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1 INTRODUCTION 

As far as the propulsion systems of marine vessels are 
concerned, a number of thruster types have been 
developed up to date for the requirements of the 
maritime industry, but when it comes to their 
application in dynamic positioning systems, the non-
retractable and retractable azimuth thrusters, in 
eventual combination with tunnel thrusters, are 
mostly used. This choice is quite understandable, and 
is justified by the fact that due to the different 
directions of external disturbances, thrusters should 
be able to operate in all 360° at all times.  Somewhat 
less common application is the Voith Schneider 
cycloid propulsor and combinations that include main 
propeller(s) with rudder(s).  

The orientation, i.e. the angle or azimuth of each 
thruster, as well as the required thrust it generates, is 

determined by the control logic of dynamic 
positioning systems. This whole process is called the 
thrust allocation and represents a very complex 
mapping of the previously calculated or estimated 
environmental forces and moment in the set of 
referent states of the available thrusters. 

Since dynamically positioned vessels usually have 
fixed and azimuth thrusters, the vector of design 
variables must have one variable for fixed (e.g. 
tunnel) thrusters and two for azimuth thrusters. The 
basic constraints on the objective function are (at 
least) three equalities stemming from the fact that the 
generated thrust forces in surge and sway and 
moment in yaw should be equal with environmental 
loads for all three horizontal degrees of freedom. This 
simplified optimization approach can be reduced on 
finding the conditional extremes of the Lagrange's 
objective function. If additional constraints, usually 
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expressed by the matrix inequalities (e.g. thruster 
saturation, thruster efficiency, electrical power 
limitation, etc.), are added to the basic constraints, the 
optimization task becomes considerably more 
complex and is usually solved by the quadratic 
programming algorithms or so-called QP solvers 
(Jenssen and Realfsen, 2006).  

From a theoretical point of view, the problem of 
the thrust allocation could be solved by linear 
programming (LP solvers), but due to the 
approximation of the relation between the electrical 
power consumption (kW) and the generated thrust 
(kN) by the quadratic function, some of the variants 
of the quadratic programming are usually used 
(Snijders, 2005; Wit, 2009). 

If the problem of the quadratic programming of 
the thrust allocation is set correctly, it can be explicitly 
solved, i.e. it is possible to determine the global 
minimum (Leavitt, 2008). In general, the QP consists 
of the quadratic objective function and linear 
equalities and inequalities representing the 
conditions, i.e. the constraints. In addition to this, 
Sørdalen (1997) has shown that the constraints on 
azimuth thrusters can lead to singular configurations, 
which he solved using the method of singular values 
decomposition (SVD). This approach provided 
significantly lower power consumption, effectively 
eliminated the issue of the forbidden zones, reduced 
tear and wear of thrusters. With the application of so-
called logical inequalities and Moore-Penrose pseudo-
inverse matrix (SVD method), it is possible to directly 
determine the vector of demanded forces and moment 
(Gierusz and Tomera, 2006; Yang et al., 2011b).  

If the constraints in the quadratic optimization task 
become nonlinear, it is no longer possible to use the 
QP solvers directly. One of the possible solutions to 
this problem is the application of the so-called 
sequential quadratic programming (SQP) technique 
that is generally used to minimize an arbitrarily 
selected objective function regarding the nonlinear 
constraint set in the form of equalities and 
inequalities. The possible applications of SQP 
approach in optimum thrust allocation were 
investigated by Liang and Cheng (2004) and Johansen 
et al. (2004). Although tested only on simulation 
models, the obtained results (Liang and Cheng, 2004) 
indicate very good capabilities of the SQP solver 
which in a computational sense can execute the 
allocation very fast with a small thrusters' azimuth 
change. Johansen et al. (2004) have further expanded 
the application possibilities of the SQP approach with 
the emphasis on avoiding possible singularities that 
are unacceptable in control sense. 

In addition to the SQP approach for solving the 
problem of nonlinear constraints of the optimization 
task, most recently the genetic algorithms (GA) have 
been increasingly used as a robust solution that 
ensures a good convergence of the global 
optimization process (Yang et al., 2011a; Zhao et al., 
2010). The tests that have been carried out by Yang et 
al. (2011a) indicate the promising results on using 
these algorithms, although the authors point out the 
problem of possible application of GA in thrust 
allocation regarding the slow convergence.  

In order to recap, one should notice that the 
current state-of-the-art in nonlinear optimization for 

gradient-based algorithms is surely the sequential 
quadratic programing (SQP), both for general 
applications and specific thrust allocation problems. 
In comparison with e.g. Lagrangian multiplier 
method (LMM) or pure QP algorithms, which are 
both appropriate solutions for optimization problems 
with linear equality and linear inequality constraints, 
SQP approach is superior when dealing with 
problems that have significant nonlinearities within 
their constraints.  

On the other hand, and in comparison with the 
gradient-based optimization methods, derivative free 
optimization methods usually does not need any 
particular information about the gradient or Hessian 
matrix of the objective function. Moreover, derivative 
free methods can be applied even for objective 
functions that are not continues nor differentiable, 
which makes them particularly convenient in cases 
when the objective function is not explicitly defined, 
when evaluation of the objective function and/or its 
derivatives is too much time consuming and thus not 
acceptable, when objective function is noisy and 
derivatives or finite difference approximations are not 
reliable nor acceptable for further analysis, etc.  

Although the field of derivative free optimization 
is usually extended, or at least coupled with the so-
called black-box optimization methods, the focus in 
this work is placed only to the family of the so-called 
direct search (DS), or pattern search (PS) algorithms. 
The main reason for this choice is that direct search 
algorithms are much better supported and have very 
detailed literature background on rigorous 
convergence analysis (Audet and Hare, 2017; Conn et 
al., 1997, 1991; Torczon, 1997). Therefore, the 
applicability and implementation issues of selected 
derivative free direct search algorithms in optimal 
thrust allocation problems have been analysed and 
discussed in this paper, and avenues for future 
research are emphasized as well. 

2 METHODOLOGY  

2.1 General considerations on direct search algorithms   

Direct or pattern search algorithms are based on a 
common idea by which a sequence of points is 
determined with the property that in each successive 
point the value of objective function decreases. As 
already mentioned, this sequence of points, which 
defines directions from one point to another, is not 
calculated by means of function gradient, but is rather 
based on a set of points around the current point, in 
which the objective function is evaluated. These 
surrounding points are determined by polling and 
thus they create a so-called poll set that presents a 
mesh, i.e. all possible vector directions by which one 
can shift from the current point to any other point 
from the poll set. If some point within the poll set is 
found that sufficiently decreases the objective 
function at the current step, than that point becomes a 
new current point for the next iteration. Otherwise, 
the mesh should be redefined so the algorithm could 
try to find a new direction on a smaller scale.  In 
general, one can differ three main direct search 
algorithms as follows: 
− generalized pattern search (GPS) algorithm,  
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− generating set search (GSS) algorithm,  
− mesh adaptive direct search (MADS) algorithm. 

Besides the all other significant properties, 
generally speaking, the main difference between GPS, 
GSS and MADS is the number of directions from the 
current point to any other point from the poll set, as 
well as direction geometrical characteristics. Other 
important properties and differences are mostly 
related to handling of linear and nonlinear 
constraints.   

2.2 Generating set search algorithm with augmented 
Lagrangian 

The generating set search (GSS) algorithm is very 
similar to GPS, particularly for the problems of 
unconstrained optimization in which their patterns 
are identical. The main difference between GPS and 
GSS is related to constrained optimization problems. 
GSS, as an extension of GPS, is well suited for bounds 
and linear constraints, where directions in positive 
spanning set   are determined using the nearby 
active constraints from the working set (Kolda et al., 
2006, 2003). In other words, GSS is more efficient in 
comparison with GPS for linearly constrained 
optimization problems.  

When it comes to nonlinear constraints, GPS is not 
well suited, but with implementation of augmented 
Lagrangian within the GSS algorithm, which was 
introduced by Kolda et al. (2006), GSS can handle 
optimization problems with both linear and nonlinear 
constraints. However, this approach has been 
analysed under the assumption that the objective 
function and constraints should be twice continuously 
differentiable, which is typical required property for 
gradient-based methods.  

The augmented Lagrangian pattern search (ALPS) 
algorithm is primarily used for solving optimization 
problems with nonlinear equality and inequality 
constraints, which means that bounds and linear 
constraints are handled differently, usually with 
nearby active constraints strategy (Kolda et al., 2006, 
2003). For some general optimization problem with 
nonlinear equality and inequality constraints of the 
following form  
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that is considered to be solved by some pattern search 
algorithm, associated sub-problem based on 
augmented Lagrangian should be formed as follows 
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where 0≥iλ  are Lagrangian multipliers, 0≥is  
are slack variables, and ρ  is positive penalty 

parameter. One should notice that each sub-problem 
(2) presents one iterative step, which makes this 
approach with nonlinear constraints highly 
computationally expensive. During each iteration, 
values of ,λ  ,s  and ρ  are kept constant, until the 
sub-problem (2) is minimized, whereupon are all 
updated. Otherwise, the penalty parameter ρ  is 
increased and a new sub-problem is formed. These 
steps are repeated until the termination, which is 
based on some predefined stopping criteria. 

2.3 Mesh adaptive direct search algorithm  

The MADS algorithm, which was introduced by 
Audet and Dennis (2006), primarily as direct search 
algorithm for solving constrained optimization 
problems of the general form 

min ( )f
∈Ωx

x  (3) 

does not require any assumptions related to the 
smoothness of objective function nor to constraints 
that could be either linear, or nonlinear, or both. If  

RΩ =  in (3), than the previous optimization 
problem becomes unconstrained. 

General constraints with MADS algorithm are 
usually handled by the so-called extreme barrier 
strategy (Audet and Hare, 2017), which is based on 
extreme barrier function : { }nf R RΩ → ∪ ∞  
defined as  

( ),    if 
, if .

f
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The associated principle is very simple and is 
based on the fact that optimization is performed using 
the barrier function ( )Ωf x   as the objective, rather 
than ( ).f x  More advanced approaches can take 
into account two-phase extreme barrier strategy, filter 
methods (Audet and Dennis, 2004; Dennis Jr. et al., 
2004), progressive barrier strategy (Audet and Dennis, 
2009; Le Digabel, 2011) or mixture between extreme 
barrier and progressive barrier called progressive-to-
extreme barrier strategy (Audet et al., 2010).  

However, the MADS algorithm is primarily 
orientated to inequality constraints with bounds, 
which means that equality constraints could be 
challenging. For this purpose, one can substitute one 
equality constraint with two equivalent inequality 
constraints, although this approach could be 
cumbersome in some optimization problems and 
algorithm efficiency could be questionable or even not 
acceptable. This issue is also related to the complexity 
of equality constraints and to the selection of initial 
point 0.x   

Possible alternatives for handling this issues could 
be closely related to approaches introduced with GPS 
and GSS algorithms, i.e. to equality constraint 
handling by means of the nearby active constraints or 
augmented Lagrangian method (Kolda et al., 2006, 
2003). Recent research directions are also aimed 
towards the combining of gradient-based methods, 
like sequential quadratic programing, and derivative 
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free optimization with equality constraints (Tröltzsch, 
2016). 

3 OPTIMAL THRUST ALLOCATION  

3.1 Problem definition  

From the optimization point of view, thrust allocation 
problem usually comes down to the minimization of 
total power consumption or some other appropriate 
objective function : ,→f X  in terms of thrust 

.x  Hence, this optimization task can be defined as 
follows  
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where ∈ Xx  and { | ( ) 0,n
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1,2,..., ;  ( ) 0,  1,2,..., }ji p j q= ≤ =g x  presents a set 
of feasible thrust region that depends on equality and 
inequality constraints 

T
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T
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and Bu  are lower and upper boundaries of ,x  and 
power function f  is commonly assumed to be 
twice-continuously differentiable, i.e. sufficiently 
smooth. 

Therefore, nonlinear optimization problem (5) for 
thrust allocation can be redefined in the following 
form  
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where objective function is total delivered power for r 
thrusters  (Leavitt, 2008; Wit, 2009), defined in terms 
of individual thrust components ixu  and iyu  of 
resultant individual thrust iT  of each thruster in 
body reference frame {b}, ,maxiP  and ,maxiT  indicate 
maximum power and maximum thrust for any i-th 
thruster, respectively, 1 2,< ≤im  and u presents the 
space of thruster states, which is for r thrusters 
defined as 

T 2
1 1 2 2[ , , , ,..., , ,..., , ] .r

x y x y ix iy rx ryu u u u u u u u= ∈u
 (7) 

Matrices eqA  and eqb  in (6) are defined as 
T

eq eq[ , ]=A B C  and T
eq eq[ , ] ,= −b τ 0  which take 

into account thrust allocation problem = −Bu τ  and 
additional equality constraints for tunnel thrusters in 
form of eq eq ,=C u 0  if there are any. Matrix 

3 2rR ×∈B  is a well-known configuration matrix and 
although τ  is usually a control vector calculated by 
a DP controller, in this quasi- static analysis it 
presents a vector of environmental loads in the 
horizontal plane that are calculated on the basis of 
model tests according to the usual design 
recommendations. Matrices FZik

iA  and FZik
i0  are 

defined as 
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and are basis for modelling forbidden zones in terms 
of circle sectors bounded with two radii at angles 

FS
startϕ ik  and FS

end ,ϕ ik  where k indicates what feasible set 
FSik  is selected according to some predefined 
criteria. Final inequality equations 2 2 2

,max+ ≤ix iy iu u T  
in (6) are related to saturation of thrusters and in this 
form they also present nonlinear thrust regions for 
each thruster. 

Alternative approach, for 1.5,=im  in which the 
relationship between delivered power and generated 
thrust is based on thrust and torque coefficients TK  
and ,QK  is very similar to (6). The only difference is 
in the form of the objective function, while all other 
constraints are the same. In this case, objective 
function of nonlinear optimization problem can be 
defined as   
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where 0,T iK  and 0,Q iK  are thrust and torque 
coefficients at bollard pull conditions, respectively, 

iD is propeller diameter, ρ  is (sea) water density, 
and 1,2,..., .=i r  

3.2 Numerical example and analysis of results    

Straight applications of direct search algorithms in 
optimal thrust allocation do not require any 
additional transformation of optimization tasks. In 
other words, optimization tasks like (6) or (9) are 
already fully prepared in order to be solved by means 
of pattern search algorithms, which is very 
convenient, particularly if one wants to perform 
appropriate comparisons between these algorithms 
and any other algorithm that could be of interest, like 
QP, SQP, etc.  
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Table 1. Thruster configuration with basic data __________________________________________________________________________________________________ 
#  Thruster  (m)xl   (m)yl   (m)D  /P D  -1 (min )n  max  (kN)T  min  (kN)T  max  (kW)P  __________________________________________________________________________________________________ 
1  Tunnel  82.0  0.0  2.0  1.2  330.0   165.0   -165.0  ±1200.0 
2  Azimuth 57.0  4.5  2.5  1.2  900.0   390.0   0.0   2400.0 
3  Azimuth 52.0  -4.5  2.5  1.2  900.0   390.0   0.0   2400.0 
4  Azimuth 28.0  -15.0  2.5  1.2  900.0   390.0   0.0   2400.0 
5  Azimuth -22.0  15.0  2.5  1.2  900.0   390.0   0.0   2400.0 
6  Azimuth -60.0  15.0  3.6  1.2  630.0   760.0   0.0   4500.0 
7  Azimuth -60.0  -15.0  3.6  1.2  630.0   760.0   0.0   4500.0 __________________________________________________________________________________________________ 

 

For the purpose of this paper, a simple example is 
provided for heavy lift DP vessel Saipem 3000, which 
was selected as a reference vessel with the length 
overall of 162.0 m,oaL =  beam 38.0 mB = , 
displacement 24000 t,∆ =  and is equipped with 
seven thrusters, one of which is a bow tunnel thruster 
and the rest are azimuth thrusters. Their approximate 
positions on the hull regarding the body reference 
frame are given in Table 1, together with basic 
thruster data.  

In order to illustrate the problem, only the 
allocation results with environmental loads at wind 
speed of 10 m/s,=windv  significant wave height 

3.21 m,=sH  wave peak period 8.41 s=T  and 
sea current velocity 0.5 m/s=cv  are presented. The 
angle of attack was the same for all disturbances at 
any time and varied from 0γ = °  to 360°  with the 
rate of 10 .°  Environmental loads were calculated on 
the basis of model tests according to usual design 
recommendations. Finally, the vector 

T
, , ,[ ] ,τ = x loads y loads z loadsF F N  which represents the 

total environment load for some angle of attack ,γ  
was calculated quasi-statically in order to be used in 
(6).  

The optimal thrust allocation is performed by 
MADS algorithm with augmented Lagrangian and 
obtained results with MADS are compared with 
results obtained by SQP. For this analysis, results of 
SQP algorithm served as reference values, and 
comparisons were made in terms of average RMSE of 
optimal solutions between MADS and SQP, as well as 
in terms of average convergence time for these two 
approaches. The target PC configuration was based 
on Intel(R) Core (TM) i5-7500 CPU @ 3.40 GHz, 16 GB 
RAM, x64-based processor, 64-bit operating systems 
(MS Windows 10). Optimization was performed using 
optimization task (6) for 1.5=im  and with 
MathWorks MATLAB R2017b as a support software. 
In order to additionally simplify this analysis, 
forbidden zones were not included, so the problem of 
non-convex thrust regions could be omitted. 

Hence, after all 36 optimization tasks had been 
solved, the average convergence time for MADS was 
0.587459 s, while for SQP average convergence time 
was 0.020125 s. RMSE between optimal solutions *u  
for MADS and SQP was equal to 4.0748∙10-4. These 
results clearly indicate that there are no significant 
differences between optimal solutions obtained with 
MADS and SQP, but one can notice that SQP is 
relatively much faster. However, the reason for this is 
also in relative simplicity of optimization task (6), 
particularly in this case, i.e. without forbidden zones 
included and without some additional nonlinear 
constraints. Moreover, objective function in this case 
is also relatively simple and convex, which presents 
favourable conditions for gradient-based algorithm 

like SQP. Nonetheless, MADS showed overall very 
promising results, especially in comparison with 
other derivative free algorithms like genetic 
algorithms (GA) for which convergence time is 
usually the biggest issue (Yang et al., 2011a; Zhao et 
al., 2010). 

4 CONCLUSION 

Although the results of optimal thrust allocation 
problem obtained with direct search algorithm are 
more than satisfactory, particularly in comparison 
with state-of-the-art algorithm like SQP, it should be 
pointed out that the gradient-based algorithms could 
and probably should be a better choice for 
optimization problems where the gradient and/or 
Hessian of the objective function is known or at least 
it can be obtained in sufficient amount of time. 
However, this will probably be true for most 
unconstrained optimization problems, but on the 
other hand, when a large number of nonlinear 
constraints is added into the optimization task, and 
even more when the objective function is constantly 
changing due to some external disturbances, then the 
calculation of associated Lagrangian and its gradient, 
Hessian or Hessian approximation could be very 
demanding within gradient-based methods. Thus, in 
these cases direct search algorithms could present a 
good or even better alternative. In order to better 
evaluate the possibilities of direct search algorithms in 
optimal thrust allocation, future analyses and 
comparisons should take into account forbidden 
zones, i.e. non-convex thrust regions, thrust loss 
effects and complete environmental envelope. 
Moreover, additional procedures in order to enable 
faster convergence of direct search algorithms should 
be identified as well. 
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