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Abstract

Within hole cleaning in the oil drilling industry, has the recent development of sensors
made it possible to monitor the state of the cleaning operation while it is running. This
entails a vast array of data and measured features that can be analyzed and used to
potentially reduce the economic and environmental costs and increase the safety of the
drilling operation. Fractal analysis is a promising yet relatively uncharted method for
time-series data analysis. To our knowledge, there are not many research papers covering
its applications, and the ones that exist do not describe in detail how it is implemented.
This research project will propose a complete workflow on how to implement fractal
analysis as a tool and apply the resulting method to synthetic and to hole cleaning data
from a real drilling operation. The project has resulted in a well-working fractal analysis
tool, which has shown promising results both for time-series data analysis in general and
a suiting method for analyzing hole cleaning data specifically.

i



Sammendrag

Innenfor hullrensing i oljeboring bransjen, har ny og moderne utvikling av sensorer gjort
det mulig å monitorere tilstanden til en boring- og renseoperasjon mens den er i drift.
Dette medfører en stor mengde data som kan analyseres og potensielt brukes til å ef-
fektivisere operasjonen b̊ade økonomisk, miljø-, og sikkerhetsmessig. Fraktal analyse er
en lovende, dog relativt lite utforsket metode innenfor tidsserie data analyse. Til v̊ar
forst̊aelse er det ikke mange publikasjoner som dekker bruken av metoden, og de som
finnes beskriver i lite detalj hvordan metoden kan implementeres. Dette forskningspro-
sjektet vil foresl̊a og argumentere for en implementasjon av et fraktal analyse verktøy, og
anvende det resulterende produktet p̊a b̊ade syntetisk data og hullrense data fra en ekte
oljeboring operasjon. Prosjektet resulterte i et velfungerende fraktal analyse verktøy,
som har vist å være nyttig b̊ade som et verktøy for tidsserie analyse, og for analyse av
hullrensning data spesifikt.
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Preface

This research project serves as a master’s thesis, and concludes a five-year integrated
Master of Science study program with the title ”Cybernetics and Robotics” at the Nor-
wegian University of Science and Technology, NTNU. The thesis takes the reader through
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1. Introduction

There has been a fast-growing selection of models, tools, and techniques for analyzing
data in the last decade. At the same time, many small and large businesses sit on
considerable amounts of data but cannot find a suiting method for capturing faults
and anomalies in their data. A domain-independent challenge is that known problems
occur in a system, but they cannot detect them by analyzing the signal amplitudes. The
concept of fractal analysis is that one could potentially be able to capture domain-related
issues that generally are not detectable by analyzing the signal amplitudes alone.

1.1. Background and Motivation

The concept of fractals and fractal analysis is not new; its origin dates back to the
late 60s when Benoit Mandelbrot wanted to measure the length of Britain’s coastline
and discovered that fractal dimensions could be used to determine the roughness of the
coastlines (Kappraff, 1986). The idea of having a deterministic measure of roughness
could later be applied to other surfaces as well as time-series signals. Now there are
plenty of different use cases for fractal analysis. According to Landgraf and Hansmann
(2019), fractal analysis is an innovative approach for evaluating the condition of railway
tracks. With the use of fractal analysis on measurement data, one can see indications
of deterioration of ballast and signs of weak subsoil, which previously has been a great
challenge. In the realms of image texture processing, fractal analysis has proven to be a
new and highly efficient method for feature extraction, and challenging the best options
of today (Costa et al., 2012). Another image processing-related application is in the
confectionery industry, more specifically in the production of chocolate. Here, fractal
analysis has been used to find a relation in how fat in chocolate blooms to the surface
during storage as this is a big issue because a bar of chocolate that does not appear
clean and shiny does not sell (Quevedo et al., 2005). Typical for most of the use cases is
that analyzing the roughness of a surface or a signal could uncover properties that other
methods would not capture, and exploring its application to new data and domains is
highly interesting.

The specialization project conducted in the fall of 2021 was regarding condition moni-
toring of railway tracks and exploration of different methods for predicting maintenance
in the railway domain, focusing on machine learning models (Musæus, 2021). Fractal
analysis came to light during the phase of finding relevant literature concerning methods
used for data analysis in the named domain. However, as it was not a method based
on machine learning, it was not prioritized in the specialization project. After reviewing
available literature regarding fractal analysis and realizing that it is not a well-known
method including that not many papers cover its applications or implementation, it
seemed like a suitable subject for a master’s thesis. With access to hole cleaning data
from the oil drilling industry, we had the prerequisites to experiment with the method’s
potential in the oil drilling domain.

1



1. Introduction

The drilling process is costly both economically and environmentally, and efficient hole
cleaning plays a significant factor in the equation. The established practice uses sophisti-
cated physics-based calculations to model the operation prior to its start. The increasing
development of sensors and data-transmission technology enable sensors along the drill
string that measures the hole cleaning state with higher precision and reliability than the
physics-based models. This opens up a new realm of possible methods to be introduced
in the operation. Accordingly, this project proposes to develop a complete workflow for
the use of fractal analysis for an efficient and improved monitoring of the hole cleaning
process during drilling operations.

1.2. Research Objectives and Research Questions

To confine the work to be done, a set of research objectives has been defined, as well as
research questions contributing to reach the objectives.

1.2.1. Research Objectives

Primary Objective: Evaluate the potential of fractal analysis for condition monitoring
using time-series data.
Secondary Objectives:

• Develop a full workflow for the application of fractal analysis for time-series data.

• Demonstration of fractal analysis for optimizing hole cleaning.

• Educate the reader in the implementation and use of fractal analysis.

1.2.2. Research Questions

• How can a full fractal analysis workflow be implemented?

• How can fractal analysis be utilized for analysing a hole cleaning process?

• How can the reader learn and make use of fractal analysis themselves?

1.3. Structure of the Thesis

The thesis is divided into five chapters, including the introduction. Chapter 2 presents
the background and theory needed to understand the methods utilized in the thesis.
Chapter 3 introduces the data used, the preparation of data needed, and the setup re-
quired to replicate the work done in the thesis. In Chapter 4, fractal analysis is applied
to the data presented in Chapter 3 through various experiments, and the results are
presented and discussed. The final chapter, Chapter 5, concludes the findings by an-
swering the research questions raised in the introduction. Lastly is a section on personal
reflection through the process of this master’s thesis and proposed future work if the
project is to be continued.

2



2. Theory

2.1. Fractal Analysis

2.1.1. Background - The Coastline Paradox

Fractal analysis is a rather modern concept within data analysis; the first modern paper
on it is from 2002 (Hyslip, 2002), where the technique was used to analyze railway
tracks. However, the underlying methodology was developed by Benoit B. Mandelbrot
back in 1967. Back then, Mandelbrot wanted to estimate the length of the coastline of
Great Britain because the best estimate at the time was found using Euclidean geometry,
but it was not accurate enough. Mandelbrot used a methodology that later would be
exploited in fractal analysis called the divider method (Andrle, 1992). By using a fixed-
size ruler(divider) and drawing straight lines between the edges of the ruler around
the perimeter of the map of Great Britain, one would quickly discover that decreasing
the ruler size leads to a more precise replication of the map, as well as a longer total
perimeter. See Figure 2.1 for illustration.

Mandelbrot ended up with the following relation between the number of segments,
the segment lengths, and the total length of the curve

L(λ) = N ∗ λ1−Dr (2.1)

where:

L(λ): total length of polygonal line as a function of λ

λ: length of one section

N: number of subdivisions

Dr: fractal dimension

Mandelbrot quickly realized that measuring the coastline is not as simple as it first
appeared and that the length of the coastline depends on the length of the ruler used
to measure it. Thus as the measuring ruler becomes infinitely small, the length of the
coastline increases to infinity. This phenomenon is known as the Coastline Paradox
(Mandelbrot et al., 1983).

2.1.2. Divider Method and Fractal Dimension, Dr

Using the same approach Mandelbrot used for calculating the coastline, but applying it
to a time-series signal, one would be able to sample the signal with precision based on the
ruler’s length, which is from here on called divider width. As Mandelbrot discovered that
the coastline was impossible to determine, he found a deterministic way of describing
the roughness of a line, the so-called fractal dimension, Dr (Hyslip, 2002). With further
exploitation of Equation 2.1, if the base 10 logarithm is applied to the equation you will
get

logL(λ) = (1−Dr)logλ+ logN (2.2)

3



2. Theory

Figure 2.1.: Illustration of Mandelbrot’s divider method for measuring the coastline of
Britain. By decreasing the divider lengths(orange lines), a more precise
reconstruction of the map is achieved. Illustration adapted from Landgraf
and Hansmann (2019).

By inspection, it is visible that the resulting expression is on the same form that expresses
a line,

y = mx+ b (2.3)

Thus a linear relation with the slope of the line appears. If the length of one section,
λ, is plotted against the total length of the polygonal line as a function of λ, L(λ), with
both axes in a logarithmic scale, a linear relation appears. This linear relation can be
written as

m = 1−Dr (2.4)

and as a result; the expression for the fractal dimension is:

Dr = 1−m (2.5)

With the correlation that a smaller divider length, λ, corresponds to a more precise
sample of the signal, a lower λ will also be able to capture smaller changes in the signal.
With this in mind and the fact that the fractal dimension determines the rate of change
of the correlation between measured signal length and the divider width, we can conclude
that the fractal dimension is a measure of the roughness of the signal. As an example,
if we have two arbitrary lines, A and B, where A is smoother than the latter, then the
difference in the measured line length against different divider lengths would not vary
much in the smoother signal. Thus the fractal dimension, Dr, will be lower in signal A
compared to signal B. A plot of the divider length versus the total line length with both
axes in log scale is called a Richardson plot (Hyslip, 2002).

2.1.3. Modified Divider Method

The original divider length method, as described in Section 2.1.2 uses the absolute length
of the segment lines when referring to the divider length, λ. The modified divider method
is based on the same equation as the original, except that instead of having equal divider
lengths, the whole data is segmented into segments of equal widths. This divider width
substitutes the original λ. Figure 2.2 and 2.3 illustrates the difference in how the two
methods assign λ and L(λ).

4



2. Theory

Figure 2.2.: Illustration of original divider method, where λ is a constant ruler length,
and the total length, L(λ) is the sum of the ruler lengths. Figure adapted
from (Hyslip, 2002).

2.1.4. Fractal Elements and Properties

Depending on what kind of signal is being analyzed, the resulting Richardson plot can
reveal a plot with either a singular slope or multiple slopes. These slopes are called
fractal elements, and are illustrated in Figure 2.4 with a single fractal element and with
multiple fractal elements in Figure 2.5. In case of multiple slopes will each slope reveal a
fractal dimension, Dr, which is calculated using Equation 2.5. The horizontal axis on the
Richardson plot corresponds to the divider width of a given divider method run; thus,
the different fractal elements appear in different ranges of divider widths in the analysis.
The fractal elements on the right side, usually called D1, responds to changes over longer
periods, like structural changes, while the middle slope, D2, is more affected by higher
frequency textural changes. The divider width ranges for D1 and D2 are dependent on
the data used and its domain. More on this in Section 2.1.6.

2.1.5. Spline Interpolation

Interpolation in the context of data analysis is a realm of methods for filling in missing
data in a data set. It is also used for curve fitting to eliminate outliers, which has been
its primary purpose in this thesis.

Spline is a piece-wise interpolation method aiming to make smooth curves through the
data points and is less prone to over-fitting compared to classic polynomial interpolation.
To fit a line through a set of n data points with polynomial interpolation, a polynomial
function of n−1 turning points is needed. For instance, if we have 100 points, it takes 99
turns to fit a line through the data with polynomial interpolation. A problem that ap-
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Figure 2.3.: Illustration of modified divider method. Here λ is a step length dividing
the signal into segments of equal width. The total length, L(λ), is the
sum of the length of each ruler in each segment which, in contrast to the
original divider method, varies from segment to segment. Figure adapted
from (Hyslip, 2002).

pears when using polynomial interpolation to fit through a large number of data points
is a phenomenon called polynomial wiggle or Runge’s phenomenon(Epperson, 1987). It
fits the data very well in the middle; however, there are often huge fluctuations in the
edges that do not fit very well with the data. What Splines do, instead of creating
one nth degree polynomial to fit through the data, it pieces together local polynomials
between one point to the next. Then to make the resulting fitted line smooth, it makes
sure that both the first derivative, which is the slope in a point, as well as the second
derivative, which is the change in slope, matches at every point. The result is a smooth
fit, as shown in Figure 2.7.

Using Figure 2.6 as aid, we have a set of n + 1 data points (x0, y0) (x1, y1) ... (xn, yn).
To calculate the spline cubic between the kth and the k + 1th interval we have:

Sk(x) = Sk,0 + Sk,1(x− xk), x ∈ [xk, xk+1]

+ Sk,2(x− xk)

+ Sk,3(x− xk)

(2.6)

This shows that each cubic/spline piece has four unknown variables , Sk,0 to Sk,3, which
has to be determined. The constraints are as follows:

• Sk(xk) = yk Each spline has to go through the data point.

• Sk(xk+1) = Sk+1(xk+1) To be continuous, the boundaries has to match.
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Figure 2.4.: This is a typical Richardson plot when doing fractal analysis with the divider
method. It consists of the black data points with logarithmically scaled axes
where the horizontal axis is the divider width, and the vertical axis is the
resulting polygon length. The blue line illustrates the slope known as a
fractal element, which is used to derive the fractal dimension.

• S′
k(xk+1) = S′

k+1(xk+1) To make the line smooth, both first- and second derivatives
has to match.

• S′′
k (xk+1) = S′′

k+1(xk+1)

Thus with n+ 1 data points, we have n-intervals with 4 unknowns each, which gives us
a total of 4n unknowns. The total number of constraints are:

• Sk(xk) = yk, has to go through all data points: n+ 1.

• Sk(xk+1) = Sk+1(xk+1), only yields for the interior points: n− 1

• S′
k(xk+1) = S′

k+1(xk+1), only yields for the interior points: n− 1

• S′′
k (xk+1) = S′′

k+1(xk+1), only yields for the interior points: n− 1

This gives us a total of 4n−2 constraints, thus resulting in an under-determined system.
It is typical to enforce two more conditions, for instance, set the second derivative at the
edges to zero, which gives us the two extra constraints needed to solve for the unknown
variables (McKinley and Levine, 1998).
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Figure 2.5.: This is a typical Richardson plot when doing fractal analysis with the divider
method. It consists of the black data points with logarithmically scaled axes
where the horizontal axis is the divider width, and the vertical axis is the
resulting polygon length. The blue lines show that multiple slopes can often
be derived from the scatterplot. The slopes signify different fractal elements.
The stippled lines are breakpoints/knots.
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Figure 2.6.: Illustration of how knot placement would look for a arbitrary signal using
spline.
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Figure 2.7.: Illustration of a signal and how best lines would be fitted using polynomial
interpolation and spline, respectively.
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2.1.6. Piecewise Regression Model

The piecewise regression model is a nonlinear regression model that is efficient when
the trend of a scatter plot quickly changes direction, which is typically in the resulting
Richardson plot when doing fractal analysis like in Figure 2.5. The idea is to fit two or
more linear regression lines through the data points instead of one quadratic or cubic
line, which fits our goal of extracting the slopes/fractal dimensions from the Richardson
plot. The location of change is commonly known as the breakpoint or the knot, and
the model supports multiple knots. The breakpoints or knots can be estimated visually,
but they can also be estimated iteratively by minimizing the resulting sum of square
error(SSE). When using fractal analysis, the resulting location of the knot(s) will most
likely have a practical sense in the domain in which it is applied. For instance, they
use three knots when doing fractal analysis in the railway domain. The range of divider
widths that separate the knots tells the analyst if a problem is a sub-structural problem
or a problem concerning the ballast bed.

Let us say we have a set of data points that seems suitable for the piecewise regression
model with one knot, i.e., it has one change of trend throughout the data, like Figure
2.8a. Then the construction of the piecewise regression starts by creating a dummy
variable for each side of the knot, which tells us if a given data point is on the left side
of the knot, or the right side of the knot:

xk =

{
0, if x1 ≤ x(k)

1, if x1 > x(k)

where

• x1 = value of the independent variable, i.e. divider width in the Richardson plot.

• x(k) = the value at the chosen breakpoint/knot position (note that k is notation,
not a exponent).

• xk = the knot dummy variable.

This signifies that the knot dummy variable, xk, is zero when the value of the independent
variable, x1, is less than or equal to the value of the knot. Otherwise, the knot dummy
variable’s value is one if the independent variable’s value is greater than the value of the
knot. The piecewise regression equation is as follows:

ŷ = b0 + b1x1 + b2(x1 − x(k))xk (2.7)

Where b0 is the intercept coefficient, b1x1 is the first linear term consisting of a coefficient
multiplied by the value of the independent variable. Lastly is the coefficient b2 multiplied
by the knot-term for the right side of the piecewise linear regression. The variables x1,
x(k), and xk are the same as listed above. The idea behind the construction of the
equation is that for every x1 location up to the knot value, x(k), the value of the dummy
knot variable, xk, is zero, and thus the last linear term goes away. For every x1 after the
knot location, the dummy knot variable is 1, and thus the last linear terms take effect,
creating the second regression line. Figure 2.8b shows a plot of how piecewise regression
would look like with one knot.

10



2. Theory

3 2 1 0 1
Length of Partial Segments (log)

3.5

3.6

3.7

3.8

3.9
Le

ng
th

 o
f P

ol
yg

on
 C

ha
in

 (l
og

)

(a) Figure shows a Richardson plot with divider width on the horizontal axis, and the resulting
polygon length on the vertical axis.
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(b) Figure shows how piecewise regression can be used to extract the different slope values which
later on can be converted to fractal dimensions using Equation 2.5. Here the knot/breakpoint
is estimated to be around -0.13. The horizontal axis shows the divider width used in the
analysis with the resulting total polygon length on the vertical axis.

Figure 2.8.: Two figures (a) and (b) illustrating a Richardson plot and how piecewise
regression draws its linear line through the data.

2.1.7. Principal Component Analysis

Principal Component Analysis (PCA) is a well-known and widely used multivariate data
analysis method, where its most common application is the reduction of dimensionality
(features) while losing the least amount of information (variance) possible (Abdi and
Williams, 2010).

When a data set has many possible correlated quantitative variables/features with the
indicative existence of redundant information, will PCA allow us to reduce them to
a smaller number of transformed variables, called principal components, that explain
much of the variability in the data. Each dimension or principal component generated
by PCA will be a linear combination of the original variables, and they will also be
independent/uncorrelated from/with each other. The principal components generated
are often used in supervised learning methods, and will in this thesis be used in fractal
analysis.
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PCA provides a hierarchical coordinate system based on data to represent the statistical
variation in the data set. I.e., it is a coordinate system based on data directions that
capture the maximal variance. To find the principal components, let us say we have a
data matrix

X =


· · · x1 · · ·
· · · x2 · · ·

...
· · · xn · · ·


where each row vector xi are measurements from a single experiment, for instance, each
feature in an oil drilling data set. We are going to assume that the data matrix X has
some statistical distribution, i.e., it is not deterministic, and that there is some statistical
variability. The goal is to uncover the dominant combinations of features that describe
as much of the data as possible, and can be done in six steps:

1. Compute the mean row:

x̄ =
1

n

n∑
i=1

xi

2. Calculate the average matrix (matrix of mean rows):

X̄ =


1
1
...
1


[

x̄
]

3. Subtract mean from data matrix, giving the mean centered data:

B = X − X̄

4. Compute the covariance matrix of rows of B:

C = BTB

5. Calculate the eigenvalues and eigenvectors of C, which results in:

CV = V D

where V is the eigenvectors and D is the eigenvalues.

6. Finally we get the principal components, T :

T = BV

where the vectors V of the eigenvectors are called loadings.
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Essentially by decomposing the data matrix X into the principal components vector T
which holds the directions of maximum variance, and the loadings, V, are how much of
each principal components it is within each experiment xn (Brunton and Kutz, 2022)(Jol-
liffe, 2016). The eigenvalues, λ, in D give an indication of the amount of variance in
the data set X that is being captured by the principal components. For instance, if we
want to calculate how much of the variance is being captured by the first r principal
components, we exploit the fact that each eigenvalue λ = σ2, i.e., it is the variance of
the principal component in the given data set. Thus the calculation of the cumulative
captured variance for the first r principal components is done by:∑r

k=1 λk∑n
k=1 λk

which tells us what fraction of variance is captured by the first r eigenvalues divided
by the total captured by all the eigenvalues, which is all the variance in the data. PCA
is a euclidean-based method, and therefore it is important to normalize the data before
applying the method. In this project, data is normalized with the following equation:

Z =
x− µ

σ

where x is an input column in our data, µ is the mean of the column, and σ is the
standard deviation (Kumar et al., 2014).
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This chapter is divided into two sections; the first section introduces the reader to what
data is used in this thesis and how it was generated, pre-processed, and prepared. The
second section covers how the fractal analysis tool was implemented and what methods
and tools were utilized.

3.1. Data

Both synthetic data and real field data have been used in this thesis. They serve two
purposes; firstly, the synthetic data acts as a reference/benchmark data set when devel-
oping the fractal analysis tool and seeing if it works as intended. The field data is from
an actual hole drilling operation and is used to explore if this analysis method can be
helpful in the domain.

3.1.1. Synthetic Data

When implementing a tool for fractal analysis, it is helpful to have complete control
of the behavior of the signal. Furthermore, when testing the method’s capabilities, it
is both quick and unambiguous to add anomalies. In theory, fractal analysis could be
useful for analyzing signals composed of multiple wavelengths; therefore, three different
signals were used during the implementation of the divider method. The three signals
A(t), B(t), and, C(t) consists of the following functions:

A(t) = sin(ωA ∗ t) (3.1a)

B(t) = sin(ωB ∗ t) (3.1b)

C(t) = A(t) +B(t) (3.1c)

Signal A(t) and B(t) are independent sine waves, while signal C(t) is the superposition
of the first two. The wavelength for signal n is described with ωn, where ωA >> ωB to
capture the effects of very different wavelengths. The superimposed signal C(t) is used
to see if the fractal analysis tool can handle signals composed of different wavelengths,
which effectively is a more realistic signal. Figure 3.1 shows the three signals.

Adding Anomalies

Adding anomalies to the synthetic data is, as intended, a straightforward job. When
running experiments on the synthetic data, we cut out a segment in the original signal
and replace it with a different signal composition, as shown in Figure 3.2. The result
is an anomalous signal in which we are in perfect control over the anomaly, making
experimenting with anomalies easier.
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(a) A(t) = sin(ωA ∗ t), High frequency
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(b) B(t) = sin(ωB ∗ t), Low Frequency
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(c) C(t) = A(t) +B(t), Superposition of A(t)
and B(t)

Figure 3.1.: Three signals, A, B, and C, where A and B are sine waves of different
frequency, while signal C is the superposition of A and B.
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(a) Original sine signal free of anomalies used
for position based analysis.
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(b) This plot shows the same signal as figure
3.2a, but with the middle section replaced
with a different signal composition acting
as an anomaly.

Figure 3.2.: Here are two plots showing how an anomaly is added to the synthetic signal.

3.1.2. Field Data

Efficient use of data is beneficial; in the motivation section, it is ascribed just how
important efficient use of sensor data is in the hole drilling sector. As fractal analysis is
not a typical method in the analysis stack in the oil drilling domain, did we get access
to sensor data from an actual hole cleaning operation.

Hole Cleaning

Hole cleaning is the process of drilling through the soil and extracting the cuttings,
creating a hole where an oil pipe can go. A rotating drill string with a bit at the
end drills through the soil and leaves cuttings. To remove the cuttings, a drilling fluid is
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pumped through the drill string, which, combined with the drill string’s rotation, creates
circulation in the hole, forcing the cuttings to move up and out. Modifying the flow rate
and the rotation speed to correct values facilitates good circulation, and thus cuttings
move out of the hole. Figure 3.3 illustrates what a hole cleaning operation looks like,
where the blue part of the figure is the drill string with the drill bit at the end. A set of
sensors are located at three different positions, where among other measurements, the
depth, pressure, and equivalent circulating density (ECD) are measured.

The Dataframe

Hole cleaning is a complex process, and if not done correctly, it is expensive, time-
consuming, and potentially dangerous. Thus having a good overview of the operation
through sensorial monitoring and excellent models and simulations is essential.
The data provided is measurement data taken from sensors during a hole cleaning

operation in the period 14.04.2020 to 29.04.2020 and consist of 85 features. The features
vary from what the provider refers to as different degrees of how useful they are, and
some are near-duplicates of each other. Table 3.1 shows all the different features, their
unit, and a description, where the features written in bold are the most useful ones,
according to the provider.

Table 3.1.: Table lists all the features in the hole cleaning data set. The most used
features are written in bold, and the colored cell correspond to the sensor
position illustrated in Figure 3.3.

Log/Feature Unit Description

TIME yyyy-MM-
dd”T”HH:mm:ss.fffzzz

Time (index)

ASMATN1-T gn Mean tangential acceleration

ASMDEP1-T m Depth ASM sensor 1

ASMDEP2-T m Depth ASM sensor 2

ASMDEP3-T m Depth ASM sensor 3

ASMDOFF-T m Depth offset ASM sensors

ASMECD1-T g/cm3 ECD ASM sensor 1

ASMECD2-T g/cm3 ECD ASM sensor 2

ASMECD3-T g/cm3 ECD ASM sensor 3

ASMMALM1-T gn Mean lateral local accelera-
tion

ASMPAM1-T bar Annular pressure ASM sen-
sor 1

ASMPAM2-T bar Annular pressure ASM sen-
sor 2

ASMPAM3-T bar Annular pressure ASM sen-
sor 3

ASMPIM1-T bar Internal pressure ASM sensor
1

ASMRGM1-T rpm Mean rotation (gyro) ASM
sensor 1

ASMTVD1-T m True vertical depth ASM sen-
sor 1
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ASMTVD2-T m True vertical depth ASM sen-
sor 2

ASMTVD3-T m True vertical depth ASM sen-
sor 3

ASMAAM1-T dsec2 Mean angular acceleration

ASMAAZM1-T gn Mean z acceleration

BDTV m Bit TVD

BPOS m Block position

BSZ in Bit size

CKP1 bar Choke pressure

CSTK stks Cumulative stroke counts

CTDA dega Azimuth

CTDI dega Inclination

DEP m Bit depth

DHT001 DEPTH m Depth of DHT001 sensor

DHT001 DEPTH OFFSET m Depth offset of DHT001 sen-
sor

DHT001 ECD g/cm3 ECD at downhole tool

DHT001 EMW g/cm3 EMW at downhole tool

DHT001 ESD g/cm3 ESD at downhole tool

DHT001 NOV TVD m TVD of DHT001 sensor

DHT001 PRESS ANN
MEAN

bar Annular pressure at down-
hole tool

DHT001 PRESS INT MEAN bar Internal pressure at down-
hole tool

DHT001 ROT GYRO
MEAN

rpm Rotation of downhole tool

DHT001 TEMP PCB
MEAN ASM TIME

degC Temperature ASM sensor

DHT001 TEMP PCB
MEAN DOWNHOLE TIME

degC Temperature at downhole
tool

DMIAVG kg/m3 Mud density in

DMOAVG kg/m3 Mud density out (CVE1 Cor
Dens)

EWTEMP-T degC Downhole/annular tempera-
ture

FLIAVG m3/min Flow rate in

FLOAVG m3/min Flow rate out

GDSS-T unitless Stick-slip indicator

GDTVSS-T unitless Stick-slip indicator

GHCAVG unit Hydrocarbon gas to surface

GHCMAX unit Hydrocarbon gas to surface

HDEP m Hole depth

HDTV m Hole TVD

HKLDAV kg Hook Load

IBARDENS g/cm3 Mud density (BaRT)

IBARDENST degC Mud temperature (BaRT)
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IBARRHEOT degC Mud temperature (BaRT)

IBARVIS100 unitless Viscosity 100RPM

IBARVIS200 unitless Viscosity 200RPM

IBARVIS3 unitless Viscosity 3RPM

IBARVIS300 unitless Viscosity 300RPM

IBARVIS6 unitless Viscosity 6RPM

IBARVIS600 unitless Viscosity 600RPM

ISLS unitless In slips status

LAGDEP m Lag depth

LAGTIM h Bottoms up time

OBS unitless On bottom status

PIP-T bar Internal pressure

PITC m3 Pit volume change

PITT m3 Pit volume total

PWEA-T kg/m3 EMW (PWD)

PWPA-T MPa Annular Pressure (PWD)

PWTA-T degC Downhole/annular tempera-
ture (PWD)

RISFLO L/min Riser flow rate

ROPA m/h ROP averaged

ROPI m/h ROP instantaneous

RPMBAVG RPM RPM total avg

RPMMAVG RPM RPM motor avg

RPMSAVG RPM RPM surface avg

RPOS m Riser position

RSPD m/min Running speed

RT DEPTH RETURNS T m Depth of returns

SPPAVG MPa Standard Pipe Pressure
(SPP)

STATECODE unitless State

TDA unitless Torque/Drag activity

TMIAVG degC Temperature in

TMOAVG degC Temperature out

TQABAV kN.m Torque

TRPT m3 Trip tank volume

WOBAVG kN Weight on bit

Feature Selection

Two experiments will be conducted with the hole cleaning data, one with hand-selected
features and one with the use of principal component analysis. This subsection covers
the hand-selected features.

The list of features is lengthy (Table 3.1), and as the goal of this thesis is to indi-
cate the possible use of fractal analysis, only a selection of the features is utilized. As
mentioned in the section about hole cleaning, Section 3.1.2, a flow of liquid, which is
essentially mud, is pressured through the drill string to create circulation in the hole
and force cuttings up and out of the hole. The equivalent circulating density, ECD, is
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Rotating Drill Bit at the end of Drill

String

Flow In

Flow out

Sensor 1

Sensor
3

Sensor 2

Sensors:

- Depth    

- ECD       

 - Pressure

Figure 3.3.: Figure illustrates a drilling operation. The blue pipe illustrates the drill
string where drilling fluid/mud is pumped down and out of the rotating
drill bit and circulates back up dragging along cuttings.

the dynamic density of the circulating liquid. When the flow of liquid is emitted out
the end of the drill string and moves in the annular space along the drill string, drag is
created by friction against the hole wall. The pressure loss from this friction is converted
to density and summed with the initial fluid density from the input liquid, and the re-
sulting density is the ECD (Raabe and Jortner, 2022). Figure 3.4 illustrates the end
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of the drill string, where the input flow creates the circulation that forces cuttings away.

Flow In

Flow out
Input Flow

Figure 3.4.: Figure illustrates the end of the drill string where the input flow of liquid
creates a circulation that extracts the cuttings(small brown pieces) up and
out of the hole.

The second selected feature is the FLIAVG, which is the flow rate of the liquid pumped
into the drill string. These two features are selected because we can create a scenario
that occurs from time to time and would be highly valuable if detected. Since the ECD
value is correlated to the input flow, FLIAVG, and during a regular operation with con-
stant input flow, the ECD should be relatively stable. An issue that occurs occasionally
is when the ECD suddenly increases even though the input flow is constant. This is
vital to detect because a high ECD could indicate that cuttings are starting to clog the
annular space between the drill string and the hole walls (Zhang et al., 2017). To inves-
tigate if fractal analysis can be used to detect an event like this, we extract a section of
the ECD data where we know that the input flow is constant, as shown in Figure 3.5.

Adding Anomalies

Even though an unexpected increase in the ECD measurements happens from time to
time, are we not in possession of data where we know for a fact that this is happening.
Consequently, we have to modify the segment by increasing the ECD manually. This
has its obvious downside that it is not 100% real. However, it is close to reality, and
it gives us complete control over where the anomaly is, and we can therefore confirm if
the anomaly is detected correctly or not. By using the same section as seen in Figure
3.5, an anomaly can be added by elevating the values at the given section. To test the
robustness of the analysis method is the anomaly added to three different positions. The
anomaly profile and placements are shown in Figure 3.6.

PCA

In the theory section about PCA(Principal Component Analysis), Section 2.1.7, it is
explained that in a data set, it is not always that every feature is necessary because
information could be redundant, and thus only a handful of features are needed to get
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(a) This figure illustrate the region with constant input flow that was used for analysis.

(b) This figure illustrate the measured equivalent circulating density(ECD) in the region with
constant input flow that was used for analysis.

Figure 3.5.: Two figures showing how the selection of ECD segment was justified.
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(a) How the measured ECD would look if a
sudden increment would occur in the be-
ginning of the signal.
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(b) How the measured ECD would look if a
sudden increment would occur in the mid-
dle of the signal.
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(c) How the measured ECD would look if a
sudden increment would occur towards the
end of the signal.

Figure 3.6.: These three figures shows the measured equivalent circulating density(ECD)
where an anomaly is introduced in the region marked in red.

most of the information out from the data set. In a multivariate system like the hole
cleaning data process, it is not always known what causes an anomaly. Therefore, if
anomalies are captured by a principal component using fractal analysis one could po-
tentially only need to run fractal analysis on a handful of the principal components to
detect anomalies in the data set instead of all the features, which is a lot more time
consuming.

The hole cleaning data set provided for this thesis consist of 85 columns(features). Run-
ning a principal component analysis on the data set shows that 72% of the information
(variance) is explained by the five principal components, and around 46% by the first
principal component alone. Table 3.2 and Figure 3.7 show the cumulative variance
explained by the principal components, while Figure 3.8 shows plots of the resulting
principal component both with and without an anomaly added to the ECD measure-
ments.
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Number of Components Explained Variance (%)

1 45.5

2 59

3 64

4 68

5 72

...

20 94

Table 3.2.: Table shows the number of principle components needed for a given percent-
age of explained variance in the hole cleaning data set.
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Figure 3.7.: Figure is a plot of Table 3.2, where the number of principal components is
on the horizontal axis, and the resulting cumulative explained variance on
the vertical axis.

23



3. Data, Methods and Setup

15 11:30 15 11:35 15 11:40 15 11:45 15 11:50
Time [Day HH:MM]

9.325

9.350

9.375

9.400

9.425

9.450

9.475

9.500

9.525
PC

A 
Va

lu
e 

[-]

(a) This figure shows the primary latent vari-
able produced by the PCA free of anoma-
lies.
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(b) This figure shows the primary latent
variable produced by the PCA after an
anomaly was added to the ECD measure-
ments. The anomalous region is colored
in red.

Figure 3.8.: Two plots showing the primary principal component in the same time section
when the input flow is constant.

3.2. Methods and Setup

As there are, to our understanding, not any publicly available tools for doing a frac-
tal analysis on time-series data, will we in this section cover how it can be imple-
mented. The tools used in this thesis were mainly Python and the publicly available
libraries Numpy(Harris et al., 2020), Pandas(pandas development team, 2020), Mat-
plotlib(Hunter, 2007), and Scipy(Virtanen et al., 2020). Numpy was used for numerical
calculations, Pandas handled and structured the data, and Matplotlib was used to plot
the data and results. Scipy was used for Spline interpolation to clean up the data output
and piece-wise regression. All of which will be described in this section. To understand
the concepts and explanations in this chapter, the reader is advised to go through the
theory chapter first. A figure showing the proposed process flow for fractal analysis is
shown in Figure 3.9.

3.2.1. Fractal Analysis - A Proposed Workflow

Implementing the Divider Methods

In theory Section 2.1.2, two divider methods are covered. Both methods take a data
set and a divider length as input, and they output the resulting polygon length, L(λ).
We want to define a constant ruler length, λ, and a data signal as inputs in the original
divider method. With the ruler length defined, each ruler’s intersection/end position is
found using trigonometry. The start position is where the previous ruler intercepts the
input signal, as illustrated in Figure 3.10. When all the rulers are found, the length
of the resulting polygon is calculated. Each ruler has the same length in the original
divider method, λ. Consequently the resulting polygon length, L(λ), is calculated as the
divider length times the number of dividers, N , Equation 3.2:

L(λ) = N ∗ λ (3.2)

The fractal analysis tool implemented for this thesis utilizes the modified divider method
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Figure 3.9.: Overview of proposed process flow for fractal analysis. Note that the pre
processing block is dependent on what data set is being used, and thus varies
from data set to data set.

because it is easier to realize. In the modified divider method, the input data is seg-
mented into equal-sized sections with the width λ, and the sampling lines are drawn
from start to end of each section where the section divider intersects with the input
signal, as previously shown in Figure 2.3. The divider is scaled in relation to the in-
put data to support the smallest possible divider width. That is, the smallest possible
increment is the difference between two adjacent data points, given that the data is
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3. Data, Methods and Setup

evenly distributed. When the data is divided into sections, the slope of the sample lines
is calculated and drawn. Then the length of each line is calculated using Pythagoras
Theorem. The resulting total polygon length, L(λ), is the sum of the lengths of the
sampling lines. An illustrative plot of how the sample lines are drawn is seen in Figure
3.11.
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Figure 3.10.: Illustration on how the rulers start/endpoint are found in the original di-
vider method. From the start point, in this example (0,0), a circular arc
is drawn with the radius equal to the divider length (here 1 unit). The
point of intersection between the arc and the input data (in blue) will be
the endpoint at the given iteration. If there are multiple intersections, it
is the intersection with the greatest horizontal value that will be chosen.

Finding the Fractal Dimension, Dr

With a working implementation of the modified divider method that takes a data set
and a divider length as inputs, the groundwork for implementing a method that cal-
culates the fractal dimensions is done. In theory Section 2.1.2 it is described that the
fractal dimension can be found by first running the divider method on the same data
segment but with different divider lengths. Then plot the divider lengths against the
resulting polygon lengths in a logarithmic plot, a Richardson plot. From the Richardson
plot, one can, in theory, identify one or multiple fractal dimensions by extracting the
slopes of the scattered data. If we take a simple sine signal like Figure 3.12a and run
the divider method on it with increasing divider width and plot the output, it comes
out like Figure 3.12b. For the most part, it looks all right, but as we want to extract the
slopes of the trends in the signal, it would be preferable to get rid of the outliers. There
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Figure 3.11.: Exampled output plot of the modified divider method. The blue wave is
the input signal, the colored lines are the sample lines which are of different
lengths, but they all intersect at the same interval on the horizontal axis.
In this example the divider length is 200, thus the sample lines start and
end exactly at each 200 mark on the horizontal axis.

are several different techniques and methods to remove outliers, and in this thesis, it is
the Spline interpolation covered in theory Section 2.1.5 that is utilized. When applying
Spline Interpolation on the logarithmic data to get rid of outliers, one ends up with a
plot like in Figure 3.12c.

When the outliers are removed using Spline interpolation, the slopes are ready to be
extracted and converted to fractal dimensions. As there are potentially multiple slopes
and thus multiple fractal elements, as mentioned in Section 2.1.4, a piecewise regression
model(PRM) is used to find the slope values. The underlying theory for PRM is covered
in Section 2.1.6. When applying PRM on the Spline cleaned signal, the regression model
iteratively finds three slope lines that fit best with the three signal trends. The resulting
output plot after applying PRM is seen in Figure 3.13. Three distinct slopes are found
and are converted to fractal dimensions using Equation 2.5.

Position Based Fractal Analysis/Sliding Window method

To use the proposed methods and end up with a fractal dimension, one needs a series
of data for each fractal dimension calculated. When applying fractal analysis on railway
data (Landgraf and Hansmann, 2019) they found the fractal dimension for every data
point, i.e., position in the measurement data, and then compare the fractal dimension
for each position in the data and see how it develops over time. Our proposition to
implement this is by defining a fixed segment size that will work as a ”sliding window”.
For each data point, run fractal analysis on the data section within the current window,
then slide the window N data points and repeat the process. The variable N is the
number of data points between the current window and the next. The skipping steps,
N , and the window size are hyperparameters that can be tuned for a given analysis and
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(a) Plot shows the input signal A(t) =
sin(ωA ∗ t) with a large ωA for high fre-
quency.
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(b) Plot shows the raw output when using the
modified divider method on signal A. It
has some outliers, for instance around (-
1.3, 3.8) which would be beneficial to have
removed.
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(c) Plot of how a best fit line and interpolation
would look using Spline. Here The original
data points are scattered in blue, while the
Spline fitted line is drawn in red.

Figure 3.12.: Three figures that illustrates the process for outlier removal in the fractal
analysis.
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Figure 3.13.: Plot illustrates how the piecewise regression model finds three best fitting
lines for the three trend sections. The red stippled lines marks the start/end
of the middle-waved section.

will be covered in the next section.
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Hyperparameters

For most methods in data analytics, a set of hyperparameters has to be set to adjust
the method to the given data. This applies to our fractal analysis tool as well. The
proposed solution has three hyperparameters, namely divider widths, window size, and
skipping, and are shown in Table 3.3.

Table 3.3.: Table shows a list of the tuneable hyperparameters for the fractal analysis
and a short description.

Hyperparameter Description

Divider Widths Range of divider widths used for each window.

Window Size Horizontal width of the window.

Skipping Amount of data points to skip when sliding the window. 1 signifies no skipping.

When setting the divider widths-hyperparameter, one defines the range of divider
widths used in the analysis. This parameter not only defines the range of divider widths,
but implicitly the amount of times the divider method is run as one invocation of the
divider method function is called for each divider width. Thus a greater range of divider
widths covers more wavelengths, but it is more computationally heavy.

The window size-hyperparameter defines, as its name states, the size of the interim
data set of the sliding window method. This hyperparameter does not affect the number
of calculations because the input data will be covered in its entirety no matter the size of
the sliding window. However, the size of the window affects the resulting fractal dimen-
sion; if the window size only covers a segment with little variation, the resulting fractal
dimension will be low compared to if the window covered greater regions and thus got
more variation in each window. The window size also affects the analysis capability of
detecting anomalies/effects that covers greater distances.

The proposed solution has a third hyperparameter, but in reality, it is rarely used.
The parameter is called skipping and has the function of deciding the gap between each
window. If the skipping parameter is set to 1, then a window will be formed at ev-
ery single point on the horizontal axis; if it is 2 then it is every second point, and so
on. The hyperparameter is created to reduce the number of computations if the input
data is high resolution and determining the fractal dimension at each point is redundant.

Selecting the optimal hyperparameters is not a trivial task even for the most popu-
lar models to date because it is highly dependent on the problem to solve and the data
at hand. To our knowledge, we have not been able to find an optimal approach for hy-
perparameter selection based on other papers; thus, we had to experiment on our own.
The goal here was to find values that prove that the method works and not necessarily
the optimal values for the hyperparameters. The hyperparameter values used in this
thesis are shown in Table 3.4 and were found by experimenting with different values and
iteratively running analyses on the given input data.

The process of finding suitable hyperparameter values was the same for the different
experiments, therefore is only how they were found for the hole cleaning data covered in
detail here. With the hole cleaning data, more precisely the ECD measurements with
an anomaly added, as explained in Section 3.1.2, we have a controlled set of data where
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Table 3.4.: Table shows a list of hyperparameter values used in the experiments.

Input Signal Divider Widths Window Size Skipping

Synthetic Sine W/ Anomaly [1,50] 200 1

ECD Measurements [1,200] 1000 1

PCA Latent Variable [1,60] 600 1

Table 3.5.: Table shows the hyperparameters tested on the ECD measurement data with
anomaly inserted, and a description of how it performed with the given values.

Tuning of Hyperparameters

Divider Widths Window Size
Anomaly Position and
Magnitude

Description of Result

[1,25] 500 Left, +10 Anomaly detected in both middle-waved and long-waved.

[1,25] 500 Left, +5 Anomaly partly detected in both ranges.

[1,25] 500 Left, +3 Anomaly not detected.

[1,60] 500 Left, +3 Anomaly partly detected in long-waved result.

[1,60] 400 Left, +3 Anomaly not detected.

[1,60] 600 Left, +3 Anomaly partly detected in middle-waved result.

[1,60] 1000 Left, +3 Anomaly partly detected in both wave ranges.

[1,60] 1000 Left, +5
Anomaly fully detected in both wave ranges, however, it seems random.
Moving anomaly in next test.

[1,60] 1000 Middle, +5 Anomaly not detected, thus previous result was in fact random.

[1,200] 1000 Left, +3
Anomaly fully detected in both wave ranges.
Moving the anomaly in next test.

[1,200] 1000 Middle, +3
Anomaly fully detected in long-waved, partly detected in middle-waved.
Moving the anomaly in next test.

[1,200] 1000 Right, +3 Anomaly fully detected in long-waved, not detected in middle-waved.

[1,200] 1000 Left, Middle, Right, +5
Anomaly fully detected in both wave ranges and anomaly positions.
This could be ideal values.

[1,200] 500 Right, +5
Anomaly fully detected in long-waved, not at all in middle-waved.

Output has more noise.

[1,25] 1000 Right, +5
Anomaly fully detected in long-waved, not at all in middle-waved.

Output has more noise.

we know where the analysis should point out the anomaly. Figure 3.6 shows the ECD
measurements used for tuning the parameters. In the signal, an anomaly is added at
different positions to ensure that if a selection of hyperparameters results in the analysis
detecting the anomaly, it detects all the anomalies. Different magnitudes of the anomaly
were tested as well; by reducing its amplitude, we can see how sensitive the tool is. Table
3.5 lists the values tested as well as a description of the result with the given values.
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4. Results and Discussion

With the methods and data covered in the previous chapter, will this chapter present a
series of experiments to determine if the method and the proposed implementation work
as intended. Starting with the synthetic data, then the data from a the hole cleaning
operation, and lastly a summary of the findings.

4.1. Experiment 1 - Synthetic Signals, Synthetic Anomalies

To verify and learn about the behavior of the fractal analysis method as a tool, a set of
synthetic tests and scenarios where the tester has complete insight into the composition
of the signals is a good starting point. For this reason, will the first experiment section
utilize the synthetically created signals and anomalies from Section 3.1.1.

4.1.1. Three Sine Waves, Different Resulting Fractal Dimension

The goal of the first experiment is to see how the calculated fractal dimension corresponds
to different frequency signals and a combination of frequencies. As the signals in this
experiment are self-repeating, will each window be the same, and the resulting fractal
dimension will be the same throughout the entirety of the signal. Therefore, a single-
window analysis is sufficient to get the fractal dimensions for each signal. Starting
by finding the fractal dimensions for signal A(ωA = 10) and B(ωB = 2). We expect
from the theory that a signal of high frequency will have a higher fractal dimension
in the middle-waved section, while a lower frequency signal will have a higher fractal
dimension in the long-waved section (theory Section 2.1.2). By comparing the results
from analysing signal A and B with their respective Richardson plots Figure 4.1a and
Figure 4.1b does indeed the results concur with the theory. The resulting Richardson
plot for signal C, seen in Figure 4.1c, has both a higher slope in the middle-waved section
as well as a high slope in the long-waved section. The result could be an indication that
the method captures signatures from both signal A and B, which is desirable. The next
experiment is to change the wavelength of signal B and see how it affects the slopes in
the Richardson plot from the analysis of signal C.

4.1.2. Different Wavelengths for Signal B

Since signal C is the superposition of signal A and B and to further investigate how
the composition of different wavelengths affects the Richardson plot of signal C, will
this experiment iteratively change the wavelength of Signal B and compare the resulting
fractal dimensions for signal C. The setup will be as follows:

Ci(t) = A(t) +Bi(t) (4.1a)

We have a set of different C signals, where its suffix expresses what ωB was at that
iteration, making signal B different for each iteration, while signal A remains the same.
In the first experiment, the frequency affecting variable ωB was set to 2.0, where a lower
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(a) Resulting Richardson Plot for the high fre-
quency sine waved signal A. Fractal ele-
ments indicated in green lines, note that
the middle-waved section (middle) has the
highest slope here, which concurs with the
theory.
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(b) Resulting Richardson Plot for the low fre-
quency sine waved signal B. Fractal ele-
ments indicated in green lines, note that
the long-waved section (rightmost) has the
highest slope here, which concurs with the
theory.
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(c) Resulting Richardson Plot for signal C,
which is a superposition of A and B. It
has high slopes in both middle- and long-
waved section.

Figure 4.1.: Three figures showing the resulting Richardson Plot for the synthetic sine
wave signals.
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(a) Richardson Plot of Signal C with ωB ranging from 0.25 to 2.0
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(b) Bar plot comparing the fractal dimensions where Dr1 and Dr2
is long-waved- and middle-waved section, respectively.

Figure 4.2.: Two figures comparing the resulting fractal dimensions when the wavelength
of the input signal increases.

ωB results in a longer wavelength. To test out its behavior on low frequencies and see
if it is the middle-waved- or the long-waved section that is affected the most, the values
were 0.25 to 2.0 with a step of 0.25 totaling in 8 different runs. A plot with the eight sets
of regression lines as well as a bar plot comparing the fractal dimensions are shown in
Figure 4.2. From theory, we expect that by changing the wavelength of the low-frequency
component in the super-positioned signal C it is the long-waved section, i.e., Dr1, that
will change the most. However, the middle-waved section, Dr2, is the most affected in
our analysis. The range of divider widths for a given analysis is a hyperparameter, as
explained in Section 3.2.1. Consequently, by increasing the range of divider widths for
the analysis, will we end up with the results shown in Figure 4.3. The results agree with
the theory that the long-waved section, Dr1, is affected the most when the wavelength
of the low-frequency signal changes.

4.1.3. Position Based Analysis with Synthetic Data

After the previous experiment confirmed that the fractal dimension responds to fre-
quency changes, it is time to examine how the system responds when performing a
position-based analysis with the sliding window method as described in Section 3.2.1.
The goal for this exercise is to use the sliding window method on a standard sine signal
shown in Figure 4.4a, then add a segment in the signal with different wave composition
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(a) Richardson Plot of Signal C with ωB ranging from 0.25 to 2.0. Here the range of divider
widths is increased for better performance.
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(b) Bar plot comparing the fractal dimensions where Dr1 and Dr2 is long-waved- and middle-
waved section, respectively. Here the range of divider widths is increased for better perfor-
mance.

Figure 4.3.: Two figures comparing the resulting fractal dimensions when the wavelength
of the input signal increases.
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(a) Clean sine signal used for position based
analysis.
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(b) This plot shows the mid-waved fractal di-
mension, Dr2, calculated at every position
using the sliding window method.
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(c) This plot shows the long-waved fractal di-
mension, Dr1, calculated at every position
using the sliding window method.

Figure 4.4.: Three plots showing the input signal and the resulting mid- and long-waved
analysis results.

that will function as an anomaly, and see how it affects the results. We expect the mid-
waved and long-waved fractal dimensions to be reasonably constant without any huge
spikes when applying the sliding window method on a stable sine signal. The results
justify the expectations, as shown in Figure 4.4b and Figure 4.4c.

Suppose the same signal is modified by inserting a segment with varying wavelength,
as shown in Figure 4.5a. In that case, we can demonstrate how the position-based frac-
tal analysis responds to sudden changes in the signal. The resulting plots showing the
fractal dimension for each position both long-waved and mid-waved are shown in Figure
4.5c and Figure 4.5b. It is clear that the method does indeed detect the sudden change
in frequency. The peak value in the fractal dimension plot, Figure 4.5b, corresponds to
the section in the analyzed signal with the highest fractal dimension. Highlighting this
section in the original signal, as done in Figure 4.6, shows that the peak corresponds to
the same area where the anomaly was positioned.
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(a) Modified sine signal used for position
based analysis. The red segment act as
an anomaly in this experiment.
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(b) This plot shows the mid-waved fractal di-
mension, Dr2, calculated at every position
using the sliding window method.
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(c) This plot shows the long-waved fractal di-
mension, Dr1, calculated at every position
using the sliding window method.

Figure 4.5.: Three plots showing the input signal and the resulting mid- and long-waved
analysis results.
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Figure 4.6.: This plot shows the original sine signal with an anomaly where the red region
corresponds to the section at which the analysis found the highest fractal
dimension.
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4.2. Experiment 2 - Analysis of Hole Cleaning Data

Now that the proposed implementation of fractal analysis has been tested on synthetic
data, it is time to experiment with the hole cleaning data. Therefore will we in this
chapter conduct experiments on data from an actual hole cleaning operation.

4.2.1. Input Flow/ECD - Scenario

In Section 3.1.2 it is described how vital the ECD measurements are and that they are
expected to be more or less constant during constant input flow. It is also mentioned
that a related issue is when the ECD suddenly increases even though the input flow is
considered constant. To be able to detect this would be of good use. For this reason,
will this experiment run a fractal analysis on the measured ECD in a region where the
input flow rate is constant, and later on increase the ECD and evaluate how well the
fractal analysis detects it.

No Anomalies

A logical approach to evaluating the method’s efficiency is to start by running an analysis
on the signal without any anomalies, then introduce different anomalies in the form of
increased ECD at different regions and compare the results. The signal we are analyzing
in its pure form without anomalies is seen in Figure 4.7. Even though the measured
ECD is in a period where the input flow rate is constant, is the ECD high-frequent but
considered stable. To make it easier to follow when referring to locations in plots, will
the figures in this section mostly have the data index on the horizontal axis rather than
time.
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Figure 4.7.: Plot shows the measured ECD in the well in a region where the input flow
is constant.

Running a fractal analysis on the ECD data with the sliding window method leaves us
with two fractal dimensions, one for the middle-waved fractal dimensions and one for the
long-waved fractal dimensions. Starting with the middle-waved, shown in Figure 4.8a,

37



4. Results and Discussion

we can immediately note that it is sensitive to the minor high-frequency variations in
the signal. By using Spline interpolation on the output, seen in Figure 4.8b, the signal
trend is easier to interpret. Since the analyzed region has stable input flow and it is
known that the ECD is behaving normally, we do not get much information from the
middle-waved fractal values.
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(a) This figure shows the calculated middle-
waved fractal dimension for each point in
the ECD data.
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(b) This figure shows the calculated middle-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.

Figure 4.8.: Two figures showing the middle-waved Dr2 fractal dimension results from
the analysis of the ECD measurements without anomalies.

From the long-waved fractal values, on the other hand, seen in Figure 4.9a and cleaned
in Figure 4.9b, we see a more desirable result where the fractal values are not varying
as much as with the middle-waved values. This is because the input signal varies less in
the overall amplitude, and no significant structural changes occur; thus, the output is
more stable and desirable.
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data.
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(b) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.

Figure 4.9.: Two figures showing the long-waved Dr1 fractal dimension results from the
analysis of the ECD measurements without anomalies.

Introducing Anomalies

With an idea of how the fractal analysis output looks when running on the ECD data
without any form of anomalies, will we, in this experiment, introduce sudden increases
in the ECD and examine how well the fractal analysis detects it. To make sure that it
is not random if it detects the region of increased ECD, will we run the same analysis
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.

0 500 1000 1500 2000 2500 3000 3500 4000
Index

1404

1406

1408

1410

1412

1414

EC
D 

[g
/c

m
³]

Input Data
Region of peak value in analysis

(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure 4.10.: Two figures showing the long-waved Dr1 fractal dimension results from the
analysis of the ECD measurements with anomaly on the left part of the
signal.

three times with the anomaly at different positions, as shown in Figure 3.6a, 3.6b and
3.6c. To ease the readers’ process, are the analysis results summarized in Table 4.1,
where the columns describe anomaly placement, whether the anomaly was detected in
the long-waved or middle-waved analysis, as well as a pointer to the figure of the long-
waved analysis. The complete analyses with both middle-waved as well as long-waved
are in the appendix A. It is clear that with the use of fractal analysis on signals like
those given in these experiments, one can detect and capture sudden irregularities in the
signal.

Anomaly Placement Mid-Wave Detection Long-Wave Detection Figure (LW)

Left No Yes 4.10

Middle Yes Yes 4.11

Right Yes Yes 4.12

Table 4.1.: Overview of the different anomaly placements in the ECD measurements,
and if the anomaly was detected by the mid- and/or long-wave analysis.

4.2.2. Analysis of Latent Variables - PCA

Fractal Analysis of the Primary Principal Component

With the principal components found in Section 3.1.2 will we, by using the same man-
ner as in the previous experiments, first conduct a fractal analysis of the primary latent
variable when the data set is free of anomalies, then add a sudden increase in the ECD
measurement data with the same magnitude as in Section 4.2.1, and see if the analysis
captures it. As we can see from the plot of the primary latent variable in Figure 3.8a,
it is a signal with a lot of quick changes. If we compare the signal to the latent variable
when an anomaly is added to the ECD measurement, Figure 3.8b, we can see that the
anomaly of this magnitude does not have a significant impact and is barely visible to
the naked eye.

Starting by running a fractal analysis on the latent variable without the insertion of
anomalies results in a relatively noisy signal. However, interpolating the output using
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure 4.11.: Two figures showing the long-waved Dr1 fractal dimension results from the
analysis of the ECD measurements with anomaly on the middle part of the
signal.
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure 4.12.: Two figures showing the long-waved Dr1 fractal dimension results from the
analysis of the ECD measurements with anomaly on the right part of the
signal.
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA without anomalies in the data
set.
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(b) This figure shows the long-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA without anomalies in the data
set.

Figure 4.13.: Two plot showing the resulting fractal dimensions at each index position
on the primary latent variable without anomalies in the data set.
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with an anomaly in the ECD
data.
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(b) This figure shows the long-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with an anomaly in the ECD
data.

Figure 4.14.: Two plot showing the resulting fractal dimensions at each index position
on the primary latent variable with anomaly added to the ECD data.

Spline to capture the trends in the analysis will make the results appear more stable, as
shown in Figure 4.13. When running an analysis on the latent variable where an anomaly
is inserted into the ECD measurements, Figure 4.14, we end up with no detection of the
region of anomaly. This is because the anomaly in this scenario was too small to make a
noticeable change in the latent variable for the fractal analysis to detect it. Nonetheless,
by increasing the anomalies magnitude, the middle-waved fractal analysis is able to de-
tect it accurately. A series of plots where the anomaly both increased and was placed at
three different horizontal positions can be seen in Figure 4.15. It is clear that the method
does capture the anomaly in these situations, and that it is the middle-waved part that
detects it has a logical explanation. The hyperparameters for this experiment were set
to values that keeps the middle-waved fractal dimension stable when the analysis is run
on the signal without anomalies. Since the signal is as high frequent by nature, and the
anomaly is an quick change in a signal with these characteristics, it is the middle-waved
fractal dimension that changes the most. A complete list of plots of all the results, both
middle-waved and long-waved is located in Appendix B.
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with anomalies in the data
set at positions 500-1000.

0 500 1000 1500 2000 2500 3000 3500
Index

9.25

9.30

9.35

9.40

9.45

9.50

Pr
in

cip
al

 C
om

po
ne

nt
 V

al
ue

 [-
]

Input Data
Region of peak value in analysis

(b) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.
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(c) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced by
the PCA with anomalies in the data set at
positions 1500-2000.
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(d) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.
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(e) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced by
the PCA with anomalies in the data set at
positions 2500-3000.
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(f) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.

Figure 4.15.: Six plots showing the resulting fractal dimensions at each index position
on the primary latent variable with a greater anomaly inserted at different
positions in the ECD data.
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4.3. Summary of Experiments

Experiment 1

The goal of the first experiment was to confirm the theory that a signal of high frequency
will have a higher fractal dimension in the middle-waved section, while a lower frequency
signal will have a higher fractal dimension in the long-waved section. By running the
analysis on the signals composed of a single sine wave (A and B), we could both con-
firm the theory, and it gave us a good indication that the implemented tool is working.
When analyzing the superimposed signal, C, which was a combination of the two sine
signals, it indicated that the different fractal elements in a signal could be found because
its Richardson plot showed signatures from both the low- and high-frequency signals.
However, we had to conduct more experiments because one simple analysis alone was
not sufficient to be sure. This led us to run multiple analyses of the superimposed signal
C, where the frequency of one of the underlying signals was increased in each analy-
sis. Since it was the underlying low-frequency signal, B, that was altered, we expected
from the theory that it mainly was the long-waved fractal dimension, Dr1, that would
change in the resulting Richardson plot. At first, the results were the opposite. With
the increase of frequency, the mid-waved fractal dimension, Dr2, was changing. After
increasing the range of divider widths in the analyses, we got the results we wanted and
learned the importance of correct hyperparameter values.

After affirming that the implementation was working as expected, the following ex-
periment was synthesized to see if the method could capture sudden irregularities in a
signal using a sliding window method, as this would be its primary purpose when do-
ing experiments on real measurement data. This experiment showed promising results
with how it perfectly captures the irregularity in both the long-waved and middle-waved
analysis, shown in Figure 4.5 and 4.6.

Experiment 2

The second set of experiments focused on the use of real measurement data from a hole
cleaning operation. It was divided into two parts: The first was directly running anal-
ysis on the equivalent circulation density measurements (ECD), both with and without
anomalies. In the second part, a principal component analysis (PCA) was conducted
to see if abnormalities could be detected from the resulting latent variables from the
PCA, enabling the tool’s users only to run one analysis on the latent variable instead of
analyzing individual features.

When running an analysis of ECD measurements free of anomalies, the resulting middle-
waved fractal dimension plot, Figure 4.8, was both noisy and not very constant. This
could be because the ECD measurement was relatively inconsistent, even though it was
from a region of constant input flow. It also should be taken into consideration that not
every hyperparameter combination was tested. Nonetheless, with the hyperparameter
values that were used, the long-waved fractal dimension plot, Figure 4.9, was seemingly
stable. After introducing anomalies, it detected them in all cases, which is very promis-
ing.

The last part of Experiment 2 concluded the experiments by fractal analysis of the
latent variable returned by the principal component analysis of the hole cleaning data.
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The fractal dimension plots for both middle- and long-wave were noisy yet consistent,
as seen in Figure 4.13. Nonetheless, when analyzing the latent variable after adding the
same irregularity to the ECD measurement as in the previous experiment, it was not
detected at all, as seen in Figure 4.14. It is nearly impossible to see the anomaly by visu-
ally inspecting the latent variable if one does not know in what region it is located. More
optimal hyperparameters might improve the results. For instance, if the sliding window
size was large enough to cover both a regular and irregular region simultaneously, it
might detect a difference. The downside of this approach is that it would be less precise
because if it were to detect some irregularity, it would be in such a large region/time
span that it would be hard to find its source amongst all the measured features. When
the magnitude of the anomaly was increased, it was detected by the analysis in every
attempt, as seen in figure 4.15. A verdict is that the method captures irregularities in
the latent variable signal, given that the abnormality is odd enough.
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5.1. Conclusion

In the introduction to this master’s thesis, a primary research objective was set, and
secondary objectives led to the primary objective. Through the experiments in this
thesis, we have ended with the following findings:

• How can a full fractal analysis workflow be implemented?
As the referenced literature does not clearly communicate how one can implement
fractal analysis, we had to develop the whole workflow from scratch. Starting
with converting theory about divider methods to code, then outliers became an
issue, thus sidetracking us on outlier removal. This led us to the use of Spline
interpolation for outlier removal. As the slope of the trends of the signals had to
be extracted, we had to figure out a robust way to do this. Piece-wise regression
showed to be a good candidate for this. After tangling all the pieces together, we
ended up with a fully working tool for fractal analysis.

• How can fractal analysis be utilized for analysing a hole cleaning process?
Fractal analysis has proven useful through experiments with actual hole cleaning
data when handpicking features like the measured equivalent circulating density
under constant input flow. Fractal analysis can also be applied to the latent vari-
able returned by a principal component analysis, albeit with poorer performance
than with handpicked features. We have proven that using publicly available tools
and synthetic data, a fully working and reproducible workflow for conducting frac-
tal analysis on time-series data is realizable.

• How can the reader learn about and make use of fractal analysis themselves?
To our knowledge, there are no available pedagogical sources on how fractal anal-
ysis is used or implemented for time-series data. For this reason, we have created
a fully working and publicly available Github repository (Musæus, 2022), with ex-
amples and code that can be used to reproduce the results presented in this thesis.
The implementation supports any kind of time-series data, and accordingly, the
reader can experiment with data from new domains.

5.2. Reflection and Future Work

This master’s thesis has personally been a great journey, from coming across the theory
of fractal analysis to having a working implementation and conducting helpful experi-
ments for industry-leading analysts. With that being said, there have been some bumps
on the way. The initial plan for the project was to use railway data. Unfortunately, the
first month or more was spent waiting for the data to be prepared, which is often the
reality when cooperating with the industry. For them, the time horizon often is longer
than a “short” project like a master’s thesis. If I were to do the project a second time,
I would not hesitate to change the data provider to someone that readily has the data.
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By doing so, I would avoid wasting weeks on frustrating bureaucracy and could start
working from the get-go. On the other hand, the time spent waiting for data was not
wholly wasteful because, during this period, I got to read and explore more about fractal
analysis. By the time we were done experimenting with synthetic data and were ready
to test the method on field data, we got hold of the hole cleaning data, which ended up
being a great candidate for us and the provider.

Through the works of this master’s thesis and as asserted in the conclusion, we have
developed and implemented a workflow for conducting fractal analysis on time-series
data. Nonetheless, there are challenges in the current implementation, and as time was
not sufficient, are we left with some exciting topics worth looking into if the project is
continued.

Hyper-parameter tuning and optimization is an active field of research within data sci-
ence and machine learning. As we did not have time to create a systematic and sustain-
able approach to find optimal hyper-parameters, is this highly advisable to look into. A
solid starting point would be to get a better physical interpretation of the results, by
finding a strong causality and correlation between the fractal dimension returned from
the analysis and its physical implication.

With the data used in this thesis, anomalies were manually added to test the method.
However, if one has access to data of scenarios where anomalies are known, it could
make even higher quality experiments. Lastly, the current implementation has a com-
putational cost of O(n); however, it is possible to multi-thread it to make it faster. This
would make the process of conducting experiments more efficient, enabling the analyst
to do more experiments in less time, and the possibility of running the method on a
system in real-time would be realistic.
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A. ECD Analysis Results
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.
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(c) This figure shows the calculated middle-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(d) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure A.1.: Four figures showing the middle-waved Dr2, and long-waved Dr1 fractal
dimension results from the analysis of the ECD measurements with an
anomaly on the left part of the signal.
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A. ECD Analysis Results
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.
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(c) This figure shows the calculated middle-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(d) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure A.2.: Four figures showing the middle-waved Dr2, and long-waved Dr1 fractal
dimension results from the analysis of the ECD measurements with an
anomaly on the middle part of the signal.
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A. ECD Analysis Results
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(a) This figure shows the calculated long-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(b) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.
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(c) This figure shows the calculated middle-
waved fractal dimension for each point in
the ECD data in blue, and the spline in-
terpolation of the results in red.
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(d) This figure takes the peak fractal value
in the analysis and highlights the segment
which produced said value.

Figure A.3.: Four figures showing the middle-waved Dr2, and long-waved Dr1 fractal
dimension results from the analysis of the ECD measurements with an
anomaly on the right part of the signal.
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B. Latent Variable Analysis Results
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with anomalies in the data
set at positions 500-1000.
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(b) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.
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(c) This figure shows the long-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced by
the PCA with anomalies in the data set at
positions 500-1000.
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(d) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.

Figure B.1.: Four plots showing the resulting fractal dimensions at each index position
on the primary latent variable with an anomaly inserted at the beginning
of the ECD data.
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B. Latent Variable Analysis Results
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with anomalies in the data
set at positions 1500-2000.
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(b) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.
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(c) This figure shows the long-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced by
the PCA with anomalies in the data set at
positions 1500-2000.
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(d) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.

Figure B.2.: Four plots showing the resulting fractal dimensions at each index position
on the primary latent variable with an anomaly inserted in the middle of
the ECD data.
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(a) This figure shows the middle-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced
by the PCA with anomalies in the data
set at positions 2500-3000.
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(b) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.
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(c) This figure shows the long-waved fractal
dimensions after running a fractal analysis
on the primary latent variable produced by
the PCA with anomalies in the data set at
positions 2500-3000.
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(d) This figure shows the latent variable of the
anomalous data set produced by the PCA,
where the red highlighted region is where
the fractal analysis found its peak value.

Figure B.3.: Four plots showing the resulting fractal dimensions at each index position
on the primary latent variable with an anomaly inserted towards the end
of the ECD data.
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