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We introduce three numerical methods for characterizing the topological phases of three-dimensional
multiband Hubbard models based on twisted boundary conditions, Wilson loops, as well as the local topological
marker. We focus on the half-filled, three-dimensional time-reversal-invariant Hofstadter model with finite spin-
orbit coupling. Besides the weak and strong topological insulator phases we find a nodal line semimetal in the
parameter regime between the two three-dimensional topological insulator phases. Using dynamical mean-field
theory combined with the topological Hamiltonian approach we find stabilization of these three-dimensional
topological states due to the Hubbard interaction. We study surface states which exhibit an asymmetry between
left and right surfaces originating from the broken parity symmetry of the system. Our results set the stage for
further research on inhomogeneous three-dimensional topological systems, proximity effects, topological Mott
insulators, nontrivially linked nodal line semimetals, and circuit-based quantum simulators.
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I. INTRODUCTION

Three-dimensional (3d) topological states surpass their
two-dimensional (2d) counterparts in terms of complexity and
richness. A 2d quantum spin Hall (QSH) state, e.g., is charac-
terized by a single Z2 number ν, i.e., the system is either in a
topologically trivial state ν = 0 or in the nontrivial QSH state
ν = 1. The 3d analog, however, is characterized by four Z2

numbers (ν0; ν1, ν2, ν3) leading to a total of 16 topologically
distinct states [1–3]. The straightforward way of picturing this
3d generalization is by stacking many 2d QSH layers. If the
coupling between these layers is weak one finds a weak topo-
logical insulator (WTI), e.g., (ν0; ν1, ν2, ν3) = (0; 0, 0, 1). A
WTI exhibits robust, helical surface states [4,5] which encircle
the (ν1, ν2, ν3) axis. The strong topological insulator (STI),
on the other hand, emerges if ν0 = 1 and features helical
surface states in any direction. There is no spin-conserved
backscattering of the surface states due to spin-momentum
locking which is protected by the time-reversal invariance
(TRI).

A further difference compared to the 2d case is that in
3d also gapless topological states can emerge, such as Dirac
and Weyl semimetals [6–8]. If nonsymmorphic symmetries
are present, however, a symmetry-protected Dirac semimetal
is predicted in 2d [9]. Another prominent example in 3d are
nodal-line semimetals (NLSM) which exhibit a bulk band

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

touching along a closed line embedded in the 3d Brillouin
zone (BZ). These lines are not accidental but are topologically
as well as symmetry protected and cannot simply gap out. A
particle moving on a path in the 3d BZ linking the nodal line
picks up a nontrivial Berry phase [10]. Here, the nodal line
acts as singularity around which the Berry phase is acquired.
The only way to open a gap is to shrink the nodal line to a
point which can then gap out. On the other hand, integrating
the Berry curvature on a 2d manifold enclosing the complete
nodal line can yield a nonzero Chern number. This corre-
sponds to a topological charge similar to Weyl points in Weyl
semimetals [8,11,12]. If the nodal line carries a topological
charge, it cannot gap out by simply shrinking to a point but
has to recombine with another nodal line carrying the opposite
topological charge [10]. Even more complex physics occurs
if one combines many nodal lines which are topologically
nontrivially linked [13–17].

In contrast to real materials, cold atomic gases allow one
to experimentally rebuild model Hamiltonians such as—in
the context of topological states—the celebrated Hofstadter
[18,19] and Haldane [20,21] 2d models. 3d topological states,
however, are still on their way to be experimentally accessible.
In theory there are different generalizations of the Hofstadter
model [22–24]. Here, we study the TRI Hofstadter model [25]
generalized to 3d [26] with Hubbard interactions between two
fermionic spin components. We find besides WTI and STI a
NLSM in the phase diagram. In order to characterize these
topologically nontrivial phases, we generalize three topologi-
cal invariants to 3d, TRI, and interacting systems. Calculating
surface states confirms the bulk-boundary correspondence.

The structure of the paper is as follows: in Sec. II we intro-
duce the 3d TRI Hofstadter-Hubbard model and in Sec. III we
discuss all quantum phases of the noninteracting system. In
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FIG. 1. Schematic of Hamiltonian (1). The parameters of the
noninteracting system are described in the text. Hubbard interactions
of strength U are treated using dynamical mean-field theory leading
to local self-energies �i in the unit cell.

Secs. IV and V we put increased emphasis on the Wilson loop
method and the local Z2 marker, respectively. We continue by
discussing the interacting phases within dynamical mean-field
theory in Sec. VI as well as the corresponding surface states
in Sec. VII. Section VIII concludes the paper.

II. MODEL

The Hamiltonian of the 3d TRI Hofstadter-Hubbard model
reads [26]

Ĥ =
∑

j

[ ∑
μ=x,y,z

(−tμ)(ĉ†
j+μe2π iθμ ĉ j + H.c.)

+(−1)xλĉ†
j ĉ j + Uĉ†

↑ j ĉ↑ j ĉ
†
↓ j ĉ↓ j

]
, (1)

where ĉ j = (ĉ↑ j, ĉ↓ j )T is the spin-1/2 fermionic annihilation
spinor; j = (x, y, z) is a 3d lattice vector; tμ is the hopping
energy and μ the unit vector in the μ direction where we set
tx = ty = 1; θ = (γ σ x, αxσ z, αxσ y) is a vector of generalized
matrix Peierls phases with γ being the spin-mixing amplitude,
α the flux, and σ i the ith Pauli matrix. Moreover, λ is the
staggered potential amplitude in the x direction and U is the
Hubbard interaction energy. The Hamiltonian is schematically
depicted in Fig. 1.

III. NONINTERACTING PHASES

Before studying the interacting system, let us first under-
stand the noninteracting case, i.e., U = 0. We show the gap
of the half-filled system (1) in Fig. 2(i) as a function of tz and
λ for different values of γ and α = 1/6. For γ = 0 and 0.1
we find a gapped phase only for large λ > 1.75 depending
on the value of tz. For 0.2 < γ < 0.25 gapped phases for
smaller values of λ emerge which we will characterize by
their topological invariants. The 3d topological invariants of
the present system, being a stack of coupled QSH layers, can
be simplified through the following invariant [26]:

ν = Z (0) + Z (π ), (2)

where Z (kz ) denotes the 2d Z2 topological index at fixed
kz. ν can thus assume the three values 0, 1, or 2. Where 0
represents a trivial band insulator (BI) (0;0,0,0) since both
2d invariants are zero. If ν is 1, we find an STI (1;0,0,0). If

FIG. 2. Noninteracting, U = 0, phase diagrams of the system
described by Eq. (1): (i) band gap 	 and topological invariant ν

defined in Eq. (2) for the 3d topological insulators obtained by (ii)
twisted boundary conditions, (iii) Wilson loops, and (iv) local Z2

marker for α = 1/6.

both of them assume the value 1, Eq. (2) assumes 2 which
corresponds to the WTI with invariants (0;0,0,1). Note that
we find only this particular WTI due to the chosen anisotropy
tx = ty �= tz. From Eq. (2) we understand that the 3d invariant
only requires the computation of 2d Z2 numbers [1–3]. In the
following, we will develop and apply three different methods
in order to compute the 2d Z2 indices for kz = 0 and π . We
thus directly obtain the invariant (2). The first method is the
generalization of Fukui’s method [27] to TRI systems using
twisted boundary conditions (TBC) [28–30]. We first Fourier
transform Eq. (1) for the z direction. For the x and y directions
we apply spin-dependent TBC, i.e., ĉx+Nx,y,kz = ĉx,y,kz e

iϑx and
ĉx,y+Ny,kz = ĉx,y,kz e

iϑyσ
z
, where Nx × Ny is the size of the 2d

system. Note that the spin dependence σ z appears only once;
however, in which direction is a freedom of the gauge. After
introducing the twist angles ϑx and ϑy, Fukui’s method is
applied in (ϑx, ϑy) space. This yields the Z2 invariant Z (kz )
with parameter kz. We show ν in Fig. 2(ii) obtained by the
TBC method if the gap (i) is finite.

We find an STI phase, shown in red, as well as a WTI,
shown in yellow. We also observe in Fig. 2(e) that for max-
imal spin mixing γ = 0.25 there are gapless transition lines
between the topological insulator phases. For γ = 0.22 as
shown in Fig. 2(d) these transition lines extend to gapless
regions, which we discuss further below.

IV. WILSON LOOP

The second method to compute ν is the Wilson loop
technique [31,32], which is an extension of the Zak phase to
multiband systems. We present the Wilson loop technique in
the 3d case and provide details for the numerical computation
in the following.

We Fourier transform the Hamiltonian, defined in Eq. (1),
for all three spatial dimensions. For α = 1/6 the resulting
k-dependent Hamiltonian matrix has Hilbert space dimension
12 where the spin as well as the position x within the unit cell

013299-2



Z2 CHARACTERIZATION FOR … PHYSICAL REVIEW RESEARCH 2, 013299 (2020)

are treated as internal degrees of freedom:

H(k) =

⎛
⎜⎜⎜⎜⎜⎝

O(1) T T †eikx

T † O(2) T
T † O(3) T

T † O(4) T
T † O(5) T

Te−ikx T † O(6)

⎞
⎟⎟⎟⎟⎟⎠,

T = te2π iγ σ x
,

O(x) = −2t cos(ky) cos(2παx)1

− 2t sin(ky) sin(2παx)σ z

− 2tz cos(kz ) cos(2παx)1

− 2tz sin(kz ) sin(2παx)σ y + λ(−1)x1. (3)

We define the time-reversal-invariant, gauge-independent
multiband formulation [31] of the discretized Wilson loop:

D(Ck) =
∏

k j∈Ck

Fj with F mn
j = 〈um(k j )|un(k j+1)〉, (4)

with |un(k j )〉 being the cell-periodic part of Bloch state of
the nth band and k j are discretized values of the closed
contour Ck in the BZ. If we set kz = 0, π and choose Ck to
go along kx, we find Eq. (4) to be a parametric function of
ky only. The eigenvalues of D(ky) are λm(ky). Their phases
θm(ky) = Im log λm(ky) will perform trajectories on a cylinder
which we define through (ky, θm) ∈ [0, π ] × [0, 2π ]. Here, θm

is the periodic part of the cylinder. At the ends of the cylinder,
i.e., ky = 0 and π , the θm will be degenerate in pairs due
to time-reversal symmetry. By tuning ky from 0 to π these
pairs will split and the θm may wind around the cylinder. At
ky = π the θm reconnect again in pairs. This integer valued
winding number around the cylinder is directly connected to
the time-reversal polarization [33] and corresponds to the Z2

number.
Numerically, we find this winding number by dividing

the cylinder into three regions: I where 0 < θm < 2π/3, II
where 2π/3 < θm < 4π/3, and III where 4π/3 < θm < 2π .
The winding is depicted in Fig. 3 for a trivial (blue) and a
nontrivial instance (orange). We sample a sufficient set of
values of ky and count the number ni of θm values being in
the region i, with i = I,II,III. This yields the data (n1, n2, n3)
as a function of ky. We then compute the change 	ni of ni with
respect to 	ky. From this data, we only keep the ones where
(	n1,	n2,	n3) follow some permutation of −1, 0, 1. Data
where (	n1,	n2,	n3) all are zero do not carry information,
and data where a 2 appears could be removed by increased
sampling of ky and can thus be safely omitted. Finally, to each
of the remaining data points a chirality can be assigned by
means of the Levi-Civita tensor. Summing these chiralities
yields a nontrivial Z2 number for odd and a trivial one for even
values of the sum of the chiralities. The results are shown in
Fig. 2(iii) and they agree exactly with the method using TBC
in Fig. 2(ii).

V. LOCAL Z2 MARKER

We now turn to the generalization of the local Chern
marker [34] to the TRI case, first in 2d. A Z2 generalization

FIG. 3. Example for the numerical calculation of the Wilson
loops. The parameters are set to γ = 0.22, tz = 0.6, and λ = 0.75.
The blue data points correspond to kz = 0 and the orange data points
to kz = π .

to Kitaev’s real-space formulation of the Chern number [35]
recently appeared in Ref. [36]. Here, we introduce the spin-
projected version of the local Chern marker:

Cμν (x, y) = 〈x, y|PμP̂x̂P̂ŷP̂Pν |x, y〉, (5)

where Pμ is the projector onto the states of band μ = I,II in
the {I,II} eigenbasis of time-reversed partners [33], P̂ is the
projector onto the occupied eigenstates of the Hamiltonian,
and |x, y〉 is the eigenstate of the position operator in 2d.
The eigenvalues of the 2 × 2 matrix Cμν (x, y) correspond to
time-reversed partners similar to the partial polarizations of
the time-reversed partners in Ref. [33], but now defined in real
space. The first eigenvalue thus resembles exactly the 2d local
Z2 marker. Since the eigenvalues are independent of the basis
in which Cμν (x, y) is represented, we can also use the spin
basis {↑,↓} such that we do not have to find the {I,II} basis.
By Fourier transforming only the z coordinate of Eq. (1) and
fixing the value of kz = 0, π we can generalize the 2d local Z2

marker to a 3d local Z2 marker.
The bulk value is presented in Fig. 2(iv), showing approx-

imately the same behavior as the aforementioned methods in
Figs. 2(ii) and 2(iii) computed on a 30 × 30 lattice. However,
the local Z2 marker suffers from finite size effects when the
gap is small [37]. This can be observed, e.g., in Fig. 2(iv)(e)
for large tz and λ where the local Z2 marker is not quantized
due to the finite system. If the gap is sufficiently large,
however, the local Z2 marker is well quantized.

VI. INTERACTING PHASES

We study interaction effects by applying dynamical mean-
field theory (DMFT) [38], which neglects nonlocal fluctua-
tions but covers all local fluctuations. Since the unit cell of the
system (1) contains six lattice sites if there is no spontaneous
symmetry breaking, we make use of the real-space version
of DMFT [39–41]. Here, the many-body problem of the full
lattice with N sites is mapped onto N single-site quantum
impurity problems, where each impurity problem interacts
with a self-consistent, noninteracting bath. This approach
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FIG. 4. Interacting phase diagrams obtained from DMFT and
the topological Hamiltonian Eq. (6). (a) shows the band gap of
the topological Hamiltonian 	 and (b) the topological invariant ν,
Eq. (2), as functions of the interaction strength U and the staggered
potential λ for γ = 0.25 and tz = 0.2. The green lines correspond to
the green lines in Figs. 2(d)(i) and 2(d)(ii). (c) shows 	 and (d) ν as
functions of U and tz for γ = 0.22 and λ = 0.75. The orange lines
correspond to the orange lines in Figs. 2(e)(i) and 2(e)(ii). The gray
regions denote DMFT solutions which break the lattice symmetry.
The white symbols correspond to the parameter sets used in Fig. 6.

nonperturbatively describes local quantum dynamics, in con-
trast to static mean-field theory. After solving the single-
impurity problem for each site, for which we use exact diag-
onalization with four bath sites, the self-energy �σσ ′

j (ω) for
each lattice site j and frequency ω is obtained. Here, σ, σ ′
are spin degrees of freedom. Using the Dyson equation, these
are used to construct a new lattice Green’s function and this
procedure is repeated until self-consistency. In 2d, DMFT
has provided a successful description of topological systems
for many aspects [30,42–48]. Reference [49] showed that
nonlocal contributions are small already in 2d. We therefore
expect even more accurate results of DMFT in 3d.

To calculate topological invariants for the interacting sys-
tem we follow the topological Hamiltonian approach [50].
The idea here is that if the Green’s function can be smoothly
deformed to a noninteracting Green’s function, i.e., no poles
or zeros occur, the topological properties do not change. This
holds since topological phase transitions come along with a di-
vergence or a zero [51,52] of the Green’s function. In this way,
one can construct an effective, noninteracting Hamiltonian
HT = −G−1(ω = 0) which is used to compute topological
invariants. In combination with the local self-energy �σσ ′

j (ω)
from DMFT, its matrix form reads

[HT ]σσ ′
j j′ = [H0]σσ ′

j j′ + �σσ ′
j (ω = 0)δ j j′ , (6)

where H0 denotes the noninteracting part of the Hamiltonian.
We show the gap 	 as well as the topological invariant (2)
of the topological Hamiltonian (6) in Figs. 4(a) and 4(b),
respectively, as functions of λ and U for γ = 0.25 and tz =
0.2. The green lines for U = 0 correspond to the green lines
in Figs. 2(e)(i) and 2(e)(ii), respectively. The grey regions
correspond to DMFT results where the lattice symmetry is
spontaneously broken.

We first focus on the symmetric phases. We observe
that the gap closing lines in Fig. 4(a) coincide with the
topological phase transition lines in Fig. 4(b) as expected.
Furthermore, we find stabilization of the STI and the WTI
phases against λ through U . For small U , Hubbard interac-
tions effectively renormalize λ, which extends the topological
phases in the phase diagram. This is the 3d analog of the

interaction-induced topological phase transition in 2d [30,53]
and can be understood through the competition between stag-
gered potential and interactions.

In Figs. 4(c) and 4(d) we present 	 and ν as functions
of tz and U . The orange lines for U = 0 correspond to the
orange lines in Figs. 2(d)(i) and 2(d)(ii), respectively, for
γ = 0.22 and λ = 0.75. As in the previous phase diagram, we
observe again stabilization of the topological phases through
interactions.

We compare our results to a DMFT study of a four-band
model including a Hund’s coupling term [54]. We find quali-
tative agreement between the phase diagram in Fig. 4(d) and
the one in Ref. [54, Fig. 3] even though the latter corresponds
to a finite Hund’s coupling, which we do not include here.
This is because the Hund’s coupling effectively reduces the
interorbital interactions and thus makes the Hubbard term the
dominant interaction term. In contrast to Ref. [54], we do not
find the (1; 1, 1, 1) phase.

It is a priori not clear what would be the unit cell of
a possible spontaneous-symmetry-broken phase as a result
of the nontrivial exchange couplings between neighboring
spins due to the Peierls phases in Eq. (1). The effective spin
Hamiltonian [42] for the 3d system reads

Ĥspin =
∑

j

∑
μ,ν,ρ cyclic

t2
μ

U

{
Ŝμ

j Ŝμ

j+μ

+ cos(4πθμ)
[
Ŝν

j Ŝ
ν
j+μ + Ŝρ

j Ŝρ

j+μ

]
+ sin(4πθμ)

[
Ŝν

j Ŝ
ρ

j+μ − Ŝρ

j Ŝν
j+μ

]}
, (7)

where we defined the spin operator Ŝμ

j = ĉ†
jσ

μĉ j and θ =
(γ , αx, αx). In the spin population balanced, 2d case [43,47]
one can argue that the spins will always order antiferromag-
netically in y direction. However, in the 3d case we cannot
make this argument and the unit cell might in fact be very
large. Results of a classical Monte Carlo study to find the
classical ground state E of Eq. (7) are shown in Fig. 5 for
unit cells up to Nx × Ny × Nz = 63 lattice sites. Examplarily,
for γ = 0.25 and tz = 0.2 in Fig. 5(a), the unit cell with the
smallest energy is found to have dimensions 2 × 2 × 2 and
is marked by a blue circle. This state is shown in Fig. 5(b)
and corresponds to ferromagnetic ordering in x and anti-
ferromagnetic ordering in y and z direction similar to the 2d
collinear order in Ref. [43, Fig. 6]. For γ = 0.22 and tz = 1
the unit cell with smallest energy is found with dimensions
4 × 6 × 6 and is marked by a blue circle in Fig. 5(c). The
corresponding spin state is shown in Fig. 5(d) and corresponds
to a spiral order in all the spatial directions. We conclude
that within the symmetry-broken phase there must be phase
transitions between ferro/antiferromagnetic and spiral orders,
which depend on the parameters γ and tz and can lead to
complex magnetic orders.

VII. SURFACE STATES

We now study the surface states of the present system. To
this end we put the system on a 3d cylinder geometry, i.e.,
ky, kz are good quantum numbers but in the x direction we
now apply open boundary conditions. For this geometry, we
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FIG. 5. Classical Monte Carlo results for the ground-state energy
of Eq. (7) for (a) γ = 0.25 and tz = 0.2 as well as for (c) γ = 0.22
and tz = 1 as function of the size of the unit cell Nx × Ny × Nz.
(b) and (d) show the spin state of the unit cell with the smallest energy
marked by a blue circle in (a) and (c), respectively.

can define the single-particle Green’s function:

Gσσ ′
xx′ (ω, ky, kz ) = [{ω − �(ω) − H0(ky, kz )}−1]σσ ′

xx′ , (8)

where x, x′ are the spatial degrees of freedom in x direction.
The spectral density of a spatial region X is defined as

ρX (ω, kx, ky) = − 1

π

∑
σ,x∈X

ImGσσ
xx (ω, ky, kz ). (9)

We show the surface states of a system with 60 sites in x
direction by plotting ρX (ω = 0, ky, kz ) in Fig. 6 for the left
surface L where 1 � x � 3, the bulk B where 25 � x � 36,
and the right surface R where 58 � x � 60. We plot only
one quarter of the surface BZ since the results are mirror
symmetric at the two lines ky = 0 and kz = 0. The red dots
denote TRI momenta. The parameters are chosen according
to the white symbols in Fig. 4. For U = 1, Fig. 6(a) shows
the Fermi surface enclosing only one TRI momentum which
corresponds to the surface state of an STI. Figure 6(b) shows
the Fermi surface crossing the BZ almost parallel to the kz

axis. Thus it encloses two TRI momenta which corresponds
to the surface state of a WTI. We do not show the results for
the bulk because it is gapped.

Let us now turn to the case of the NLSM. Figures 6(c) to
6(e) show the surface states as well as the x projection of
the bulk state for different U . First, we notice that the two
surfaces are asymmetric. This arises from the broken parity
symmetry since upon the transformation λ → −λ the spectral
density behavior of the two surfaces is exchanged. The right
surface shows a state corresponding to a WTI, whereas the left
surface rather shows one corresponding to the STI. However,
the surface state of the left surface does not fully enclose the
TRI momentum but rather stops within the BZ, reminiscent
of a Fermi arc. The missing part is recovered in the bulk and
identifies as a nodal line. It is shown for the full 3d BZ in
Fig. 6(f).

FIG. 6. Surface states of different 3d, interacting, topologically
nontrivial phases: (a) strong topological insulator, (b) weak topolog-
ical insulator, and (c)–(e) nodal-line semimetals. The white symbols
correspond to the parameter sets marked by the symbols in Fig. 4.
See definitions of L, B, and R below Eq. (9). The bulk nodal line in
the full 3d BZ is shown in (f) in blue corresponding to the projected
nodal line in (c), column B; projections onto the ki-k j planes for
i, j = x, y, z are shown in red.

In order to justify that the nodal line is not an accidental
band touching but is topologically protected, we compute the
Berry phase on a closed path in the 3d BZ linking the nodal
line. To this end, we make use of the multiband formulation
of Ref. [31] to find the Berry phase Im Tr log

∏
j Fj , where

F mn
j = 〈um(k j )|un(k j+1)〉 and |un(k j )〉 is the cell-periodic part

of Bloch state of the nth band. If the path k j is (is not)
linked with the nodal line the Berry phase yields π (0). This
shows that the nodal line is topologically protected and thus
cannot gap out. On the other hand, when computing the Berry
curvature on a 2d box surface enclosing the nodal line we find
a vanishing Chern number. Thus the nodal line does not carry
a topological charge.
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References [55–57] studied the interacting NLSM with
renormalization group calculation, static mean-field, and
cluster perturbation theory, respectively. Since the density of
states of a NLSM vanishes at the band touching, the nodal line
is robust against interactions and will only gap out for strong
interactions. On the other hand, interactions can change the
size and the shape of the nodal line.

The surface states of NLSMs have attracted a lot of atten-
tion. If they are drumhead states, they constitute flat bands
with a diverging density of states which is localized at the
surfaces of the system. Reference [58] studied emergent sur-
face antiferromagnetic order in this context already for small
critical interaction strength, which is, however, increased
by spin-orbit coupling. We do not observe any symmetry
breaking in our parameter range and do not find this surface
magnetism. We attribute this to the strong spin-orbit coupling
in our system which curves the flat bands and thus decreases
the surface density of states. A recent study found an inversion
of the Berry curvature of one K point driven by spin-orbit
coupling and two-particle interactions in the Haldane model,
which leads to a surface Chern insulator [59]. Bulk antiferro-
magnetism in NLSMs was investigated in Ref. [60].

From the experimental point of view, the TRI Hofstadter
Hamiltonian has been realized in 2d using laser-assisted tun-
neling [18]. Theoretically, this approach has been generalized
to 3d [15,24,61]. A generic way to implement spin-orbit
coupling proposed in Ref. [62] might be generalizable to
three dimensions. For detection, Bloch-Zener-Stückelberg in-
terferometry [61], anomalous velocity measurement, or state
tomography [24] for bulk states as well as Bragg spectroscopy
for surface states [15] have been proposed. Also a 3d version
of a topological interface [46] could be used for the detection
of the surface states. The local Z2 marker introduced here
could be used to distinguish the topological phase at the inter-

face. Very recently, a NLSM has been realized in a fermionic
cold atom experiment with 173Yb atoms by mapping the kz

component to a Zeeman field and reading out 2d layers for
each value of kz [63].

VIII. CONCLUSION

We develop three numerical techniques for the charac-
terization of three-dimensional topological states of matter.
Based on twisted boundary conditions, Wilson loops, and
the local topological marker, these techniques can be used
to compute weak and strong topological indices even in
interacting systems. We apply these to the three-dimensional
time-reversal-invariant Hofstadter-Hubbard model and find a
topological nodal-line semimetal between phases of weak
and strong topological insulators. Using dynamical mean-field
theory we observe stabilization of the three-dimensional topo-
logical states through Hubbard interactions. The numerical
methods presented here enable the study of interacting, three-
dimensional topological matter in inhomogeneous systems,
which will be of great interest for cold atomic implementa-
tions. Moreover, we think that our results could contribute
to benchmark circuit-based quantum simulators where is has
been possible to engineer artificial gauge fields as well as
strong interactions [64–66].
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