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Abstract
To address the decarbonization challenge, we consider a tramp ship routing problem with
speed optimization where the availability of future cargoes is uncertain. We propose a two-
stage stochastic programming model to solve it. The first stage of the model decides on
the deterministic cargoes with the known availability, while the second stage decides on
the detailed routing and scheduling plans with the available spot cargoes revealed. Since
sailing speed heavily influences on the fuel consumption, and hence costs and emissions, we
include the ships’ speeds along the different sailing legs as decision variables. The opening
of the Northern Sea Route (NSR) provides a shorter alternative in connecting Asia and
Europe, which may benefit the shipping industry in reducing CO2 emissions. We use our
model to evaluate the impact of NSR on CO2 emissions in tramp shipping considering speed
optimization and possible future carbon tax schemes, such as fixed and progressive carbon
taxes. The computational results indicate that using the NSR improves the gross margins and
reduces the CO2 emissions for tramp operators.

Keywords Stochastic tramp ship routing and scheduling problem · Speed optimization ·
Northern Sea Route · CO2 emissions

1 Introduction

The shipping industry has committed to the goal set by International Maritime Organization
(IMO) to reduce CO2 emissions by 40% by 2030 compared to the baseline in 2008 to
contribute to combating climate change. However, from 2012 to 2018, the emissions from
global shipping have been constantly increasing (InternationalMaritimeOrganization, 2020).
Actions have to be taken to achieve the decarbonization goal.

Speed optimization and carbon tax are among the candidate measures to cope with the
decarbonization challenge. There is a linear relationship between the fuel consumption and
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CO2 emissions. The fuel consumption rate is vessel-specific, strongly influenced by speed
(Andersson et al., 2015), but depends also on the ship’s loading status (loaded or in bal-
last) as well as the sailing environments. More specifically, the relationship between the fuel
consumption rate per time unit and speed can usually be approximated by a cubic func-
tion (Ronen, 1982), and hence, the fuel consumption per distance unit becomes a quadratic
function of speed. In this paper we use fuel consumption per distance on rate. With speed
optimization or speed reduction, vessels operate at a speed which is lower than the design
speed to reduce fuel consumption and consequently CO2 emissions. In practice, operating
at a slower speed, referred to as slow steaming, has been prevailing in the shipping industry
for fuel consumption reduction.

According to Zhang and Baranzini (2004), carbon tax is an excise tax imposed based on
the carbon content of fossil fuels, which incentivizes the shipping industry to reduce CO2

emissions. The European Union Emissions Trading System (EU ETS), which functions in a
similar way to carbon tax, has been implemented since 2005 and has proven to be effective
in reducing CO2 emissions. The total emissions capacity is distributed among the member
countries as allowances, each unit of which corresponds to a unit CO2 emission. When a
member country emits more than its allowance, it has to purchase allowance from other
countries that may have remaining allowance to gain economic rewards. Therefore, the ETS
can be translated to an extra cost on each unit of CO2 emissions, which is similar to imposing
a per unit carbon tax.

In addition to speed optimization and carbon tax, using alternative maritime routes such as
the Northern Sea Route (NSR) offers a new option for decarbonization. The sea ice extent in
theArctic has retreated to record low in recent years, leading to the openingofNSRas a shorter
maritime route alternative in connecting Asia and Europe. Compared to the traditional Suez
Canal Route (SCR), sailing through the NSR may save 42% distance (Schøyen & Bråthen,
2011). This reduced sailing distance may benefit the operator in reducing fuel consumption
and CO2 emissions. However, the sea ice along the NSR limits the sailing speed and requires
additional support for example from ice breaking vessels. The evaluation of the impact of
introducing the NSR into maritime transportation is hence complicated by the trade-off
between the shorter distance of using NSR and the faster speed along the SCR.

Tramp shipping is the major transportation mode for bulk cargoes including oil and gas
which comprise over 75% cargo volumes in international maritime trade in 2019 (United
Nations Conference on Trade and Development, 2020). A reduction in CO2 emissions in
tramp shipping therefore plays an important role in decarbonization for the whole shipping
industry. In tramp shipping, the operations of the fleet follows available cargoes, similar
to taxis serving passengers. The operations include accepting and transporting available
cargoes to maximize the total profits. However, which cargoes will be available during the
planning horizon is uncertain when the operations of the tramp fleet are planned. Some
available cargoes are known in advance, and the operator may choose to enter into long-
term agreements referred to as Contracts of Affreightment (CoAs) (Vilhelmsen et al., 2015).
A CoA usually specifies a series of cargoes with some information about cargo quantities
and time-wise spread of them. The decisions about which contract cargoes to accept are
hence also made on a tactical level in advance of the operations. The operator will honor the
contract cargo commitments during the operational planning of the fleet. As a complement to
the contract cargoes, available spot cargoes can be accepted to fill in the remaining time slots
to improve the utilization of the fleet on the operational level (Christiansen et al., 2007). This
Tramp Ship Routing and Scheduling Problems (TSRSPs) with uncertain cargo availability is
characterized by the sequential determination of acceptance of cargoes: the acceptance and
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schedule of contract cargoes are on the tactical level while the acceptance of the spot cargoes
along with the detailed routes and schedules fall onto the operational level.

We formulate our research questions as follows in order to address the objectives of this
study. What is the impact of the NSR on CO2 emissions in tramp shipping? We develop
further sub-question for the purposes of this study: does this impact change when allowing
speed optimization and imposing carbon tax? In order to carry out the analysis, we propose a
two-stage stochastic programming model for the stochastic TSRSP with speed optimization
under carbon tax. The model maximizes the gross margin from transporting cargoes with
possible carbon tax included in the costs. The model allows using the NSR as an alternative
to the SCR. Therefore, we compare the results with and without using the NSR to evaluate
its impact.

We summarize our contributions as follows: In terms of modeling, we extend the TSRSP
with uncertain cargoes in Li et al. (2020) to include carbon tax and speed optimization, where
we model the speed with a linearized approximation. Our model allows speed optimization
for each voyage and is able to capture different fuel consumption rates for different loading
status and on different routes. As for solution methods, we solve the problem with Sample
Average Approximation (SAA). We also propose effective pre-processing procedures and
valid inequalities to speed up the solution process. On evaluating the impact of NSR, we
include the impact on reducing CO2 emissions, where we allow speed optimization and
consider possible carbon tax schemes on fleet level.

We arrange the remainder of this paper as follows. Relevant literature are reviewed in
Sect. 2. We describe the problem of the optimization model in Sect. 3. Section 4 presents
our modeling approaches, followed by the model formulation. In Sect. 5 we discuss the
procedures applied to speed up solution process. We introduce the input data and scenario
tree generation in Sect. 6. Section 7 discusses the results of our case study, ending with
conclusions in Sect. 8.

2 Relevant literature

In this section, we review the literature on the effect on CO2 emissions of introducing NSR.
In addition, we review the literature on stochastic TSRSPs, TSRSPs with speed optimization
and TSRSPs addressing CO2 emissions.

Much research has been devoted to investigating the economic or navigational feasibility
of the NSR, of which more comprehensive and up-to-date reviews can be found in Milaković
et al. (2018), Theocharis et al. (2018) andMeng et al. (2017). Among the 33 papers reviewed
in Theocharis et al. (2018), only three of them account for both cost and CO2 emissions in
assessing the feasibility of NSR for tramp shipping, and the evaluation in all three papers is
established upon a single voyage basis. Schøyen and Bråthen (2011) base their comparison
on the equivalent speeds which refer to the speeds needed to sail between two given ports via
the SCR and NSR with the same duration. They calculate the total costs and CO2 emissions
at the equivalent speeds for a single voyage. Zhao and Hu (2016) compare the total costs
and greenhouse gas emissions for a voyage via SCR and NSR based on the voyage of
Yongsheng where they consider the average speed along the SCR and NSR to be the same.
Similar to Schøyen and Bråthen (2011), Pierre and Olivier (2015) compare the daily average
costs including a price for CO2 emissions via the SCR and NSR at a range of equivalent
speeds. They optimize the operational speed along the SCR for a single voyage taking market
conditions such as freight rate and fuel price into account. They evaluate the costs along the
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SCR at the optimized speeds and the costs along the NSR at the equivalent speed. All three
papers agree upon that using theNSR is beneficial toCO2 emissions reduction.However, their
conclusions diverge when it comes to the economic performances. Both Zhao and Hu (2016)
and Schøyen and Bråthen (2011) conclude that because of the shorter distance, the estimated
total single voyage costs for the NSR are lower than the SCR. Meanwhile, Pierre and Olivier
(2015) argue that affected by the low spot freight rate, vessels operate at a lowest level speed
on SCR, with a low fuel consumption. Thus the fuel savings of using the NSR is becoming
less attractive. They further impose a CO2 tax at different rates. Their computational study
show that only when the carbon tax is as high as 100 USD per ton CO2 emissions, using
NSR brings significant savings. In reality, the operational speeds of ship are not necessarily
optimized on a single voyage level, but the fleet operations level.

Even though the occurrence of future cargoes is stochastic by nature, uncertain cargoes
have not received much attention in literature on tramp shipping. Li et al. (2020) is an
exception. Li et al. (2020) address TSRSPs with uncertain cargo availability and propose a
two stage stochastic programming model formulation. In the model, they introduce routing
flexibility for using the NSR as an alternative to the SCR into the TSRSP. With the proposed
model, they analyze the impact of introducing theNSR into tramp shipping on afleet operation
level by comparing the results with and without the NSR allowed in the model.

The majority of existing work that handles the availability of cargoes as uncertain are
in industrial shipping, which is similar to tramp shipping in operational characteristics. The
main difference is that in industrial shipping, the operator owns both the fleet and the cargoes,
aiming to minimize the cost for transporting all cargoes. From an operations research point
of view, the typical Industrial Shipping Routing and Scheduling Problems (ISRSPs) can
be treated as a special case of TSRSP, where no spot cargoes are present and all contract
cargoes are accepted (Christiansen & Fagerholt, 2014). Tirado et al. (2013) present an ISRSP
where new contract cargoes arrive randomly and constantly throughout the planning horizon.
Accordingly the decisions are replanned every time a new cargo appears. Wu et al. (2018)
include the option to transport spot cargoes when the vessel is repositioning back to the
original port after the contract cargo is delivered. However, none of the above mentioned
research look into speed optimization or CO2 emissions. Nor do they consider the use of the
NSR.

Speed optimization has been addressed in deterministic TSRSPs where cargoes are
assumed to be known at the time of planning. As fuel costs constitute a large proportion
of operational costs in shipping, research has been motivated to include speed optimization
into TSRSP for the economic benefits in reducing the fuel cost. Speed optimization is usually
modeled using either linear model with discretized speeds (Castillo-Villar et al., 2014; Wen
et al., 2016), or non-linear model with continuous speeds (Norstad et al., 2011; Yu et al.,
2019). The introduction of speed optimization into the TSRSP increases the complexity of
the problem, which is reflected by that all the aforementioned papers unanimously resort to
heuristic methods for efficient solutions.

In addition to the economic benefits, speed optimization can bring environmental bene-
fits such as reduction in CO2 emissions. The increasing social awareness in reducing CO2

emissions in recent years is reflected in the literature with discussion on the environmental
implications of speed optimization. Wang et al. (2019) investigate the effect of policies such
as carbon tax and emissions trading system for reducing CO2 emissions with their proposed
model for a TSRSP with speed optimization. Their computational study demonstrates that
the operators slow down the vessels and emit less CO2 in response to the elevated fuel price
resulting from the policies. It is worth mentioning that Wen et al. (2017) address the general
emissions in a ship routing and speed optimization problem which can be applied in both
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liner and tramp shipping. Since emissions are directly proportional to fuel consumption, they
use fuel consumption as objective function to be minimized. They emphasize the importance
of addressing the loading status when considering the fuel consumption as sailing in ballast
at a higher speed may still generate less emissions than sailing fully loaded at a lower speed.
However, both of the aforementioned studies consider neither the effect of alternative routes
in reducing CO2 emissions nor uncertain spot cargoes.

To the best of our knowledge, speed optimization for entire fleet and the introduction
of carbon tax have not been addressed when evaluating the impact of the NSR. Our paper
extends the existing literature in these respects. By including fleet-level speed optimization
and carbon tax into the evaluation of NSR, we explore the potential of using NSR in reducing
CO2 emissions in more detail. Besides, we present a new formulation of stochastic TSRSP
including speed optimization and routing flexibility under carbon tax. We show in addition
how to improve the model performance.

3 Problem description

We present a stochastic TSRSP with speed optimization and routing flexibility under carbon
tax. A tramp operator plans its fleet operations in two stages: In the first stage, the tramp
operator knows which cargoes are currently available in the market (i.e. the deterministic
cargoes). At this point in time, the operator also has information regarding uncertain spot
cargoes, i.e. cargoes that might or might not become available in the future (the stochastic
cargoes). The operator then decideswhich of the deterministic cargoes to accept, which vessel
to allocate each accepted cargo to and when to pickup these cargoes. In the second stage, the
tramp operator gets to know which of the uncertain spot cargoes are available in the market.
The operator then chooses which spot cargoes to accept and decides the detailed operational
plan of the fleet given the first stage decisions. We assume that the deterministic cargoes have
already been made available to the operator e.g., through ship brokers or shippers. For the
uncertain cargoes we assume that the tramp operator can use own experience and historical
data indicating typical loading and unloading ports for relevant cargoes.

Since we want to study the effect of using the NSR, we assume that the candidate cargoes
are to be transported within and between Asia and Europe. The revenue for each cargo
is specified. Once a cargo is accepted, it has to be picked up within a specific pickup time
window. Based on the regions involved to transport a cargo, we divide them into local cargoes,
where both ports are either in Asia or Europe, and intercontinental cargoes, where one port is
inAsia and the other is in Europe.Avoyage involves sailing fromone port to another. Then the
concept of local and intercontinental cargoes extends to local voyages and intercontinental
voyages. For intercontinental voyages, it is possible to choose sailing through either the SCR
or the NSR, introducing routing flexibility, as illustrated in Fig. 1, see also Li et al. (2020).
We consider the cargo size to be equal to the loading capacity of a vessel. According to the
loading status of a vessel, we divide the voyages into delivery voyages sailing fully loaded
when transporting a cargo, and repositioning voyages sailing in ballast between transporting
two consecutive cargoes.

The ship operator controls a heterogeneous fleet of vessels,where the vessels have different
fuel consumption profiles and are located at different initial positions at the beginning of the
planning horizon. The fuel consumption profile describes the fuel consumption rate of a
specific vessel at given speeds, which is affected by the loading status and the sailing route.
Decisions on the vessels’ speeds have to be made for every voyage, regardless delivery or
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Fig. 1 Illustration of routing flexibility (Li et al., 2020)

repositioning. Using a higher speed may allow the vessel to transport more cargoes, while
using a slower speed may reduce fuel consumption and hence CO2 emissions. The trade-off
between sailing time and costs has to be taken into consideration when deciding the speeds.

We include the voyage costs and idle costs for each vessel in the fleet and the carbon tax
for the whole fleet within the planning horizon. The voyage costs consist of port dues and fuel
costs, which apply to both delivery voyages and repositioning voyages. For intercontinental
voyages, canal fees for the SCR and ice-breaking support fees for the NSR will occur. In
additions, due to the presence of sea ice, the operational speeds along the NSR are limited.
When a vessel is neither sailing a delivery voyage or a repositioning voyage, it still consumes
fuel, though at a much slower rate. We consider this fuel cost to be the idle cost of a vessel.
To meet the pickup time window of a cargo, vessels may arrive early at port and wait, but the
waiting time is considered as being idle. The carbon tax is levied on the carbon content of the
total fuel consumed by the entire fleet over the planning horizon. The total CO2 emissions are
estimated based on both the voyage-related fuel consumption and the idle fuel consumption
for each individual vessel. The carbon tax can either follow a flat or progressive tax scheme.
In the flat tax scheme, the tax is directly proportional to the total CO2 emissions (and hence
the fuel consumption), while in the progressive tax scheme, the tax per unit of CO2 emitted
increases progressively.

The objective is to maximize the expected gross margin, which is calculated as the total
revenues from transporting the cargoes minus the variable sailing costs, consisting of fuel
costs, canal fees, port costs, ice-breaking support fees and carbon tax. In the first stage
the operator decides on the acceptance of the deterministic cargoes, and for each accepted
cargo, the corresponding vessel as well as time to pick it up. With the available spot cargoes
revealed in the second stage, the operator decides on which of those to accept, the sequence
of transporting the accepted cargoes for each vessel, whether to sail through the NSR or the
SCR for intercontinental voyages, the speeds for every delivery or repositioning voyage and
consequently pickup times of all cargoes.

4 Model formulation

Before presenting our two-stage stochastic programming model, we explain the modeling
approach and introduce the notation.
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Fig. 2 Illustration of voyages between transporting two cargoes (Li et al., 2020)

4.1 Modeling approach

Cargo-based voyages

Wemodel the routing decisions of a vessel similar to Vilhelmsen et al. (2015) by the sequence
of cargoes transported based on the assumption that the cargo size equals a full shipload.
Figure 2 illustrates the voyages when cargo j is the next subsequent cargo following cargo
i . The vessel first loads cargo i from port Pi , sails loaded to port Di to deliver cargo i . Then
the vessel repositions to port Pj to pick up cargo j and continues to Dj to unload cargo j .
Transporting cargoes i and j sequentially implies visiting a sequence of ports in the order of
Pi → Di → Pj → Dj .

Cargoes

We model routing flexibility (i.e. whether to use the SCR or the NSR) for delivery voyages
through cargo duplication. In each scenario, we have a total of at most N cargoes available,
divided into N I intercontinental and NL local cargoes. Each of the intercontinental cargoes
is duplicated into a cargo i transported via the SCR (SCR cargo) and a corresponding NSR
cargo i +N , and the sailing times, costs as well as CO2 emissions are calculated accordingly.
However, the duplicated cargo pair shares the same revenue and pickup time windows.

To initialize the problem, we create an origin node for each vessel, i.e. an artificial cargo
without revenue or costs, that represents the port at which the vessel becomes available.
Similarly, we introduce an artificial destination node for each vessel, also represented by an
artificial cargo without revenue or costs, which allows us to control the port a vessel ends up
in at the end of the planning horizon. By adjusting the repositioning times and costs between
the origin/destination node and the other available cargoes, we are able to model different
initial and final locations as well as the time when a vessel becomes available. The available
cargoes, together with the artificial origin and destination cargoes form an extended cargo
set GE

s .

Modeling speed-fuel consumption curve

Theoperational speed of a given vessel is usuallywithin a certain range.Aminimumspeedhas
to be maintained for safety and economical concerns. Meanwhile, limited by the machinery
of the speed and sailing environment, there is a corresponding a maximum speed. According
to Ronen (1982), within this speed range, the fuel consumption per distance can usually be
approximated as a quadratic and convex function over speed. Suchnon-linearity is undesirable
in modeling due to the extra computational burden coming along. To avoid this issue, we
follow the linear approximation introduced in Andersson et al. (2015).
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Fig. 3 Illustration of speed-fuel consumption approximation

We use a piecewise linear function with three breakpoints to approximate the speed fuel
consumption curve, see Fig. 3. In the figure, speed alternatives 1, 2 and 3 correspond to
minimum speed, design speed and maximum speed, respectively. Let Si be the sailing speed
and wi be the weight of speed alternative i . Any speed S can then be modeled as a convex
linear combination of speeds, i.e. S = ∑

i wi · Si given that∑i wi = 1. Due to the convexity
of the fuel consumption function, an optimal solution will always be a linear combination
of two neighboring speed points. Modeled Speed in Fig. 3 can therefore be represented as
w1 · S1 + (1 − w1) · S2 (as w1 + w2 = 1).

Let Ti be the sailing time associated with speed alternative i . We then approximate sailing
time by a linear combination of sailing times using the sameweights, i.e.w1 ·T1+(1−w1)·T2,
for the Modeled Speed in Fig. 3. The corresponding fuel consumption is estimated in the
same manner, again using the same weights. Fuel consumption is then converted to CO2

emissions using an emission factor. Andersson et al. (2015) show that the error introduced by
the piecewise linearization overestimates both fuel consumption and sailing time. However,
as the error is usually small and far below the uncertainty in other parameters, we consider
this approach to be appropriate for our purposes.

Carbon tax

CO2 emissions are taxed on a fleet level, not on a voyage or ship level.Wemodel a progressive
carbon tax, as shown in Fig. 4a. In a progressive tax scheme, the CO2 emissions is divided
into several levels. As the emissions reaches a higher level, a higher tax rate applies. Similar
to the modeling of the fuel consumption versus speed, the model will always automatically
allocate the emissions first to the level with the least tax rate, since the tax is lower, until
no more emissions allowed at this level. In addition to progressive tax scheme, a flat tax
scheme is also common where a constant tax rate apply to emissions at any level, illustrated
in Fig. 4b. The flat tax scheme can be seen as a special case of the progressive tax, where the
first emissions level is set to a sufficiently high amount.
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(a) (b)

Fig. 4 Illustration of different tax schemes

4.2 Notation

We introduce the following notation:

Sets

GE
s Extended set of available cargoes, including the duplicated intercontinental car-

goes, the artificial origin and destination cargoes in scenario s
GD Set of deterministic cargoes
G I
s Set of available intercontinental cargoes in scenario s

GL
s Set of available local cargoes in scenario s

GU Set of uncertain spot cargoes
K Set of speeds
L Set of CO2 emissions levels
R Set of routes
S Set of scenarios
V Set of vessels

Indices

i, j Cargo index
k Speed index
l CO2 emissions tax level index
r Route index
s Scenario index
v Vessel index

Parameters

Ais Earliest pickup time for cargo i in scenario s
Bis Latest pickup time for cargo i in scenario s
CF

v Daily idle cost for vessel v
CR

vi jrsk Repositioning cost for vessel v between transporting cargo i and j via route r in
scenario s at speed k
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Cl Unit carbon tax at emission level l
Cvisk Delivery cost for transporting cargo i with vessel v in scenario s at speed k
Ev An artificial destination cargo for vessel v
H Length of planning horizon
MF

v Daily idle CO2 emissions for vessel v
MR

vi jrsk CO2 emissions for a repositioning voyage for vessel v between transporting cargo
i and j via route r in scenario s at speed k

Mvisk CO2 emissions for transporting cargo i with vessel v in scenario s at speed k
N Number of cargoes
Ov An artificial origin cargo for vessel v
Ps Probability of scenario s
Ql Maximum CO2 emissions at level l
Ris Revenue of transporting cargo i in scenario s
T R

vi jrsk Sailing time for a repositioning voyage for vessel v between transporting cargo
i and j via route r in scenario s at speed k

Tvisk Sailing time for transporting cargo i with vessel v in scenario s at speed k

Decision variables

fls CO2 emissions at level l in scenario s
nvi 1 if vessel v is assigned to transport deterministic cargo i , 0 otherwise
tvi The planned pickup time of a deterministic cargo i by vessel v
τvis The planned pickup time of a cargo i by vessel v in scenario s
wvi jrsk The weight of speed alternative k for the sailing with vessel v delivering cargo

i , repositioning via route r then directly picking up cargo j in scenario s
xvi jrs 1 if vessel v delivers cargo i , repositions via route r then directly picks up cargo

j in scenario s, 0 otherwise
yvisk The weight of speed alternative k for the sailing with vessel v delivering cargo i

in scenario s

4.3 Model

With the notation introduced above we present the formulation of the two-stage stochastic
TSRSP with speed optimization and routing flexibility.

max
∑

s∈S
Ps

⎧
⎨

⎩

∑

v∈V

∑

i∈GE
s

∑

k∈K
(Ris yvisk − Cvisk yvisk −

∑

j∈GE
s

∑

r∈R
CR

vi jrskwvi jrsk)

−
∑

v∈V
CF

v (H −
∑

i∈GE
s

∑

k∈K
(Tvisk yvisk +

∑

j∈GE
s

∑

r∈R
T R

vi jrskwvi jrsk)) −
∑

l∈L
Cl fls

⎫
⎬

⎭
(1)

subject to
∑

v∈V
nvi ≤ 1 i ∈ GD, (2)

∑

j∈GE
s

∑

r∈R
(xvi jrs + xv,i+N , jrs) = nvi v ∈ V, i ∈ GD ∩ G I

s , s ∈ S, (3)
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∑

j∈GE
s

∑

r∈R
xvi jrs = nvi v ∈ V, i ∈ GD ∩ GL

s , s ∈ S, (4)

τv,i+N ,s = tvi v ∈ V, i ∈ GD ∩ G I
s , s ∈ S, (5)

τvis = tvi v ∈ V, i ∈ GD, s ∈ S, (6)
∑

j∈GE
s

∑

r∈R
(xvi jrs + xv,i+N , jrs) ≤ 1 i ∈ GU ∩ G I

s , s ∈ S, (7)

∑

j∈GE
s

∑

r∈R
xvi jrs ≤ 1 i ∈ GU ∩ GL

s , s ∈ S, (8)

∑

j∈GE
s

∑

r∈R
xv,Ov, jrs = 1 v ∈ V, s ∈ S, (9)

∑

i∈GE
s

∑

r∈R
xvi,Ev,rs = 1 v ∈ V, s ∈ S, (10)

∑

i∈GE
s

∑

r∈R
xvi jrs −

∑

i∈GE
s

∑

r∈R
xv j irs = 0

v ∈ V, j ∈ GE
s \ {Ov, Ev|v ∈ V} , s ∈ S, (11)

∑

k∈K
yvisk =

∑

j∈GE
s

∑

r∈R
xvi jrs

v ∈ V, i ∈ GE
s \ {Ov, Ev|v ∈ V} , s ∈ S, (12)

∑

k∈K
wvi jrsk = xvi jrs v ∈ V, i, j ∈ GE

s , r ∈ R, s ∈ S, (13)

∑

l∈L
fls =

∑

v∈V
MF

v (H −
∑

i∈GE
s

∑

k∈K
(Tvisk yvisk +

∑

j∈GE
s

∑

r∈R
T R

vi jrskwvi jrsk))

+
∑

v∈V

∑

i∈GE
s

∑

k∈K
Mvisk yvisk

+
∑

v∈V

∑

i∈GE
s

∑

k∈K

∑

j∈GE
s

∑

r∈R
MR

vi jrskwvi jrsk s ∈ S, (14)

fls ≤ Ql l ∈ L, s ∈ S, (15)

Ais ≤ τvis ≤ Bis v ∈ V, i ∈ GE
s , s ∈ S, (16)

∑

k∈K
(Tvisk yvisk +

∑

r∈R
T R

vi jrskwvi jrsk) ≤

(Bis + Tvis1 − A js)(1 −
∑

r∈R
xvi jrs)

+τv js − τvis v ∈ V, i, j ∈ GE
s , s ∈ S, (17)

f , τ, t, w, y ≥ 0 (18)

n, x ∈ {0, 1} (19)

The objective function (1) maximizes the expected value of gross margin. The first line
subtracts the speed-dependent delivery costs and repositioning costs from the total revenues.
In the second line, we first calculate the total idle fuel costs for the fleet, based on the idle
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time after sailing and repositioning is time deducted from the planning horizon. The last term
sums up the total carbon tax.

Constraints (2) state that a deterministic cargo is assigned to atmost one vessel. Constraints
(3) to (6) are the non-anticipativity constraints. The right-hand-side (RHS) in Constraints (3)
and (4) indicates if cargo i is accepted and assigned to vessel v in the first stage (nvi = 1).
The left-hand-side indicates if a repositioning voyage is planned after delivering cargo i
with vessel v for intercontinental cargoes and local cargoes respectively in the second stage.
Constraints (3) and (4) also ensure that for each of the accepted deterministic cargoes in the
first stage, it has to be transported with the same vessel v in every scenario in the second
stage. Meanwhile, if a deterministic cargo is not accepted in the first stage (nvi = 0), it
can not be transported in the second stage. Similarly, the RHS in constraints (5) and (6)
sets the planned pickup time for deterministic cargoes in the first stage. Constraints (5) and
(6) stipulate that the pickup time decided in the first stage for each accepted deterministic
cargo has to be implemented in all possible scenarios in the second stage. Constraints (7)
and (8) determine whether to accept a spot cargo and ensure that at most one vessel will be
assigned to an available spot cargo. With Constraints (9) and (10), all vessels begin from
the original locations and end in the corresponding destination port at the end of planning
horizon. Constraints (11) make sure that for the accepted cargoes, both the pickup ports
and delivery ports are visited. Constraints (12) and (13) allow vessels to select speeds for
delivery and repositioning voyages respectively by assigning weights to the discrete speed
alternatives. Constraints (14) sum up the total idle emissions as well as both delivery voyages
and repositioning voyages CO2 emissions in every scenario and Constraints (15) allocate the
correct amount of CO2 emissions at each tax rate level. Constraints (16) require the planned
pickup times follow the pickup time windows. Constraints (17) make sure there is enough
time reserved for vessel v to transport cargo i and to reposition for cargo j if cargoes i and
j are planned to be transported consecutively with the same vessel. Constraints (18) are the
nonnegativity constraints for the continuous variables and Constraints (19) are the binary
requirements for the binary variables. Note that indices have been omitted in both.

5 Improvingmodel performance

In the following section, we propose pre-processing procedures and valid inequalities to
speed up the solution process. In this section, we use a simplified notation of Sect. 4.2. The
simplified notation is in parenthesis when it first appears. Note that scenario index s is omitted
throughout this section.

5.1 Incompatible time window elimination

We eliminate the repositioning variables that connect cargoes with incompatible pickup time
windows. In order to reposition to cargo j after i , the difference between Bj , the latest pickup
time of the cargo j and Ai , the earliest pickup time for cargo i should be long enough. The
minimum time required between picking up cargoes i and j is equal to the sum of Tvi,|K|
(Tvi K ), delivering cargo i at the maximum speed |K| (K ), and T R

vi jr |K| (T
Repo
K ), repositioning

through route r at the maximum speed K as well. If Bj − Ai is shorter than Tvi K + T Repo
K ,

it is impossible to transport the two cargoes sequentially with the same vessel. In this case
we consider the two time windows are incompatible and the corresponding x variables are
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Fig. 5 Illustration of available time range

thus eliminated beforehand. If intercontinental repositioning is involved, we process the two
routes separately. Note that it is possible that the pickup time windows are incompatible
through NSR but compatible though SCR, or vice versa.

5.2 Repositioning speed variables reduction

We define the duration between transporting cargo i and j (duration) as the time from
delivering cargo i to picking up cargo j . This duration includes the repositioning time between
i and j , and potentially waiting time. Then the duration between two sequentially transported
cargoes is limited by the achievable time range determined by the port distances and speed
ranges, as well as the available time range based on the pickup time windows. We reduce
repositioning speed variables with these two time ranges.

The achievable time range is straight forward. To reposition between cargo i and j with
vessel v, we consider sailing the distance between delivery port for cargo i and pickup port
of cargo j at the maximum speed alternative K , corresponding to T Repo

K as the minimum

achievable time. Any duration below T Repo
K requires a higher speed which is unachievable

by the vessel. Without waiting, the maximum achievable time between i and j correspond
to repositioning at the minimum speed alternative 1, leading to T Repo

1 . The duration above

this T Repo
1 is still achievable, however since the speed can not be lowered, the vessel has to

wait. We use T Repo
1 to decide if waiting is inevitable.

The available time range considers the pickup time windows and the time spent on deliv-
ering cargo i , which is illustrated in Fig. 5. The maximum available time Dmax corresponds
to picking up cargo i at the earliest pickup time Ai , after Tvi K spent delivering cargo i at the
maximum speed alternative K and picking up cargo j at the latest pickup time Bj . Similarly
the available time Dmin is determined by picking up cargo i at the latest time Bi , spending
Tvi1 in delivering at the minimum speed alternative 1, cargo j at the earliest pickup time A j .

The duration between transporting cargo i and j in any feasible solution shall be both
achievable to the vessel, and within the available time range. Mathematically, the duration

falls into [Dmin, Dmax ] ∩
[
T Repo
K , H

]
where H is the length of the planning horizon. We

address two special cases first.
If Dmax ≤ T Repo

K , cargo j will no longer be available after repositioning from cargo i with
vessel v. The time windows of the two cargoes are incompatible and eliminated as described
in Sect. 5.1.

If T R
vi jrs1 ≤ Dmin , [Dmin, Dmax ] ∩

[
T Repo
K , H

]
= [Dmin, Dmax ]. Even if sailing at the

minimum speed, the vessel will arrive too early at port and has to inevitably wait until the
opening of pickup time window for cargo j . In this case, using any speed higher than the
minimum speed will lead to a higher fuel cost due to higher fuel consumption rate at a
higher speeds. Moreover, using higher speed does not help to pickup cargo j earlier. It means
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(a) (b)

Fig. 6 Finding speed alternatives to remove

arriving even earlier at port, waiting longer and hence idle costs increase as well. In case of
inevitable waiting, any speed higher than the minimum speed is dominated, and can thus be
eliminated.

If none of the above two special cases occur, we use the duration calculated above to
eliminate the speed alternatives that will not be included in the optimal solution. Due to the
convexity of approximated speed-fuel consumption curve, any speed to model will only be
represented by two neighbouring speed alternatives in the optimal solution. We refer the
interested reader to Andersson et al. (2015) for a detailed discussion. Figure 6 lists two
possibilities for an simplified case where speed alternative 1 corresponds to the minimum
speedwhile speed alternative 3 stands for themaximum speed. In Fig. 6a, the optimal solution
will only include the combination of T Repo

2 and T Repo
1 . Speed 3 will never be present in an

optimal solution and the corresponding variable can thus be removed. In contrast, in Fig. 6b,
the optimal solution may include a linear combination of T Repo

3 and T Repo
2 , or T Repo

2 and

T Repo
1 . None of the three speeds can be eliminated.
We skip the eliminated variables during variable generation.

5.3 Dominance in repositioning routing variables

As a result of routing flexibility, each possible intercontinental repositioning yields two
variables: through SCR or NSR. To reduce the feasible space of the problem and speed
up the solution procedure, we find and exclude dominated routes. In general, if using one
route always picks up the next cargo earlier at lower costs, this route dominates the other.
However, when we introduce speed optimization, time and cost for using a route differ when
using different speeds.

To establish dominance regarding the routes for repositioning for a given cargo pair i and
j , we compare the earliest possible time cargo j can be picked up, Tmin

jr when repositioning

along route r , and the lowest and highest cost for repositioning along route r ,Cmin
i jr andCmax

i jr ,
respectively. We consider route r ′ to be dominated by route r if

Tmin
jr ≤ Tmin

jr ′ and Cmin
jr ≤ Cmin

jr ′ and Cmax
i jr ≤ Cmax

i jr ′ .

These inequalities imply that route r is always as cheap as route r ′ while at the same time
allowing an earlier pickup of cargo j . Route r ′ is therefore dominated and the corresponding
decision variable for repositioning can be eliminated from the problem.

We require here that is possible to pick up cargo j within the given time window. We
further assume that cargo i is picked up as early as possible, i.e. at time Ai . The time and
cost parameters are then estimated as follows:
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– Estimating earliest possible pickup time, T min
jr The earliest possible pickup time is based

on sailing as fast as possible after picking up cargo i to arrive at the pickup port of cargo
j as early as possible. We define Tmin

jr as follows:

Tmin
jr = max{arrival time when sailing as fast as possible, A j }

This definition ensures that we do not pick up cargo j before its pickup time window
opens, even if the vessel arrives earlier.

– Estimating latest possible pickup time, T max
jr The latest possible pickup time is based on

sailing as slow as possible after picking up cargo i while ensuring that we pick up cargo
j within its time window. Unnecessary waiting after arriving at the pickup port is not
allowed as this will only increase cost and delay departure. We define Tmax

jr as follows:

Tmax
jr = max{min{arrival time when sailing as slow as possible, Bj }, A j }

The definition for Tmax
jr is slightly more complicated to ensure that we always pickup the

cargo within the time window. The inner minimum ensures that we never pick up cargo
j after the time window closes, while the outer maximum ensures that we never pick up
cargo j before the time window opens.

– Estimating highest costs of repositioning along route r , Cmax
i jr The highest cost of repo-

sitioning along route r , Cmax
i jr , is related to picking up cargo j as early as possible, i.e. at

time Tmin
jr . This is due to sailing at the highest necessary speed and therefore incurring

higher fuel cost.
– Estimating lowest costs of repositioning along route r , Cmin

i jr The lowest cost of reposi-

tioning along route r , Cmin
i jr , is related to picking up cargo j as late as possible, i.e. at

time Tmax
jr . This is due to slow steaming reducing the fuel consumption, thus lowering

the fuel cost but also postponing the arrival time.

5.4 Valid inequalities

Here we present the valid inequalities used to strengthen our formulation with regard to
speed variables for delivery voyages. If waiting is inevitable for a repositioning voyage
corresponding to variable xvi jrs , as described before the minimum speed will be chosen for
the repositioning voyage. In addition, the delivery voyage for cargo i will also automatically
select the minimum speed in the optimal solution. This observation leads to the following
inequality:

∑

k∈K|k �=1

yvisk + wvi jrs1 ≤ 1 xvi jrs ∈ XWait , (20)

where XWait is the set of the repositioning variables where waiting is inevitable. Constraints
(20) stipulate that if a repositioning voyage uses the minimum speed, then the corresponding
delivery voyage will not use any other speed than the minimum speed as well. We refer to
Constraints (20) as continuous inequalities.

With the dominance in repositioning speed variables and Constraints (13), thew variables
can be replaced by the corresponding x variables, as only theminimum speedwill be included
in the optimal solution. Then we derive the alternative to Constraints (20), which we refer to
as the binary inequalities as follows:

∑

k∈K|k �=1

yvisk + xvi jrs ≤ 1 xvi jrs ∈ XWait , (21)
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Table 1 Distances between ports

Distances (nm) Yokohama Busan Singapore Vladivostok Hong Kong Rotterdam Antwerp Bilbao

Yokohama 0 657 2892 937 1584 11,180 11,185 10,680

Busan – 0 2503 509 1140 10,791 10,796 10,291

Singapore – – 0 3007 1460 8288 8293 7788

Vladivostok – – – 0 1639 11,295 11,300 10,795

Hong Kong – – – – 0 9748 9753 9248

Rotterdam 6885 7232 9697 6763 8334 0 149 771

Antwep 6980 7327 9792 6858 8429 – 0 776

Bilbao 7557 7904 10,369 7435 9006 – – 0

Distances of local and SCR voyages are at the higher triangle while distances for NSR voyages are in bold at
the lower triangle

We test the performance with the original model in Sect. 4, including only Constraints
(20) and including only Constraints (21). The results indicate that including Constraints (21)
is the most effective formulation with regard to solution speed.

6 Input data and scenario generation

In this section we first introduce the input data for the case study with a 90-day planning
horizon, then describe the scenario generation procedure. Please note that the input data for
our study is not taken from a specific shipping company. Still, we use realistic and publicly
available data either directly wherever possible or base our input data on such data.

6.1 Input data

Port information

We select eight ports among the busiest ports in Asia and Europe in the case study, including
Yokohama, Busan, Singapore, Vladivostok, Hong Kong, Rotterdam, Antwerp and Bilbao.
The distances between each port pair are listed in Table 1. We adopt the distances on sea-
distances.org (2020) for local voyages and SCR voyages. For voyages through the NSR, we
divide the voyage into three legs: from the European port to Murmansk, from Murmansk to
Nome, and from Nome to the Asian port. We then add the lengths of the three legs together
for an approximation.

Fleet

We include two types of vessels: open water and ice-going vessels, two of each type in the
fleet. Vessels of the same type are identical except for their initial positions. The two types
of vessels differ in fuel consumption profiles. We use the fuel consumption profile for a
Handymax vessel of 40,000 DWT at selected speed alternatives. Consumption rate at design
speed 13.5 kn is 0.1 ton/nm. At the maximum speed 15 kn, the consumption rate is 0.136
ton/nm and at the maximum speed 15 kn, 0.077 ton/nm. We adopt this data for the fuel
consumption profile of open water vessels sailing fully loaded on SCR and local voyages.
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Table 2 Fuel consumption rates for fully loaded vessels

Vessel type Speed (kn) Fuel consumption (ton/nm)

SCR and local NSR

Open water 10.5 8.5 0.077

13.5 11.5 0.1

15 13 0.136

Ice-going 10.5 9.5 0.084

13.5 12.5 0.109

15 14 0.148

When sailing along the NSR, due to the presence of sea ice, the speed of open water vessels
reduces by 2 kn. For an ice-going vessel, we follow the assumption in Lasserre (2014) that
it consumes 9% more fuel than the open water vessel at the same speed. Similarly, ice-going
vessels receive 1 kn speed reduction when sailing on NSR. The fuel consumption rates for
fully loaded vessels of both types are summarized in Table 2. According to Gkonis and
Psaraftis (2012), the consumption rate sailing in ballast is about 80% of the corresponding
rate of sailing fully loaded.

Costs

The voyage cost consists of fuel cost, port due and transit fee if it is intercontinental. We set
the fuel price to 175.5 USD/mt, the average of Europe, the Middle East and Africa (EMEA)
and Asia-Pacific fuel prices as of April 2020. We adopt the port dues in Zhu et al. (2018),
23,200 USD per voyage. The transit fee is based on Suez Canal Authority (2017) for SCR
and The Northern Sea Route Administration (2019) for NSR, including ice-breaking support
fees.

According to Brouer et al. (2014), the daily fuel consumption while being idle can be
approximated to be 10% of the fuel consumption while sailing at the design speed. We
follow this assumption when calculating the idle fuel cost as well as the CO2 emissions.

CO2 emissions and carbon tax

According to International Maritime Organization (2009), each ton of Heavy Fuel Oil emits
3.114 tons CO2. With this factor, we convert the total fuel consumption for the fleet into the
total CO2 emissions.

We consider two carbon tax schemes. The Norwegian Government (2019) sets the carbon
tax to be 60 USD per ton CO2 for the shipping industry. We adopt this tax rate in a flat carbon
tax scheme. In the progressive tax scheme, we estimate the tax rate and the emission levels
as shown in Table 3. The emission levels are estimated considering the total emissions for
the fleet in the planning horizon.

6.2 Scenario generation

We create scenario trees containing cargo information for the case study. All scenario trees
share the same15deterministic cargoes and initial location cargoof eachvessel. Each scenario
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Table 3 Carbon tax rates in
progressive tax scheme

CO2 emissions (ton) Carbon tax rate (USD/ton)

0–7000 40

7000–14,000 60

14,000–21,000 80

> 21,000 100

contains in addition up to 35 scenario-dependent available spot cargoes. We summarize the
procedure to generate scenarios below:

1. Cargo Pool Generation We first create a candidate cargo pool consisting of 1000 car-
goes. For each cargo, we generate the pickup and delivery ports, pickup time window
and revenue rate. Among the 1000 candidate cargoes, 700 are intercontinental, while the
remaining 300 are divided equally into European and Asian local cargoes. For interconti-
nental cargoes, we randomly select a pickup port from the eight available ports. We then
sample the delivery port from the remaining ports on the other continent. Pickup time for
each cargo is sampled randomly from the planning horizon. For local cargoes we use a
similar procedure except that the delivery port is sampled from the remaining ports on
the same continent. The time window for picking up the cargo is set to either three or
seven days. The freight rate for each cargo follows a uniform distribution between 175%
to 200% of the total costs of transporting the cargo with a lower ice-class vessel at design
speed either locally or via SCR. To initialize the problem and to ensure that all vessels
can end their voyages in any port, we define artificial origin and destination cargoes for
each vessel with a freight rate of 0. The origin cargo is to be delivered at the port where
the vessel is first becoming available during the planning horizon. The destination cargo
can be picked up and delivered throughout the entire planning horizon as a vessel’s last
cargo. Pickup and delivery for the destination cargo is set to an artificial port with no
repositioning time or cost to any other port.

2. SamplingDeterministicCargoesTheprobability of a cargo being chosen as a deterministic
cargo follows a triangular distribution based on the earliest pickup time of the cargo.
We assume that cargoes with an early pickup time have a higher probability of being
deterministic, while cargoes becoming available at the end of the planning horizon have
a lower probability of being deterministic cargoes. This assumption reflects that typically
more information is available for the near future. After assigning the probabilities, we
sample the deterministic cargoes as follows: We first draw a cargo (with all cargoes being
equally likely) and then sample if this cargowill be included as a deterministic cargo. If the
cargo is included, it is removed from the candidate pool and we stop once 15 deterministic
cargoes have been included.

3. Sampling Available Spot Cargoes Here we sample 35 spot cargoes with equal probability
from the remaining 985 cargoes for each scenario. For each spot cargo, the probability for
it to be available in a given scenario is set to 50%. We only include available spot cargoes
in the different scenarios.

Note thatwe useMonteCarlo sampling and uniformdistributions to generate the candidate
pool of cargoes. When generating a scenario tree, we first useMonte Carlo sampling to select
the cargoes and then sample based on the specified distributions to determine whether or not
to include a cargo in the tree. However, our approach is not limited to this sampling procedure
and can easily be adapted if more realistic data is available.
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Table 4 Settings for different
cases

Case Speed optimization Carbon tax scheme

Basic Design speed No tax

Tax Design speed Flat tax

Speed Speed optimization No tax

Flat Speed optimization Flat tax

Prog Speed optimization Progressive tax

7 Case study

We create five cases for our case study. In each case, we create an instance (SCR+NSR)
where we allow both SCR and NSR and a reference instance (SCR) where we allow only
the SCR. All five cases share the same scenario trees but they differ in whether we allow
speed optimization and the carbon tax schemes. The settings of the different cases are listed
in Table 4. In the basic case (Basic), we include neither speed optimization nor carbon tax.
We then solve a case where we include a flat carbon tax but no speed optimization (Tax).
These two cases use design speed only. We have one case including speed optimization but
no carbon tax (Speed). We also combine speed optimization with a flat carbon tax (Flat) and
a progressive carbon tax (Prog).

7.1 Solutions

As we cannot solve our two-stage stochastic programming problem directly, we use Sample
Average Approximation (SAA) to find good solutions for our problem (see Kleywegt et al.
2002 e.g., for details). As part of the SAA approach, we solve 60 two-stage stochastic pro-
gramming problems with 10 scenarios each. The average of the resulting objective function
values serves as a statistical upper bound for the true objective function value. To find a lower
bound for the true objective function value, we evaluate the first-stage solutions found in
these problems in a reference sample of 1000 scenarios. This reference sample represents the
uncertainty in the original problem. For a more detailed description of the SAA approach,
we refer to Schütz et al. (2009).

We implement and solve the problems using FICO Xpress 8.10. We carry out all compu-
tations on Lenovo NextScale nx360 M5 computers with two 3.4 GHz Intel 6-core E5-2643
CPUs and 512 GB RAM running a Linux operating system. For each problem, we limit the
maximum run time to one hour and stop earlier if the optimality gap falls below 0.01%. In
Table 5, we summarize the results from solving 60 problems for each instance. In partic-
ular, we report how many of the problems have not been solved to optimality, the average
optimality gap over all 60 problems and the worst optimality gap.

The problems for the Basic and Tax cases are all solved to optimality within the time
limit. The other three cases with speed optimization (Speed, Flat, and Prog) are slightly more
difficult to solve, with SCR+NSR being harder than SCR. Introducing a carbon tax adds to the
complexity of the problem. All problems from the reference sample are solved to optimality.

Table 6 summarizes the solutions for the different cases. The optimality gaps for the
different cases are estimated based on the upper and lower bounds found using SAA. For
the cases where not all problems are solved to optimality, we use the upper bounds from the
60 problems to calculate the estimator of the upper bound for the true problem. We see that
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Table 5 Properties of the 60 problems for each instance

Case Instance Non optimal Average optimality gap (%) Worst optimality gap (%)

Base SCR 0 0 0.01

SCR+NSR 0 0 0.01

Tax SCR 0 0 0.01

SCR+NSR 0 0 0.01

Speed SCR 7 0.13 2.70

SCR+NSR 35 0.37 3.69

Flat SCR 17 0.50 4.28

SCR+NSR 38 0.64 3.93

Prog SCR 17 0.58 3.99

SCR+NSR 36 0.82 3.80

Table 6 Solution quality of the different cases

Case Instance Estimated optimality gap (%) Lower bound Upper bound

Base SCR 1.62 597.09 606.90

SCR+NSR 3.29 734.27 759.24

Tax SCR 1.37 427.13 433.07

SCR+NSR 2.62 592.94 608.87

Speed SCR 4.21 625.89 653.39

SCR+NSR 2.18 823.19 841.50

Flat SCR 3.36 476.67 493.23

SCR+NSR 2.43 680.45 697.38

Prog SCR 2.99 464.58 478.92

SCR+NSR 2.69 673.99 692.59

the estimated optimality gaps for the different cases are within 3.5%, with one case being as
large as 4.21%. These solutions are considered good enough for practical purposes.

We notice that in the Basic and Tax cases, the estimated optimality gaps from the SCR
instances are smaller than the SCR+NSR instances. But for the cases with speed optimiza-
tion, the estimated optimality gaps from the SCR+NSR instances are smaller. Compared to
the SCR instances, the solution space in the SCR+NSR instances is larger, resulting in higher
bounds for all SCR+NSR instances. When we look at the speed optimization cases for the
SCR instances, we utilize only the variable reduction related to speed, but no dominance
for repositioning. As for SCR+NSR instances, we utilize both speed variable reduction and
routing variable reduction. It is possible that the combined pre-processing procedure outper-
forms the individual ones.Another possible explanation of the smaller gaps for the SCR+NSR
instances with speed optimization is that introducing the NSR is even more beneficial. This
might help in cutting off large parts of the branch and bound tree early in the solution process.
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Table 7 Costs and revenues in million USD in the best solutions

Case Instance Cargo revenues Delivery costs Repositioning costs Idle costs Carbon tax Gross margin

Base SCR only 9.49 2.89 0.59 0.03 0.00 5.97

SCR+NSR 10.55 2.61 0.55 0.05 0.00 7.34

Tax SCR only 9.05 2.77 0.31 0.05 1.65 4.27

SCR+NSR 10.33 2.58 0.39 0.06 1.37 5.93

Speed SCR only 9.32 2.69 0.34 0.03 0.00 6.26

SCR+NSR 11.61 2.75 0.61 0.02 0.00 8.23

Flat SCR only 9.20 2.63 0.30 0.03 1.47 4.77

SCR+NSR 11.33 2.65 0.48 0.02 1.37 6.80

Prog SCR only 9.11 2.58 0.30 0.03 1.55 4.65

SCR+NSR 11.22 2.61 0.47 0.02 1.38 6.74

7.2 Impact of the NSR

7.2.1 Economic impact

Wepresent the costs and revenues of the best solutions for the different cases in Table 7.When
allowing NSR, the gross margins always exceed the gross margins compared to SCR only.
Among all costs, delivery costs have the largest share, followed by carbon tax (if applicable)
and repositioning costs. Idle costs only represent a marginal share of the total costs. Using
the NSR always results in higher cargo revenues compared only using SCR. However, the
delivery costs increase only slightly (Speed, Flat, Prog) or even decrease (Base, Tax). These
results indicate using the NSR benefits the tramp operators economically.

The Tax case gives the least profits across all the presented cases. However, introducing
carbon tax amplifies the advantage of using the NSR. For the SCR instances, compared with
the non-tax counterparts, we find a decrease in cargo revenues and almost all costs, causing
a decrease in gross margin. The same pattern applies to the SCR+NSR instances as well.
Comparing the profits of the three cases with carbon tax to their no tax counterparts, we find
using the NSR is more robust than using only the SCR. For SCR only instance for example,
the gross margin is reduced by 1.70 million USD from the Base case to the Tax case. In the
corresponding SCR+NSR instances, the gross margin is reduced by only 1.41 million. We
see a similar effect for also speed optimization, albeit less pronounced for the flat carbon tax,
but more pronounced for the progressive carbon tax. It is also worth mentioning that in the
cases with carbon tax (Tax, Flat, Prog), the SCR+NSR instances result in both higher cargo
revenues and lower carbon taxes.

Compared to the Base and Tax cases, both of their speed optimization counterparts have
a higher gross margin as well as lower idle costs and carbon tax. This indicates that speed
optimization is a viable approach for tramp operators to cope with the carbon tax and improve
fleet utilization. We observe different impacts of speed optimization in the SCR instances
and the SCR+NSR instances. In the SCR instances, we see a reduction in delivery costs and
repositioning costs, with minor deviations in cargo revenues. But the gross margins overall
increase. The increased gross margin comes mainly from reduced costs. In contrast, cargo
revenues increase significantly when allowing speed optimization in SCR+NSR instances,
with slight increase in delivery and repositioning costs. The gross margin increases mainly
due to increased cargo revenues. It is also worth mentioning that in the speed optimization
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Table 8 Average number of voyages in the best solutions

Case Instance Delivery voyages Repositioning voyages

SCR NSR European Asian Sum SCR NSR European Asian None

Base SCR only 7.01 0.00 2.35 2.58 11.94 0.99 0.00 3.08 3.51 4.35

SCR+NSR 0.94 6.70 1.64 2.53 11.81 0.37 0.69 2.20 4.12 4.43

Tax SCR only 6.91 0.00 1.31 1.96 10.19 0.41 0.00 1.68 3.18 4.92

SCR+NSR 0.75 6.94 1.38 1.44 10.51 0.05 0.68 1.89 3.01 4.88

Speed SCR only 6.93 0.00 1.19 2.14 10.26 0.52 0.00 1.73 3.36 4.66

SCR+NSR 1.25 7.30 1.29 2.37 12.21 0.22 1.07 2.02 4.44 4.46

Flat SCR only 6.91 0.00 0.86 1.86 9.63 0.48 0.00 1.48 3.21 4.46

SCR+NSR 0.92 7.59 0.94 1.17 10.62 0.08 1.11 1.70 3.14 4.60

Prog SCR only 6.86 0.00 0.76 1.75 9.37 0.50 0.00 1.38 3.12 4.38

SCR+NSR 0.84 7.60 0.80 1.08 10.32 0.06 1.12 1.60 3.05 4.49

cases, less idle costs are paid in the SCR+NSR instances than in the SCR only instances. The
results indicate that the fleet utilization increases when using speed optimization.

To further investigate the impact of the NSR on tramp shipping routing decisions, we
look into the number of delivery and repositioning voyages by region, see Table 8. In the
following, we examine the effects of the introduction of a carbon tax. Introducing a carbon
tax causes a reduction in total cargoes transported in all cases. This finding is in line with
the decrease in revenues that we have discussed previously. With the exception of the Base
case, we see that fewer cargoes are transported across regions in the SCR instances. For the
SCR+NSR instances, we see an increase in number of cargoes and a shift towards sailing
along the NSR. Specifically, the number of transported intercontinental cargoes increases
compared to the SCR instances. Such a pattern is reasonable, as intercontinental cargoes in
general bring more revenue compared to the local cargoes. These findings also support that
when carbon tax imposed, the advantage of using the NSR is amplified.

When introducing speed optimization in the SCR instances, the number of transported
cargoes is reduced. However, the idle costs do not go up, implying idle time does not increase.
It is very likely that slow steaming is used in these instances and hence the costs are reduced.
For the SCR+NSR instances, we see an increase in both the number of intercontinental SCR
and NSR cargoes, with fewer local cargoes being transported. With the routing flexibility
introduced byNSR, speed optimization allows for transportingmore cargoes, or cargoes with
higher revenues.

In terms of repositioning choices, the most popular choice is to go without reposition-
ing, meaning that after delivering a cargo, the vessel waits at the same port to pick up its
next cargo. Local repositioning is more favored than intercontinental repositioning. This is
reasonable as the time spent on repositioning only adds to the cost. Long intercontinental
repositioning is therefore least favorable. This also explains why the NSR is much more used
for intercontinental repositioning. Similar repositioning patterns are found in Li et al. (2020).

7.2.2 Average speeds and CO2 emissions

We calculate the average speeds by vessel types and regions. Since fuel consumption profiles
are identical for the same vessel along the SCR and local voyages, we combine them in the
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Table 9 Average speeds and CO2 emissions

Case Instance Open water vessels speed (kn) Ice-going vessels speed (kn) CO2 emissions (tons)

SCR+local NSR SCR+local NSR

Base SCR only 13.5 – 13.5 – 30617

SCR+NSR 13.5 11.5 13.5 12.5 25084

Tax SCR only 13.5 – 13.5 – 27455

SCR+NSR 13.5 11.5 13.5 12.5 22860

Speed SCR only 12.89 – 12.80 – 25574

SCR+NSR 12.18 10.15 13.09 11.28 25110

Flat SCR only 12.85 – 12.72 – 24493

SCR+NSR 11.71 9.66 13.01 11.12 22737

Prog SCR only 12.88 – 12.71 – 23917

SCR+NSR 11.57 9.53 13.21 11.02 22136

following presentation. Table 9 summarizes the average speed for all delivery and reposi-
tioning voyages for each vessel type in each region. In addition, the table also shows the CO2

emissions. Please note that the Base and Tax case use constant design speed.
When speed optimization is allowed, carbon taxes generally lead to lower average speeds.

Compared to the Speed case however, the speed of ice-going vessels in SCRand local voyages
actually increases in the Prog case. A closer examination into the usage of ice-going vessels
indicates that this increase comes from an increase in repositioning speed within Europe,
which might be due to the pickup time window limitation. It is worth mentioning that the
extent of speed reduction affected by carbon tax differs for the two types of vessels. Open-
water vessels generally decrease their speed more than ice-going vessels. In general, the
average speeds are always below the design speeds. This behavior confirms the prevailing
practice of slow steaming.

In termsof reducingCO2 emissions, carbon taxes are effective in reducing the total volume,
in both the SCR instances and the SCR+NSR instances. Without speed optimization, CO2

emissions are reduced by approximately 10%.With speed optimization, the reduction in CO2

emissions is less at around 4–6%. Using the NSR generally reduces CO2 emissions due to
lower speeds, despite an increase in the number of transported cargoes, indicating that using
the NSR can be a viable approach to cope with the decarbonization goal.

8 Conclusion

We present a new variant of stochastic TSRSP with speed optimization and carbon tax.
We formulate it as a two-stage stochastic programming model where we model the speed
optimization through a piece-wise linear approximation. Our model also allows for flexibility
in using the SCR or NSR for intercontinental voyages. We evaluate the impact of the NSR on
tramp shipping, in terms of gross margins and CO2 emissions considering speed optimization
and carbon tax.

The results from case study show that introducing the NSR improves the gross margins
and can reduce the CO2 emissions for tramp operators. The carbon tax is effective in reducing
the CO2 emissions, but it reduces the gross margins as well. Note that our analysis focuses
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on full shiploads and it will be interesting to study the effects of the carbon tax on tramp
shipping with partial shiploads. In any case, to take full advantage of the carbon tax, it should
be combined with CO2 compensation.

We also see an increase in the number of intercontinental voyages when the NSR intro-
duced. The NSR is more preferred over the SCR and when we impose a carbon tax, the
advantage of using the NSR is amplified. Using the NSR with speed optimization allows
for transporting more cargoes while maintaining low CO2 emissions. The impact of using
synthetic fuels, in particular low- and zero-emission fuels such as ammonia and hydrogen,
should be investigated in more detail.

Note that increasing shipping activities along the NSRmay influence local climate change
and increase the melting of sea ice. However, these effects are outside the scope of this paper
and subject to future research.
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