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Variable selection is a topic of interest in many scientific communities. Within chemometrics,
where the number of variables for multi-channel instruments like NIR spectroscopy and
metabolomics inmany situations is larger than the number of samples, the strategy has been
to use latent variable regression methods to overcome the challenges with multiple linear
regression. Thereby, there is no need to remove variables as such, as the low-rank models
handle collinearity and redundancy. In most studies on variable selection, the main objective
was to compare the prediction performance (RMSE or accuracy in classification) between
various methods. Nevertheless, different methods with the same objective will, in most
cases, give results that are not significantly different. In this study, we present three other
main objectives: i) to eliminate variables that are not relevant; ii) to return a small subset of
variables that has the same or better prediction performance as a model with all original
variables; and iii) to investigate the consistency of these small subsets.
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1 INTRODUCTION

Variable selection is a topic of interest in many scientific communities. Within chemometrics, where
the number of variables for multi-channel instruments like NIR spectroscopy and metabolomics in
many situations is larger than the number of samples, the strategy has been to use latent variable
regression methods to overcome the challenges with multiple linear regression. Thereby, there is no
need to remove variables as such, as the low-rank models handle collinearity and redundancy.

Over the years, numerous approaches for variable selection in chemometrics have been presented.
The main objective was mostly to search for the best model and optimize model performance in terms
of the smallest prediction or classification error. The methods reported in the literature have originated
in various scientific communities andmay have various strengths and weaknesses given the actual data
structure (collinear, redundant, complex, and non-linear). However, in most cases, the results are not
significantly different across the various methods for the typical benchmark data sets that have been
under scrutiny. In this study, we investigate which aspects of the various strategies for variable selection
are able to i) identify the variables that are not of relevance, ii) identify a small subset of variables, and
iii) properly rank the variables according to their importance.

2 MATERIALS AND METHODS

2.1 Data
In total, three data sets were chosen for investigation of the various approaches to variable selection.
The first one was a data set on diesel fuels that has been subjected to several studies on prediction
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performance. The second data set is a simulated one with some
variables having known relevance in modeling the response; at
the same time, a number of random variables were added to
evaluate the methods’ ability to screen non-important predictors.
The third data set is the so-called Selwood data, a QSAR data set
that has been evaluated with many variable selection methods
with the purpose of finding the “best model” for a limited number
of variables.

The data sets served three purposes: 1) to identify variables
that are not significant/relevant (out of many), 2) to evaluate how
various methods rank variables based on their importance, and 3)
to reduce redundancy without sacrificing prediction performance
and interpretability.

2.1.1 Diesel Fuels
This data set originated from the Southwest Research Institute
(SWRI) and is made available by Eigenvector Inc., http://
eigenvector.com/data/SWRI/index.html. It has frequently been
used for benchmarking various methods for variable selection in
NIR spectroscopy. The independent variables are 401
wavelengths in the range of 750–1,550 nm. In this study, the
freezing temperature was chosen as the response variable in the
regression models. The data are divided into 116 samples for
calibration and 115 as a test set.

2.1.2 Simulated Data
For evaluating the performances of various methods, in particular
with respect to their ability to retrieve variables relevant to the
prediction and to leave out irrelevant and noisy variables, data
with a known structure were simulated according to the scheme
proposed by Biancolillo et al. (2016). In particular, X data were
built according to a bilinear (PCA-like) structure as:

X � TPT + EX. (1)
Only some of the components (Trel) were allowed to be

predictive for the y, while the remaining ones (Tirr) accounted
for structured unwanted variability:

T � Trel|Tirr[ ], (2)
y � Trelb + ey. (3)

Accordingly, the loadings were simulated to be non-zero for
selected variables only along the different components. This led to
the definition of four blocks of variables:

• Relevant (rel): having non-zero loadings only for the
predictive components;

• Relevant non-selective (rns): having non-zero loadings for
all the components;

• Irrelevant (irr): having non-zero loadings only for the non-
predictive components; and

• Noise (noise): having zero loadings for all the components
(so that their variability is only due to the added noise).

The scheme of the bilinear model used for the simulation is
shown in Figure 1. Specifically, in the present study, a data set of
100 samples and 500 variables was simulated according to the

aforementioned scheme. A five-component model was
postulated, with three components being predictive for the
response. In total, 50 variables were set to be relevant, 100
were relevant non-selective, 100 were irrelevant, and the
remaining 250 were left to account only for the noise, which
was set either at 5% or at 10% level both for the X and y.

2.1.3 Selwood Data
This data set consists of 31 samples and 53 molecular descriptors
(X) and the biological activity (Y) (Selwood et al., 1990). As the
number of samples is small and the diversity of the descriptors for
the sample is high, this data set is not evaluated by dividing the
samples into a calibration and test set.

2.2 Methods
2.2.1 Multivariate Regression
There exist a number of methods for multivariate regression with
latent variables. One of the most popular methods is partial least
squares regression (PLSR) (Wold and Johansson, 1993; Wold
et al., 2001), which has found practical use in real-time
applications for quantitative prediction and quality control in
chemical, agriculture, food and beverage, and pharma/biopharma
over the past 30 years, to name a few applications. The model
structure of PLSR is:

X � TPT + E, (4)
Y � TQT + F. (5)

The so-called loading weights are estimated as the largest
eigenvector of the covariance of X and Y after deflation of A
factors.

The resulting regression coefficients are estimated from the
following expression:

B̂ � W PTW( )−1QTY, (6)
Many different algorithms exist for PLSR, depending on the

properties of the input data, that is, the dimensions of X and Y.
The purpose of the more efficient algorithms was to estimate the
eigenvectors from the smallest dimension of a covariance matrix
between X and Y. Some examples are as follows:

• NIPALS, which handles missing values directly in the
algorithm;

• Kernel PLS, suited for data with many more objects than X-
variables;

• Wide-kernel PLS, suited for data with many more X-
variables than objects;

• SIMPLS, suited for data with many more X-variables than
Y-variables.

2.2.2 Multivariate Calibration—Still Not Known as a
Generic Concept After 40 years?
This paragraph is intended as a retrospective look at the part of
chemometrics that started with calibration of multi-channel
instruments for the prediction of, for example, concentration
of a chemical compound or more less-defined quality measures
(octane number and viscosity). The incentive was, in many cases,
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to reduce the amount of work to acquire reference (wet chemistry
lab) data to a minimum and for deployment in instruments for
online purposes. For some applications, for example, the
production of glue, the value of the property of interest,
measured by the reference method, might be available after
7 days. It is imperative that an estimate of the accuracy and
precision of the reference method is acquired before starting the
experimental work to build calibration models. Also, it seems that
outside of the chemometrics community, it is not commonly
known in natural science or included in the curriculum at
universities that selectivity is not required to build models for
quantification or classification. For instance, acquiring mass-
spectra with a resolution of 0.0001 m/Z might be counter-
productive as the columns may not be directly comparable
due to small shifts of the signals along the m/Z axis.
Furthermore, there is also no need to integrate peaks in
chromatographic systems, assuming aligned peaks between
samples (if not the case, some kind of correlation-optimized
warping might be applied).

Assuming that three compounds with overlapping peaks are
mixed in a solvent with zero intensity, the theory (and practice) of
multivariate calibration tells us that only three variables are
needed for “unmixing” this system. In principle, one only
needs as many variables as there are underlying systematic
structures in the data to establish a model with the optimal
prediction ability. However, as there might be other sources of
variation in the data such as baseline and scatter effects, the
complexity of the data might be higher.

2.3 Variable Selection
Various methods for variable selection have been published and
evaluated over the past decades. In particular, there are reviews or
tutorial articles either focusing on one specific approach or
comparing different methods (Höskuldsson, 2001; Chong and
June 2005; Roy and Roy, 2008; Andersen and Bro, 2010;
Mehmood et al., 2012; Liland et al., 2013; Anzanello and
Fogliatto, 2014; Wang et al., 2014; Wang et al., 2015;
Biancolillo et al., 2016; Mehmood et al., 2020). In this study,
we focus on the variable selection with three main objectives: i) to
eliminate variables that are not relevant; ii) to return a small

subset of variables that has the same or better prediction
performance as a model with all original variables; and iii) to
evaluate the consistency of the subsets found in ii) for the selected
methods. Thus, we are not focusing on finding the “best”model in
terms of RMSE. Many methods will give similar prediction
performance, assuming the models are validated correctly.
Depending on the application, variable selection might give a
lower prediction error than amodel on all variables, but this is not
a general conclusion for a given data set.

The methods applied for removing all non-important
variables were a) significance from cross model validation
(CMV), b) truncation based on t-distribution of the regression
coefficients (sparse-PLS), c) variable importance for projection
(VIP), d) unimportant variable elimination (UVE), and e)
selectivity ratio (SR).

As a second step with the objective of evaluating if a smaller
subset of variables has the same or improved prediction ability,
the following approaches were chosen: i) Lasso regression, ii) best
combination search or forward selection based on CMV, iii)
covariance selection (CovSel), iv) applying Kennard–Stone
algorithm in the variable space (K–S), v) genetic algorithms
(GA), vi) selectivity ratio (SR), and vii) significant multivariate
correlation (SMC).

2.3.1 Multiple Linear Regression and Regularization
One common regression method is multiple linear regression
(MLR). The assumption in MLR is that there are no errors in X,
which in most practical applications is not the case. Also, MLR
requires more samples than variables, which in the chemometrics
tradition with multi-channel instruments with hundreds of
variables and few samples is not fulfilled. Therefore, many
publications on MLR make use of various methods for
variable selection such as forward selection, backward
elimination, and stepwise selection. Common stopping rules
are p-values for a given cut-off or Akaike’s information
criterion (AIC) (Akaike, 1974). It is also well known that in
the case of collinearity of the columns inX, including or removing
a variable may change the size, sign, and p-value for other
variables in the model (Tibshirani, 1996). This is conceptually
not satisfactory and may lead to an erroneous interpretation of

FIGURE 1 | Scheme of the bilinear model used for the simulated example.
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the model. It is only for orthogonal columns in X, for example, for
strict orthogonal designs, that there is a unique way to estimate
the sum of squares as the basis for the analysis of variance
(ANOVA). The so-called embedded methods introduce a
regularization parameter to cope with the challenges
mentioned previously. Least absolute shrinkage and selection
operator regression (Lasso) (Tibshirani, 1996) applies a
shrinkage parameter λ with the purpose of producing simpler
models, that is, with a (small) subset of the original variables.
When λ increases, many coefficients are set to 0. At the same time,
the bias increases and the variance decreases, according to the
bias–variance trade-off. The optimal value for λ is typically found
by cross-validation or bootstrapping. The criterion is to minimize
the expression:

∑n
i�1

yi −∑k
j�1

xijβj⎛⎝ ⎞⎠2

+ λ∑k
i�1

|βj|. (7)

Some review articles on MLR in combination with variable
selection and Lasso are given in Heinze et al. (2018); Sauerbrei
et al. (2020); and Variyath and Brobbey (2020). The use of these
methods with proper validation procedures will, in general, give
predictive ability similar to methods based on latent variables
such as PLSR. When only a small subset of variables is included,
the optimal number of factors in PLS regression might
correspond to its maximum possible value, that is, a full rank
model (the MLR solution). Nevertheless, a distinction between
MLR-based and latent variable regression methods is that for the
latter, there is no explicit need to remove variables due to k > n or
high collinearity. If a variable is indirectly highly correlated with
y, the causal variable might not be among the ones in the selected
subset. For instance, let us assume that a model for the degree of
cirrhosis is f (age, male/female, and alcohol consumption). Then,
since men in general drink more than women, the binary variable
male/female might be included but not alcohol consumption
when applying a stepwise procedure.

2.3.2 Variable Importance for Projection
The VIP method (Wold and Johansson, 1993; Favilla et al., 2013;
Tran et al., 2014) returns a ranked list of variables based on weight
vj that represents the importance in the PLS projection. The
weights are measures of the contribution according to the
variance explained by each PLS component where (waj/‖wa‖)2
represents the importance of the j variable. Since the variance
explained by each component can be computed by the expression
q2ata′ta, vj is calculated as follows:

vj �

																								
p
∑A

a�1 q2ata′ta( ) waj/‖wa‖( )2[ ]∑A
a�1 q2ata′ta( )

√√
. (8)

2.3.3 Covariance Selection
Covariance selection (Roger et al., 2011) exploits the principle of
maximizing the covariance between the predictors and the
responses which characterizes PLS regression, translating it to
the variable selection context. Indeed, the CovSel algorithm could

be thought of as a PLS regression in which the weights are forced
to be either zero or one. More in detail, CovSel is based on an
iterative procedure in which the variable having the maximum
squared covariance with the response is selected:

Jsel � argmax
j

‖xTj y‖2. (9)

Then, both X and y are deflated from the contribution of the
selected variable, and the procedure is repeated until a stopping
criterion is met.

2.3.4 Uninformative Variable Elimination
The UVE (Centner et al., 1996) method is based on adding many
random variables as the same size of X to the existing set of
variables. Thereby, the estimation of the impact of noise in the
model can be established, and thus the non-informative variables
in the original data set can be removed as they have the same
characteristics as the random variables. A leave-one-out cross-
validation is applied to ensure some conservatism in the procedure.

2.3.5 Genetic Algorithms
Genetic algorithm (GA) (Leardi et al., 1992; Leardi and Lupiáñez
González, 1998) repeatedly selects a subset of variables from the total
number of variables (e.g., 5). The terms “crossover” and “mutation” are
used to illustrate the procedure of how the variables “survive” in the
selection process. One useful output of GA is a list of how frequently
the variables were selected in the individual models. Typically, 1,000
realizations of a small subset are chosen for the computations.

2.3.6 Selectivity Ratio
The SR (Rajalahti et al., 2009; Kvalheim, 2010; Farrés et al., 2015;
Kvalheim, 2020) is based on the target projection (TP) approach.
Target projection is based on a post-projection of the predictor
variables onto the fitted response vector from the estimated model.
This decomposition of the original predictormatrix into a latent (TP)-
component and a residual component can be expressed as follows:

X � X̂TP + ETP � tTPp
T
TP + ETP, (10)

where the target projection scores tTP are calculated as follows:

tTP � X
b
‖b‖ �

ŷ
‖b‖. (11)

The TP loadings from this model, which are calculated as:

pTP � XTtTP
tTTPtTP

, (12)

can be used as measures of how much each predictor variable
contributed to the fitted response from the PLSR-model, and based
on this SR, SRj is introduced. For each variable j, the SRj can be
computed as:

SRj � Vexp,j

Vres,j
, (13)

where Vexp ,j is the explained variance and Vres,j is the residual
variance for variable j according to the (TP)-model.
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The mean value of SRj for all variables was used as a threshold.

2.3.7 Significant Multivariate Correlation
sMC (Tran et al., 2014) is analogous to SR but it defines the
loadings for the predictive component directly in terms of the
regression coefficients. Indeed, in sMC, the projection loadings
psMC are calculated as:

psMC � b
‖b‖. (14)

On the other hand, the projection scores are defined
analogously to TP:

tsMC � X
b
‖b‖ �

ŷ
‖b‖. (15)

Then, based on the previous equation, the predictor matrix X
is decomposed as the contribution of the y-relevant component
and the residuals as:

X � X̂sMC + EsMC � tsMCp
T
sMC + EsMC � ŷbT

‖b‖2 + EsMC. (16)

sMC is then calculated as the ratio of the variance along the jth
variable explained by the sMC component to the residual
variance for the same predictor:

sMCj � VsMC,j

Vres,j
. (17)

The authors proposed to apply an F-test to identify
variables that are statistically significant with respect to
their relationship (regression) to Y. The F-distribution with
degrees of freedom of 1 for the numerator and n-2 for the
denominator is applied for a given significance level α.
However, in the present study, consistent with the
approach followed for SR and described in the previous
paragraph, the mean value of sMCj across all variables was
used as a threshold.

2.3.8 Kennard–Stone Algorithm
The Kennard–Stone (K-S) (Kennard and Stone, 1969) algorithm
has shown to be efficient in defining relevant subsets of objects for
calibration and validation. In this context, we apply K-S as a
means for removing redundancy between variables, for example,
that all wavelengths in a specific peak in near-infrared
spectroscopy will have predictive ability in a model. The
principle of the Kennard–Stone algorithm is to find the point
in the n-dimensional space, that is, furthest away from the mean,
and then the next point is selected to be furthest away from the
mean and the first point. The procedure continues until a
specified number of points have been selected. The distance
measure is typically Euclidean or Mahalanobis. In this case,
Euclidean was chosen, as the loading weights are normalized
to length 1.

2.3.9 Jack-Knifing and Cross Model Validation
While performing cross-validation, the estimation variance of the
model parameters might be used based on the principle of jack-

knifing (Bradley, 1982). The formula in the case of regression
coefficients (Westad and Martens, 2000) is as follows:

s2 bk( ) � ∑M
m�1

bk − bkm( )2⎛⎝ ⎞⎠ M − 1( )
M

, (18)

where
s2 (bk) = estimated uncertainty variance of bk; bk = the

regression coefficient for variable k using all objects;
bkm = the regression coefficient for variable k from the model

with all objects except the object(s) left out in cross-validation
segment; m M−1

M = scaling coefficient to make the estimate
unbiased, where M is the number of cross-validation segments.

2.3.9.1 Cross Model Validation
It is known that when many models are tried and rejected in the
case of cross-validation, it may lead to too optimistic results. This
is, especially a challenge when various methods for variable
selection are applied in the search for the “best” model. Cross
model validation (CMV) (Stone, 1974; Anderssen et al., 2006;
Westad, 2021), also known as double cross-validation, is a
conservative approach for reducing the number of “false-
positive” variables and for estimating figures of merit such as
RMSE. When the purpose is to remove all variables that are non-
important, one informative way to summarize the results from all
the inner-loop models is to report the number of times the
individual variable is found significant.

Combined with jack-knifing for uncertainty estimates and
t-tests, the procedure is as follows:

1. Leave out some object(s).
2. Perform cross-validated PLS regression with jack-knifing and

find significant variables.
3. Repeat with new object(s) left out.
4. Count the number of times a variable was found

significant in 2.
5. Set a threshold, for example, 80%, and remove the remaining

variables.

FIGURE 2 | Illustration of cross model validation.
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An illustration of CMV is shown in Figure 2.
As pointed out by Westad and Marini (2015), leave-one-out

(LOO) and random cross-validation schemes are not the correct
levels of validation when there is (future) uncontrolled systematic
variation due to stratification of the samples with respect to time,
raw materials, and sensor etc. Dividing samples randomly into
calibration and test set does not alleviate the danger of overfitting
in this case. Yet another approach is to introduce a third level in
the validation: repeated CMV (Filzmoser et al., 2009). The data
sets chosen in this study did not have external information about
the stratification of samples; thus, LOO and random cross-
validation were the options of choice.

2.3.10 Sparse PLSR: Truncation of Variables
The idea behind sparse-PLS (Chun and Kele ş, 2010; Filzmoser
et al., 2012; Liland et al., 2013) was to remove variables based on
an assumed distribution of the parameters for the variables. The
truncation might be applied to the loading weights wa for each of
the PLS factors or to the final B-coefficients for each variable. For
the first approach, any variables kept in one or more of the factors
are selected. The threshold for removing variables was set to 2,
that is, at the 0.05% level.

3 RESULTS

3.1 Results for the NIR Diesel Fuel Data
The main objectives of analyzing this data set were two-fold: i) to
investigate to what extent the various methods remove all non-
important variables and ii) investigate the model performance of
a small subset of variables for the covariance selection, genetic
algorithm, and Kennard–Stone algorithms.

The spectra were pre-processed with the Savitzky–Golay
transform using the second derivative, second degree
polynomial, and with 13 points.

The selected variables for the Lasso regression are marked in a
plot of the mean spectrum in Figure 3. Most of the main peaks are

represented, although no variables were selected in the
wavelength region 1,350–1,550 nm. The optimal value of λ was
found to be 0.0967.

Figure 4 shows the mean spectrum with the selected variables
for CMV and sparse-PLS marked, respectively, while similar plots
are shown for UVE and VIP in Figure 5. The upper plot in
Figure 6 shows the selected variables for SR. Table 1 shows main
results for the various methods.

The interpretation of the results for the methods is that they, to a
large extent, select one or more variables in the same main peaks in
the spectra. The VIP and SR seem to be the least conservative. The
sparse-PLS approach in this case simply kept the variables based on
the t-distribution of the regression coefficients. The number of factors
was nine for this model. The original approach was to keep all
variables that are selected in one or more of the individual loading
weights vector. This approach selected 163 variables and represents
how PLS is compensating for non-relevant variance in X into a final
regression coefficient (results not shown).

The next step in the analysis was to compare methods that are
aiming for selecting a small subset of the variables. The
covariance selection ended up with a subset of 15 variables,
where 23 variables were kept for genetic algorithms. The
number of variables for the Kennard–Stone method was preset
to 15. The RMSEP values were 3.19, 3.19, and 3.22.

Figure 6 (lower plot) and Figure 7 show the selected variables
for the GA, CovSel, and Kennard–Stone methods. As can be seen,
there is some consistency among the variables although there are
also peaks where only one of the methods has selected variables.
This is not unexpected, as there exists a high degree of
redundancy between the variables. Not only do variables in
the individual peaks have the same relationships, but several
peaks also represent the same underlying chemistry (various
overtones in the NIR bands). Therefore, it is not surprising
that different subsets are selected. Also, for these models, the
RMSEP values are not significantly different.

FIGURE 3 | Selected variables for Lasso regression for second
derivative diesel fuel spectral data.

FIGURE 4 | Selected variables for CMV (A) and sparse-PLS (B) for
second derivative diesel fuel spectral data.
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3.2 Results for the Simulated Data
A summary of the results for two simulation scenarios with mean-
centered data is shown in Tables 2, 3. In the second simulation, the
level of the noise added to both the response and predictors was
twice the noise level set in the first simulation (i.e., 10%). The ideal
result for the first column is 100%, whereas 0% would be the
optimal result for columns 3 and 4. For the “relevant non-selective”
column, it is not so evident what the optimal result should be.

The tables show that GA erroneously selects more variables of
irrelevant types and noise when the noise level increases.
Furthermore, GA identifies a higher percentage of relevant
and relevant non-selective variables. This may due to the fact
that GA performs a form of the best combination search which

may select noisy (spurious) variables. The UVE identifies fewer
relevant and relevant non-selective variables, but at the same
time, the percentage of irrelevant variables is decreasing.
The selectivity ratio identifies a higher percentage of
relevant and relevant non-selective variables in the
presence of noise. The CovSel gives a very low percentage
of relevant and relevant non-selective variables. This is as
expected, as CovSel has the objective of finding a subset of
non-redundant variables.

3.3 Results for the Selwood Data
The existing literature reports various combinations of five
variables for a model with the highest validated explained

FIGURE 5 | Selected variables for UVE (A) and VIP (B) for second
derivative diesel fuel spectral data.

FIGURE 6 | Selected variables for SR (A) and CovSel (B) for second
derivative diesel fuel spectral data.

FIGURE 7 | Selected variables for GA (A) and (B) K-S for second
derivative diesel fuel spectral data.

TABLE 1 | Results for the diesel fuel data.

Method No. of variance Model dimension RMSEC RMSEP

Full model 389 8 1.84 3.23
Lasso 26 Full rank 1.64 3.34
CMV 70 6 2.05 3.19
Sparse-PLS 59 9 2.20 3.20
UVE 87 12 1.69 3.26
VIP 115 14 1.68 3.40
SR 113 12 1.52 3.63

TABLE 2 | Results from the analysis of the simulated data at the 5% noise level.

Method Relevant Relevant non-selective Irrelevant Noise

VIP 55.0 ± 6.5 60.9 ± 3.6 2.8 ± 4.0 0.0 ± 0.0
SR 54.0 ± 7.6 44.9 ± 3.5 0.0 ± 0.0 0.0 ± 0.0
sMC 54.6 ± 6.9 44.2 ± 4.8 0.0 ± 0.0 0.0 ± 0.0
CovSel 3.4 ± 2.5 5.7 ± 1.6 0.7 ± 0.7 0.0 ± 0
UVE 79.4 ± 15.9 79.0 ± 12.7 12.7 ± 8.2 5.1 ± 1.6
GA 49.8 ± 15.6 45.5 ± 15.8 15.7 ± 10.4 8.6 ± 6.8
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variance. The best combination search procedure with the sorted
p-values from jack-knifing estimates was used as a reference.
When no improvement in the RMSE for cross-validation was
achieved, the search was stopped. The procedure returned

variables 4, 12, 39, 50, and 52 as the optimal set. This gave an
R2
Cal of 72% and an R2

Val of 64% after four factors, which is similar
to the results reported in the literature. Nevertheless, as there are
only 31 samples and no independent test set, the search for the
lowest explained variance or RMSE is not the main objective in
this context, and such a procedure may lead to overfitting. As
there is redundancy among many variables, there are many
combinations of five variables that will yield the same results.

Table 4 gives an overview of the top five selected variables for
various methods.

The results show a large degree of consistency among the
methods. The methods based on univariate measures seem to
select very similar subsets, whereas methods that search for
different combinations showed more diverse subsets within the
multivariate space. All methods identified the variable with the
highest correlation to the first factor in the PLS model.

Many of the variables represent the same underlying structure of
the data, so depending on the strategy, the subset which is found
might be more or less random. However, there is no need to remove
variables in multivariate regression methods such as PLSR. The
variables that are removed can be visualized by use of correlation
loadings, which are the square root of the explained variance per factor
and variable. Figure 8 shows the correlation loadings for the first two
factors from the five variables selected in the JK-BCS, whereas the
other variables selected in Table 2 are downweighted and marked in
green. Thus, the variables that were not included in the selected subset
are visualized, and their relation to the other variables can be
interpreted. Thereby, in cases where there are indirect correlations
between causal variables and variables selected by a given procedure,
the interpretation regarding causality is not (accidentally) lost due to

TABLE 3 | Results of the analysis of the simulated data at the 10% noise level.

Method Relevant Relevant non-selective Irrelevant Noise

VIP 57.4 ± 6.4 61.2 ± 4.3 2.3 ± 3.3 0.0 ± 0.0
SR 59.0 ± 5.5 52.5 ± 5.0 0.2 ± 0.4 0.6 ± 0.6
sMC 57.6 ± 8.9 49.8 ± 9.1′ 2.1 ± 4.6 5.4 ± 10.1
CovSel 4.2 ± 3.9′ 5.2 ± 1.8 0.4 ± 0.7 0.0 ± 0
UVE 63.6 ± 13.6 65.6 ± 11.8 7.4 ± 2.7 5.6 ± 1.5
GA 53.8 ± 7.6 55.8 ± 5.6 22.7 ± 5.8 13.0 ± 3.5

TABLE 4 | Selected variables for various methods for the Selwood data.

Variable CovSel VIP SR sMC GA UVE JK-BCS

ATCH1 X X X X X X X
ATCH2
ATCH3 X X X X
ATCH4 X
ATCH5 X X X
ATCH6 X X X X
ATCH7 X X X X X
DIPV-Y X X X
MOFI-Z X
LOGP X X X
M-PNT X
SUM-F X X X

FIGURE 8 | Correlation loadings with the variables not selected by JK-BCS are denoted in green and their variable activity in red.
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the method of choice. From the figure, it can be interpreted that all
variables with the name “ATCH” except ATCH2 and ATCH4 have
similar relations to activity (correlations between 0.54 and 0.60). This
is probably why GA and JK-BCS only selected one of these, due to
redundancy. ATCH2 and ATCH4 are selected by CS because these
variables span another part of the model subspace (recall that the
optimal number of factors is four).

The correlation between the individual variables and the
response variable is in one method for screening non-relevant
variables. However, this is, in general, not a robust strategy,
although for spectroscopy it might serve as a viable approach.
In this QSAR data set, the various molecules show quite different
properties of the variables, which gives subgroups in the score
space. In fact, the variables DIPV-Y and MOFI-Z that span factor
two in the JK-BCS model have empirical correlations of 0.23 and
0.00 to Y.

4 DISCUSSION

The analysis of the NIR diesel fuel spectra showed that various
methods selected quite consistent subsets of variables with the
purpose of eliminating variables that are not important. The next
step, selecting a small subset, showed more variation among the
methods evaluated. The methods gave the same prediction error
for the test set.

The analysis of the simulated data showed that the methods
identified between 50 and 80% of the relevant variables. VIP
and SR had almost zero false-positives for the irrelevant and
noise variables for both noise levels. sMC was more susceptible
to noise than VIP and SR. UVE identified the highest
percentage of relevant variables, on the cost of 5–13% false-
positives. GA reported the highest percentage of false-
positives. CovSel, with the objective of finding a small
number of non-redundant variables, did not give false-
positives but also reported a small number of relevant and
relevant non-selective variables.

The comparison of the methods that aim to find a small
subset of variables showed that there is a high degree of
consistency in the ranking of the variables for the Selwood
data. By the use of correlation loadings, interpretability is kept,
as the correlations to the underlying factors can be made. Thus,
if some variables are highly correlated, it does not matter from
an interpretational point of view which ones are selected for a
small subset. Nevertheless, it is a sound principle to remove
variables that are not relevant. This reduces complexity and
might also decrease the prediction error.

Two of several objectives with variable selections are: i) to
eliminate variables that are not relevant and ii) to return a small
subset of variables that have the same or better prediction
performance as a model with all original variables. We find
that these aspects are more relevant than the comparison of
RMSE for a number of methods, as most methods give similar
results.

5 CONCLUSION

In the present study, different variable selection strategies were
reviewed and compared, taking into account various aspects. Based
on the results obtained from real and simulated data and discussed in
the previous section, some general conclusions can be drawn.

The predictive ability was not significantly different for various
variable selection methods, which shows that methods with
similar objectives may give the same results. It also means
that, for data with redundancy among the variables, there can
be many models with the same predictive ability. At the same
time, it is worth stressing that there can be, as well, many cases
where the use of a variable selection strategy may lead to an
improvement of the model performances, as reflected in the value
of one or more figures of merit.

None of the methods selected all the relevant variables, the
highest percentage of relevant predictors being retained by the
UVE approach (about 80% for the data with 5% noise level). At
the same time, most of the approaches did not select any (or were
retaining just a very small amount) of the irrelevant and noisy
predictors. In this respect, only GA and, to a lesser extent, UVE,
were including a relatively high amount of these “spurious”
variables.

The variable selection methods that are based on some kind of
search for the “best” model or representing diversity return subsets
that are more diverse within the multivariate model space (GA, JK.
BCS, and CovSel) than the single criterion methods.

For the methods based on latent variables, there is no need to
remove variables completely: they may be downweighted so that
one can have both interpretability and optimal prediction
performance.
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