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BACKGROUND: Prenatal exposure to mixtures of nonpersistent chemicals is universal. Most studies examining these chemicals in association with fetal
growth have been restricted to single exposure models, ignoring their potentially cumulative impact.

OBJECTIVE: We aimed to assess the association between prenatal exposure to a mixture of phthalates, bisphenols, and organophosphate (OP) pesti-
cides and fetal measures of head circumference, femur length, and weight.

METHODS: Within the Generation R Study, a population-based cohort in Netherlands (n=776), urinary concentrations of 11 phthalate metabolites, 3
bisphenols, and 5 dialkylphosphate (DAP) metabolites were measured at <18, 18–25, and >25weeks of gestation and averaged. Ultrasound measures
of head circumference, femur length, and estimated fetal weight (EFW) were taken at 18–25 and >25weeks of gestation, and measurements of head
circumference, length, and weight were performed at delivery. We estimated the difference in each fetal measurement per quartile increase in all
exposures within the mixture with quantile g-computation.

RESULTS: The average EFW at 18–25 wk and >25 wk was 369 and 1,626 g, respectively, and the average birth weight was 3,451 g. Higher exposure
was associated with smaller fetal and newborn growth parameters in a nonlinear fashion. At 18–25 wk, fetuses in the second, third, and fourth quar-
tiles of exposure (Q2–Q4) had 26 g [95% confidence intervals ðCIÞ:−38, −13], 35 g (95%CI: −55, −15), and 27 g (95%CI: −54, 1) lower EFW
compared with those in the first quartile (Q1). A similar dose–response pattern was observed at >25 wk, but all effect sizes were smaller, and no asso-
ciation was observed comparing Q4 to Q1. At birth, we observed no differences in weight between Q1–Q2 or Q1–Q3. However, fetuses in Q4 had
91 g (95%CI: −258, 76) lower birth weight in comparison with those in Q1. Results observed at 18–25 and >25 wk were similar for femur length;
however, no differences were observed at birth. No associations were observed for head circumference.

DISCUSSION: Higher exposure to a mixture of phthalates, bisphenols, and OP pesticides was associated with lower EFW in the midpregnancy period.
In late pregnancy, these differences were similar but less pronounced. At birth, the only associations observed appeared when comparing individuals
from Q1 and Q4. This finding suggests that even low levels of exposure may be sufficient to influence growth in early pregnancy, whereas higher lev-
els may be necessary to affect birth weight. Joint exposure to nonpersistent chemicals may adversely impact fetal growth, and because these exposures
are widespread, this impact could be substantial. https://doi.org/10.1289/EHP9178

Introduction
Pregnant mothers are ubiquitously exposed to a plethora of chem-
icals found in commonly used consumer products and via their

diet (Traoré et al. 2016; Wong and Durrani 2017). Phthalates and
bisphenols are synthetic compounds incorporated in many perso-
nal care products and food-packaging materials (Gunderson
1995; Muncke 2009; Wong and Durrani 2017). Organophosphate
(OP) pesticides are insecticides that are commonly used for pest
control, and exposure occurs mostly through the diet (Gunderson
1995; Lu et al. 2008; Muncke 2009). All these chemicals are able
to cross the placental and blood–brain barriers (Bradman et al.
2003; Chou et al. 2011; Jensen et al. 2012; Philippat et al. 2013;
Schönfelder et al. 2002; Silva et al. 2004), have the potential to
cause permanent developmental changes to the fetus as shown by
experimental animal studies (Zoeller et al. 2012), and are thus a
growing public health concern. Furthermore, because these
chemicals are nonpersistent, their contribution to adverse health
effects may be preventable via interventions in a relatively short
period of time.

Although not conclusive, animal studies have linked prenatal
exposure to phthalates, bisphenols, and OP pesticides with fetal
growth alterations (Breslin et al. 1996; Chanda et al. 1995; Kim
et al. 2001; Rubin et al. 2001; Srivastava and Raizada 1996;
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Tanaka 2005). Human studies also suggest associations between
these exposures and anthropometric parameters at delivery (Chou
et al. 2011; Harley et al. 2016; Huang et al. 2014; Miao et al.
2011; Philippat et al. 2012; Suzuki et al. 2010; Wolff et al. 2008;
Zhang et al. 2009) as well as fetal growth ultrasound measures
during pregnancy (Casas et al. 2016; Ferguson et al. 2016, 2018,
2019; Lee et al. 2008; Philippat et al. 2014; Snijder et al. 2013).
Perturbations in normal fetal development could have significant
public health impact, because they are related to numerous
adverse health effects in children (Miller et al. 2016) and later
life (Barker 2006).

Exposures to these compounds do not occur in isolation;
instead, each woman’s exposure is a complex combination of
multiple chemicals. Most studies examining maternal exposure to
these compounds in relation to fetal growth have assessed associ-
ations between single exposures and growth outcomes rather than
the overall effect of the chemical mixture. Restricting analyses to
single pollutants may ignore health effects that would be detected
if chemical mixtures as a whole were assessed (Bopp et al. 2018).
For example, coexposures may combine in various ways to elicit
health effects, even when effects of individual exposures are
below concentrations considered harmful (Carpenter et al. 2002;
Kortenkamp 2014; Zoeller et al. 2012). Other key limitations of
single-chemical models are the potential biased effect estimates
in the presence of copollutant confounding, and inflated false dis-
coveries when correlated exposures are modeled separately
(Braun et al. 2016). Focusing on the joint mixture effect provides
results that more closely correspond to real-world exposures and
may thus directly inform potential public health interventions
(Braun et al. 2016; Robins et al. 2004). For instance, reducing
prenatal exposures by way of behavioral interventions (e.g.,
avoiding packaged foods) is unlikely to affect exposure to a sin-
gle phthalate. Hence, the observed health benefits of intervention
may actually reflect the benefits of reducing exposure to multiple
chemicals that exist in such products.

To address this research gap, we used quantile-based g-com-
putation to estimate the overall effect (i.e., joint impact) of prena-
tal exposure to phthalates, bisphenols, and OP pesticides on fetal
growth measured by ultrasound at two time points during preg-
nancy and at delivery.

Methods

Study Population
The Generation R Study is a prospective population-based birth
cohort designed to identify early environmental and genetic deter-
minants of development, with participants recruited between 2002
and 2006 (Kooijman et al. 2016). In total 8,879 women were en-
rolled during pregnancy. Of those, 2,083 women provided three
spot urine samples at the time of routine ultrasound examinations:
<18, 18–25, and >25weeks of gestational age. Of the 2,083
mother–child pairs, 1,405 provided data at the follow-up visit at
child age 6 y. The present analysis was restricted to individuals
with age 6 y follow-up because the primary aim of the studies of
prenatal chemical exposures were to examine associations with
child health outcomes. Of the 1,405, 776 mother–child pairs had
complete data on all three nonpersistent chemical exposure groups
across three time points during pregnancy and complete birth
weight data. These 776 mother–child pairs therefore comprised
the study sample. Mothers provided written informed consent at
the time of enrollment. The study protocol underwent human sub-
jects review at Erasmus Medical Center, Rotterdam, Netherlands
(IRB Registration no.: IRB00001482, MEC 198.782.2001.31,
MEC 217.595/2002/202, MEC-2007-413, MEC-2012-165).

Chemical Biomarker Measurements
Details of urine specimen collection and the analytical procedure
for the measurement of phthalate, bisphenol, and OP pesticide ex-
posure biomarkers are given elsewhere (Kruithof et al. 2014;
Philips et al. 2018; van den Dries et al. 2018). Briefly, 18 phthalate
metabolites were measured using a solid-phase extraction method
followed by enzymatic deconjugation of the conjugated (i.e., glu-
curonidated) phthalate monoesters coupled with high performance
liquid chromatography electrospray ionization–tandemmass spec-
trometry (HPLC-ESI-MS/MS) (Asimakopoulos et al. 2016). Eight
bisphenols were quantified using a liquid-liquid extraction method
followed by enzymatic deconjugation coupled with HPLC-ESI-
MS/MS (Asimakopoulos et al. 2016). Limits of detection (LOD)
for phthalate metabolites and bisphenols were in the range of
0:008–1:11 lg=L. The concentrations below the LOD were not
estimated by the lab and were therefore imputed by LOD divided
by the square root of 2 (Hornung andReed 1990).

Regarding OP pesticides, six nonspecific dialkylphosphate
(DAP) metabolites of OP pesticides were measured using gas
chromatography coupled with tandem mass spectrometry, which
resulted in a rapid detection of three dimethyl (DM) metabolites
and three diethyl (DE) metabolites with LODs in the range of
0:06–0:50 lg=L (Health Canada 2010). For these compounds,
the machine-measured concentrations below the LOD were pro-
vided by the lab and therefore used (Butler 1975).

Biomarkers were excluded from further statistical analyses if
>80% of all samples of each biomarker during gestation had con-
centrations below the LOD. After exclusion, 11 phthalate metabo-
lites [monomethyl phthalate (MMP), monoethyl phthalate (MEP),
mono(3-carboxypropyl) phthalate (MCPP), monoisobutyl phthal-
ate (MiBP), mono-n-butyl phthalate (MnBP), mono(2-ethyl-5-
carboxypentyl) phthalate (MECPP), mono[(2-carboxymethyl)
hexyl] phthalate (MCMHP), monobenzyl phthalate (MBzP),
phthalic acid (PA, an end metabolite of all phthalates used as a
proxy for unmeasured phthalate metabolites), mono(2-ethyl-5-
oxohexyl) phthalate (MEOHP), mono(2-ethyl-5-hydroxyhexyl)
phthalate (MEHHP)], 3 bisphenols [bisphenol A (BPA), bisphe-
nol S (BPS), bisphenol F (BPF)], and 5 DAP metabolites [dime-
thyldithiophosphate (DMDTP), dimethylthiophosphate (DMTP),
dimethylphosphate (DMP), diethylthiophosphate (DETP), and
diethylphosphate (DEP)] were examined in statistical analyses.

Ultrasound and Delivery Measures of Size
Ultrasound scans were carried out to assess gestational age and to
quantify fetal growth on the full study population (described in
detail elsewhere) (Gaillard et al. 2014). Femur length and head cir-
cumference were measured at 18–25 and >25weeks of gestation.
With the use of the Hadlock formula, estimated fetal weight for each
measurement was calculated (Hadlock et al. 1985). At birth, weight,
length, and head circumference were measured. For each measure,
the standard deviation scores (SDS)were computed using longitudi-
nal growth curves that accounted for gestational age at measurement
(Gaillard et al. 2014). Birth measurement SDS accounted for gesta-
tional age at delivery aswell as sex (Niklasson et al. 1991).

Potential Confounders
Potential confounderswere selected a priori using a directed acyclic
graph based on previous studies of prenatal phthalate, bisphenol,
and OP pesticide exposure and fetal growth and on biologically
plausible covariate–exposure and covariate–outcome associations
observed in our data (see Figure S1). Data on maternal age, parity
(0, 1, or 2+), marital status (married/partner vs. single), folic acid
intake (none, started in first 10 wk of pregnancy, started preconcep-
tion), household total net income (<e1,200 per month [i.e.,
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below the Dutch social security level], e1,200–2,000 per month,
>e2,000 per month), and highest completed educational level (low:
<3 y of high school; intermediate: 3+y of secondary education;
and, high: university degree or higher vocational training) was col-
lected by questionnaires during pregnancy. Also, information on
ethnicity was collected by questionnaires during pregnancy using
the ethnicity categorization of the central bureau of statistics,
Netherlands (Alders 2001) (Dutch, Indonesian, Cape Verdean,
Moroccan, DutchAntilles, Surinamese, Turkish, African, American
Western, American non-Western, Asian Western, Asian non-
Western, European, Oceania). This information was combined and
reclassified into Dutch, other-Western (Indonesian, American
Western, Asian Western, and European), and non-Western (Cape
Verdean, Moroccan, Dutch Antilles, Surinamese, Turkish, African,
American non-Western, Asian non-Western, and Oceania). Next,
with the use of a questionnaire in each trimester,motherswere asked
whether they smoked during pregnancy [never, until pregnancy was
known (smoking in the first trimester) or continued smoking during
pregnancy]. Similarly, data on maternal alcohol consumption was
obtained by questionnaires in each trimester. Mothers were asked
whether they consumed alcohol in the past 3 months (with answer
categories: “no,” “until pregnancy was known,” and “after preg-
nancywas known”).When participants reported that they consumed
alcohol, they were asked to classify their average intake in drinks
per week. This information was combined and reclassified into the
following categories: no alcohol consumption during pregnancy,
alcohol consumption until pregnancy recognized, continued occa-
sionally (<1 glass=wk), and continued frequently (1+glass=wk).
Maternal prepregnancy weight was self-reported in the first trimes-
ter of pregnancy, and heightwasmeasured at enrollment.

Statistical Analyses
Few DAP metabolite concentrations were missing due to insuffi-
cient sample volume or machine error. Also, very few fetal
growth measures during pregnancy (<1%) and several birth
measures of head circumference (39%) and length (28%) were
missing. These missing values and missing covariate data were
imputed 10 times with the multivariate imputation by chained
equations (MICE) method in R (version 3.5.3, R Development
Core Team); van Buuren and Groothuis-Oudshoorn 2011). DAP
metabolites were log10-transformed prior to the imputation pro-
cedure. Missing values were assumed to be missing at random.
The predictors used to impute missing data include fetal sex,
maternal age, prepregnancy weight, height, education level, eth-
nicity, income, marital status, parity, smoking, alcohol use, folic
acid use, phthalic acid, BPA, DMP, fetal and birth weight, head
circumference, and length. Missing data of continuous variables
were imputed using predictive mean matching and missing data
of categorical variables were imputed using logistic regression
factor (2 levels) and multinomial or ordered logit models
(>2 levels). Convergence plots of the MICE imputation were
inspected and showed a healthy convergence (data not shown).
The final imputed data set was used for the main analyses.

Prior to the main analyses, urinary exposure biomarker con-
centrations were expressed on a creatinine basis (micrograms per
gram creatinine), log-transformed (base 10), and averaged across
pregnancy. Biomarker concentrations in this study may vary
from day to day within each subject resulting in high (within-
subject) temporal variability (Perrier et al. 2016; Spaan et al.
2015). Thus, the average is a better indicator of exposure across
gestation, and our focus is on identifying fetal growth patterns
related to longer-term, rather than recent, exposures.

To estimate the joint effect of phthalate metabolite, bisphenol,
and DAP concentrations (i.e., the overall chemical mixture) on fe-
tal growth, we used the quantile-based g-computation (hereafter,

quantile g-computation) approach from the qgcomp package in R
(Keil et al. 2020). Quantile g-computation estimates the joint effect
of increasing all exposures within the mixture by a single quantile
(Keil et al. 2020). This method also allows estimation of the joint
effect of a specific subset of compounds from themeasuredmixture
(e.g., phthalatemetabolites)while still controlling for possible con-
founding from other chemicals in the mixture (e.g., bisphenols and
DAPmetabolites).

We first estimated the joint effect of the overall mixture (aver-
aged phthalate metabolites, bisphenols, and DAP metabolites across
pregnancy) on fetal size measured at 18–25, >25 wk, and birth.
Associations with size end points were examined in separate models
because results from previous studies of DAP and phthalate metabo-
lites and fetal growth showed that results differed based on timing
of outcome measurement (Ferguson et al. 2019; Santos et al. 2021).
To explore nonlinearity, we used a stepwise procedure, examining
whether model fit was improved with inclusion of square terms for
each exposure biomarker concentration. Quadratic terms for indi-
vidual biomarkers were included if they improved model fit based
on significantly lower Akaike information criteria (AIC) (likelihood
ratio test p<0:05). If one or more square terms are included in the
model, the overall mixture effect is determined by a quadratic term
coefficient as well as the coefficient for the lower-order mixture
effect, as for a traditional linear regression model. In addition, we
estimated differences between each quartile and the lowest quartile
based on the predicted SDS for each quartile Q,

SDSQq =B0 + ½B1 × ðqÞ�+ ½B2 × ðqÞ2�,
where q is the integer score assigned to each quartile (q=0,1,2,3),
B0 is the model intercept, B1 is the mixture coefficient, and B2 is
the quadratic term coefficient (when included). Effect estimates for
each quartile Qq relative to the lowest (reference) quartile Q0 were
then derived as the difference between the predicted SDS for each
quartile, SDSQq–SDSQ0. To facilitate interpretation of associa-
tions, we converted quartile-specific differences in SDS scores to
grams by multiplying the estimated difference by the standard
deviation (SD) of the mean fetal weight/birth weight at each time
point, where means (SD) were 369 g (74 g), 1,626 g (238 g), and
3,451 g (506 g) at 18–25 wk, >25 wk, and birth, respectively.
Although a spline term may be more appropriate for capturing
nonlinear associations, this approach would be problematic in
quantile g-computation since exposure is “quantized,” leaving
only a few distinct values for exposure and little information to
inform knot placement; thus, the overall mixture effect is defined
using simpler polynomial models. We did not include interaction
terms within our model and thus did not formally evaluate nonad-
ditive effects. Confounders for this and subsequent models, unless
otherwise stated, included: fetal sex (categorical), maternal age
(continuous), prepregnancy weight (continuous), height (continu-
ous), education level (categorical), ethnicity (categorical), income
(categorical), marital status (categorical), parity (categorical),
smoking (categorical), alcohol use (categorical), and folic acid use
(categorical).

Second, for each chemical class, we estimated the joint (mix-
ture) effects of compounds within each class while adjusting for
log10-transformed pregnancy-average concentrations of the indi-
vidual compounds in each of the other two chemical classes as
covariates. Square terms identified in the overall mixture model
were retained for these models, both in the mixture term and in
the confounder terms.

Sensitivity Analyses
We performed several sensitivity analyses. First, some of the con-
centrations included in subject-specific exposure averages (e.g.,
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DAP metabolites at >25weeks of gestation) were measured after
the assessment of fetal growth parameters (e.g., fetal weight at
18–25 weeks of gestation). We therefore conducted a sensitivity
analysis in which we separately explored the mixture effect of
the biomarker concentrations measured at <18, 18–25, and
>25weeks of gestation. In this analysis we only examined out-
comes at the same or subsequent visits to exposure measure-
ments. In other words, for birth weight and weight at >25 wk of
gestation we included all biomarker concentrations (measured at
<18, 18–25, and >25weeks of gestation) as separate components
in the mixture, whereas for weight at 18–25 weeks of gestation,
we only included biomarker concentrations measured at
<18weeks of gestation and 18–25 weeks of gestation. As in our
primary analyses, the same quadratic terms for exposure bio-
markers were included if the model fit was improved as deter-
mined by the AIC. These models retained the same confounders
as the primary analyses.

Second, we created single-pollutant regression models to esti-
mate the individual chemical biomarker associations with fetal
growth parameters. These estimates have been previously pub-
lished (Ferguson et al. 2019; Santos et al. 2021; Sol et al. 2021)
but used different model structures, exposure and outcome
parameterizations, and covariate sets based on the research ques-
tions of each study. Thus, we replicated those analyses here with
the same primary model structure (i.e., averaged biomarkers over
pregnancy in association with growth measurements at each time
point) and with the same covariates included in our primary
model for more direct comparison with our results.

Third, because of the high proportion of head circumference
(39%) and length (28%) measurements at birth that were imputed
for our primary analyses, we refit models among complete out-
come cases in which missing confounder data remained imputed
to test the robustness of these results to differing assumptions
about missing data. Fourth, because the concentrations below the
LOD for BPF and BPS were high, we investigated the association
between the mixture and fetal growth in which we excluded BPF
and BPS from the analyses. Fifth, Philippat and Calafat (2021)
observed that, for BPA, combining repeated urine measures into
an average based on creatinine-standardized concentrations may
not be suitable (Philippat and Calafat 2021). We therefore carried
out a sensitivity analysis in which we reran the main models for
weight with the inclusion of the averaged nonstandardized con-
centrations for BPA. Finally, for models where we observed sig-
nificant associations, we wanted to investigate which chemical
biomarker concentrations within the mixture were contributing
the most to observed effect estimates. Because the qgcomp pack-
age does not currently allow for estimation of weights when there
are nonlinear terms in the model, we reduced models to their lin-
ear forms and examined weights as an exploratory sensitivity
analysis.

Results
The median age of the mothers at enrollment was 31 y (Table 1).
The majority of mothers participating in this study were Dutch
(57%), highly educated (55%), had an income of >e2,000 (71%),
were nulliparous (63%), and did not smoke during pregnancy
(77%). Women included in the present analysis were older, more
often Dutch, highly educated, and less likely to smoke during
pregnancy in comparison with those the overall study population
(Table S1). See Table S2 for the distribution of participants
among the 14 individual ethnic groups in the present study sam-
ple and in the Generation R cohort as a whole.

Phthalate metabolite, bisphenol, and DAP metabolite concen-
tration distributions of the biomarkers included in the analyses are
presented in Table S3 (descriptive statistics of biomarkers

excluded from the analyses can be found in Table S4). Phthalate
metabolites were well detected with 0%–1% of observations below
the LOD for most metabolites. Regarding bisphenols, BPA had the
highest concentrations and was relatively well detected; however,
the percentage<LOD for BPS (<18 wk= 32%, 18–25 wk= 56%,
and >25 wk= 78%) and BPF (<18 wk=65%, 18–25 wk= 85%,
and >25 wk=69%) were relatively high. For DAP metabolites,
we observed higher concentrations among the DM metabolites as
compared to the DE metabolites, and 0%–20% of observed values
were below the LOD. The intraclass correlation coefficients calcu-
lated using a mean of three measurements, absolute-agreement,
and 2-way mixed-effects model, ranged from 0.2 to 0.7 for

Table 1. Demographic and lifestyle characteristics of study participants
(n=776).

Characteristic
Median (25th percentile, 75th
percentile) or n (percentage)

Maternal age (y) 31 (28, 34)
Ethnicity
Dutch 445 (57.3%)
Other Western 97 (12.5%)
Non-Western 234 (30.2%)

Educationa

Low 113 (15.0%)
Intermediate 228 (30.4%)
High 410 (54.6%)
Missing (n) 25

Household income (euros)
<1,200 per month 86 (12.8%)
1,200–2,000 per month 112 (16.6%)
>2,000 per month 476 (70.6%)
Missing (n) 102

Weight prepregnancy (kg) 64 (58, 72)
Missing (n) 95

Height at visit 1 (cm) 168 (163, 173)
Missing (n) 1

Parity
0 483 (62.6%)
1 204 (26.4%)
≥2 85 (11.0%)
Missing (n) 4

Marital status
Married/living with partner 669 (89.6%)
No partner 78 (10.4%)
Missing (n) 29

Smoking
No smoking during pregnancy 550 (77.1%)
Until pregnancy recognized 62 (8.7%)
Continued during pregnancy 101 (14.2%)
Missing (n) 63

Alcohol consumptionb

No consumption during pregnancy 270 (36.7%)
Until pregnancy recognized 129 (17.5%)
Continued occasionally 290 (39.4%)
Continued frequently 47 (6.4%)
Missing (n) 40

Folic acid intake
None 97 (15.6%)
Started in first 10 weeks of pregnancy 210 (33.8%)
Start preconception 314 (50.6%)
Missing (n) 155

Fetal sex
Male 391 (50.4%)
Female 385 (49.6%)

Note: Percentages missing: Education= 3:2%, Household income=13:1%, Weight
prepregnancy= 12:2%, Height at visit 1 = 0:1%, Parity= 0:5%, Marital status= 3:7%,
Smoking= 8:1%, Alcohol consumption= 5:2%, and Folic acid intake = 20%.
aLow: no education finished, primary education, lower vocational training, intermediate
general school or <3 y at general. Intermediate: ≥3 y of secondary education, interme-
diate vocational training or first year of higher vocational training. High: university
degree or higher vocational training.
bContinued occasionally = <1 glass=wk, continued frequently ≥1 glass=wk for at least
two trimesters.
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phthalate metabolites, 0.0 to 0.2 for bisphenols, and 0.3–0.5 for
DAPmetabolites.

Table 2 presents the distributions of pregnancy-averaged
chemical biomarker concentrations. Similar to the distributions of
the separate time points (Table S5), MEP had the highest averaged
concentrations across pregnancy among the phthalate metabolites.
Regarding the other chemical groups, BPA had the highest median

concentration among bisphenols and DMP was the DAP metabo-
lite with the highest average concentration across pregnancy.

Correlations were positive and generally higher within classes
of phthalate metabolites, bisphenols, and DAP metabolites
(e.g., Pearson correlation between MEHHP and MEOHP
metabolites = 0:9, between BPS and PBF=0:4, and DMDTP
and DMTP metabolites = 0:7) (Figure 1 and Table S6). Correlations

Table 2. Distributions of pregnancy-averaged chemical biomarker concentrations in micrograms per gram creatinine (n=776).

Biomarker Geometric Mean Geometric SD Minimum 25th percentile 50th percentile 75th percentile Maximum

Phthalate metabolitesa

MEP 115.5 3.1 5.4 51.1 117.6 257.3 3022.0
MMP 4.5 2.1 0.6 2.9 4.1 6.0 175.7
MiBP 15.5 2.1 1.1 9.5 14.3 24.9 170.9
MnBP 12.1 1.9 1.0 7.8 12.2 18.2 103.4
MECPP 14.7 1.9 0.6 10.0 14.5 20.9 227.3
MCMHP 5.8 1.8 0.1 4.2 5.7 7.9 105.2
MEOHP 7.7 2.0 0.9 5.0 7.7 12.2 98.5
MEHHP 8.7 2.0 0.3 5.7 8.9 13.6 112.8
MCPP 1.3 1.8 0.2 0.9 1.3 1.9 22.0
MBzP 3.3 2.5 0.2 1.8 3.4 6.0 67.6
PA 84.4 1.8 9.4 54.4 84.0 124.3 516.7
Bisphenolsa

BPA 1.1 2.1 0.1 0.7 1.1 1.8 27.6
BPS 0.1 2.4 0.0 0.1 0.1 0.2 2.0
BPF 0.2 2.1 0.0 0.1 0.2 0.4 3.1
DAP metabolitesb,c

DMDTP 0.3 4.0 0.0 0.2 0.4 0.8 8.2
DMTP 11.9 3.0 0.0 8.8 14.8 22.4 103.0
DMP 16.4 1.7 2.0 11.8 16.5 22.9 76.5
DETP 0.9 3.5 0.0 0.5 1.2 2.2 14.2
DEP 4.7 2.0 0.3 3.2 4.9 7.5 86.4

Note: BPA, bisphenol A; BPF, bisphenol F; BPS, bisphenol S; DAP, dialkylphosphate; DEP, diethylphosphate; DETP, diethylthiophosphate; DMDTP, dimethyldithiophosphate;
DMP, dimethylphosphate; DMTP, dimethylthiophosphate; LOD, limit of detection; MBP, mono-n-butyl phthalate; MBzP, monobenzyl phthalate; MCMHP, mono[(2-carboxymethyl)
hexyl] phthalate; MCPP, mono(3-carboxypropyl) phthalate; MECPP, mono(2-ethyl-5-carboxypentyl) phthalate; MEHHP, mono(2-ethyl-5-hydroxyhexyl) phthalate; MEOHP, mono(2-
ethyl-5-oxohexyl) phthalate; MEP, monoethyl phthalate; MiBP, monoisobutyl phthalate; MMP, monomethyl phthalate; SD, standard deviation; PA, phthalic acid.
aConcentrations below the LOD are imputed using LOD/

ffiffiffi

2
p

.
bMachine values below the LOD are used.
cThe few DAP metabolite concentrations that were missing at each timepoint were imputed prior to the correction for creatinine and the averaging across pregnancy.

Figure 1. Pearson correlation matrix for pregnancy-averaged exposure biomarker concentrations. Corresponding numeric data are reported in Table S6. See
Table 2 for biomarker abbreviations.
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across chemical classes were lower in magnitude. Furthermore, most
phthalate metabolites and bisphenols had low to moderate inverse
correlations with DAP metabolites. Regarding fetal growth out-
comes, Pearson correlations varied between 0.1 and 0.7 (Table S7).

Models of associations between mixtures of pregnancy-
averaged biomarkers and fetal weight (estimated during pregnancy
by ultrasound) and birth weight (measured at delivery) included
quadratic terms for pregnancy-averaged MBzP in models of
weight at 18–15 wk and >25 wk, and a quadratic term for
pregnancy-averaged MnBP in the model of weight at birth (Table
S8). To facilitate interpretation of the nonlinear model estimates
we also compared the predicted SDS for fetal weight or birth
weight for each quartile of the overall exposure mixture relative to
the predicted SDS for the first quartile (Q1) (Figure 2). In addition,
we converted the SDS differences by quartile into estimated differ-
ences in grams using the standard deviation of meanweight at each
time point (Table S8). At 18–25 wk, fetuses in Q2, Q3, and Q4 for
the total mixture had lower predicted SDS for fetal weight com-
pared with those in Q1. When converted to grams (based on
SD=74 g for mean fetal weight at 18–25 wk), estimated differen-
ces were –26 g (95%CI: −38, −13), –35 g (95%CI: −55, −15),
and –27 g (95%CI: −54, 1), for Q2, Q3, and Q4 vs. Q1, respec-
tively (Figure 2, Table S8). At >25weeks of gestation, fetuses in
Q2 and Q3 for the total mixture had slightly lower estimated fetal
weight relative to the Q1 group (–43 g; 95%CI: –83, 0g and –43 g;
95%CI: –112, 24 g based on SD=238 g), but there was no associ-
ation with the highest quartile of exposure (–5 g; 95% CI: –100,
88 g). At birth, compared with the lowest quartile of total mixture
exposure, estimated fetal weight was slightly higher for those in
Q2 (30 g; 95% CI: –35, 101 g based on SD=506 g), the same for
Q3 (0:0 g; 95% CI: –111, 111 g), and lower for those in the highest
quartile (–91 g; 95%CI:−258, 76).

Next, we estimated themixture effect for each individual chem-
ical group (e.g., phthalate metabolites) on fetal weight while

adjusting for the other chemical groups (e.g., bisphenols and DAP
metabolites). The individual biomarkers from other chemical
classes, as well as their square terms, where appropriate, were
treated as separate confounders in the models. In comparison with
associations for the overall chemical mixture, we observed a some-
what similar nonlinear pattern for the phthalate metabolite mixture
(Figure 3; Table S8). For example, those in the Q4 exposure group
had 142 g (95% CI: −258, −20) lower birth weight in comparison
with those in Q1. However, the differences in weight at 18–25 wk
and >25 wk between the Q1 and Q4 were essentially null.
Nonlinear (i.e., quadratic) terms did not improvemodel fit formod-
els of the DAP metabolites; therefore, associations were linear,
with inverse associations with fetal weight at 18–25 wk and
>25weeks of gestation, and weaker positive associations with
birth weight were observed. Models of bisphenols also included
linear terms only, and associations were close to the null for weight
at 18–25wk and at birth, and positive for weight at >25 wk.

Similar associations for the overall mixture and for individual
chemical classes were observed for femur length at 18–25 wk
and >25 wk (Table S9). This finding included the shape of the
dose–response relationship, with a nonlinear dose–response asso-
ciation for the overall mixture and the phthalate metabolite mix-
ture and a linear pattern for the bisphenol and DAP metabolite
mixtures. However, the following differences compared with
models of weight were noted. The inverse associations for the
overall mixture, the phthalate metabolite mixture, and the DAP
metabolite mixture were all greater in magnitude (i.e., more nega-
tive) for femur length models at 18–25 and >25week gestation.
Associations with the bisphenol mixture at these time points
remained statistically null, although effect estimates trended posi-
tive. Further, for models of length at birth, the shape of the dose–
response relationships differed slightly (e.g., the association for
the phthalate mixture were linear, but that of the bisphenol mix-
ture was nonlinear), and all effect estimates were close to the

Figure 2. Predicted difference in grams (SDS) (95% confidence interval) of estimated fetal weight or birth weight for each exposure quartile of the overall chemical
mixture. Corresponding numeric data are reported in Table S8. Models are adjusted for fetal sex (categorical), maternal age (continuous), prepregnancy weight
(continuous), height (continuous), education level (categorical), ethnicity (categorical), income (categorical), marital status (categorical), parity (categorical), smok-
ing (categorical), alcohol use (categorical), folic acid use (categorical). Quadratic terms for individual biomarkers were included if they improved model fit based
on significantly lower Akaike information criteria (AIC) (likelihood ratio test p<0:05): Weight at 18–25 wk=monobenzyl phthalate metabolite, weight at
>25 wk=monobenzyl phthalate metabolite, and weight at birth =mono-n-butyl phthalate metabolite. SDS, standard deviation scores.
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null. For models of head circumference, quadratic terms were
included for all mixtures and phthalate metabolites at 18–25 wk
and all mixtures and DAP metabolites at >25 wk, and no statisti-
cally significant associations were observed (Table S10). However,

albeit not statistically significant, the inverse association between
the DAP metabolite mixture and head circumference at 18–25 wk
was slightly below the null, and at birth it was slightly above the
null.

Figure 3. Predicted difference in grams (95% confidence interval) of estimated fetal weight or birth weight for each exposure quartile of the separate chemical
class mixture. Corresponding numeric data are reported in Table S8. See Table 2 for biomarker abbreviations. Models are adjusted for fetal sex (categorical),
maternal age (continuous), prepregnancy weight (continuous), height (continuous), education level (categorical), ethnicity (categorical), income (categorical),
marital status (categorical), parity (categorical), smoking (categorical), alcohol use (categorical), folic acid use (categorical). Phthalate metabolite models are
additionally adjusted for log10-transformed pregnancy-averaged concentrations of bisphenols (BPA, BPS, BPF) and DAP metabolites (DMDTP, DMTP,
DMP, DETP, DEP). Bisphenol models are additionally adjusted for log10-transformed pregnancy-averaged phthalate metabolites (MMP, MEP, MCPP, MiBP,
MnBP, MECPP, MCMHP, MBzP, PA, MEOHP, MEHHP) and DAP metabolites (DMDTP, DMTP, DMP, DETP, DEP). DAP metabolite models are addition-
ally adjusted for log 10 transformed pregnancy phthalate metabolites (MMP, MEP, MCPP, MiBP, MnBP, MECPP, MCMHP, MBzP, PA, MEOHP, MEHHP)
and bisphenols (BPA, BPS, BPF). Quadratic terms for the phthalate mixture model were included because they improved model fit based on significantly lower
Akaike information criteria (AIC) (likelihood ratio test p<0:05): Weight at 18–25 wk=MBzP, weight at >25 wk=MBzP, and weight at birth =MBP.
Nonlinear (i.e., quadratic) terms did not improve model fit for models of the DAP metabolites and bisphenols.
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Sensitivity Analyses
First, we compared our results to a model where all visit-specific
chemical concentrations, as opposed to averages, were modeled
in association with fetal weight or birth weight. In this analysis
we only examined outcomes at the same or subsequent visits to
exposure measurements, as described above. In comparison with
the main analyses, the estimates for the overall mixture effect on
weight at each time point were similar (Table S11). Second, the
results of the analyses in which we excluded BPF and BPS were
similar as compared with the main results (Table S11). Third, the
results of the analyses in which we included the averaged nonstan-
dardized concentrations for BPA were similar in comparison with
the main results (Table S11). Fourth, although not directly compa-
rable because separate exposuremodels do not account for the joint
effects of individual exposure biomarkers, consider nonlinear
dose–response relations, or correct for copollutant confounding,
single-pollutant model results showed patterns similar to those we
observed in our mixtures analysis (Table S12). However, there
were some discrepancies compared our primary results. For exam-
ple, individual phthalate metabolite associations with fetal weight
at 18–25 wk were around the null, which is different from the mix-
ture analyses in which we observed an inverse association between
the phthalate mixture and weight at 18–25 wk. By modeling co-
occurring chemical exposures, associations with a certain outcome
can be identified which are missed in single regression models that
do not account for joint effects or adjust for coexposures. However,
the sensitivity analyses only modeled linear associations, which
could also have contributed to differences in results. Fifth, when
we reanalyzed models in which we only used complete cases for
head circumference and length, results were similar to those from
the main analyses where these measures were imputed (Table
S13).

Finally, although we could not estimate weights from models
with nonlinear terms, we examined weights in reduced models
with linear terms only as a sensitivity analysis (Table S14). These
estimates provide information on the contribution of each chemi-
cal biomarker to the overall effect in both the negative and posi-
tive directions. We used these weights to examine the most
important contributors to the negative effects for interpretation of
our primary results, where negative effects outweighed the posi-
tive (i.e., because associations were inverse). Phthalate metabo-
lites had the highest negative contribution (18–25 wk=55%,
>25 wk= 68%, birth= 68%), followed by DAP metabolites
(18–25 wk= 41%, >25 wk= 28%, birth= 23%). Among these,
MEOHP (18–25 wk= 25%, >25 wk= 32%, birth= 23%) was
the metabolite that contributed the most to the negative association.
The DAP metabolite DEP also had a substantial contribution to the
negative association with weight at 18–25 wk (26%). On the other
hand, MEHHP (18–25 wk= 49%, >25 wk= 30%, birth = 19%)
contributed most to the positive association. Independent effects
from these models should be interpreted cautiously, because
our statistical evidence is for the joint effects noted in our pri-
mary results.

Discussion
In this large population-based study, we observed that prenatal
exposure to a mixture of phthalates, bisphenols, and OP pesti-
cides was associated with lower fetal weight estimated by ultra-
sound during pregnancy, and lower weight at birth. These
associations appeared to be driven by phthalates and OP pesti-
cides. An important finding was that associations were nonlinear,
and the nature of the nonlinearity differed by the period when
weight was measured. For estimated fetal weight measured by
ultrasound, the largest difference at 18–25 wk was approximately
equivalent between the exposure in the lowest quartile and the

other exposure quartiles (i.e., first vs. the second, third, and fourth
quartile). For weight at >25 wk, the largest difference was
observed between the exposure in the lowest quartile and the ex-
posure in the second and third quartile. For birth weight, how-
ever, the largest difference was observed comparing the lowest
exposure quartile with the highest exposure quartile (i.e., first vs.
the fourth quartile). These results suggest differences in suscepti-
bility of nonpersistent chemical exposure mixtures for fetal
weight gain occurring in different periods of pregnancy.

Most epidemiological studies of nonpersistent chemicals have
focused on the health effects of individual chemical exposures
(Lazarevic et al. 2019). Generally, results from these previous
studies have been inconclusive (Casas et al. 2016; Dalsager et al.
2018; Ferguson et al. 2016; Harley et al. 2016; Philippat et al.
2012, 2014; Shoaff et al. 2016; Wolff et al. 2008; Zhu et al.
2018). However, the assessment of individual exposure effects on
health outcomes may not be ideal to study these compounds.
Single-chemical models can bias effect estimates in the presence
of copollutant confounders and increase false positives when cor-
related exposures are modeled separately (Braun et al. 2016;
Kortenkamp 2007). Further, chemicals can act additively, synerg-
istically, antagonistically, or they may be inert with respect to the
health outcomes of interest (Gaudriault et al. 2017; Kortenkamp
2007). Thus, single-chemical models may over- or underestimate
the risks of exposure when exposures are modeled separately
(Braun et al. 2016; Kortenkamp 2007). By using the quantile-g
computation to model nonpersistent chemical exposure, we were
able to account for the joint effect of the exposure, reduce the
number of tests significantly (i.e., false discoveries), and account
for copollutant confounding. Further, quantile g-computation can
account for nonlinear dose–response relationships and provides
simplicity of inference by presenting one or two estimates for the
joint mixture effect. Weighted quantile sum (WQS) regression
shares this simplicity of inference and also allows for the estima-
tion of joint effects. However, WQS regression is limited by the
assumption of directional homogeneity (i.e., effects of all expo-
sures are zero or in the same direction) (Keil et al. 2020;
Lazarevic et al. 2019). Another innovative method that can esti-
mate the joint effects of exposure to mixtures is Bayesian kernel
machine regression (BKMR). BKMR has many benefits, such as
the ability to concurrently estimate, among highly correlated
chemicals, joint effects, nonlinear relationships, and exposure
interactions (Bobb et al. 2015). However, the quantile g-compu-
tation method provides one or two parameters for a dose–
response estimation, whereas the dose–response parameters of
the BKMR are not as easily interpretable.

Comparing our results to prior studies is challenging because
of the differences in chemical exposure biomarkers included in
the mixture and variation in the methods used to assess the chem-
ical mixture–fetal growth association. Moreover, there are vast
differences in exposure assessment approaches (number and tim-
ing of urine sample collections) and approaches for outcome
assessment (birth measures vs. ultrasound). All but one (Ouidir
et al. 2020) of the previous studies investigating chemical mix-
tures and fetal growth have focused only on birth weight as an
outcome, and none have focused on jointly estimating the effects
of the nonpersistent exposures examined in our study (Chiu et al.
2018; Kalloo et al. 2020; Lenters et al. 2016; Philippat et al.
2019; Woods et al. 2017). Furthermore, previous analyses have
addressed different research questions pertaining to chemical
mixtures, such as identifying the most potent compound within
the mixture, which requires different statistical methods (Lenters
et al. 2016; Philippat et al. 2019).

The results from these studies can best be summarized by
research question. First, several studies have used methods such
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as elastic net penalized regression (ENET) to identify the most
toxic compounds in the mixture. Philippat et al. (2019) estimated
the association of prenatal exposure to 9 phenols and 11 phthalate
metabolites with birth weight. Benzophenone-3 was the only bio-
marker selected by the multipollutant ENET model that was asso-
ciated with birth weight, and no associations were observed for
phthalate metabolites (Philippat et al. 2019). Similarly, Lenters
et al. (2016) assessed associations using ENET between multiple
biomarkers of persistent and nonpersistent chemicals and birth
weight, identifying MEHHP and several persistent organic pollu-
tants to be associated with lower birth weight, and mono(oxoiso-
nonyl) phthalate to be associated with higher birth weight.
Second, a commonly used approach for reducing the dimension-
ality of exposures is the use of principal components analysis
(PCA). Chiu et al. (2018) used this approach and identified
two principal components [bis(2-ethylhexyl) phthalate (DEHP)
metabolites and other phthalate metabolites] that were both asso-
ciated with lower birth weight (Chiu et al. 2018). Kalloo et al.
(2020) also used PCA and observed that a component with load-
ings from DAP metabolites and per- and polyfluoroalkyl substan-
ces (PFAS), but not phthalate metabolites, was associated with
lower birth weight. Lee et al. (2020) identified a component com-
prised of bisphenols and phthalate metabolites but did not
observe an association between that component and birth weight.
Finally, several studies have used approaches to estimate joint
effects of the mixture, as was our goal in the present analysis.
The study by Chiu et al. mentioned above used BKMR and noted
a decrease in birth weight in association with the overall mixture
(including phthalate metabolites). Woods et al. (2017) also
observed an overall mixture effect, when the mixture was com-
prised PFAS, lead, and DAP metabolites.

In summary, with regard to the chemicals examined in the
present study, OP pesticide exposure appears to be the most con-
sistently associated with birth weight in studies using a mixture
approach. Regarding phthalate metabolites and bisphenols, stud-
ies using a mixture approach have produced conflicting results.
Although we did not observe associations for DAP metabolites
and birth weight, we did observe associations with growth meas-
ures in pregnancy. On the other hand, we did observe associa-
tions between the phthalate mixture and birth weight for
individuals in the fourth quartile of exposure in comparison with
those of the first quartile. Given the major differences in design
and methods across studies, these incongruences are not neces-
sarily surprising. Additional work to harmonize across methodol-
ogies for better comparability is needed in mixtures research.
Although, effects of mixtures also depend on the specific mixture
to which each population is exposed; inconsistencies across stud-
ies may reflect different exposure characteristics of each popula-
tion, not just study design and methodology differences.

Most previous studies of these chemicals and fetal growth use
growth parameters at birth only, whereas our study also included
ultrasound measures in pregnancy to examine fetal growth. Fetal
growth changes during specific periods of pregnancy may differ-
entially affect childhood health outcomes (Gishti et al. 2014;
Henrichs et al. 2010) and may also exhibit differences in suscepti-
bility to environmental chemical exposures (Braun and Gray
2017). We observed that differences in the prenatal exposure
mixture (i.e., first vs. the second, third, and fourth quartile) were
associated with lower estimated fetal weight at 18–25 wk and
that differences in the prenatal exposure mixture between the ex-
posure in the lowest quartile and the exposure in the second and
third quartile were associated with lower estimated fetal weight
at >25 wk. Decreased growth in this period may be critical for
health outcomes later in life. For example, first-trimester fetal
growth restriction is linked to faster weight gain and adverse

cardiovascular profiles in school-age children (Jaddoe et al. 2014;
Mook-Kanamori et al. 2010). On the other hand, it is notable that
differences in birth weight were only apparent at high levels of
exposure (e.g., being in the fourth quartile of exposure) in our
analysis. Lower birth weight is associated with numerous health
outcomes such as increased rates of obesity, insulin resistance,
and type 2 diabetes (Barker 2004; Jornayvaz et al. 2016). Based
on this pattern of associations, we hypothesize that certain fetal
compartments (e.g., organs, adipose, skeleton) are differentially
vulnerable to environmental exposures. For example, organs and
skeleton, which constitute most of the fetal weight in the first half
of pregnancy, may be more sensitive to low levels of these expo-
sures than adipose, which accumulates in the second half of preg-
nancy (Orsso et al. 2020; Toro-Ramos et al. 2015).

Findings of this study should be interpreted considering the
following limitations. First, phthalates, bisphenols, and OP pesti-
cides have short half-lives. We used urinary measurements,
which are preferred for assessment of exposure to these com-
pounds (Nieuwenhuijsen 2015). However, concentrations meas-
ured in spot urine samples might not accurately reflect pregnancy
exposure because concentrations vary from day to day, depend-
ing on diet and lifestyle. We therefore created subject-specific
averages based on three measurements during pregnancy that
may be a more stable reflection of exposure over time. Despite
this improvement, measurement error may have resulted in
imprecise effect estimates (Perrier et al. 2016). This study was
also limited by the high percentages below the LOD for BPF and
BPS, which resulted in less variability to measure the exposure
on a continuous scale and may have affected the interpretability
of the effect estimate (i.e., when exposure levels are the same for
individuals in the first and second quartiles of BPF or BPS expo-
sure). However, results were similar when BPF and BPS were
excluded from the main models in the sensitivity analyses.
Finally, we did not formally evaluate nonadditive effects using
the quantile g-computation and thereby may have missed syner-
gistic effects. However, under certain circumstances, e.g., when
exposures are highly correlated, nonlinear terms could also cap-
ture nonadditivity within the joint effect (Belzak and Bauer
2019). In our more realistic setting, where correlations ranged
from moderate to high, it is unlikely that we were captured all
nonadditivity in the joint effect estimates; however, the finding
from Belzak and Bauer (2019) is an important reminder that non-
linear joint effect estimates of mixtures may capture nonadditive
associations even if interactions are not explicitly modeled.

However, this study has several major strengths, such as the
large sample size, the availability of three urinary measurements
of chemical concentrations to assess exposure, and the repeated
ultrasound scans that captured fetal size at multiple time points in
pregnancy and in different parameters (e.g., femur length in addi-
tion to weight). This study also used quantile-g computation, a
novel method to assess the joint effect of a chemical mixture,
which provides easily interpretable and parsimonious effect esti-
mates for the mixture as a whole. Such joint effects may more
closely resemble real-world effects of exposures than adjusted in-
dependent effects when the exposures co-occur (Keil et al. 2020).

In conclusion, we observed that higher exposure to a mixture
of phthalates, bisphenols, and OP pesticides was associated with
lower fetal weight at 18–25 wk. At >25weeks of gestation, dif-
ferences in weight were observed between the first and the sec-
ond and first and third quartile of the mixture exposure, and
differences at birth were observed between the first and fourth
quartile of the mixture exposure. These associations appeared to
be driven by phthalates and OP pesticides. Growth earlier in
pregnancy appeared to be susceptible to lower levels of exposure,
whereas higher levels of exposure were needed for an association
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with birth weight. The chemical exposures in this mixture are
widespread in pregnant women; thus, the impact of these chemi-
cal mixtures on fetal and neonatal health could be substantial.
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