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A B S T R A C T

As a common practice, the direction of natural gas flow in every pipeline is determined ex-ante for
simplification purposes, and treated as a given parameter within the scheduling problem. However, in
integrated gas and electric power networks with a large share of intermittent renewable power supply, it
is no longer straightforward to optimally predetermine the gas flow directions. A wrong predetermination of
gas flow directions may result in feasible but not necessarily optimal schedules. We propose a mixed-integer
linear optimization model to determine the optimal gas flow directions while scheduling the system. This
unlocks additional flexibility to power systems, provided that a tight coordination between power and gas
systems exists. The increased flexibility, although it comes at the cost of increased computational complexity,
is quantified by comparing the total operational cost of the entire system with bidirectional gas flows as
opposed to unidirectional gas flows. We numerically show that modeling gas flow directions as state variables
may bring added value not only in the meshed but also in the radial gas networks.
1. Introduction

1.1. Motivation and aim

The increasing share of intermittent renewable power supply in-
creases the need for operational flexibility in electric power systems.
Natural gas-fired power plants are generally able to provide flexibil-
ity by quickly adjusting their power output in order to cope with
fluctuations in the renewable power supply [1]. This, however, leads
to fluctuations in the natural gas demand and might even trigger a
change of the flow direction in certain gas pipelines. If this change
contradicts the predetermined flow direction, the operational space
of natural gas-fired power plants will be shrunk. In this case, more
expensive flexibility options have to be utilized, leading to an increase
of total operational cost of the system.

Pursuing modeling simplicity, it is currently a common practice
to assume that flow directions in natural gas pipelines can be deter-
mined ex-ante based on historical observations and expert judgment, no
matter what the schedule of gas-fired power plants is [2]. This prede-
termined flow direction is then treated as a fixed parameter within the
scheduling problem. This assumption is more frequently taken in gas
networks with a radial topology, as it is the case in Denmark, compared
to meshed gas networks, which is the case in Belgium [3]. Nonetheless,
it has been argued that flow directions even in meshed networks can be
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predetermined in a straightforward manner, e.g., by using a simplified
model neglecting the gas flow dynamics in pipelines [4].

This practice is, however, being challenged, as the uncertainty
induced by renewable power supply propagates from the power system
to the natural gas network via coupling components at the interface of
the two systems, in particular natural gas-fired power plants. As a con-
sequence, natural gas demands and eventually optimal flow quantities
in pipelines and even flow directions become uncertain [5]. One may
hypothesize this uncertainty will be even more magnified in systems
with significant stochastic renewable gas injection.

This paper argues that in order to unlock the full flexibility potential
that the natural gas network can provide to the power system, not only
the schedules and flow quantities but also the gas flow directions should
be optimally determined. This calls for a change in the current practice
that predetermines the gas flow directions. We find out that even in
radial gas networks it might no longer be straightforward to optimally
predetermine the flow directions, in particular in cases that natural gas
suppliers are located far away from each other throughout the network.

Hereafter, by unidirectional we refer to those models with predeter-
mined gas flow directions, while by bidirectional we refer to models
where the gas flow direction in every pipeline is optimally determined
along with schedules and flow quantities.
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Table 1
State of the art.
Reference Convexification

method
Model Bidirectional

gas flow modeling
Linepack
modeling

[6] Convex relaxation SDP Yes No
[7] Convex relaxation MISOCP Yes No
[8] Convex relaxation MISOCP No Yes
[9] Convex relaxation MISOCP Yes Yes
[10], [4] Piecewise linear

approximation
MILP Yes No

[11] Piecewise linear
approximation

MILP Yes Yes

[12] Outer linear
approximation

MILP Yes Yes

This paper Outer linear
approximation
(tighter constraints)

MILP Yes Yes
1.2. State of the art

The current literature proposes a broad range of operational mod-
els for integrated power and natural gas systems, mainly built upon
convexified gas flow equations, while taking into account the bidi-
rectionality of gas flows and linepack (stored gas in the pipelines).
Table 1 provides an overview. The interested reader is referred to [13]
for a more comprehensive survey. Ref. [6] proposes a semidefinite
programming (SDP) approach, where a tractable and tight convex
relaxation is explored using many small matrices with lifting variables.
However, for dense gas networks, it becomes challenging to solve the
resulting model due to large matrices. In addition, [7,8], and [9] use a
second-order cone (SOC) relaxation to convexify the gas flow equations,
while proposing solutions to tighten the relaxation. Ref. [7] proposes
an iterative algorithm based on sequential cone programming to obtain
a reliable solution to the original problem. Similarly, [8] develops an
iterative algorithm that is tightening the bounds of the McCormick
envelops used to convexify the bilinear terms that are necessary to
convexify the gas flow equations when accounting for linepack. Ref. [9]
investigates both linepack modeling and bidirectionality, while propos-
ing a mixed-integer linear program (MILP) as well as a mixed-integer
second-order cone program (MISOCP). To convexify bilinear terms, a
McCormick relaxation is used. Refs. [4,10], and [11] propose piecewise
linear approximation methods to convexify the gas flow equations. In
detail, [4] proposes a two-stage model, where the flow direction of the
passive pipelines is determined and then a non-linear program is solved.
In addition, [10] develops an extended incremental method including
a finitely bounded variable. Ref. [11] uses an incremental formulation
of the piecewise linear approximation, as originally suggested by [14].
Finally, [12] exploits an outer linear approximation of the gas flow
equations, while exploring sequential and stochastic coupling of power
and gas systems. Due to its simplicity and computational advantages
compared to other approaches presented here, we use an outer linear
approximation based on a Taylor-series expansion. For that, we use a
set of predefined fixed pressure points to approximate non-convex gas
flow dynamics.

1.3. Contributions

We quantify the increased flexibility potential that the natural
gas system provides to the power system by including the gas flow
directions as state variables in the scheduling problem. We consider
a co-optimization problem for the integrated power and gas system,
accounting for linepack in the natural gas pipelines. After some refor-
mulations to achieve convexity, we compare two cases: The first case
includes only nodal pressures and pipeline flows as state variables and
assumes predetermined gas flows (unidirectional). In the second case,
the flow directions are included as state variables in the optimization
model (bidirectional). This brings an extra degree of freedom to the
2

system operator but at the potential expense of increased computational
complexity due to the inclusion of binary variables for representing
the flow directions. Using a stylized case study, we provide an in-
depth analysis of natural gas flow quantities, directions, and linepack
utilization in both cases considering a meshed as well as a radial gas
network. We show that including gas flow directions as state variables
may provide substantial flexibility to the power system and foster
the utilization of linepack, leading to a decrease in total operational
cost of the integrated system. Methodologically, we contribute to the
literature by improving the currently prevalent linear approximation
of the non-linear and non-convex Weymouth equation that governs
the gas flow dynamics by further tightening the feasible region of the
approximation. This ensures that the optimal flow directions obtained
with the convexified model remain the same when recalculating them
based on the optimal pressures using the original Weymouth equation.

1.4. Paper organization

The remainder of this paper is organized as follows. Section 2
introduces optimization models for the operation of integrated power
and gas system with unidirectional and bidirectional flows. Section 3
proposes a tightened version of the outer linear approximation of the
non-convex gas flow equations for both unidirectional and bidirectional
cases. Section 4 presents a detailed analysis of both models applied to
a stylized case study, considering both meshed and radial gas network
topologies. Section 5 concludes. Finally, Appendices A.1–A.3 provide
further modeling details.

2. Formulation

2.1. General model

Aiming at harnessing further flexibility from the gas network by
modeling flow directions as state variables, we consider an integrated
power and natural gas system given perfect and instantaneous infor-
mation exchange. Although such a fully coordinated system does not
represent the current status of real-world system operation, it provides
an ideal benchmark to evaluate the maximum flexibility potential in
the coordinated system when accounting for bidirectionality of gas
flows. We consider a deterministic model with a single-point forecast
and inelastic demand profiles while optimally determining dispatch
schedules of power generators and gas suppliers in the day-ahead time
stage. A compact form of the co-optimization model is given below:

Minimize
x,y

𝐶𝑜𝑠𝑡power(𝐱) + 𝐶𝑜𝑠𝑡gas(𝐲) (1a)

𝐠power(𝐱) ≤ 0 (1b)

𝐡power(𝐱) = 0 (1c)

𝐠gas(𝐲) ≤ 0 (1d)
gas
𝐡 (𝐲) = 0 (1e)
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𝐞power(𝐱) + 𝐟gas(𝐲) = 0. (1f)

The objective function (1a) minimizes the total operational cost of
he integrated power and gas system. The capacity, flow, and nodal bal-
nce constraints for power and gas systems are represented as (1b)–(1f),
here (1f) links the power and gas systems together. The power and
as system variables are represented by vectors 𝐱 and 𝐲, respectively.
hroughout this paper, upper-case letters denote parameters whereas
ariables are represented by lower-case letters.

Since the focus of this work lies on the difference between unidi-
ectional and bidirectional gas flow models, we present the objective
unction (1a) as well as the power system constraints (1b)–(1c), which
re shared in both models, in Appendix A.1 and Appendix A.2, respec-
ively. Section 2.2 describes those gas network constraints which are
ommon in both unidirectional and bidirectional models. Finally, we
rovide a detailed description of the gas flow constraints (1d)–(1e)
s well as linking constraints (1f) accounting for unidirectional and
idirectional flows in Section 2.3 and Section 2.4, respectively.

.2. Common gas system constraints

Let 𝑚, 𝑢 ∈  , 𝑘 ∈ , and 𝑡 ∈  denote the set of gas network
odes, gas suppliers, and time periods, respectively. Each gas pipeline
onnects two nodes of the network, such that (𝑚, 𝑢) ∈  denotes the
et of all pipelines in the network. In order to properly model technical
imits of the gas network, the following set of constraints is enforced:

≤ 𝑔𝑘,𝑡 ≤ 𝐺max
𝑘 , ∀𝑘, 𝑡 (2a)

𝑅min
𝑚 ≤ 𝑝𝑟𝑚,𝑡 ≤ 𝑃𝑅max

𝑚 , ∀𝑚, 𝑡 (2b)

𝑟𝑢,𝑡 ≤ 𝛤𝑚,𝑢𝑝𝑟𝑚,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡. (2c)

Constraints (2a) limit the schedule 𝑔𝑘,𝑡 of gas supply unit 𝑘 in time
eriod 𝑡 to its maximum capacity 𝐺max

𝑘 . Constraints (2b) enforce the
odal pressures 𝑝𝑟𝑚,𝑡 at node 𝑚 in time period 𝑡 to lie within the
echnical limits 𝑃𝑅min

𝑚 and 𝑃𝑅max
𝑚 . We use a simplified representation

f compressors (2c) in pipeline (𝑚, 𝑢) ∈ , where we assume a constant
ompression ratio 𝛤𝑚,𝑢 > 1 for pipelines that host compressors and
𝑚,𝑢 = 1 otherwise. Furthermore, any form of energy demand from the
ompressor is neglected.

.3. Unidirectional gas flow constraints

The steady-state gas flow 𝑞𝑚,𝑢,𝑡 in pipeline (𝑚, 𝑢) and time period 𝑡 is
etermined by the Weymouth equation as
2
𝑚,𝑢,𝑡 = 𝐾2

𝑚,𝑢(𝑝𝑟
2
𝑚,𝑡 − 𝑝𝑟2𝑢,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡, (3a)

here 𝐾𝑚,𝑢 denotes the natural gas flow constant of pipeline (𝑚, 𝑢), cap-
turing the technical characteristics of the pipeline. In the unidirectional
model, we assume that the flow direction is predetermined and fixed
to flow from node 𝑚 to node 𝑢 in all time periods, which is enforced by

𝑞𝑚,𝑢,𝑡 ≥ 0 ∀(𝑚, 𝑢) ∈ , 𝑡. (4a)

In addition, we enforce

𝑞𝑚,𝑢,𝑡 =
𝑞in
𝑚,𝑢,𝑡 + 𝑞out

𝑚,𝑢,𝑡

2
, ∀(𝑚, 𝑢) ∈ , 𝑡, (4b)

which relates the gas flow within a pipeline to the average of its gas
nflow 𝑞in

𝑚,𝑢,𝑡 and outflow 𝑞out
𝑚,𝑢,𝑡.

Due to the slow transients of natural gas flows in pipelines, a time
elay between gas inflow and outflow exists, which behaves like an
ntertemporal storage. This storage can be described by the following
et of constraints:

𝑚,𝑢,𝑡 = 𝑆𝑚,𝑢
𝑝𝑟𝑚,𝑡 + 𝑝𝑟𝑢,𝑡

2
, ∀(𝑚, 𝑢) ∈ , 𝑡 (5a)

= ℎ + 𝑞in − 𝑞out , ∀(𝑚, 𝑢) ∈ , 𝑡 (5b)
3

𝑚,𝑢,𝑡 𝑚,𝑢,(𝑡−1) 𝑚,𝑢,𝑡 𝑚,𝑢,𝑡 C
𝐻0
𝑚,𝑢 ≤ ℎ𝑚,𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 = | |. (5c)

onstraints (5a) relate the linepack mass ℎ𝑚,𝑢,𝑡 in the pipeline (𝑚, 𝑢)
and time period 𝑡 to the average pressure difference of the connected
odes and the pipeline’s specific linepack constant 𝑆𝑚,𝑢, which, again,

captures the technical characteristics of the pipeline. The intertemporal
energy balance is defined by (5b), where the initial linepack mass ℎ𝑚,𝑢,0
is fixed to a given level 𝐻0

𝑚,𝑢, by setting ℎ𝑚,𝑢,0 = 𝐻0
𝑚,𝑢. Constraints (5c)

ensure that a depletion of natural gas in the pipelines at the end of
the planning horizon, i.e., 𝑡 = | |, is avoided by lower bounding the
inepack mass to the initial level.

As linking constraints in the form of (1f), the nodal balance for every
as node 𝑚 is enforced by
∑

𝑘∈K
𝑚

𝑔𝑘,𝑡 −
∑

𝑖∈G
𝑚

𝜂𝑖𝑝𝑖,𝑡 −
∑

𝑢∶(𝑚,𝑢)∈

(

𝑞in
𝑚,𝑢,𝑡 − 𝑞out

𝑚,𝑢,𝑡

)

=
∑

𝑑∈DG
𝑚

𝐷G
𝑑,𝑡, ∀𝑚, 𝑡,

(6)

where K
𝑚 , G

𝑚, and DG
𝑚 describe the sets of gas supply units, gas-

fired power plants (GFPPs), and gas loads in node 𝑚, respectively. We
consider the gas supply schedule 𝑔𝑘,𝑡 and power production schedule 𝑝𝑖,𝑡
by GFFP 𝑖 to be variable, while we assume that the gas demand 𝐷G

𝑑,𝑡 of
every gas demand 𝑑 is fixed. The power conversion factor of GFPPs, 𝜂𝑖,
links the power and gas system operation by relating the gas demand
of GFFP 𝑖 to its power production.

The unidirectional gas flow constraints constitute a linear problem
without binary variables. In the following section, we show how this
model can be extended to account for bidirectional flows, resulting in
a mixed-integer linear program.

2.4. Bidirectional gas flow constraints

In order to account for bidirectional flows, the unidirectional Wey-
mouth equation (3a) is replaced by

𝑞𝑚,𝑢,𝑡|𝑞𝑚,𝑢,𝑡| = 𝐾2
𝑚,𝑢(𝑝𝑟

2
𝑚,𝑡 − 𝑝𝑟2𝑢,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡, (7a)

which allows the gas flow 𝑞𝑚,𝑢,𝑡 to be either positive, or zero, or
negative, depending on the sign of the pressure difference (𝑝𝑟2𝑚 − 𝑝𝑟2𝑢)
at the adjacent nodes.

Similarly, constraints (4) are replaced by the following set of con-
straints:

𝑞𝑚,𝑢,𝑡 = 𝑞+𝑚,𝑢,𝑡 − 𝑞−𝑚,𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 (8a)

0 ≤ 𝑞+𝑚,𝑢,𝑡 ≤ 𝑀𝑦𝑚,𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 (8b)

0 ≤ 𝑞−𝑚,𝑢,𝑡 ≤ 𝑀
(

1 − 𝑦𝑚,𝑢,𝑡
)

, ∀(𝑚, 𝑢) ∈ , 𝑡 (8c)

𝑞+𝑚,𝑢,𝑡 =
𝑞in
𝑚,𝑢,𝑡 + 𝑞out

𝑚,𝑢,𝑡

2
, ∀(𝑚, 𝑢) ∈ , 𝑡 (8d)

𝑞−𝑚,𝑢,𝑡 =
𝑞in
𝑢,𝑚,𝑡 + 𝑞out

𝑢,𝑚,𝑡

2
, ∀(𝑚, 𝑢) ∈ , 𝑡 (8e)

𝑚,𝑢,𝑡 ≥ 0, ∀{(𝑚, 𝑢) ∈ |𝛤𝑚,𝑢 ≠ 1}, 𝑡 (8f)

𝑚,𝑢,𝑡 ∈ {0, 1}, ∀(𝑚, 𝑢) ∈ , 𝑡. (8g)

he gas flow 𝑞𝑚,𝑢,𝑡 is described in (8a) by two non-negative variables
+
𝑚,𝑢,𝑡 and 𝑞−𝑚,𝑢,𝑡 that represent flow directions from node 𝑚 to 𝑢 and
ode 𝑢 to 𝑚, respectively. Using binary variable 𝑦𝑚,𝑢,𝑡, (8b) and (8c)
nforce that the gas can only flow in one direction in each pipeline
nd time period using the big-M method. The value of constant 𝑀 is
hosen to be sufficiently high to not additionally constrain the amount
f natural gas flows, but not too high to avoid causing numerical
roblems. Constraints (8d) and (8e) relate the flow in a pipeline to
he average of in- and outflow. In pipelines that host compressors, the
low direction is not governed by the Weymouth equation, since the gas
lows from a node with lower pressure to a node with higher pressure.
ence, (8f) ensures that the flow in these pipelines is unidirectional.
onstraints (8g) introduce binary variables.
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Fig. 1. Outer linear approximation of the Weymouth equation.

Accounting for bidirectional flows in pipelines, the linepack con-
straints (5b) have to be adjusted as

ℎ𝑚,𝑢,𝑡 = ℎ𝑚,𝑢,(𝑡−1) + 𝑞in
𝑚,𝑢,𝑡 − 𝑞out

𝑚,𝑢,𝑡 + 𝑞in
𝑢,𝑚,𝑡 − 𝑞out

𝑢,𝑚,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡. (9)

Similarly, the nodal gas balance constraints (6) are rewritten as
∑

𝑘∈K
𝑚

𝑔𝑘,𝑡 −
∑

𝑖∈G
𝑚

𝜂𝑖𝑝𝑖,𝑡 −
∑

𝑢∶(𝑚,𝑢)∈

(

𝑞in
𝑚,𝑢,𝑡 − 𝑞out

𝑚,𝑢,𝑡 + 𝑞in
𝑢,𝑚,𝑡 − 𝑞out

𝑢,𝑚,𝑡

)

=
∑

𝑑∈DG
𝑚

𝐷G
𝑑,𝑡, ∀𝑚, 𝑡. (10)

Note that both unidirectional and bidirectional gas flow models are
non-convex due to the Weymouth equation (3a) and (7a). Hence, we
adopt a convex linear approximation of the Weymouth equation in
the next section. Furthermore, we improve the approximation that is
currently prevalent in the literature [12,15] by showing how it can
be further tightened to account for some of the underlying gas flow
physics.

3. Tighter approximation

In Appendix A.3, Weymouth equation is convexified using a Taylor
series approximation and relaxation. This outer approximation method
violates some of the underlying physics of gas flows. The main issues
are two-fold:

• The linear approximations extend to the green areas by crossing
the 𝑦-axis as shown in Fig. 1. The points in the green area treat
gas flows from nodes with lower pressure to higher pressure as
feasible, since the sign of 𝑝𝑟2𝑚 − 𝑝𝑟2𝑢 is flipped.

• The relaxation includes points on the 𝑦-axis and 𝑥-axis. Apart from
the origin, points on the 𝑦-axis have gas flows when there is no
pressure difference in the adjacent nodes. Similarly, points on the
𝑥-axis have no gas flow when there is pressure difference in the
adjacent nodes.

Since determining the optimal gas flow directions is critical to our
model, we resolve the above approximation issues by introducing the
following additional constraints that further tighten the feasible space.

𝑝𝑟𝑚,𝑡 ≥ 𝑝𝑟𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 (11a)

0 ≤ 𝑞𝑚,𝑢,𝑡 ≤ 𝑀(𝑝𝑟𝑚,𝑡 − 𝑝𝑟𝑢,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡. (11b)

Constraints (11a) enforce gas flow from nodes with higher pressure to
lower pressure in the unidirectional model. To prevent gas flow in the
pipelines with zero pressure difference between the adjacent nodes,
(11b) is introduced. However, the extent to which one value can be
considered larger than the other is arbitrary, allowing the gas flow with
very small pressure difference to be feasible. The same issue exists for
4

Table 2
Summary of approximated gas flow models.

Optimization problem The set of variables

Unidirectional
(Linear program)

Objective function: (18)
Power system
constraints: (19)
Gas system constraints:
(2), (4b), (5), (6),
(11), (21)

𝛩Unidirectional =
{𝑝𝑖,𝑡 , 𝑤𝑗,𝑡 , 𝑔𝑘,𝑡 ,
𝜃𝑛,𝑡 , 𝑓𝑛,𝑟,𝑡 , ℎ𝑚,𝑢,𝑡 ,
𝑝𝑟𝑚,𝑡 , 𝑞𝑚,𝑢,𝑡 ,

𝑞in𝑚,𝑢,𝑡 , 𝑞
out
𝑚,𝑢,𝑡}

Bidirectional
(Mixed-integer
linear program)

Objective function: (18)
Power system
constraints: (19)
Gas system constraints:
(2), (5a), (5c), (8),
(9), (10), (13), (15),
(22)

𝛩Bidirectional =
{𝛩Unidirectional ,

𝑞+𝑚,𝑢,𝑡 , 𝑞
−
𝑚,𝑢,𝑡 ,

𝑞in
𝑢,𝑚,𝑡𝑞

out
𝑢,𝑚,𝑡 ,

𝑦𝑚,𝑢,𝑡 , 𝜙𝑚,𝑡 , 𝜙𝑢,𝑡}

very small gas flow while having a large difference in the pressures in
the adjacent nodes. These issues are inherent to any convex relaxation
technique and are therefore not further addressed in this paper.

Constraints (11a) are adjusted to account for bidirectional flows in
pipelines as

(𝑝𝑟𝑚,𝑡 − 𝑝𝑟𝑢,𝑡)𝑦𝑚,𝑢,𝑡 ≥ 0, ∀(𝑚, 𝑢) ∈ , 𝑡 (12a)

(𝑝𝑟𝑢,𝑡 − 𝑝𝑟𝑚,𝑡)(1 − 𝑦𝑚,𝑢,𝑡) ≥ 0, ∀(𝑚, 𝑢) ∈ , 𝑡. (12b)

However, (12a) and (12b) are non-linear due to the product of continu-
ous variables 𝑝𝑟𝑚,𝑡 and binary variables 𝑦𝑚,𝑢,𝑡. We use a binary expansion
method, that exactly reformulates the above non-linear expressions as
linear expressions, as given in (13). For the implementation of the
binary expansion method, two non-negative auxiliary variables 𝜙𝑚,𝑡 and
𝜙𝑢,𝑡 are introduced, where 𝜙𝑚,𝑡 = 𝑝𝑟𝑚,𝑡𝑦𝑚,𝑢,𝑡 and 𝜙𝑢,𝑡 = 𝑝𝑟𝑢,𝑡𝑦𝑚,𝑢,𝑡.

𝜙𝑚,𝑡 − 𝜙𝑢,𝑡 ≥ 0, ∀(𝑚, 𝑢) ∈ , 𝑡 (13a)

𝑝𝑟𝑢,𝑡 − 𝑝𝑟𝑚,𝑡 − 𝜙𝑢,𝑡 + 𝜙𝑚,𝑡 ≥ 0, ∀(𝑚, 𝑢) ∈ , 𝑡 (13b)

− 𝑦𝑚,𝑢,𝑡𝑀 ≤ 𝜙𝑚,𝑡 ≤ 𝑦𝑚,𝑢,𝑡𝑀, ∀(𝑚, 𝑢) ∈ , 𝑡 (13c)

− (1 − 𝑦𝑚,𝑢,𝑡)𝑀 ≤ 𝜙𝑚,𝑡 − 𝑝𝑟𝑚,𝑡 ≤ (1 − 𝑦𝑚,𝑢,𝑡)𝑀, ∀(𝑚, 𝑢) ∈ , 𝑡 (13d)

− 𝑦𝑚,𝑢,𝑡𝑀 ≤ 𝜙𝑢,𝑡 ≤ 𝑦𝑚,𝑢,𝑡𝑀, ∀(𝑚, 𝑢) ∈ , 𝑡 (13e)

− (1 − 𝑦𝑚,𝑢,𝑡)𝑀 ≤ 𝜙𝑢,𝑡 − 𝑝𝑟𝑢,𝑡 ≤ (1 − 𝑦𝑚,𝑢,𝑡)𝑀, ∀(𝑚, 𝑢) ∈ , 𝑡. (13f)

Constraints (11b) are adjusted as (14a) and (14b) to account for bidi-
rectional gas flow.

0 ≤ 𝑞+𝑚,𝑢,𝑡 ≤ 𝑀(𝑝𝑟𝑚,𝑡 − 𝑝𝑟𝑢,𝑡)𝑦𝑚,𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 (14a)

0 ≤ 𝑞−𝑚,𝑢,𝑡 ≤ 𝑀(𝑝𝑟𝑢,𝑡 − 𝑝𝑟𝑚,𝑡)(1 − 𝑦𝑚,𝑢,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡. (14b)

Dealing with the same non-linearity issue, the auxiliary variables 𝜙𝑚,𝑡
and 𝜙𝑢,𝑡 are introduced to linearize (14a) and (14b) to (15a) and (15b).

0 ≤ 𝑞+𝑚,𝑢,𝑡 ≤ 𝑀(𝜙𝑚,𝑡 − 𝜙𝑢,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡 (15a)

0 ≤ 𝑞−𝑚,𝑢,𝑡 ≤ 𝑀(𝑝𝑟𝑢,𝑡 − 𝑝𝑟𝑚,𝑡 − 𝜙𝑢,𝑡 + 𝜙𝑚,𝑡), ∀(𝑚, 𝑢) ∈ , 𝑡. (15b)

Table 2 summarizes the structure of optimization problems for both
approximated unidirectional and bidirectional gas flow models.

4. Case study

The case study is a stylized 24-node IEEE reliability test power
system, connected to a 12-node natural gas system that is composed of
12 power generators (5 non-GFPPs and 7 GFPPs), 2 wind farms, 3 gas
supply units, 17 electricity loads, and 4 gas loads. The online appendix
for the original case study with network topology is available at [12].
For all cases, the total installed wind power capacity was chosen to
equal 40% of the hourly average electricity demand. The models are
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Fig. 2. Gas flows for unidirectional and bidirectional models in the pipelines (𝑚4 −𝑚5), (𝑚6 −𝑚8), and (𝑚10 −𝑚11). If the pipeline (𝑚4 −𝑚5) is present, it represents the meshed
gas network, whereas if the pipeline (𝑚4 − 𝑚5) is removed, it represents the radial gas network.
Fig. 3. Close case study of nodes m8 and m6 showing the percentage changes in gas
flows, gas consumption, and production levels in hour 15 with respect to hour 14.
The percentage change in the production of GFPPs is computed with respect to their
installed capacity. The gas inflow into node 6 from 8 in plot 3(b) is not represented
as a percentage, because the inflow at hour 14 is zero.

solved using Lenovo SD530 with two Intel Xeon Gold 6226R processors
(2.90 GHz, 16 core per CPU), and 378 GB RAM in Julia using JuMP
and Gurobi solver package 9.1.0. Due to computational complexities
when solving the mixed-integer linear program that describes the bidi-
rectional gas flow model, the time horizon was split into two parts:
hours 1 to 12 and hours 13 to 24. To avoid a depletion of natural gas
in the pipelines, the linepack mass at hour 12 is used as the initial line
pack mass of hour 13.

To study the benefit of modeling bidirectional gas flows as opposed
to unidirectional gas flows in both radial and meshed systems, the gas
system network in the case study is slightly adjusted. Fig. 2 shows the
gas network diagram, including nodes 𝑚1 to 𝑚12, gas supply units GS1
to GS3, gas loads GD1 to GD3, and GFPPs G1, G2, G5, etc. The dotted
pipeline between nodes 4 and 5 in the meshed network is removed in
the radial network topology. Note that the gas suppliers are located at
different ends of the network that are topologically far away from each
other.

We observed that the unidirectional gas flow model can be solved
within seconds for both meshed and radial systems, whereas the bidi-
rectional gas flow model was solved in 2.6 h for the meshed system, and
in less than two minutes for the radial system. All input data and codes
used in this paper are publicly available in the online companion [16].
5

4.1. Model comparison

For the bidirectional gas flow model, we observe that a change in
the flow directions happens most frequently in the pipelines (𝑚4−𝑚5),
(𝑚6−𝑚8), and (𝑚10−𝑚11), which are connected to nodes with gas loads
and GFPPs. The gas flow in these pipelines is shown in the attached
plots in Fig. 2. It can be further noticed, that the change of flow
direction happens not only in the meshed but also in the radial system.
Moreover, the changes in flow directions mostly occur in the later half
of the day when the demands for electricity and gas are higher. This
is accompanied by a higher amount of gas that is transported through
the pipelines, indicating an increase of the utilization of comparatively
cheap GFPPs. In fact, in the meshed system, the total power production
by GFFPs as a share of total electricity demand increases from 13.0%
in the unidirectional case to 16.7% in the bidirectional case. Conse-
quently, allowing for bidirectional flows in the gas systems increases
the flexibility in the power system. This leads to an operational cost
saving of 2.1% in the meshed system and 1.2% in the radial system. The
next section describes the difference in gas flows and power production
schedule of GFPPs between the unidirectional and bidirectional models
in detail for a selected hour and pipeline.

4.2. Consequences of the non-optimal gas flow direction

To closely examine the reason for the reduced operational cost in
the bidirectional gas flow model, we zoom into hour 15 in the meshed
system. Fig. 3 focuses on the pipeline from node 𝑚6 to 𝑚8, and depicts
the percentage change in gas flows and gas load at hour 15 with respect
to the previous hour. In contrast to the pipeline flows, the percentage
change in the production of GFPPs G10 and G11 is computed with
respect to their installed capacity.

In hour 15, the electricity consumption increases by 15.8% with
respect to the previous hour. The cheapest available power generator
to meet the increased demand is GFFP G10. In the unidirectional gas
flow model, the predetermined gas flow direction from node 6 to 8
restricts the amount of natural gas available for the operation of G10.
As a consequence, G10 is only able to ramp up 31% of its capacity in
the unidirectional gas flow model compared to 97% in the bidirectional
case. Hence, more expensive generators have to be dispatched in the
unidirectional gas flow model, resulting in a higher total operational
cost. Note that neither ramping nor unit commitment constraints have
been included in the model, which might impose additional technical
constraints on the operational flexibility of GFPPs.

4.3. Linepack flexibility

Linepack provides additional operational flexibility to the power
system based on the temporal separation of gas inflows and outflows
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Fig. 4. Linepack mass in pipelines (𝑚6 − 𝑚8) and (𝑚10 − 𝑚11) for unidirectional and
bidirectional gas flow models.

of pipelines due to slow flow transients. Fig. 4 shows the total charge
and discharge in two pipelines (𝑚6 − 𝑚8) and (𝑚10 − 𝑚11). We select
these two pipelines, since we observe frequent changes of flow direc-
tion in such pipelines. A sample of these changes has already been
illustrated and discussed in Fig. 3 for the case of meshed network.
We observe that the magnitude of total charge and discharge in the
bidirectional gas flow model is comparatively higher than that in the
unidirectional gas flow model. This is not necessarily the case for each
individual pipeline, but in overall, the bidirectional model charges and
discharges more than the unidirectional model. This indicates that the
optimal determination of gas flow directions by treating them as state
variables optimizes the charging and discharging capabilities in the
pipelines, increasing the overall flexibility potential of linepack. Apart
from decreasing the total operational cost of the integrated system,
we hypothesize that the increased utilization of linepack may flatten
the nodal gas prices, since cheaper gas sources can be utilized more
efficiently.

4.4. Approximation error

In order to validate our results, we look at the difference in the
approximation error for bidirectional and unidirectional gas flow mod-
els. The approximation error 𝛥𝑚,𝑢,𝑡 is calculated as the normalized
absolute difference of the optimal natural gas flows of the convexified
problem and the flows obtained when using the original Weymouth
equation (7a) based on pressures. The superscript * indicates optimal
values obtained from the models.

𝛥𝑚,𝑢,𝑡 =
|𝑞∗2𝑚,𝑢,𝑡 −𝐾2

𝑚,𝑢(𝑝𝑟
∗2
𝑚,𝑡 − 𝑝𝑟∗2𝑢,𝑡)|

𝐾2
𝑚,𝑢(𝑝𝑟

∗2
𝑚,𝑡 − 𝑝𝑟∗2𝑢,𝑡)

, ∀(𝑚, 𝑢) ∈ , 𝑡. (16)

Fig. 5 shows the difference in the normalized approximation error
in percentage. The blue scale indicates to what extent the bidirectional
gas flow model accurately approximates the Weymouth equation in
comparison to the unidirectional model, and vice versa for the red
scale. We observe large differences for individual pipelines and time
periods. To quantify the overall difference between both models, we
use the normalized root mean square error as

𝛯 =

[

1
| | ⋅ ||

∑

𝑡∈

∑

(𝑚,𝑢)∈
𝛥2
𝑚,𝑢,𝑡

]
1
2

. (17)

where | | and || are the number of time periods and pipelines,
respectively. In our case study, | | = 24 and || = 12. This error
6

Fig. 5. Difference in relative errors between left-hand side and right-hand side of
Weymouth equation. The blue (red) colors indicate a higher (lower) approximation
error in the unidirectional compared to the bidirectional gas flow model.

is 0.640 and 0.636 for the bidirectional and unidirectional models,
respectively, implying that the overall error in both models induced
by the approximation of the Weymouth equation is roughly the same.
We also notice that the approximation accuracy is highly dependent
on the number and choice of fixed pressure points used for the Taylor-
series expansion of the Weymouth equation. Improving the tightness
of the approximation is critical to get meaningful flow levels and
validity of the model. For this paper, we solely present the comparison
between the errors computed. We find out that the bidirectional model
does neither improve nor worsen the overall approximation of the
Weymouth equation, compared to the unidirectional model.

5. Conclusion and future work

We provided a detailed analysis of the increased flexibility that
the natural gas system provides to the power system when gas flow
directions are considered as state variables in the co-optimization prob-
lem. This increased flexibility was quantified in terms of the reduced
operational cost of the integrated system, by comparing the optimal
cost achieved in models with unidirectional and bidirectional gas flows.
Using a stylized case study, we found out that modeling gas flows as
state variables reduces the operational cost not only in meshed but also
in radial networks. The latter particularly happens in a radial network
where natural gas sources are located far away from each other in the
network.

Given a set of predefined fixed pressure points, we convexified gas
flow equations using a Taylor-series expansion. It is worth mentioning
that this approximation is usually not tight at optimum, and therefore
it may result in schedules which are not necessarily feasible in terms
of gas flow dynamics. Consequently, the approximation may overes-
timate the flexibility that does not exist in the real-time operation.
To avoid it, we improved the currently prevalent approximation by
tightening the resulting feasible region, ensuring correct flow directions
which are consistent with the original non-convex Weymouth equation.
Furthermore, we quantified the error of approximation by comparing
the convexified and the original Weymouth equations. We found out
that the overall errors including all pipelines and time periods in
the unidirectional and bidirectional models are in the same order of
magnitude. There could be, however, large differences when it comes
to individual pipelines and time periods.

As potential directions for the future work, the impact of the ap-
proximation error and its relation to the flexibility potential should
be further analyzed. One may also conduct a fairness analysis, explor-
ing how the approximation error impacts every individual in terms
of the associated operational cost (or profit in a market context).
In parallel, an improvement in convexification methods is necessary.
Possible approaches and directions have been extensively explored
in other research fields, e.g., for the alternating current (AC) power
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flow problem [17,18]. The outer approximation method based on the
Taylor-series expansion can be further improved by investigating how
to more efficiently select the fixed pressure points as the input data.
Furthermore, alternative approaches, e.g., based on machine learn-
ing [19], can be explored to reduce the computational time of the
resulting MILP in the bidirectional model, by predicting the inactive
constraints and/or the value of binary variables associated with the
flow directions at the optimal point.

This paper exploited a simplified model for the representation of
compressors, while discarding other critical gas network components
such as valves. This simplification certainly affects the flexibility po-
tential to be unlocked by introducing the gas flow directions as state
variables. It is of interest to leverage more detailed operational models
for compressors and valves [20]. The future work should also model
potential sources of uncertainty, e.g., renewable power supply, and
explores how uncertainty is being propagated from power to natural
gas system, depending on the topology of both networks and their inter-
connection. Recall that the proposed model is a co-optimization, which
provides an ideal benchmark. However power and gas systems are
not necessarily being operated by the same entities in the real world.
Therefore, the future work should explore how the maximum flexibility
potential can be efficiently unlocked in practice [21]. Finally, it is of
importance to focus on the transition towards the large deployment of
distributed energy resources, in particular electrolyzers and fuel cells,
and their associated impacts on the operation of integrated system.
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ppendix

.1. Objective function (1a)

The objective function minimizes the total operational cost of the
ntegrated system, including the cost of non-GFPPs as well as gas
uppliers:

inimize
Θ

∑

𝑡∈

(

∑

𝑖∈
𝐶E
𝑖 𝑝𝑖,𝑡 +

∑

𝑘∈
𝐶G
𝑘 𝑔𝑘,𝑡

)

, (18)

where 𝑝𝑖,𝑡 and 𝑔𝑘,𝑡 denote the schedules of power generator 𝑖 and gas
supplier 𝑘 in time period 𝑡, with associated production and supply costs
𝐶E
𝑖 and 𝐶G

𝑘 , respectively. Furthermore,  denotes the set of non-GFPPs.
Recall that  is the set of gas suppliers. The set of primal variables is
𝛩Unidirectional in the unidirectional gas flow model and 𝛩Bidirectional in the
7

bidirectional case, as already defined in Table 2.
A.2. Power system constraints (1b) and (1c)

Let (𝑛, 𝑟) ∈  denote the set of power system lines. Using linearized
lossless power flow equations, we enforce power system constraints by

0 ≤ 𝑝𝑖,𝑡 ≤ 𝑃max
𝑖 , ∀𝑖, 𝑡 (19a)

0 ≤ 𝑤𝑗,𝑡 ≤ 𝑊𝑗,𝑡, ∀𝑗, 𝑡 (19b)

𝑓𝑛,𝑟,𝑡 = 𝐵𝑛,𝑟(𝜃𝑛,𝑡 − 𝜃𝑟,𝑡), ∀(𝑛, 𝑟) ∈ , 𝑡 (19c)

− 𝐹max
𝑛,𝑟 ≤ 𝑓𝑛,𝑟,𝑡 ≤ 𝐹max

𝑛,𝑟 , ∀(𝑛, 𝑟) ∈ , 𝑡 (19d)

− 𝜋 ≤ 𝜃𝑛,𝑡 ≤ 𝜋, ∀𝑛, 𝑡 (19e)

𝑛,𝑡 = 0, ∀𝑛 ∶ 𝑟𝑒𝑓 , 𝑡 (19f)
∑

𝑖∈I
𝑛

𝑝𝑖,𝑡 +
∑

𝑗∈J
𝑛

𝑤𝑗,𝑡 −
∑

(𝑛,𝑟)∈
𝑓𝑛,𝑟,𝑡 =

∑

𝑙∈DE
𝑛

𝐷E
𝑙,𝑡, ∀𝑛, 𝑡. (19g)

Constraints (19a) limit the power production schedule 𝑝𝑖,𝑡 of gen-
rator 𝑖 in time period 𝑡 to its installed capacity 𝑃max

𝑖 . The production
chedule of wind farm 𝑗 in time period 𝑡, denoted by 𝑤𝑗,𝑡, is restricted in
19b) by its single-point deterministic forecast 𝑊𝑗,𝑡. Constraints (19c)
ompute the power flow 𝑓𝑛,𝑟,𝑡 across the line connecting nodes 𝑛 and
in time period 𝑡 as the product of the line susceptance 𝐵𝑛,𝑟 and the
ifference of the nodal voltage angles 𝜃𝑛,𝑡 and 𝜃𝑟,𝑡. Constraints (19d)
nforce transmission capacity constraints, where 𝐹max

𝑛,𝑟 is the capacity
f line connecting nodes 𝑛 and 𝑟. Constraints (19e) limit nodal voltage
ngles, whereas (19f) fixes the voltage angle at the reference node to
ero. The power balance in every node 𝑛 is enforced by (19g), ensuring
hat the power demand 𝐷E

𝑙,𝑡 of all loads 𝑙 located at node 𝑛 is fully met
n each time period 𝑡. The set of power generators, wind farms, and
lectricity loads in node 𝑛 is denoted by I

𝑛, J
𝑛, and DE

𝑛 , respectively.

.3. Linear approximation of weymouth equation

To convexify the non-convex Weymouth equation (3a) and (7a), it
as to be first relaxed and divided into two parts to represent each gas
low direction:

𝑚,𝑢,𝑡 ≤ 𝐾𝑚,𝑢

√

𝑝𝑟2𝑚,𝑡 − 𝑝𝑟2𝑢,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡 (20a)

𝑞𝑢,𝑚,𝑡 ≤ 𝐾𝑚,𝑢

√

𝑝𝑟2𝑢,𝑡 − 𝑝𝑟2𝑚,𝑡, ∀(𝑚, 𝑢) ∈ , 𝑡. (20b)

Afterwards, a Taylor series approximation is performed around a set
f given fixed pressure points (𝑃𝑅𝑚,𝑣, 𝑃𝑅𝑢,𝑣) to approximate the non-
onvex Eqs. (20) [12,15]. The tightness of this approximation can be
ontrolled by the number of pressure points 𝑣 at the cost of increasing
omputational complexity.

Since the flow directions are predetermined in the unidirectional
as flow model, we only need to consider the flow (20a), which is
pproximated by

𝑚,𝑢,𝑡 ≤
𝐾𝑚,𝑢𝑃𝑅𝑚,𝑣

√

𝑃𝑅2
𝑚,𝑣 − 𝑃𝑅2

𝑢,𝑣

𝑝𝑟𝑚,𝑡 −
𝐾𝑚,𝑢𝑃𝑅𝑢,𝑣

√

𝑃𝑅2
𝑚,𝑣 − 𝑃𝑅2

𝑢,𝑣

𝑝𝑟𝑢,𝑡,

∀(𝑚, 𝑢) ∈ , 𝑣, 𝑡. (21)

In the bidirectional gas flow model, the flow directions are endoge-
ously determined in the co-optimization model. Thus, we approximate
20a) and (20b) by properly accounting for the flow direction as

+
𝑚,𝑢,𝑡 ≤

𝐾𝑚,𝑢𝑃𝑅𝑚,𝑣
√

𝑃𝑅2
𝑚,𝑣 − 𝑃𝑅2

𝑢,𝑣

𝑝𝑟𝑚,𝑡 −
𝐾𝑚,𝑢𝑃𝑅𝑢,𝑣

√

𝑃𝑅2
𝑚,𝑣 − 𝑃𝑅2

𝑢,𝑣

𝑝𝑟𝑢,𝑡 + 𝑀
(

1 − 𝑦𝑚,𝑢,𝑡
)

,

∀{(𝑚, 𝑢) ∈ |𝑚 > 𝑢}, 𝑣, 𝑡 (22a)

−
𝑚,𝑢,𝑡 ≤

𝐾𝑚,𝑢𝑃𝑅𝑢,𝑣
√

𝑃𝑅2
𝑢,𝑣 − 𝑃𝑅2

𝑚,𝑣

𝑝𝑟𝑢,𝑡 −
𝐾𝑚,𝑢𝑃𝑅𝑚,𝑣

√

𝑃𝑅2
𝑢,𝑣 − 𝑃𝑅2

𝑚,𝑣

𝑝𝑟𝑚,𝑡 + 𝑀𝑦𝑚,𝑢,𝑡,

∀{(𝑚, 𝑢) ∈ |𝑚 < 𝑢}, 𝑣, 𝑡. (22b)
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The terms including the binary variables 𝑀(1−𝑦𝑚,𝑢,𝑡) and 𝑀𝑦𝑚,𝑢,𝑡 en-
ure that when either 𝑞+𝑚,𝑢,𝑡 or 𝑞−𝑚,𝑢,𝑡 takes a zero value, the corresponding
onstraint (22a) or (22b) is inactive.
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