the transformer core enters its non-linear
region, the employed time-domain simulation becomes very time-
consuming.

For system analysis, design parameter optimisation, and inverse
problem analysis where the computation effort is demanding, the
frequency domain method is preferred to obtain sufficiently
accurate estimations at moderate computation times. Therefore,
effective permeabilities of various types [1–3] have been proposed
to handle the non-linearity of the ferromagnetic cores. Energy-
based methods [1, 2] are derived from the conservation of the
exchange of the magnetic energy (or co-energy). DC method [2]
and root mean square (RMS) method [3] and are based on the time
average and the RMS of the field quantities. The choice of which
existing definition of the effective permeability should be used is
based on the applications [3]. In addition to the effective
permeability approach, a harmonic balance method has been
proposed, yielding a moderate calculation effort, but involving a
reformulation of the finite-element equations in the harmonic
frequency domain [4]. The material anisotropy of the core has been
emphasised and treated in combination with magnetic nonlinearity
[5].

When the magnetic field distribution is obtained from the finite-
element analysis (FEA), the core loss can be calculated according
to the existing post-processing methods, either based on loss
separation (into hysteresis loss, classical eddy current loss, and
excessive loss) [6] or based on curve fitting using the Steinmetz
equation. For the latter, several modified types [7–11] of the
Steinmetz equation have been proposed to handle non-sinusoidal
excitation. The macroscopic methods [7–11] enable an efficient
post-processing approach to evaluate core loss, based on the
waveform of the magnetic flux density. However, since the existing
effective magnetic permeability definitions [1–3] do not reproduce
the flux density waveform, they cannot always provide core loss

estimation accurately. Therefore, the conventional definitions of
effective permeability have restricted applicability for loss
evaluation, i.e. the magnetic core should be linear or slightly non-
linear and the excitation should be sinusoidal.

To take both the spatial distribution and the time variation of the
flux density into account, while maintaining a short computation
time, we propose a method where the effective permeability is
based on a Fourier series of the magnetisation curve. With the
described method, the average flux density spectrum in a
transformer core under saturation and non-sinusoidal excitation can
be produced. For the inhomogeneous field, a modified formulation
and a domain decomposition approach are introduced to improve
the accuracy.

Unlike the conventional methods that only provide a single
equivalent field; the proposed method preserves the full
information of the magnetic field spectrum. In that way, it is
possible to reduce the error of the flux density prediction
considerably compared to the conventional methods. Furthermore,
since the time-harmonic feature is maintained, the system size
(memory requirement) and the computation effort are significantly
lower compared to the harmonic balance method [4] and the time-
periodic FEM [12]. The concept of degree of non-linearity (DoN)
is introduced to characterise the inhomogeneity of the flux
distribution, which makes domain decomposition adaptive to
different core structures. This systematic approach allows an
evaluation of the flux density for different core topologies under
various excitations.

2 Effective permeability and flux density spectra
2.1 Model overview

A stepwise overview of the main ideas of the model is given below.
Later in the paper, the key first step is explained mathematically in
detail and additionally, a further accuracy improvement using
domain decomposition is described, as well as a generalisation to
non-sinusoidal excitation currents.

2.1.1 Fourier series definition of the magnetic
permeability: Consider Fig. 1. A sinusoidal magnetic field
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strength (orange) is given. When the magnetic field strength is in
the saturated region of the B(H) curve (dark blue), the resulting
magnetic flux density (yellow) becomes non-sinusoidal. By a
Fourier series definition of the magnetic flux density and thereby
the magnetic permeability, the complete waveform of the magnetic
flux density is preserved. The fundamental, third, and fifth
harmonic components of the magnetic flux density are shown in
purple, green, and light blue, respectively.

2.1.2 Finite-element implementation: A time-harmonic FEM
calculation is performed to obtain the spatial distribution of the
fundamental component of the magnetic flux density. In this
calculation, the fundamental magnetic permeability (obtained in
step 1) is used to define the effective B(H) curve.

2.1.3 Retrieving the complete magnetic flux density
waveform: From the spatial distribution of the fundamental
component of the magnetic flux density and the pre-calculated
Fourier series coefficients of the magnetic permeability, the
complete waveform of the magnetic flux density is retrieved for the
core (and can be used for loss calculation).

2.2 Magnetodynamic problem with the quasi-static time-
harmonic representation

The governing equation of a magneto-dynamic problem is
expressed by the magnetic vector potential [13]

∇ ×
1
μ

∇ × A + σ
∂A

∂t
= Js (1)

where µ is the magnetic permeability of the material, σ is the
electric conductivity, A  is the magnetic vector potential, and Js is
the current density of the external source.

For sinusoidal time variation, the complex formulation is often
applied. Maxwell's equations can be formulated with quasi-static
time-harmonic representation [13]

∇ ×
1
μ

∇ × A + jσωA = J s (2)

where ω is the angular frequency, and A  and Js are then vectors
with phasor representation [13]

A(t) = ℛ Aejωt (3)

Js(t) = ℛ J se
jωt (4)

For evaluating stray loss on the tank walls or the structural parts,
the surface impedance (SI) method enables a frequency domain
analysis of electromagnetic fields and eddy current loss on iron
surfaces. The eddy current loss in the iron tank or the structural
parts subjected to a magnetic field can be calculated by [14]

P = ∫ ∫
s

ℛ Zs

Hm
2

2
ds (5)

where the SI Zs is expressed as [14]

Zs =
ωμ

2σ
(1 + j) (6)

2.3 Defining the effective permeability using the Fourier
method (FM)

For the case with magnetic saturation of the core, the magneto-
dynamic problem becomes non-linear, with a non-sinusoidal
magnetic flux density. To avoid the non-linearity, while at the same
time preserving the complete waveform of the magnetic flux
density, we introduce a Fourier series representation of the
effective magnetic permeability

μe f f , k =
ℱk B(Hmsin(ωt))

Hm
(7)

where the B(H) function is the virgin non-linear magnetisation
curve of the material and ℱk is the Fourier operator giving the kth
Fourier series coefficient. The numerator B(Hm) is decomposed
into Fourier series, and the denominator is the magnitude of
magnetic field strength Hm. The obtained set of magnetic
permeability functions are shown in Fig. 2. 

The fundamental coefficient µ1 in (7) defines the B(H) curve in
a FEA to obtain the spatial distribution of the flux density. The
harmonic coefficients are, together with the distribution of the
fundamental component, used to retrieve the complete flux density
waveform in the entire core.

3 Simulations
3.1 Transformer core model

To compare the FM definition of the effective permeability (7) with
an accurate (but largely time-consuming) time-domain method, a
two-dimensional (2D) test case was set up, with its geometry given
in Fig. 3. The simulations were performed at 50 Hz on a 60 mm
long and 40 mm wide single-phase transformer core. In Fig. 4, the
virgin B–H curves for the silicon steel of the core and the carbon
steel of the tank are given. 

In the frequency domain finite-element model, the effective B–
H curve, based on the fundamental coefficient of definition (7),
was implemented for the transformer core, and then in the next
step, the average flux density spectrum was retrieved using the

Fig. 1  Schematic illustration of the decomposition of the magnetisation
curve into a Fourier series. The fourth quadrant: a sinusoidal magnetic
field strength excitation (orange); the first quadrant: the virgin B–H curve
(dark blue); the second quadrant: the flux density response (yellow) and its
harmonic contents (from first up to fifth order)

 

Fig. 2  Example of effective permeability curves for individual harmonics
obtained by the FM
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harmonic components of (7). In the time domain model, the virgin
magnetisation curve was used.

3.2 Flux density spectra under sinusoidal excitation (without
domain decomposition)

The average flux density spectra of the core under moderate
saturation (50 A) and heavy saturation (500 A) were calculated. In
Fig. 5, the results obtained by the FM are compared to the results
of the corresponding time-domain simulation. 

The FM shows good agreement with the time domain
simulation for the fundamental component of the flux density, but
underestimates the harmonic flux densities. The mismatch
originates from the pre-assumption in (7) that the magnetic field H
is uniformly proportional to the input excitation current, yielding a
sinusoidal magnetic field Hmsin(ωt). However, in reality, there is a
non-linear relationship between H and the current excitation, which
results in a non-sinusoidal response of the magnetic field.
Moreover, this dependency is not uniform in the core. The non-
linearity and inhomogeneity can be considerable even under
unsaturated conditions and require special handling.

3.3 Domain decomposition and a modified effective
permeability

Fig. 6 shows the magnetic field distribution and the response with
respect to the excitation current for three representative points of
the core. The variation of the magnetic field strength at these points
and the spatial average magnetic field strength over the whole area
are presented in Fig. 6b. The average magnetic field is linear with
excitation current. However, the responses at the individual points
are not linear. The DoN differs significantly at different locations.
In particular, the response at the corner (P3) deviates mostly from
linearity. Therefore, the inherent assumption of H(I) being linear in
(7) could introduce an error in calculating flux density, especially
when such non-linearity is strong (despite the fact that the response
is linear in an average sense).

The accuracy of the flux density spectrum calculation can be
improved by the introduction of domain decomposition, with the
establishment of the magnetic field function H(I) with respect to
the input excitation current in individual subdomains.

Definition (7) must then be modified to take the non-linear
relationship between the magnetic field strength and the input
current into account, i.e. the magnetic field strength does not have
to be sinusoidal. Instead, it is a non-linear function of the input
current excitation. In the new Fourier permeability definition, the
numerator maintains the same as (7), and the denominator is the
fundamental component of the magnetic field. This leads to a
modified effective permeability

μmf − eff, k =
ℱk B(H(Imsin(ωt)))

ℱ1 H(Imsin(ωt)) (8)

where Im is the amplitude of the input current.
The number of domains that need to be applied and how to

choose the boundaries between domains depend on the spatial
distribution and the level of non-linearity of function B(I). To assist
in the division into domains, a dimensionless quantity
characterising the DoN of the function B(I) is suggested

DoN =
∫0

Imax B(H(I)) − B Hmax/Imax I dI

∫0

ImaxB Hmax/Imax I dI
(9)

where Hmax and Imax are the maximum magnetic field and the
maximum input current considered. The geometric meaning of
DoN is illustrated in Fig. 7, where the DoN is defined by the non-
linear response B(H(I)) and the linear response B(Hmax/Imax × I). 
The quantity DoN is a number between 0 and 1, where DoN = 0
corresponds to a linear relationship between H and I and DoN = 1
corresponds to a step function.

The DoN calculated by (9) for the transformer core is illustrated
in Fig. 8a. By means of DoN, the boundaries of the domain

Fig. 3  2D single-phase transformer model
(a) Geometry, (b) Refined mesh close to the iron wall surface in the time-domain FEA

 

Fig. 4  Virgin magnetisation B–H curves. The piecewise cubic
interpolations are used in the curve fitting
(a) Silicon steel of the transformer core, (b) Carbon steel of the tank

 

Fig. 5  Volumetric average flux density spectra calculated the time domain
method (blue) and the FM (red) under different saturation levels
(a) Excitation current = 50 A, (b) Excitation current = 500 A

 

Fig. 6  Magnetic field distribution in the transformer core. Three points are
selected to demonstrate the variation of the magnetic field strength with
respect to the excitation current
(a) Magnetic field distribution, (b) Magnetic field as a function of the excitation
current at points P1, P2, and P3, as well as the average magnetic field over the entire
core region

 

IET Electr. Power Appl., 2020, Vol. 14 Iss. 13, pp. 2609-2615
© The Institution of Engineering and Technology 2020

2611



division are simply the projections of different DoN levels on the
domain, i.e. the contour of the DoN (Fig. 8b).

3.4 Flux density spectra under sinusoidal excitation (with
domain decomposition)

Generally, regions with small differences in DoN can be treated
together. For practical reasons, coarse domain decomposition is
preferred. Two simple schemes were adopted to demonstrate the
domain division by DoN: a single contour line with DoN = 0.30;
two contour lines with DoN = 0.15 and 0.30. The resulting domain
divisions are shown in Fig. 9. 

The two domain decomposition schemes were adapted to the
transformer core and the modified effective permeability definition
(8) was applied to the individual domain. The calculated flux
density spectra were compared to the time domain simulation result
(Fig. 10). 

To quantify and compare the accuracy of the average flux
density calculation using different methods, a spectrum-based error
estimation (10) is introduced to characterise the difference relative
to the time-domain result and the comparison is given in Table 1

εB =
∑i = 1

n
BTD, i − BFD, i

2

BTD, 1

(10)

where BFD,i is the calculated amplitude of the average flux density
at the harmonic order i; BTD,i is the amplitude of the average flux
density at the harmonic order i, calculated from a time-domain
simulation. 

As shown in Fig. 10 as well as in Table 1, the calculated flux
density spectra (red and yellow columns) show a significantly
better agreement (compared to without the modifications) with the
results from the time-domain simulation (blue columns). Moreover,
the decomposition of the domain into more regions improves the
accuracy of the flux density calculation. Under moderate saturation
(50 A), a decomposition with a single DoN is sufficient (ɛB = 
3.6%), whereas, under heavy saturation (highly non-linear), more
domains are required with multiple DoN contours.

The non-linearity and inhomogeneity also depend on the
configuration and the material properties of the magnetic core. In
the case of a configuration with a more uniform flux distribution
such as a toroid core, definition (7) could offer sufficient accuracy
without domain decomposition.

3.5 Validation in 3D case

The FM as well as the domain decomposition approach are further
validated in 3D models. An isotropic material, i.e. non-grain-
oriented (NGO) material (the magnetic properties are identical to
Fig. 4a) is defined for the core. Apart from isotropic materials,
grain-oriented (GO) electrical steel is widely used in energy-
efficient transformers and large, high-performance generators. As a
comparison, a 3D model with the anisotropic core is established.
The permeability tensor µ is defined as

Fig. 7  Illustration of DoN. DoN is defined as the ratio of the red area
B(H(I)) −  B(Hmax/Imax × I) to the blue area B(Hmax/Imax × I)

 

Fig. 8  DoN calculated by definition (9) in the region of the transformer
core
(a) Plot of DoN, (b) Contour of the DoN is used to determine the domain boundaries

 

Fig. 9  Illustration of domain decomposition by different levels of DoN
contours
(a) Domain division by a single DoN contour, DoN = 0.30, (b) Domain division by
two DoN contour lines, DoN = 0.15 and 0.30

 

Fig. 10  Volumetric average flux density spectra calculated with different
methods (blue: time-domain method; red: modified FM) under different
saturation levels
(a) Excitation current = 50 A, (b) Excitation current = 500 A

 
Table 1 Error comparison by different FMs
Excitation
current, A

FM without domain
decomposition, %

FM with 1
level of
DoN, %

FM with 2
levels of
DoN, %

50 6.1 3.6 0.4
500 12.3 7.7 3.8
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μ =

μr

μt

μn

(11)

where µr is the permeability in the rolling direction, defined by
Fig. 4a; µt is the permeability in the direction that is transverse to
the rolling direction (in the same lamination plane); to be simple,
the quantity of µt is assumed to be 0.02µr. µn is the equivalent
permeability in the direction normal to the lamination plane.
Owing to the lamination structure, µn is small (the value is
determined by the stacking factor of the lamination) and 30 is
assumed in the calculation [15]. The off-diagonal elements are
assumed to be zero. The excitation currents are 100 A for both
simulations. The flux density distributions from time-domain
simulations are shown in Fig. 11. 

As shown in Fig. 11, the flux density distribution is nearly
homogeneous in the GO core, whereas the flux density is strongly
inhomogeneous in the isotropic core. FM-based permeability is
applied to both models, where the calculated spectra are compared
to the corresponding time-domain simulation result (Fig. 12) and
the errors are presented in Table 2. Owing to the homogeneity of
the flux distribution in the anisotropic core, the FM (7) gives an
accurate estimation (Fig. 12b, ɛB = 0.4%) of the flux density
spectrum without domain decomposition. For the isotropic core,
the FM (7) gives a moderate accurate result (Fig. 12a, ɛB = 3.3%).
With a single domain decomposition, the accuracy is improved
(Fig. 12a, ɛB = 1.6%).

3D models are always preferred for calculating core losses, not
only because the magnetic core has 3D structure, but also from the
perspective of the flux homogeneity. The actual flux distribution
can vary significantly in space, both globally and locally. It is
shown in Fig. 11 that the flux density varies much more in the
corners and joints than in the limbs/yokes for the isotropic material.
The GO material can significantly improve the homogeneity.
Studies also show that the flux around holes [16] and along the
edges [17] can be inhomogeneous. In addition, the leakage flux
penetrating the core lamination makes the superimposed flux
saturate the surface and edges of the steel in the proximity of the
winding terminals [18]. The above-mentioned scenarios involve
the flux distribution with 3D nature, and require special handling of
inhomogeneous effects.

3.6 Flux density spectra under non-sinusoidal excitation

Definition (8) can be further generalised to non-sinusoidal
excitation currents, occurring e.g. at voltage over-excitation. The
current in (8) is then defined as a general function I(t). Like in (7),
the fundamental component of the resultant magnetic field is used
as the denominator in the permeability definition. Hence, the
generalised effective permeability becomes

μgf − eff, k =
ℱk B(H(I(t)))

ℱ1 H(I(t))
(12)

To validate the generalised Fourier effective permeability
definition under non-sinusoidal excitation, two test cases with
different input currents were set up

• Case 1: I1 = 50sin(100πt) + 10sin(300πt) [A]
• Case 2: I2 = 50sin(100πt) − 10sin(300πt) [A]

The cases have the same fundamental input current, but the third
harmonics are of opposite phases. Again, the domain
decomposition scheme was applied.

The calculated flux density spectra (using the FM) show a good
agreement with the time domain simulation results, see Fig. 13. In
Fig. 14, the corresponding time-domain waveforms are shown (for
the FM using up to the ninth harmonic), confirming the good
agreement. 

3.7 Core loss

Using the effective permeability definition (7), (8), and (12), the
waveform of the flux density can be retrieved. When calculating
flux density waveform, only the magnetisation curve is considered
and the hysteresis effect on the resultant flux density is neglected.
In the formulation of the modified Steimeltz equation [7] and the
generalised Steimeltz equation [11], the flux density and its time-
derivative are the only required inputs (other coefficients are
obtained by material characterisation). Then, using any of the
existing macroscopic methods [7–11], the core loss can be
calculated with sufficient accuracy. Since both pre-processing and
post-processing treatments are offline, the advantage of
computation efficiency of the time-harmonic method is maintained.
Detailed implementation of the macroscopic methods and
calculation of core loss is then trivial.

Fig. 11  Flux density distribution in the transformer core (a quarter model)
from a time-domain simulation
(a) Isotropic magnetic core, (b) Anisotropic (GO) magnetic core, (c) Average flux
density variation over half period

 

Fig. 12  Volumetric average flux density spectra calculated for the
magnetic core with different materials
(a) Isotropic (NGO) magnetic core, (b) Anisotropic (GO) magnetic core

 
Table 2 Error for different core types
Excitation
current, A

FM, NGO
steel, %

Modified-FM,
NGO steel, %

FM, GO
steel, %

100 3.3 1.6 0.4
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3.8 Stray loss

To evaluate the influence of the permeability definitions of the core
material on stray loss calculation, a single-phase transformer FEM
model (Fig. 3) was set-up and the time-harmonic simulations were
performed with the magnetomotive force (MMF) varying from 10
to 1000 A·t. The MMF ranges from the linear region to the heavily
saturated region of the non-linear material. We implemented
definition (7) as well as the methods proposed [1–3] in the
transformer core, whereas in the time-domain model, the virgin
magnetisation curves (Fig. 4) were used. The eddy current loss was
calculated by the SI method (5). The results are compared with the
results obtained by the time-domain method (accurate but largely
time-consuming), see Fig. 15. 

For a moderate excitation current (MMF <100 A·t), the
magnetic core is in the linear or slightly non-linear region. The
different definitions of the effective permeability yield result
practically equal to those calculated with the time domain method

(maximum deviation <6%), and hence, are good estimations of the
stray loss. However, when the excitation current is more significant
(MMF >100 A·t), the core is in the heavily saturated region, and
then the conventional methods largely overestimate the losses, and
thereby they are not suitable for stray loss evaluation. In contrast,
the FM (7) gives a good estimation of the stray loss over the whole
range.

Furthermore, in [19], a waveform correction factor is proposed
in combination with the effective permeability, which enables an
evaluation of the stray loss for non-sinusoidal current excitation
under saturation.

4 Conclusions
With the described FMs, a time-harmonic analysis to calculate the
average flux density spectrum in a transformer core under
saturation yields an accuracy comparable to that of a time-domain
calculation. In a magnetic core with a homogeneous distributed
flux such as the one made of GO steel, the original formulation
(without domain decomposition) gives sufficiently accurate results.
In the case of inhomogeneously distributed flux under heavy
saturation, the modified formulation with domain decomposition
significantly improves the accuracy. DoN is introduced to assist
domain decomposition. Under a moderate saturation, a single
domain decomposition is sufficient, whereas, under heavy
saturation (highly non-linear), two and more domain divisions are
needed.

Combined with the existing macroscopic loss calculation
methods, the FM offers a time-efficient tool to accurately calculate
core loss under various saturation levels and non-sinusoidal
excitations. Moreover, the FM yields significantly higher accuracy
in stray loss calculation under heavy saturation than energy-based
methods.
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