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We consider two-stage recourse models with integer restrictions in the second stage. These models are 
typically non-convex and hence, hard to solve. There exist convex approximations of these models with 
accompanying error bounds. However, it is unclear how these error bounds depend on the distributions 
of the second-stage cost vector q. In this paper, we derive parametric error bounds whose dependence on 
the distribution of q is explicit: they scale linearly in the expected value of the �1-norm of q.
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1. Introduction

Two-stage mixed-integer recourse (MIR) models are a class of 
models that can be used to solve optimization problems under un-
certainty. MIR models combine two computational difficulties: un-
certainty of some of the model parameters and integer restrictions 
on some of the decision variables. These integer restrictions cause 
MIR models to be generally non-convex and hence, extremely hard 
to solve. Traditional solution methods for MIR models typically 
combine ideas from deterministic mixed-integer programming and 
stochastic continuous programming, see, e.g., [1,2,6,7,13,15], and 
the survey papers [5,12,14]. However, due to their reliance on non-
convex optimization methods, these methods can have difficulty 
solving large-scale problems.

One alternative approach is to approximate the original non-
convex MIR model by a convex model. Such a convex approximation
model can be solved efficiently using convex optimization tech-
niques, thus overcoming the computational difficulties inherent in 
MIR models. The obvious drawback of this approach is that we 
only obtain an approximate solution to the original MIR model, 
which may or may not be of good quality. Hence, performance 
guarantees are needed that ensure that the solution to the convex 
approximation model performs well for the original MIR model.
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In the literature, convex approximations with corresponding 
performance guarantees have been derived in the form of error 
bounds: upper bounds on the approximation error [9,17,18]. These 
error bounds are small (and hence, the approximation is good) 
if the distribution of the second-stage right-hand-side vector is 
highly dispersed [8]. Analogous results are missing for the distri-
bution of the second-stage cost vector, denoted q, however. In the 
literature, only non-parametric error bounds are known that im-
plicitly depend on q. What is more, these error bounds are limited 
to the case where the support of q is finite. In this paper, we derive 
parametric error bounds that explicitly depend on (the distribution) 
of q and that hold under mild assumptions on the distribution of q.

Mathematically, we consider two-stage MIR models of the form

min
x∈X

{c�x +EP [
vq(h − T x)

]︸ ︷︷ ︸
Q (x)

}, (1)

where x is the first-stage decision vector to be chosen from the 
feasible set X ⊆ Rn1 , so as to minimize the sum of the first-stage 
costs c�x and the expected second-stage costs. The second-stage 
costs are given by the value function vq(h − T x), which depends 
on the first-stage decision x and the value of the random variable 
ξ := (q, T , h) with range � := �q × �T × �h . For every q ∈ �q , the 
value function is defined as

vq(s) := min
y∈Y

{q� y | W y = s}, s ∈Rm,
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where y is the second-stage decision vector to be chosen from the 
mixed-integer feasible set Y := Zn2+ × Rn̄2+ at a cost q, while sat-
isfying the constraint W y = s. The integer restrictions on y cause 
the value function vq , and consequently, also the recourse function 
Q , to be typically non-convex.

In the literature, several convex approximations Q̃ of Q have 
been proposed [4,20,21]. A desirable property of these convex 
approximations is that, in contrast with, e.g., cutting-plane tech-
niques based on Lagrangian relaxations [16], a priori error bounds
can be derived: upper bounds on the maximum approximation 
error ‖Q − Q̃ ‖∞ := supx∈Rn1 |Q (x) − Q̃ (x)| [9–11,17–19]. These 
error bounds can help assess whether the candidate convex ap-
proximation will be of satisfactory quality before starting to solve 
the model at hand.

However, the dependence of these error bounds on (the distri-
bution of) q has mainly been neglected in the literature. In most 
papers, q is assumed to be fixed and non-parametric error bounds 
are derived that depend on q implicitly. An exception exists for the 
special case of simple integer recourse (SIR) with q deterministic, 
for which parametric error bounds are derived that scale linearly 
in the sum of the (assumed non-negative) elements of q [4]. An-
other exception is the appendix of [17], where non-parametric 
error bounds are derived for general MIR models with a random
q. These results are quite limited, though, as they only hold under 
the assumption that q is discretely distributed with a finite sup-
port.

We contribute to this literature in two ways. First, we derive a 
parametric error bound on ‖Q − Q̃ ‖∞ under the assumption that 
q is fixed. We find that this error bound scales linearly in the �1
norm of q. Hence, this result can be seen as a generalization of 
the bound from [4] for SIR models to a much more general setting. 
Second, we use this result to derive a parametric error bound on 
‖Q − Q̃ ‖∞ for the case that q is random. It turns out that this 
error bound only depends on q through EP

[‖q‖1
]
, the expected 

value of the �1-norm of q, and that the bound scales linearly in 
EP

[‖q‖1
]
. Hence, only the average “magnitude” of q is relevant for 

the error bound. In particular, in contrast with the distribution of 
h, the dispersion of the distribution of q turns out to be completely 
irrelevant.

Throughout the paper, we make the following general assump-
tions.

Assumption 1. We assume that

(a) for every q ∈ �q , the recourse is complete and sufficiently ex-
pensive, i.e., −∞ < vq(s) < +∞, for all s ∈Rm ,

(b) the expectation of the �1 norm of h, q, and T are finite, i.e., 
EP

[‖h‖1
]
< +∞, EP

[‖q‖1
]
< +∞, and EP

[‖T ‖1
]
< +∞,

(c) h is continuously distributed with joint pdf f , and (q, T ) and 
h are pairwise independent, and

(d) the recourse matrix W is integer.

Assumptions 1(a)-(b) guarantee that the recourse function Q (x)
is finite for every x ∈ Rn1 . Assumption 1(c) restricts the distribu-
tion right-hand side vector h to continuous distributions only. This 
is in line with the literature and crucial for the total variation-
based error bounds that we will derive. Finally, Assumption 1(d) 
is required for the derivation of our error bounds in Section 4. 
However, it is not very restrictive, as any rational matrix can be 
transformed into an integer matrix by appropriate scaling.

The remainder of this paper is structured as followed. In Sec-
tion 2 we provide a detailed problem definition. We define one 
particular convex approximation and we discuss the main difficulty 
in deriving error bounds for this approximation. In Section 3 we 
derive two properties of the value function approximation error: 
asymptotic periodicity and a uniform upper bound. We use these 
542
properties in Section 4 to first derive an error bound on ‖Q − Q̃ ‖∞
under the assumption that q is fixed, which explicitly depends on 
q. Then, we use this result to derive an error bound when q is 
random. Finally, Section 5 concludes the paper.

2. Problem definition

In this section we provide a detailed problem definition. First, 
in Section 2.1 we define one particular convex approximation from 
the literature. Second, in Section 2.2 we review the most general 
(non-parametric) error bounds from the literature and we discuss 
why extending these to parametric error bounds in (the distribu-
tion of) q is non-trivial. This motivates our analysis in the subse-
quent sections.

2.1. Convex approximations

In the literature, several authors have developed convex approx-
imations of MIR models [4,9–11,18,20,21]. From these, we consider 
one particular convex approximation: the shifted LP-relaxation ap-
proximation [9]. In this subsection, we straightforwardly extend its 
definition to our setting where q has an arbitrary support.

The starting point for defining the convex approximation is the 
dual representation of the LP-relaxation of the value function vq , 
given by

vq
LP(s) = max

λ∈Rm
{λ�s | λ�W ≤ q} s ∈Rm.

For fixed q, the dual feasible region {λ ∈ Rm | λ�W ≤ q} has ver-
tices λq

k := q�
Bk (Bk)−1, k ∈ K q , where K q is the index set of all dual 

feasible basis matrices Bk and qBk is the vector of elements of q
that correspond to the basis matrix Bk . By Assumption 1(a), the 
dual problem attains its optimal value at one of the dual vertices, 
so we can write vq

LP(s) = maxk∈K q {(λq
k)

�s}, s ∈ Rm . Now, by the 
basis decomposition theorem from [22], we can partition the do-
main Rm of vq

LP into cones

�k := {s ∈ Rm | (Bk)−1s ≥ 0}, k ∈ K q, (2)

such that the dual vertex λq
k is optimal whenever s ∈ �k , i.e.,

vq
LP(s) = (λ

q
k)

�s, s ∈ �k. (3)

We can derive a similar partial representation for the original 
value function vq with integer decision variables. Indeed, Romei-
jnders et al. [9] use so-called Gomory relaxations to show that 
vq(s) = vLP(s) + ψq(s), where ψq is Bk-periodic on subsets of the 
cones �k , k ∈ K q . We formally restate this result in Lemma 2 be-
low, after providing two relevant definitions and a related result 
that will be useful in our analysis.

Definition 1. Let f : Rm → R and B ∈ Rm×m be given. Then, f is 
B-periodic if f (s) = f (s + B�) for every s ∈Rm and � ∈Zm .

Lemma 1 (Lemma 4.8 in [9]). Let f :Rm →R be a B-periodic function, 
where B ∈Zm×m is a non-singular matrix. Then, f is pIm-periodic, with 
p := | det(B)|.

Definition 2. Let q ∈ �q be given and consider the value function 
vq and a dual feasible basis matrix Bk , k ∈ K q of the LP-relaxation 
vq

LP of vq . Then, the Gomory relaxation vq
Bk of vq with respect to 

Bk is obtained by relaxing the non-negativity constraints on the 
variables corresponding to the basis Bk in the definition of vq .
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Lemma 2 (Lemma 2.3 and Theorem 2.9 in [9]). Let q ∈ �q be given and 
consider the value function vq and its Gomory relaxations vq

Bk , k ∈ K q. 
Then, there exist Bk-periodic functions ψq

k and constants dk > 0, k ∈ K q, 
such that for all k ∈ K q,

(i) vq(s) = vq
Bk (s) ≥ vq

Bl (s) for all s ∈ �k(dk) and l �= k,

(ii) vq
Bk (s) = (λ

q
k)

�s + ψ
q
k (s) for all s ∈Rm,

where �k(dk) := {s ∈ Rm | B(s, dk) ⊆ �k}, with B(s, dk) := {t ∈
Rm | ‖t − s‖2 ≤ dk} the closed ball of radius dk centered at s and �k

the cone from (2).

From Lemma 2 we learn that, at least on the shifted cones 
�k(dk), k ∈ K q , convexity of vq is destroyed by the periodicity of 
the function ψq

k . This observation has led to the proposal of a con-
vex approximation of vq , based on “convexifying” adjustments of 
the functions ψq

k , k ∈ K q: the shifted LP-relaxation approximation.
The shifted LP-relaxation approximation v̂q is constructed by 

replacing the periodic function ψ
q
k by its mean value �

q
k . Since 

by Lemma 1 ψ
q
k is pk Im-periodic, with pk := | det(Bk)|, this mean 

value can be defined as

�
q
k := p−m

k

pk∫
0

· · ·
pk∫

0

ψ
q
k (s)ds1 · · ·dsm. (4)

Taking the maximum over all k ∈ K q then yields the approxima-
tion.

Definition 3. Consider the value function vq for a given value of 
q ∈ �q . Then, its shifted LP-relaxation approximation is given by

v̂q(s) := max
k∈K q

{
(λ

q
k)

�s + �
q
k

}
, s ∈Rm,

where �q
k is the mean value from (4). The corresponding shifted 

LP-relaxation approximation of the recourse function Q is defined 
as

Q̂ (x) := EP [
v̂q(h − T x)

]
, x ∈ Rn1 .

2.2. Error bounds

In this subsection we discuss non-parametric error bounds from 
the literature and we discuss why extending them to error bounds 
that are parametric in (the distribution of) q is not trivial.

As a starting point, we take a result from the literature that 
provides a non-parametric error bound under the assumption that 
q and T are fixed. Consider the shifted LP-relaxation approximation 
Q̂ from Definition 3 under the assumption that q and T are fixed. 
Romeijnders et al. [9] derive an error bound for this setting. We 
restate the result here after providing two definitions.

Definition 4. Let f : R → R be a real-valued function and let 
I ⊂ R be an interval. Let 	(I) denote the set of all finite ordered 
sets P = {z1, . . . , zN+1} with z1 < · · · < zN+1 in I . Then, the total 
variation of f on I , denoted by |
| f (I), is defined by

|
| f (I) := sup
P∈	(I)

V f (P ),

where V f (P ) := ∑N
i=1 | f (zi+1) − f (zi)|. We write |
| f := |
| f (R). 

We say that f is of bounded variation if |
| f < +∞.

Definition 5. We denote by Hm the set of all m-dimensional 
joint pdfs f whose one-dimensional conditional density functions 
f i(·|t−i) are of bounded variation for all t−i ∈Rm−1, i = 1, . . . , m.
543
Remark 1. The definition of the set Hm is of technical interest. It 
should be noted that Hm includes the joint pdfs corresponding 
to most “well-behaved” continuous distributions, such as multi-
dimensional Gaussian distributions.

Lemma 3 (Theorem 5.1 in [9]). Consider the recourse function Q and 
its shifted LP-relaxation approximation Q̂ from Definition 3 and assume 
that q ∈ �q and T ∈ �T are fixed. Then, there exists a finite constant 
C̃ > 0, not depending on T , such that for all f ∈Hm, we have

‖Q − Q̂ ‖∞ ≤ C̃
m∑

i=1

Eh−i
[|
| f i(·|h−i)

]
, x ∈Rn1 .

Observe that the constant C̃ depends on q, but the dependence 
structure is not made explicit in the lemma above. Only existence 
of some constant C̃ is proven. Moreover, we will show that as a 
result, extending the error bound above to a setting where q is 
stochastic with an infinite support is non-trivial.

Suppose that q and T are stochastic and that Assumption 1
holds. Our aim is to find an upper bound on the maximum ap-
proximation error ‖Q − Q̂ ‖∞ , i.e., a uniform upper bound on 
|Q (x) − Q̂ (x)| over all x ∈ Rn1 . By definition, we have for all 
x ∈Rn1 ,

|Q (x) − Q̂ (x)| = ∣∣Eξ
[
vq(h − T x) − v̂q(h − T x)

]∣∣
≤ Eq,T

[∣∣∣Eh[vq(h − T x) − v̂q(h − T x)
]∣∣∣], (5)

where we use Jensen’s inequality and the fact that (q, T ) and h are 
mutually independent. Applying Lemma 3 to the inner expression ∣∣Eh

[
vq(h − T x) − v̂q(h − T x)

]∣∣ yields, for every x ∈Rn1 ,

|Q (x) − Q̂ (x)| ≤Eq[C̃q] m∑
i=1

Eh−i
[|
| f i(·|h−i)

]
, (6)

where C̃q is the constant from Lemma 3 corresponding to q ∈ �q . 
If q has a finite support, then the fact that C̃q is finite for every 
q ∈ �q guarantees that the expected value Eq

[
C̃q

]
is also finite. 

This is indeed the approach taken in [17]. This assumption can be 
quite restrictive, though, as in reality, cost coefficients might be 
appropriately modeled by, e.g., continuous random variables. If we 
relax the assumption, however, we cannot immediately guarantee 
that Eq

[
C̃q

]
is finite. Hence, in order to derive finite error bounds 

that hold for more general distributions of q, we need to further 
investigate the dependence of C̃q on q.

Although Lemma 3 merely claims the existence of some con-
stant C̃q > 0, its proof in [9] is constructive, i.e., it finds a partic-
ular value for C̃q . However, due to the particular way that C̃q is 
constructed, it turns out that analyzing the dependence structure 
between C̃q and q is extremely difficult. For this reason, we take 
the following alternative route. First, we derive an alternative to 
Lemma 3, with an alternative constant Cq > 0, whose dependence 
on q can be expressed explicitly. Then, using this alternative result, 
we derive an analogue to the error bound (6), which explicitly de-
pends on the distribution of q and which we can guarantee to be 
finite.

3. Properties of the value function approximation error

In this section we derive two properties of the approximation 
error v̂q − vq of the shifted LP-relaxation approximation that will 
be used to derive our error bounds: asymptotic periodicity and a 
uniform error bound.
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3.1. Asymptotic periodicity

Consider the shifted LP-relaxation v̂q from Definition 3 for a 
given q ∈ �q . We will prove that the corresponding approxima-
tion error vq − v̂q is asymptotically periodic, i.e., we show that 
on a “relatively large” part of its domain, the function vq − v̂q is 
a periodic function. Specifically, we prove that there exist vectors 
σ̄ k , k ∈ K q , such that vq − v̂q is Bk-periodic on the shifted cone 
σ̄ k + �k , k ∈ K q .

In fact, such an asymptotic periodicity result has already been 
proven in Proposition 3.7 in [9]. However, in their result, the vector 
corresponding to σ̄ k depends on q. Since q is fixed in their paper, 
this does not hinder their analysis. However, in our setting with a 
random q, this is a crucial obstacle to deriving an asymptotic error 
bound. We will highlight why this is the case when we derive our 
error bound in Section 4. Hence, in this section we aim at vectors 
σ̄ k that do not depend on q. One complicating factor here is that 
the index k is taken from a set K q , which depends on q. To avoid 
confusion, we define the set K̄ := ∪q∈�q := K q of all indices k for 
which the basis matrix Bk is dual feasible for some q ∈ �q . Note 
that K̄ is a finite set because W only has a finite number of basis 
matrices. We will derive a vector σ̄ k for every k ∈ K̄ .

Let k ∈ K̄ and q ∈ �q with k ∈ K q be given. Then, by Lemma 2
we know that vq(s) = (λ

q
k)

�s + ψ
q
k (s) whenever s ∈ �k(dk). If we 

can find a vector σ̄ k ∈ �k(dk) such that

v̂q(s) = (λ
q
k)

�s + �
q
k, (7)

for s ∈ σ̄ k +�k , then because σ̄ k +�k ⊆ �k(dk) (since σ̄ k ∈ �k(dk)

and adding an element t ∈ �k only takes us “further inside” the 
shifted cone �k(dk)), it follows that

vq(s) − v̂q(s) = ψ
q
k (s) − �

q
k, (8)

for all s ∈ σ̄ k + �k . Hence, the approximation error vq − v̂q is Bk-
periodic on the shifted cone σ̄ k + �k with a mean value of zero 
(since �q

k is the mean value of ψq
k ). It remains to find a vector 

σ̄ k ∈ �k(dk) that satisfies (7).
By definition of v̂q , equation (7) is equivalent to the statement 

that for every l ∈ K q , we have

(λ
q
k − λ

q
l )

�s ≥ �
q
l − �

q
k . (9)

We analyze the left-hand side and right-hand side of the inequal-
ity above separately. For the left-hand side we have the following 
representation.

Lemma 4. Let k, l ∈ K̄ be given. Define Nl as the matrix consisting of the 
columns of W that are not columns in the basis matrix Bk, and write 
qNl for the vector of elements of q corresponding to the columns of Nl. 
For i = 1, . . . , m, write Bk

i ∈ Bl if the ith column of Bk is also a column 
in Bl, corresponding to the same second-stage variable. If Bk

i /∈ Bl , then 
write j(i) for the index of Nl such that Bk

i = Nl
j(i) , where both columns 

correspond to the same second-stage variable. Then, for every q ∈ �q for 
which k, l ∈ K q, we have

q̄kl
i := (λ

q
k − λ

q
l )

�Bk
i =

{
0, if Bk

i ∈ Bl,

q̄Nl
j(i)

, if Bk
i /∈ Bl,

where (q̄Nl )� := (qNl )� − (qBl )�(Bl)−1Nl denotes the reduced cost of 
yNl .

Proof. Let q ∈ �q with k, l ∈ K q and i = 1, . . . , m be given. Then, 
(λ

q
)�Bk = (qBk )�(Bk)−1 Bk = (qBk )�ei = q k , where ei ∈ Rm is the 
k i i Bi

544
ith unit vector. Next, consider (λ
q
l )

�Bk
i . If Bk

i ∈ Bl , then, writ-
ing Bk

i = Bl
r(i) , we have (λ

q
l )

�Bk
i = (qBl )�(Bl)−1 Bl

r(i) = (qBl )�r(i) =
qBl

r(i)
= qBk

i
. Conversely, if Bk

i /∈ Bl , then we have (λ
q
l )

�Bk
i =

(qBl )�(Bl)−1 Nl
j(i) = qNl

j(i)
− q̄Nl

j(i)
= qBk

i
− q̄Nl

j(i)
. Combining these 

findings yields the result. �
Next, we consider the right-hand side of (9). We first derive an 

upper bound Gq
kl on the difference �q

l − �
q
k .

Lemma 5. Let k, l ∈ K̄ be given. Then, there exists tkl ∈Rm+ , such that for 
all q ∈ �q with k, l ∈ K q, we have

�
q
l − �

q
k ≤ Gq

kl := (q̄kl)�tkl.

Proof. Let q ∈ �q with k, l ∈ K q be given and consider the Gomory 
relaxations vq

Bk and vq
Bl of vq . We know from Lemma 2(i) that 

vq
Bk (s) = vq(s) ≥ vq

Bl (s) for all s ∈ �k(dk). Using Lemma 2(ii) we 
can rewrite this as ψq

l (s) − ψ
q
k (s) ≤ (λ

q
k − λ

q
l )

�s. Note that ψq
k and 

ψ
q
l are Bk-periodic and Bl-periodic, respectively. By Lemma 1 this 

implies that they are pk Im-periodic and pl Im-periodic, respectively, 
where pk := | det Bk| and pl := | det Bl|. Note that pk and pl are 
integers by our assumption that W is an integer matrix. It follows 
that ψq

l −ψ
q
k is a pkl Im-periodic function, where pkl := pk · pl . Now, 

let Ckl ⊆ �k(dk) be a hypercube of length pkl . Then, integrating 
ψ

q
l − ψ

q
k over Ckl and dividing by its volume (pkl)

m , we obtain

�
q
l − �

q
k = p−m

kl

∫
Ckl

(ψ
q
l (s) − ψ

q
k (s))ds

≤ p−m
kl

∫
Ckl

(λ
q
k − λ

q
l )

�sds =: G̃q
kl,

where the inequality follows from Ckl ⊆ �k(dk) and Lemma 2. We 
will derive an upper bound Gq

kl on the right-hand side G̃q
kl . Using 

the change of variables s = Bkt , we can write

G̃q
kl = p−m

kl |det Bk|
∫

C̄kl

(λ
q
k − λ

q
l )

�Bktdt

= p−m
kl |det Bk|

∫
C̄kl

(q̄kl)�tdt,

where C̄kl := {t ∈ Rm+ | Bkt ∈ Ckl} and q̄kl is as in Lemma 4. We 
claim that q̄kl

i ≥ 0 for every i = 1, . . . , m. If Bk
i ∈ Bl , this follows im-

mediately from Lemma 4. If Bk
i /∈ Bl , then by Lemma 4, q̄kl

i equals 
q̄Nl

j(i)
, the reduced cost of the variable corresponding to Bk

i with 

respect to the basis matrix Bl . Since Bl is a dual feasible ba-
sis matrix, the reduced cost q̄Nl

j(i)
is non-negative. Hence, indeed 

q̄kl ≥ 0. Define the vector tkl with elements tkl
i := max{ti | t ∈ C̄kl}, 

i = 1, . . . , m. Then, it follows that

G̃q
kl ≤ p−m

kl |det Bk|
∫

C̄kl

(q̄kl)�tkldt

= p−m
kl

∫
Ckl

(q̄kl)�tklds = (q̄kl)�tkl = Gq
kl.

We conclude that �q − �
q ≤ G̃q ≤ Gq . �
l k kl kl
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By Lemma 5, (λq
k − λ

q
l )

�s ≥ Gq
kl is a sufficient condition for (9). 

We use this fact to derive a vector σ̄ k for which (8) holds.

Lemma 6. Let k ∈ K̄ be given. Then, there exists σ̄ k ∈ �k(dk), such that 
for all q ∈ �q with k ∈ K q and for all s ∈ σ̄ k + �k, we have

vq(s) − v̂q(s) = ψ
q
k (s) − �

q
k . (10)

Proof. Let s ∈ �k be given. Then, there exists some t ∈ Rm+ such 
that s = Bkt . Hence, for any l ∈ K̄ with l �= k and any q ∈ �q with 
k, l ∈ K q , we can write

(λ
q
k − λ

q
l )

�s ≥ Gq
kl ⇐⇒ (λ

q
k − λ

q
l )

�Bkt ≥ Gq
kl

⇐⇒ (q̄kl)�t ≥ (q̄kl)�tkl. (11)

Since q̄kl ≥ 0 by the proof of Lemma 5, a sufficient condition for 
(11) is t ≥ tkl , which is equivalent to s ∈ �kl := {Bkt | t ≥ tkl}. 
Now, similar as in [9] it can be shown that the intersection �̄k :=⋂

K q :q∈�q

⋂
l∈K q :l �=k �kl can be represented as σ̄ k + �k , for some 

σ̄ k ∈ �k . Note that here, the first intersection is over a finite collec-
tion of index sets K q , q ∈ �q , since K q ⊆ K̄ for every q ∈ �q and K̄
is a finite set. By construction of σ̄ k and tkl , we have σ̄ k ∈ �k(dk). 
It then follows from the discussion at the start of this subsection 
that indeed, (10) holds if s ∈ σ̄ k + �k . �
3.2. Uniform upper bound

Next, we derive a uniform upper bound on the value function 
approximation error ‖v̂q − vq‖∞ , whose dependence on q is ex-
pressed explicitly. In particular, we derive a bound of the form 
‖v̂q − vq‖∞ ≤ γ ‖q‖1, for some γ > 0. To derive such an upper 
bound, we split up the approximation error by the inequality

‖vq − v̂q‖∞ ≤ ‖vq − vq
LP‖∞ + ‖vq

LP − v̂q‖∞, (12)

and we bound each of the terms in the right-hand side above sep-
arately.

Lemma 7. There exists a finite constant γ1 > 0, such that for every q ∈
�q,

‖vq − vq
LP‖∞ ≤ γ1‖q‖1.

Proof. See Corollary 2 in [3] and Remark 1 in the same paper. �
Lemma 8. There exists a finite constant γ2 > 0, such that for every q ∈
�q,

‖vq
LP − v̂q‖∞ ≤ γ2‖q‖1.

Proof. Comparing the dual formulation of vq
LP(s) with the defi-

nition of v̂q(s), it is clear that ‖vq
LP − v̂q‖∞ ≤ maxk∈K q �

q
k . Recall 

that �q
k is the mean value of the Bk-periodic function ψq

k . By the 
proof of Theorem 2.9 in [9], we can write ψq

k (s) = q̄�
Nk y∗

Nk , where 
q̄�

Nk := q�
Nk − q�

Bk (Bk)−1Nk ≥ 0, and y∗
Nk ∈ [0, pk]m is optimal in the 

Gomory relaxation v Bk (s). Note that q̄�
Nk = [q�

Nk q�
Bk ] 

[
In̄

−(Bk)−1 Nk

]
, 

where n̄ := n2 + n̄2 − m. Hence, there exists a matrix Mk (whose 
columns are a permutation of the columns of the matrix above) 
such that we can write q̄�

k = q�Mk . It follows that

N
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�
q
k ≤ sup

s∈Rm
ψ

q
k (s) ≤ sup

s∈Rm
q̄�

Nk y∗
Nk (s)

= sup
s∈Rm

q�Mk y∗
Nk (s) ≤ q�(

pk · Mkιn̄
)
,

where ιn̄ := (1, . . . , 1) ∈Rn̄ . Hence, we obtain

‖vq
LP − v̂q‖∞ ≤ max

k∈K q
�

q
k ≤ max

k∈K q
q�(

pk · Mkιn̄
)

≤ max
k∈K̄

{
pkq�Mkιn̄

}
≤ max

k∈K̄

{
|pk| · ‖q‖1 · ‖Mkιn̄‖∞

}
= max

k∈K̄

{
|pk| · ‖Mkιn̄‖∞

}
· ‖q‖1.

Defining γ2 := maxk∈K̄

{|pk| · ‖Mkιn̄‖∞
}

, it follows that ‖vq
LP −

v̂q‖∞ ≤ γ2‖q‖1. Since K̄ is a finite index set, γ2 is indeed fi-
nite. �

Combining Lemma 7 and 8 yields desired upper bound on the 
approximation error ‖vq − v̂q‖∞ .

Lemma 9. There exists a finite constant γ > 0 such that for all q ∈ �q,

‖vq − v̂q‖∞ ≤ γ ‖q‖1.

Proof. Follows immediately from (12), Lemma 7, and Lemma 8. �
4. Parametric error bounds

In this section we derive parametric error bounds for the con-
vex approximations of MIR models studied in this paper. As dis-
cussed in Section 2, we first derive an alternative to Lemma 3 for 
which the dependence of the corresponding constant Cq on q is 
explicit.

Consider the shifted LP-relaxation approximation Q̂ from Defi-
nition 3 and suppose that q and T are fixed. To derive our alter-
native to Lemma 3, we make use of a similar line of reasoning as 
used to prove Lemma 3 in its original source [9]. The main differ-
ences are twofold. Firstly, we will use the asymptotic periodicity 
result from Lemma 6 (in which the vectors σ̄ k , k ∈ K q do not de-
pend on q) rather than the analogue result from [9] (in which the 
corresponding vectors σ k , k ∈ K q do depend on q). Secondly, we 
use the upper bound on ‖vq − v̂q‖∞ from Lemma 9, whose de-
pendence on q is expressed explicitly, rather than the analogous 
result from [9].

Lemma 10. Consider the recourse function Q and its shifted LP-
relaxation approximation Q̂ from Definition 3 and assume that q ∈ �q

and T ∈ �T are fixed. Then, there exists a finite constant C > 0, not de-
pending on T and q, such that for all f ∈Hm, we have

‖Q − Q̂ ‖∞ ≤ C · ‖q‖1 ·
m∑

i=1

E
[|
| f i(·|h−i)

]
.

Proof. Let x ∈Rn1 be given. Then, we have

∣∣Q (x) − Q̂ (x)
∣∣ = ∣∣ ∫

Rm

(
v(ω) − v̂(ω)

)
g(ω)dω

∣∣,
where g is the pdf satisfying g(ω) = f (ω + T x), ω ∈ Rm . We 
will split up this integral into several integrals over subsets of its 
domain Rm . By Lemma 6 we know that the value function approx-
imation error vq − v̂q is Bk-periodic on σ̄ k + �k , k ∈ K q . Writing 
N :=Rm \ ∪k∈K (σ̄k + �k) for the complement set, we have
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∣∣Eh[vq(h − T x) − v̂q(h − T x)]∣∣ (13)

≤
∑

k∈K q

∣∣∣ ∫
σ̄k+�k

(
vq(ω) − v̂q(ω)

)
g(ω)dω

∣∣∣ (14)

+
∫
N

|vq(ω) − v̂q(ω)|g(ω)dω. (15)

Observe that, importantly, the sets σ̄ k + �k , k ∈ K q , and N do not 
depend on q (as opposed to their analogues in [9]).

Now we bound both terms in the right-hand side above sepa-
rately. Applying Theorem 4.13 from [9], providing an upper bound 
on the integral of a zero-mean Bk-periodic function, and using the 
upper bound on ‖vq − v̂q‖∞ from Lemma 9, we obtain∣∣∣∣∣∣∣

∫
σ̄ k+�k

(
vq(ω) − v̂q(ω)

)
g(ω)dω

∣∣∣∣∣∣∣
≤ 1

2
γ ‖q‖1|det(Bk)|

m∑
i=1

E
[|
| f i(·|h−i)

]
. (16)

Summing over all k ∈ K q then yields an upper bound on (14). 
However, to avoid complications related to the dependence of the 
index set K q on q, we instead sum over all k ∈ K̄ . This yields an 
upper bound that only depends on q through ‖q‖1.

For (15), we observe that∫
ω∈N

|vq(ω) − v̂q(ω)|g(ω)dω ≤ ‖vq − v̂q‖∞P {ω ∈ N }.

We use Lemma 9 to bound ‖vq − v̂q‖. Moreover, we use an ana-
logue of equation (5.4) in [9] to bound the probability P {ω ∈ N }. 
However, rather than summing over k ∈ K q , as in [9], we again 
sum over k ∈ K̄ , yielding a more conservative upper bound. We 
obtain∫
ω∈N

|vq(ω) − v̂q(ω)|g(ω)dω

≤ γ ‖q‖1

∑
k∈K̄

m∑
j=1

Dkj

m∑
i=1

E
[|
| f i(·|h−i)

]
. (17)

Note that the constants Dkj , k ∈ K̄ , j = 1, . . . , m, do not depend on 
q, since N does not depend on q. Combining (16) and (17) yields∣∣Eh[vq(h − T x) − v̂q(h − T x)]∣∣

≤ C · ‖q‖1 ·
m∑

i=1

E
[|
| f i(·|h−i)

]
,

where C := γ
∑

k∈K̄

(
1
2 | det Bk| + ∑m

j=1 Dkj

)
. The result now fol-

lows from the observation that the right-hand side above does not 
depend on x and T . �

Lemma 10 provides an upper bound for the approximation er-
ror ‖Q − Q̂ ‖∞ under the assumption that q and T are fixed. 
Compared with the error bound from [9], restated in Lemma 3, 
the dependence of the error bound in Lemma 10 on the second-
stage cost vector q is made explicit. Specifically, we replaced the 
constant C̃q from Lemma 3 by the constant Cq := C · ‖q‖1. Al-
though this constant Cq is generally slightly less tight than C̃q , 
it does depend explicitly on q, so that Lemma 10 teaches us that 
the approximation error can be bounded by a function that grows 
linearly in ‖q‖1.
546
Extending the result to a setting where T is random yields a 
parametric error bound in q, which constitutes the first main result 
of our paper.

Theorem 1. Consider the recourse function Q and its shifted LP-
relaxation approximation Q̂ from Definition 3 and assume that only 
q ∈ �q is fixed. Then, there exists a finite constant C > 0, not depending 
on q, such that for all f ∈Hm, we have

‖Q − Q̂ ‖∞ ≤ C · ‖q‖1 ·
m∑

i=1

E
[|
| f i(·|h−i)

]
.

Proof. Let x ∈ Rn1 be given. Then, by (5) and Lemma 10, there 
exists C > 0, not depending on q and T , such that for every f ∈
Hm ,

|Q (x) − Q̂ (x)| ≤ET
[

C · ‖q‖1 ·
m∑

i=1

E
[|
| f i(·|h−i)

]]

= C · ‖q‖1 ·
m∑

i=1

E
[|
| f i(·|h−i)

]
.

The result follows from the fact that the right-hand side above 
does not depend on the value of x. �

Theorem 1 provides a parametric error bound that explicitly 
depend on the second-stage cost vector q. We find that the er-
ror bound grows linearly in the �1-norm of q, which we might 
interpret as a measure of the “magnitude” of q. Interestingly, this 
result is in line with the result in Theorem 5 of [4], which provides 
an error bound for the closely related α-approximations of simple 
integer recourse models that scale linearly in the sum of the ele-
ments of q, which are assumed to be non-negative in that paper. 
While the result in [4] only applies to the very special case of sim-
ple integer recourse, our Theorem 1 holds for much more general 
models.

Finally, we extend Theorem 1 to a setting where q is random. 
This yields the second main result of our paper.

Theorem 2. Consider the recourse function Q from (1) and its shifted 
LP-relaxation approximation Q̂ from Definition 3, and suppose that As-
sumption 1 holds. Then, there exists a constant C > 0 such that for every 
f ∈Hm, we have

‖Q − Q̂ ‖∞ ≤ C ·E[‖q‖1
] m∑

i=1

E
[|
| f i(·|h−i)

]
.

Proof. Let x ∈ Rn1 be given. Then, by applying Lemma 10 to (5)
we find that there exists C > 0 such that for every f ∈Hm ,

∣∣Q (x) − Q̂ (x)
∣∣ ≤ Eq,T

[
C · ‖q‖1 ·

m∑
i=1

E
[|
| f i(·|h−i)

]]

= C ·E[‖q‖1
] ·

m∑
i=1

E
[|
| f i(·|h−i)

]
.

The result now follows from the observation that the right-hand 
side above does not depend on the value of x. �

Theorem 2 provides an error bound that explicitly depends on 
the distribution of q. The error bound can be represented as the 
product of two non-negative factors: one depending on the distri-
bution of q and another depending on the distribution of h. The 
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first factor, E
[‖q‖1

]
, captures the dependence of the error bound 

on the distribution of q. Following the discussion above, we might 
interpret this as the average “magnitude” of q. It shows that our 
error bound is indeed finite if E

[‖q‖1
]
< +∞, which is true under 

Assumption 1(b). Note that besides this assumption, no other as-
sumptions about the distribution of q are made. In this regard, we 
improve upon the error bound from Theorem 2 in [17], which only 
holds if q is discretely distributed on a finite support. In particular, 
our error bound can also deal with continuously distributed q.

The second factor, related to the distribution of h, is of the same 
form as error bounds from the literature. It depends on the total 
variations of the one-dimensional conditional density functions of 
the random right-hand side vector h. It converges to zero as these 
total variations go to zero. Practically speaking, this means that 
our convex approximation is good if the dispersion in the distribu-
tion of h is large. Another way of interpreting this is that a highly 
dispersed distribution of h leads to a “near-convex” model. Inter-
estingly, a similar “convexification” effect is not observed in terms 
of the distribution of q: the dispersion of this distribution does 
not affect the error bound. Only the average “magnitude” E

[‖q‖1
]

matters.

5. Conclusion

We consider performance guarantees for convex approxima-
tions of MIR models in the form of error bounds: upper bounds on 
the approximation error. In contrast with the literature, we derive 
parametric error bounds that explicitly depend on the second-stage 
cost vector q or its distribution, in case q is random. We con-
sider one particular convex approximation from the literature: the 
shifted LP-relaxation approximation, and we derive a correspond-
ing error bound.

Using properties of the value function approximation error, we 
first derive an error bound that holds when q is fixed. Although 
such error bounds exist in the literature, our error bound is special 
in the sense that its dependence on the second-stage cost vector q
is made explicit: the bound scales linearly in the �1 norm of q. We 
might interpret this scaling factor as the “magnitude” of q. Next, 
we use this bound to derive an error bound that holds when q
is random. The error bound scales linearly in the expected value 
E

[‖q‖1
]
, which we might interpret as the average “magnitude” 

of q. Hence, our convex approximations are good if this expected 
value is small.

Future research may be aimed at deriving error bounds under 
even more relaxed distributional assumptions in the MIR model. 
For instance, it would be interesting to investigate the case where 
not all elements of h are random, or where some elements of h
are fully dependent.
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References

[1] S. Ahmed, M. Tawarmalani, N.V. Sahinidis, A finite branch-and-bound algorithm 
for two-stage stochastic integer programs, Math. Program. 100 (2004) 355–377.

[2] C.C. Carøe, R. Schultz, Dual decomposition in stochastic integer programming, 
Oper. Res. Lett. 24 (1999) 37–45.

[3] W. Cook, A.M.H. Gerards, A. Schrijver, É. Tardos, Sensitivity theorems in integer 
linear programming, Math. Program. 34 (3) (1986) 251–264.

[4] W.K. Klein Haneveld, L. Stougie, M.H. van der Vlerk, Simple integer recourse 
models: convexity and convex approximations, Math. Program. 108 (2–3) 
(2006) 435–473.

[5] W.K. Klein Haneveld, M.H. van der Vlerk, Stochastic integer programming: gen-
eral models and algorithms, Ann. Oper. Res. 85 (1999) 39–57.

[6] G. Laporte, F.V. Louveaux, The integer L-shaped method for stochastic integer 
programs with complete recourse, Oper. Res. Lett. 13 (1993) 133–142.

[7] L. Ntaimo, Disjunctive decomposition for two-stage stochastic mixed-binary 
programs with random recourse, Oper. Res. 58 (1) (2010) 229–243.

[8] W. Romeijnders, D.P. Morton, M.H. van der Vlerk, Assessing the quality of con-
vex approximations for two-stage totally unimodular integer recourse models, 
INFORMS J. Comput. 29 (2) (2017) 211–231.

[9] W. Romeijnders, R. Schultz, M.H. van der Vlerk, W.K. Klein Haneveld, A convex 
approximation for two-stage mixed-integer recourse models with a uniform 
error bound, SIAM J. Optim. 26 (1) (2016) 426–447.

[10] W. Romeijnders, M.H. van der Vlerk, W.K. Klein Haneveld, Convex approxima-
tions for totally unimodular integer recourse models: a uniform error bound, 
SIAM J. Optim. 25 (1) (2015) 130–158.

[11] W. Romeijnders, M.H. van der Vlerk, W.K. Klein Haneveld, Total variation 
bounds on the expectation of periodic functions with applications to recourse 
approximations, Math. Program. 157 (1) (2016) 3–46.

[12] R. Schultz, Stochastic programming with integer variables, Math. Program. 
97 (1) (2003) 285–309.

[13] R. Schultz, L. Stougie, M.H. Van Der Vlerk, Solving stochastic programs with 
integer recourse by enumeration: a framework using Gröbner basis, Math. Pro-
gram. 83 (1) (1998) 229–252.

[14] S. Sen, Algorithms for stochastic mixed-integer programming models, Handb. 
Oper. Res. Manag. Sci. 12 (2005) 515–558.

[15] S. Sen, J.L. Higle, The C3 theorem and a D2 algorithm for large scale stochastic 
mixed-integer programming: set convexification, Math. Program. 104 (2005) 
1–20.

[16] W. van Ackooij, J. Malick, Decomposition algorithm for large-scale two-stage 
unit-commitment, Ann. Oper. Res. 238 (1) (2016) 587–613.

[17] E.R. van Beesten, W. Romeijnders, Convex approximations for two-stage mixed-
integer mean-risk recourse models with conditional value-at-risk, Math. Pro-
gram. 181 (2020) 473–507.

[18] N. van der Laan, W. Romeijnders, A loose Benders decomposition algorithm 
for approximating two-stage mixed-integer recourse models, Math. Program. 
(2020) 1–34.

[19] N. van der Laan, W. Romeijnders, M.H. van der Vlerk, Higher-order total varia-
tion bounds for expectations of periodic functions and simple integer recourse 
approximations, Comput. Manag. Sci. 3 (15) (2018) 325–349.

[20] M.H. van der Vlerk, Convex approximations for complete integer recourse mod-
els, Math. Program. 99 (2) (2004) 297–310.

[21] M.H. van der Vlerk, Convex approximations for a class of mixed-integer re-
course models, Ann. Oper. Res. 177 (1) (2010) 139–150.

[22] D.W. Walkup, R.J.-B. Wets, Lifting projections of convex polyhedra, Pac. J. Math. 
28 (2) (1969) 465–475.
547

http://refhub.elsevier.com/S0167-6377(22)00097-9/bib068861FD8AAA6686F18BD27E207A4B9Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib068861FD8AAA6686F18BD27E207A4B9Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibCB0483E81B4AE28D515594E1E560B659s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibCB0483E81B4AE28D515594E1E560B659s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib6668986DBC57F6BA6AA7144BEBAB7DBEs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib6668986DBC57F6BA6AA7144BEBAB7DBEs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1C0D22AFE806ACD9C89D9217EC4233ACs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1C0D22AFE806ACD9C89D9217EC4233ACs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1C0D22AFE806ACD9C89D9217EC4233ACs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib9B2AE7D604E1F566DF6C7CE37476488Ds1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib9B2AE7D604E1F566DF6C7CE37476488Ds1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibE7CEBB58F4C7D9181839C9D8C73F759Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibE7CEBB58F4C7D9181839C9D8C73F759Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibA1CDCF0A350EBB0DFD8FF577DA92D061s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibA1CDCF0A350EBB0DFD8FF577DA92D061s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib5BE8A29DC4DEE98CC082E84AED71F4E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib5BE8A29DC4DEE98CC082E84AED71F4E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib5BE8A29DC4DEE98CC082E84AED71F4E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibB450E93696F86CCD7908051D20679660s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibB450E93696F86CCD7908051D20679660s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibB450E93696F86CCD7908051D20679660s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib8464CDBA205919132BA55ADAE9C0A810s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib8464CDBA205919132BA55ADAE9C0A810s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib8464CDBA205919132BA55ADAE9C0A810s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1651EB43693674DB46099F27241101ECs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1651EB43693674DB46099F27241101ECs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib1651EB43693674DB46099F27241101ECs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib38685C51266266DAB4D9AA2F56A593D5s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib38685C51266266DAB4D9AA2F56A593D5s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibEBB63CC70C0A54B649F166F5EC16EB20s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibEBB63CC70C0A54B649F166F5EC16EB20s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibEBB63CC70C0A54B649F166F5EC16EB20s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib35C45846FD6BDE5D58B91B8A1E2FE8C0s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib35C45846FD6BDE5D58B91B8A1E2FE8C0s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7EDD2E1032BA2A79AFCC3DFAEB771C3As1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7EDD2E1032BA2A79AFCC3DFAEB771C3As1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7EDD2E1032BA2A79AFCC3DFAEB771C3As1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib2346E2D5935BA092545BD3876FE4A73Bs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib2346E2D5935BA092545BD3876FE4A73Bs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib98472C864B26434180F290D59CCCB99Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib98472C864B26434180F290D59CCCB99Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib98472C864B26434180F290D59CCCB99Es1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7444286AB8C6BA1569B617933AED72E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7444286AB8C6BA1569B617933AED72E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib7444286AB8C6BA1569B617933AED72E8s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib47EFD428DEA7955017E8AEB5D71E9BC6s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib47EFD428DEA7955017E8AEB5D71E9BC6s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib47EFD428DEA7955017E8AEB5D71E9BC6s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibB0799E995F6E12985886D332946936D0s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bibB0799E995F6E12985886D332946936D0s1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib29C2BBF8FE7107F5377FDBB18B53E66Bs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib29C2BBF8FE7107F5377FDBB18B53E66Bs1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib761CEFF198CD8B908DA4ED7AB272793As1
http://refhub.elsevier.com/S0167-6377(22)00097-9/bib761CEFF198CD8B908DA4ED7AB272793As1

	Parametric error bounds for convex approximations of two-stage mixed-integer recourse models with a random second-stage cos...
	1 Introduction
	2 Problem definition
	2.1 Convex approximations
	2.2 Error bounds

	3 Properties of the value function approximation error
	3.1 Asymptotic periodicity
	3.2 Uniform upper bound

	4 Parametric error bounds
	5 Conclusion
	Data availability
	References


