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Abstract

In this study we propose a semi-parametric, parsimonious Value at Risk forecasting model based on
quantile regression and machine learning methods, combined with readily available market prices
of option contracts from the over-the-counter foreign exchange rate interbank market.

Value at risk (VaR) is an important risk measure now widely used by financial institutions. Tools
for measuring VaR with high accuracy is therefore important to assess risk in financial markets.
This study attempts to improve existing methods for predicting VaR using machine learning. We
use two different methods, ensemble methods and neural networks.

Explanatory variables are implied volatilities with plausible economic interpretation. The forward-
looking nature of the model, achieved by the application of implied volatilities as risk factors,
ensures that new information is rapidly reflected in Value at Risk estimates.

The proposed models achieves good estimates across all quantiles. Among the ensemble models,
the light gradient-boosting machine model and the categorical boosting model stand out compared
to our base line QR-IM model. Both models yield estimates which are better or equal to those
of the bench mark model. The neural network models are in general quite unstable and could
benefit from more training data and perhaps a better model architecture. Model stacking and
hyperparameter tuning contribute to an improved model in terms of the over all performance of
the predictions.





Sammendrag

I denne studien foreslår vi en semi-parametrisk, sparsommelig Value at Risk-prognosemodell basert
på kvantilregresjon og maskinlæringsmetoder, kombinert med markedspriser på opsjonskontrakter
hentet fra over-the-counter valutakurs interbankmarkedet.

Value at risk (VaR) er et viktig risikomål som nå brukes mye av finansinstitusjoner. Verktøy for å
måle VaR nøyaktig er derfor nødvendig for å kvantifisere risiko i finansmarkedene. Denne studien
forsøker å forbedre eksisterende konsepter og ideer for å forutsi VaR ved hjelp av maskinlæring.
To ulike konsepter brukes, ensemblemetoder og nevrale nettverk.

Implisitte volatiliteter brukes som forklaringsvariabler. Modellens fremtidsrettede natur, oppnådd
ved bruk av implisitte volatiliteter, sikrer at ny informasjon raskt fremkommer i Value at Risk-
estimatene.

De foreslåtte modellene oppnår gode estimater på tvers av alle kvantiler. Blant ensemblemodellene
skiller light gradient-boosting machine modellen og categorical boosting modellen seg ut sammen-
lignet med QR-IM-modell. Begge modellene gir estimater som er bedre eller lik referansemodellen.
De nevrale nettverksmodellene er generelt ganske ustabile og kan ha nytte av mer treningsdata
og kanskje en bedre modellarkitektur. Modellkombinasjoner og optimalisering av hyperparameter
bidrar begge til en kollektiv forbedring av predikasjonsevnen til modellene.
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1 Introduction

The ability to model Value at Risk (VaR) with high accuracy is an important tool for quantifying
risk in financial markets [1]. VaR is an estimate of the loss that will be exceeded with a small
probability during a fixed holding period. Thus, offering traders, investors, and institutions in-
formation regarding risk estimators and potential investment insight. Besides a prominent role in
regulatory frameworks, VaR will continue to be important for financial institutions as a measure
of market risk [2].

This paper extents the work of de Lange et. al. [2]. As proposed by the authors, machine learning
models could further improve the proposed model by introducing nonlinearilty to the predictions.
Therefore, the aim of this paper is employing different machine learning models and techniques in
order to improve the predictions.

By conducting a literature study on machine learning methods we discovered that both neural
networks and ensemble methods had been used for VaR predictions. Recurrent neural network
and long short-term memory neural network, stood out among the neural network models. Both
models yielding more accurate forecasting results for time series data compared to the feed forward
networks, however, still widely used. Amidst the ensemble methods, the random forest model was
used the most frequently. Gradient boosting methods have also been used, but less commonly.
Ensemble methods and neural networks are state of the art models in the machine learning com-
munity today.

In this study both neural network models and ensemble models are going to be used for improving
the predictions of VaR. Gradient boosting methods as well as random forest are going to be
tested along side the recurrent neural network, long short-term memory neural network and feed
forward networks. The various models are created using different model architectures as well as
hyperparameter tuning, and model stacking for the ensemble models.

The methodology entails investigating several options for tuning and improving the two concepts
of ensemble methods and neural networks. In addition, the training and validation data set are
constructed using the QR-IM model. This model was proposed in the paper by de Lange et. al.
[2] for forecasting the Value-at-Risk of foreign exchange markets. All models will be trained with
the same data, and validated on the same out of sample period.

To the best of our knowledge, this paper contributes to the literature being the first to utilize
information in the volatility surface - more precisely at-the-money volatility and risk reversals as
stand-ins for higher order moments - combined with machine learning and quantile regression, to
provide accurate VaR estimates.

Our main findings are:

1. The ensemble models achieves good estimates across all quantiles. However, two models stand
out, the LightGBM model and the Categorical boost model, when comparing to the bench
mark, QR-IM model. Both models yielding estimates at a better and equal performance to
the bench mark model.

2. The neural network models are in general quite unstable and could benefit from more training
data and perhaps a better model architecture.

3. Model stacking and hyperparameter tuning delivered an improved model when it comes to
the over all performance of the predictions.

The remainder of the paper is organized as follows: Chapter 2 provides an overview of the literature,
Chapter 3 presents the data, Chapter 4 describes the methodology, Chapter 5 lists the results and
discussion, and Chapter 6 concludes.
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2 Literature review

Quantile regression methods are often applied to Value at Risk forecasting. Engle and Manganelli
[3] proposed the CAViaR method. This model can directly model the quantiles instead of modelling
the whole distribution. Taylor [4] proposed the exponentially weighted quantile regression, or
EWQR model in short, for estimating Value at Risk. He found that this model outperformed
both GARCH-based methods and CAViaR models. Chen and Chen [5] found that the quantile
regression approach outperforms the variance-covariance approach.

A few papers have applied quantile regression in the context of forecasting volatility or VaR of
foreign exhange rates. Taylor [6] finds that a quantile regression approach delivers a better fit to
multi-period data when forecasting volatility compared to variantions of the GARCH(1,1) model.
Huang et al. [7] use quantile regression to forecast foreign exchange rate volatility. Jeon & Taylor [8]
include implied volatility as an additonal regressor in CAViaR models and find increased precision
of FX VaR estimates.

In order to make accurate forecasts of Value at Risk for foreign exchange rates, effective explanatory
variables are essential. Chang et al. [9] provide an outline of different forecasting objectives
using options data, including option-implied individual moments. Barone-Adesi et al. [10] and
Huggenberger et alia [11] show how to use options data to compute forwardlooking VaR and
Conditional-VaR measures. The information content of option combinations - such as the risk
reversal - has been studied in the context or arbitrage-free option pricing and hedging both in
papers by Bossen el al. [12] and Sarma el al. [13]. De Lange, Risstad and Westgaard [2] forecast
the Value-at-Risk of foreign exchange markets using both at-the-money option contracts from the
over-the-counter foreign exchange inter bank market to model volatility, and risk reversals as as a
proxy for higher order moments. The model proposed, the QR-IM model, outperformed ordinary
base line models for VaR forecasts.

A number of previous studies has confirmed the forecasting ability of a plain vanilla Feedforward
neural network over traditional statistical models. However, standard neural networks have lim-
itations. Most notably, the model relies on the assumption of independent data observations,
which presents a problem when data points are related through time. In order to overcome this
problem, Bijelic and Ouijjane [14], use a Gated Recurrent Unit type of neural network to produce
one-step-ahead volatility forecasts of the EURUSD exchange rate. Their model is outperformed
by a GARCH(1,1) model for the VaR 95%. Xu et al. [15] modelled the Value-at-Risk of foreign
exchange rates with three different neural network models; the deep belief network (DBN), mul-
tilayer perceptron (MLP), and long short-term memory network. Other studies that look into
neural networks for predicting foreign exchange rates are: Yaya Heryadi and Antoni Wibowo [16]
and He et al. [17].

Neural networks have been used in a vast variety of studies trying to model Value at Risk. Petneházi
[18] used convolutional neural networks to forecast Value at Risk. Modifying the algorithm slightly,
the convolutional networks can estimate arbitrary quantiles of the distribution, not only the mean,
thus allowing the network to be applied to VaR-forecasting. Pradeepkumar and Ravi [19] forecasted
financial times series volatility using a developed particle swarm optimization trained quantile
regression neural networks, named SPOQRNN. They compare this model to three traditional
forecasting models including GARCH, multi layer perceptron, general regression neural network,
random forest and more. The SPOQRNN performed better than the rest.

A few authors have used Artificial Neural Network (ANN) for forecasting Value at Risk. Taylor
[20] applied a quantile regression neural network apporach to estimate the conditional density of
mutliperiod returns. The model is compared to GARCH-based quantile estimates on daily exchange
rates. Xu et al. [21] developed a new quantile autoregression neural network (QARNN) model
based on an artifical nerual network architecture. By optimizing an approximate error function and
standard gradient based optimization algorithms, QARNN outputs conditional quantile functions
recursively. This allows the QARNN to explore non-linearity in financial time series. Yen et al.
[22] used ANN to forecast VaR on a stock index. The authors stated that the model benefit from
adding more exogenous parameters in the estimation process, such as interest rates.
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Long short-term memory neural network has been used by Yan et al. [23] in a quantile regression
framework to learn the tail behavior of financial asset returns. The model captures both the
time-varying characteristic and the asymmetrical heavy-tail property of financial time series. The
authors combine the sequential neural network with a self constructed parametric quantile function
to represent the conditional distribution of asset returns. Kakade et al. [24] propose a hybrid model
that combines LSTM and a bidirectional LSTM with GARCH, to forecast volatility. The model is
evaluated on periods with extreme volatility: the 2007-09 Financial Crisis and the Covid Recession
of 2020–21. The proposed model gives significant improvement in the quality and accuracy of the
VaR forecasts compared to bench mark GARCH models.

Ensemble methods has been used by a number of studies estimating VaR. Andreani et al. [25]
introduced the use of mixed-frequency variables in a quantile regression framework by merging the
Quantile Regression Forest algorithm and the Mixed-Data-Sampling model. The empirical applic-
ation of the model delivered adequate VaR forecasts and outperformed popular existing models
used in VaR forecasting, such as the GARCH model, in terms of quantile loss. Jiang et al. [26]
proposed a hybrid semi-parametric quantile regression random forest approach to evaluate Value
at Risk. The model was used to explain the non-linear relationship in multi-period VaR meas-
urement. Görgen et al. [27] used a generalized random forest (GRF) for predicting Value-at-Risk
for cryptocurrencies. They found that random forest outperformed quantile regression methods,
including GARCH-type and CAViaR models, when tailored to conditional quantiles. The authors
state that the adaptive non-linear form of GRF appears to capture time-variations of volatility and
spike-behaviour in cryptocurrency return especially well in contrast to more conventional financial
econometric methods. Gradient boosting methods were tested by Cai et. al. [28] for modeling
VaR. They discovered the method to be effective at capturing risk.
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3 Data

We apply our ensemble- and neural network models to empirical data for the EURUSD currency
cross, taking implied volatility quotes as input data, and examine the models’ predictive properties.
Daily exchange rates and implied volatility quotes are sourced from Bloomberg, covering the period
from 2009:01 to 2020:12.

3.1 Spot-rate returns

The daily returns are calculated as rt = ln(St/St−1), where St is the spot exchange rate at
time t. In our case, this is the daily return of a dollar measured in euros. Table 1 displays
descriptive statistics for daily log-returns from 2009:01 to 2020:12 and Figure 1 plots the time series
correspondingly. The return series exhibit the stylized facts that have been widely documented in
the financial economics literature; with unconditional means close to zero, clustering of volatility
and fat-tailed return distributions.

n 2930
Mean -0.0001
Std. dev 0.0053
Skewness 0.0330
Kurtosis 4.7508
Min -0.0229
Max 0.0295

Table 1: Descriptive statistics for daily EURUSD log-returns. Time period; 2009:01-2020:09.
Source; Bloomberg.

3.2 Investigating the data

Figure 2 displays time series for at-the-money volatilities (ATM) and 25–delta risk reversals (RR)
for european EURUSD options with one week to expiry, and reveals the stochastic nature of the
volatility surface. ATM levels have spiked around important economic events, such as the Brexit
vote in June 2016 and the Covid 19 outbreak in March 2020. Panel (c) shows that the sign of
the RR has changed over time and taken both positive and negative values, which in itself is an
interesting observation. If the risk reversal reflects the relative probability of depreciation and
appreciation of a currency, time-varying sign and magnitude of the risk reversal can be interpreted
as an indication of time varying probability of tail events. Panels (b) and (d) display empirical
distributions, which are skewed and leptokurtic for both variables. ATM volatility is naturally
bounded below by zero, but spikes during periods of market turmoil and thus cause a heavy right
tail. The risk reversal displays a highly non-normal, heavy-tailed empirical distribution.

3.3 Testing the data set

In order to test the data for stationarity we performed an augmented Dickey-Fuller unit root test
and conclude that our data is stationary. Further to rule out multicollinearity, we ran a variance
inflation factor test, or VIF in short. No sign of multicollinearity was discovered. We also tested
our data for heteroskedasticity using the Breusch-Pagan test and serial correlation between the
explanatory variables using a Breusch-Godfrey test. The Breusch-Pagan test indicated some sign
of heteroskedasticity, whereas no sign of serial correlation was found.
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Figure 1: EURUSD spot exchange rates (left panel) and daily log-returns (right panel). Time
period;2009:01-2020:09. Source; Bloomberg.

Figure 2 displays the time series and empirical distributiuns for implied moments of 1–week to
expiry options; at-the-money volatilities [panels (a) and (b)] and 25 delta risk reversals [panels (c)
and (d)]. Time period; 2009:01-2020:09. Source; Bloomberg.

Figure 2: EURUSD spot exchange rates (left panel) and daily log-returns (right panel). Time
period;2009:01-2020:09. Source; Bloomberg.
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4 Methods

In this chapter, we provide a brief outline of the models we have used to produce our VaR forecast.
We demonstrate how the data set is generated, briefly and generically explain the QR-IM model,
ensemble methods and neural networks. We also provide a short note on prepossessing of data
and implementation of models. A subsection is devoted to the specific ensemble models and neural
networks, which we have implemented on our data.

4.1 Generating the training data

In order to examine the different machine learning methods, we need to create a proper data set
containing the required quantiles. In this study we use two methods for creating the training data
set. First, we employ the methods proposed by de Lange et al. [2] using the QR-IM model. Our
second approach is using gradient boosting to generate quantiles based on the generated predictions.
This is achieved by the light gradient boosting-machine model and the gradient boosting model.
Both models have built-in options for quantile regression. The second method using QR-IM is
more complicated, and is explained below.

4.1.1 The quantile regression implied moments model

De Lange et al. [2] propose a quantile regression implied moments (QR-IM) model. We employ this
model for generating benchmark, in sample quantiles for our currency data. The model is based on
the hypothesis that the volatility surface of OTC FX options contains information, which can be
utilized to improve the accuracy of VaR estimates. Similar to [2], we study data for at-the-money
(ATM) options and risk reversals (RR).

At-the-money options are struck at the FX forward rate. ATM options have an initial delta of
50%. The ATM implied volatility is the risk-neutral expectation of spot rate volatility over the
remaining life of the option.

Risk reversals involve the simultaneous sale of a put option and purchase of a call option. The two
options are struck at the same delta. At the outset a 25% delta risk reversal will have a combined
delta of 50% and very little sensitivity to gamma and vega because of the offsetting effect of the
long and short position. Risk reversals are usually quoted as the difference in implied volatility
of similar call and put options with the equal delta. The risk reversal reflects the difference in
the demand for out-of-the money options at high strikes compared to low strikes. Thus, it can be
interpreted as a market based measure of skewness; the most likely direction of the spot movement
over the expiry period.

In the general case, the simple linear quantile regression model is given by:

Yq = α+ βX + ϵq (1)

where the distribution of ϵq is left unspecified. The expression for the conditional q quantile, 0 <
q < 1, is defined as any solution to the minimization problem:

min
α,β

T∑
t=1

(q − IYt≤α+βXt
)(Yt − (α+ βXt)) (2)

where

IYt≤α+βXt
=

{
1 if Yt ≤ α+ βXt

0 otherwise
(3)

In the QR-IM model, the conditional quantile function can be expressed as
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V̂ aRq,t+1 = α̂q + β̂ATM
q ATMt + β̂RRqRRt + ϵq,t (4)

A unique vector of regression parameters [α̂q, β̂
ATM
q , β̂RRq] can be obtained for each quantile of

interest, and the whole return distribution can be found, given observed values for the at-the-money
volatility (ATM) and the risk reversal (RR).

4.2 Value-at-Risk

VaR is a statistical risk measure of potential losses and summarizes in a single number the worst
loss over a target horizon that will not be exceeded with a given level of confidence. Despite
several other competing risk measures proposed in the literature, VaR has effectively become a
cornerstone of internal risk management systems in financial institutions, following the success of
the JP. Morgan RiskMetrics system and nowadays form the basis of the determination of market
risk capital.

In essence, VaR is the amount of money one stands to lose from an investment over a specified
time period and with a specified confidence level. Formally, the VaR at a level α of the profit and
loss distribution X is defines as:

V aRα = min{m : P (L ≤ m) ≥ 1− α} (5)

Using (5), one can therefore interpret V aRα(x) as the smallest m such that the probability of the
loss being at most m is at least 1 - α. For example, if the 1-week 5 % VaR of an investment is
$100 it means that the investment will with 95 % certainty not result in a loss exceeding $100.
Equivalently, the loss will exceed $ 100 with a probability of 5 %.

The most common methods for calculating VaR are usually divided into parametric and nonpara-
metric approaches. For the former, a normal distribution is often assumed and µ and σ2 is the
mean and variance of the investment based on a sample of previous returns. This is called the
mean-variance approach. In the nonparametric case, the most common method is historical sim-
ulation, in which the VaR is chosen as an empirical quantile of historical returns. Both of these
methods have their respective pros and cons, yet a common advantage is their relative simpli-
city and low computational requirements. A common disadvantage is that both methods fail to
adequately capture the tail risk of an investment, i.e., the worst possible outcomes.

Mean-variance method: In parametric VaR methods, one uses a statistical model to fit a
distribution with estimated parameters to describe a future return RT . A common assumption for
financial data is that this distribution, based on historical data (observations of Rt for t < T ), tends
to be a Gaussian distribution with some mean µ and variance σ2 . It is thus easy to compute the 1
- α-quantile and estimate the V aRα(x) amount from the quantile using the resulting distribution.

Instead of employing the complete historical window up to the present time t = 0, a so-called
lookback period is selected, which is represented by the symbol d. The mean and standard deviation
for the lookback period are then computed. Long lookback periods are recommended since there
is likely to be a significant difference between the means and variances of different eras. This
approach entails that the VaR is not calculated for the first d days. Thereafter, for each d -day
period, one calculates:

µ̂t =
1

d

d−1∑
j=0

Rt−d+j , for t = 1, . . . , T (6)

The variance is calculated as:

σ̂2
t =

∑d−1
j=0(Rt−d+j − µ̂t)

2

d− 1
, for t = 1, . . . , T (7)
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The standard deviation is of course the square root of the expression (7), σ̂t, is frequently referred
to as the volatility. Both (6) and (7) are moving averages. For a day t in [1, T ], the prediciton for
VaR at a confidence level α is calculated by taking the 1 - α-quantile of the distribution N (µ̂t, σ̂t).

Historical Simulation: In principle, historical simulation operates similarly to the mean-variance
approach, i.e., by picking a lookback period and calculating the 1 - α-quantile. However, in his-
torical simulation, this is accomplished by simply sorting the sample returns, followed by selecting
the quantile. In a sample of independent copies R1, . . . , Rn of the return distribution R for an
investment X, the empirical estimate of V aRα(x) is given by

V̂ aRα(x) = R[nα]+1,n (8)

where R1,n ≥ · · · ≥ Rn,n are the sample returns ordered by ascending size, and [x] = max{m ∈
Z | x ≤ m}, also known as the floor function. To highlight this with an example, suppose that
there are n = 220 samples of the return R and one seeks the VaR at confidence α = 0.01. This
would require ordering the samples such that R1,220 ≥ · · · ≥ R220,220 and choosing V̂ aR0.01 as
R[220·0.01]+1,220 = R[2.2]+1,220 = R2+1,220 = R3,220.

4.3 Ensemble learning

In this study we employ two base methods for estimating VaR, ensemble learning and neural
networks. Ensemble learning is the process of using multiple models, often called weak learners,
trained over the same data and combined to obtain better results. Weak learners, or base models,
are models that on average perform slightly better than random chance. This is either because
they have a high bias or because they have too much variance to be robust. The idea of ensemble
methods is to attempt reducing bias and/or variance of such weak learners by combining several
of them, in order to create a strong learner that achieves better performance.

Low bias and low variance are two of the most desirable features of a model. There is also a trade
off between degrees of freedom and the variance of a model. Introducing too many degrees of
freedom can cause high variance. Thus, a limit of the amount of degrees of freedom is required to
avoid high variance and to be more robust. This is known as bias-variance trade off.

When combining weak learners we need to assure that our choice of weak learners is consistent
with the way we aggregate the models. If we choose base models with low bias but high variance,
we should employ an aggregating method that tends to reduce variance, whereas if we choose base
models with low variance but high bias, we should utilize an aggregating method that tends to
reduce bias. In general there are three major kinds of algorithms that aim at combining weak
learners: bagging, boosting and stacking.

Bagging learns homogeneous weak learners independently and combines them following some
kind of deterministic averaging process. Boosting, which also often considers homogeneous weak
learners, learns them sequentially and combines them following a deterministic strategy. Stacking,
learns weak learners in parallel and combines them by training a meta-model which outputs a
prediction based on the different weak model predictions. In general, both boosting and stacking
mainly try to produce strong models with less bias than their components, whereas bagging mainly
focuses on getting an ensemble model with less variance than its components.

4.4 Deep learning

This section gives a short introduction to deep learning and its concepts. Deep learning refers to
the machine learning methods using deep neural networks to approximate some unknown function
based only on the inputs and expected outputs. The section starts by explaining the concepts
of artificial neural networks before mentioning some activation functions relevant to this study.
Furthermore, the learning process of the neural network will be explained along with optimizers
and the concept of batch and epoch.
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4.4.1 Artificial neural network

Artificial neural networks (ANNs), hereafter referred to as neural networks (NNs), recognize under-
lying relationships in a data set through a process that mimics the way the human brain operates.
NNs are non-linear functional approximators that can be tuned to approximate an unknown func-
tion based on observations and target outputs. NNs are structured in consecutive layers. Each
layer takes an input, applies a transformation, and returns an output. The perception, originally
described by Rosenblatt in 1958 [29], acts as the inspiration for the neuron, the foundational build-
ing piece of the layer. There is an associated weight for each element in the input vector to the
neuron. The bias of the neuron can optionally be added to the input. The neuron then determines
an output by adding the inputs and the weights assigned to each input:

y =

n∑
i

xiwi + b (9)

An arbitrary positive number of neurons that each provide an output can make up a layer in a
NN. Input can be a vector of size m and output a vector of size n, equal to the number of neurons
in the layer. Calculating the output vector involves multiplying the input vector by the weight
matrix of the layer:

y = xW + b (10)

Where x is the input vector, y is the output vector, W is a m × n matrix containing the weights
for the n neurons in the layer and b is the vector of biases.

4.4.2 Activation functions

As mentioned in Section 4.4.1, neural networks are organized in successive layers, each layer com-
putes an output given an input as described in Equation (10). The output of one layer is then
subjected to a nonlinear transformation before being passed as input to the following layer. This
is referred to as an activation function. Below is a list of commonly used activation functions:

The logistic function

The logistic function, also known as the sigmoid activation function, transforms the values into the
range [0, 1]:

σ(x) =
1

1 + e−x
(11)

Tanh

The hyperbolic tangent function, simply referred to as tanh, is similar to the sigmoid activation
function, but instead ouput values in the range [−1, 1]:

σ(x) =
ex − e−x

ex + e−x
(12)

ReLU

The Rectified Linear Unit (ReLU) activation function outputs values in the range [0, 1⟩. It does
this by taking the maximum of the input and zero

σ(x) = max(0, x) (13)

All mentioned activation functions are displayed in Figure 3, in blue, with their derivatives in
yellow.
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Figure 3: Activation functions

4.4.3 Training a neural network

The process of adjusting the layer weights until the network satisfactorily approximates the target
function is known as training the neural network. The function that the neural network is at-
tempting to approximate is denoted by F. An objective function, frequently referred to as the loss
function, is used to measure how closely the network approximates F. When the neural network
accurately approximates F, the loss function has a global minimum. It calculates the distance
between the output ŷ to the target output y.

One of the most commonly used loss functions is the mean squared error (MSE). It is defined as:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2 (14)

The neural network is trained by minimizing the loss function with regard to the neural network
weights. The optimization problem is solved by calculating the partial derivatives of the loss
function with regard to the weights. Let ∂L

∂wi
stand for the partial derivative and L for the loss

function. The process of updating the weights and biases is shown in Equation (15) and (16).

wi = wi − η
1

m

m∑ ∂L

∂wi
(15)

bi = bi − η
1

m

m∑ ∂L

∂bi
(16)

The learning rate of the neural network is denoted by the symbol eta. It is a small positive
value that determines how large the steps along the gradient should be at each iteration. The
term 1

m

∑m comes from averaging all gradients for all samples. This implies that 10,000 gradients
would be calculated for each weight given a set of 10,000 samples of input and targets. Rumelhart
[30] provides a thorough explanation of this procedure, which is known as backpropagation.

One thing to consider when modelling a deep neural network is that learning is carried forth with
the derivatives. As seen in Figure 3, the derivatives of the logistic function and the tanh function
quickly approaches zero. This means that the information is lost in a deep net. That is why the
ReLU activation function is preferred in deep neural nets as the derivative is either 0 or 1.

4.4.4 Optimizers

One of the many approaches for updating the weights of a neural network is traditional gradient
descent. Here the derivatives (gradient) is minimized until finding a minimum. The method is
advantageous in that it is simple to use and will yield the global optimum if the objective function
is convex. One significant disadvantage is that the procedure may reach a local optimum and hence
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come to an end when looking for the global optimum. Additionally, the computational complexity
will be considerable for each iteration and possibly infeasible for huge data sets. This is because
every iteration uses every piece of training data. The computational complexity will be O(ND)
for each iteration if we use N for the sample count and D for the data set dimension. To reduce
this problem and the risk of hitting a local minimum, the stochastic gradient descent technique
was created [31].

Stochastic gradient descent
Here, instead of computing the precise value of the gradient using the whole data set, one sample
from a small batch of samples is randomly selected to update the gradient during each cycle.
Thus, the costs associated with calculating the new weights are drastically reduced because they
are generated for one sample rather than the full data set. This approach computes the gradients
averaged only on a randomly chosen subset S from the set of inputs and targets, also referred
to as a minibatch. Goodfellow [32] claims that the predicted value of the gradient should then
approximate the gradient determined using all samples.

Since only one sample is used, the gradient descent method does not uniformly converge in one
direction because of the extra noise this causes. Furthermore, it is troublesome to have a single
learning rate for all features, as rarely occurring features should ideally receive greater gradient
updates and vice versa. The optimizer "adaptive moment estimation," or Adam for short, uses
variable learning rates to address this problem. Adam has a high computational efficiency and
reduces the requirement for earlier learning rate tunin [33].

Adam: Adam stores exponentially decaying averages of past gradients g(τ)

g(τ) = β1g
(τ−1) + (1− β1)∇L(wτ )

V (τ) =
√
β2V (τ) + (1− β2)(∇L(wτ ))2 (17)

With β1 and β2 being some exponential decay rates, resulting in the weight update equations

w(τ+1) = wτ +∆w(τ), (18)

with ∆w(τ) = g(τ) − ξ ∗
√
1− β2

1− β1

g(τ)

V (τ) + ϵ

where ϵ is set to a very small value to ensure that there is no divison by 0.

4.4.5 Batch size and epochs

The neural network performs its training by splitting the input data into batches and letting this
number of samples propagate through the network. For a given training data set containing N
samples and a batch size denoted b, the network divides N into N/b batches of size b. Weight
updates are performed for each batch, and the outcome is displayed in the value of the loss function
of the network. When all batches have been propagated through the network, the training has
been performed over 1 epoch. In other words, the number of epochs represents how many times
all batches are transmitted over the network.

Naturally, the batch size selection has consequences because it impacts the gradient descent. Three
different types of gradient descent are typically introduced depending on the batch size: stochastic
gradient descent, where b = 1, mini-batch gradient descent, where 1 < b < N , and batch gradient
descent, where b = N . Since the weights are adjusted after each propagation, having a smaller
batch size may speed up computation, but it may also result in less accuracy in the gradient
value[32]. When compared to the batch approach, the gradient fluctuates more with the stochastic
approach. A mini batch gradient descent method thus acts as a compromise between the two.
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4.5 Pre-processing

When using different machine learning algorithms such as neural networks and ensemble methods,
it is often imperative to scale the data in order to speed up the learning process and achieve faster
convergence. This is typically accomplished by scaling the data to obtain a mean that is almost
zero [34]. This step is especially important when working with tasks that involve a variety of
features at various scales, such as estimating the likelihood of a person having between 0 and 5
children given their annual income (tens of thousands of dollars), height (roughly between 150
and 200 cm), and number of years of post-secondary education (usually between 0-6). Given the
fact that log returns are already adequately centered around a mean of zero, the data at hand is
essentially directly compatible with ensemble learning and a neural network [35].

4.6 Implementation

To construct ensemble methods different open source python packages has been used. From Scikit-
learn the methods for random forest [36], gradient boost [37] and adaptive boosting [38], Microsoft
introduces the light gradient-boosting machine [39]. From Distributed Machine Learning Com-
munity (dmlc) we get the extreme gradient boosting [40] and at last we obtain the categorical
boosting [41] from Yandex.

We use Keras [42] to construct the neural network, which serves as an interface for the TensorFlow
library. TensorFlow was developed by Google and is both a free and open-source library for machine
learning. Keras offers both ordinary neural network layers, recurrent-layers and LSTM-layers, in
addition to a multitude of different machine learning methods.

4.7 The chosen ensemble models

According to the literature review in Chapter 2, the random forest algorithm was more frequently
employed to estimate VaR compared to the gradient boosting methods. Therefore, in this study
different gradient boosting methods, as well as the random forest, is going to be tested for predicting
VaR.

Random forest
The random forest model is an ensemble of many weak learners, in this case decision trees. It
can be applied to classification and regression problems. The regression procedure using random
forest starts by splitting of features and then creates decision trees. Every tree makes its individual
decision based on the data. The average value predictions from all trees become the final prediction.

Gradient boosting
Gradient boosting on decision trees is a form of machine learning that works by progressively
training more complex models to maximize the accuracy of predictions. Gradient boosting is
particularly useful for predictive models that analyze ordered (continuous) data and categorical
data. Gradient boosting benefits from training on huge data sets. Gradient boosting is one of the
most efficient ways to build ensemble models. The combination of gradient boosting with decision
trees provides state-of-the-art results in many applications with structured data. Gradient boost
algorithms are build in an iterative way. First, the algorithm learns from the first tree to reduce
the training error. The algorithm, then repeats this procedure until it reach a decent quality. In
general it is not a good idea to build very big trees in boosting, since they over fit the data.

Extreme gradient boosting
Extreme gradient boosting (XGBoost), is an improved version of the gradient boosting algorithm.
In this algorithm, decision trees are created sequentially. Different weights are assigned to all the
independent variables, which are then fed into the decision tree that predicts results. The weight
of wrongly predicted variables by the tree is increased and the variables are then fed to the second
decision tree. This is known as an gready algorithm. These individual classifiers/predictors then
ensemble to give a strong and more precise model. This works for regression, classification, ranking,
and user-defined prediction problems.
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Light gradient boosting-machine
Light gradient boosting-machine, or known as LightGBM is a gradient lifting framework which
is based on the decision tree algorithm. It can be used in classification, regression, and many
more machine learning tasks. Compared to XGBoost it splits leaf-wise and chooses the maximum
delta value to grow, rather than level-wise. LightGBM has a great advantage when performing
hyperparameter optimization. This is because the different input-parameters are easily controlled.

Category boosting
Categorigal boosting, in short CatBoost, provides a way of performing classifications and rankings
of data by using a collection of decision-making mechanisms. Results generated by the learners
are weighted and classified based on the strengths and weaknesses of each learner.

4.8 The considered neural networks

There are plenty of different types of neural networks, each being more suitable depending on the
task at hand. The recurrent neural network (RNN), which has a temporal component and can thus
capture dynamic and time-dependent characteristics in the data, is frequently employed for time
series. The long short-term memory (LSTM), a specific kind of RNN, has the ability to combine
knowledge from the distant past with information from the present, depending on how the model
is configured. In this study both the recurrent neural network and the long short term memory
are chosen as models, in addition to the feed forward neural network.

Feed forward neural network
The feed forward neural network (FFNN) is an artificial neural network. Here connections between
the nodes do not form any type of cycle. The information moves only in one direction, forward
in the network from the input nodes. The information is passed through the hidden nodes to the
output nodes. Feed Forward Neural Networks with a single hidden layer is the most widely used
neural network for forecasting [43].

Recurrent neural network
A recurrent neural network (RNN) is a class of artificial neural networks where connections between
nodes can create a cycle. Thus allowing output from some nodes to affect subsequent input to the
same nodes. This allows it to exhibit temporal dynamic behavior.

Long short term memory
The long short-term memory (LSTM) can consolidate information from far in the past with that
which is more recent. A forget gate, an input gate, and an output gate make up the LSTM-
cell. While the gates govern the information flow in and out of the cell, the fundamental function
of the LSTM-cell is to recall information over time intervals. The gates essentially decide which
information is remembered and which is forgotten. The information that the LSTM-cell remembers
is kept in its cell state Ct and computed based on the input xt. The results of the previous output
ht−1 is kept in the forget gate.

Figure 4: A long short term memory layer.
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4.9 Hyperparameter architecture

The hyperparameter tuning is a little different for the ensemble methods and neural networks.
Nevertheless, the general aim is to minimize the loss function and maximize accuracy while reducing
bias and overfitting. For both the ensemble methods and the neural networks, choosing the correct
architecture is non-trivial. When it comes to the ensemble methods, the chosen architecture is
mostly based on the method in use, whether this is ordinary random forest or some gradient boost
technique. Choosing a method also restricts a lot of the possible tuning. In this study, the process
of hyperparameter tuning for the ensemble methods has been carried out by the use of software (if
it exists), and trial and error. Typically the tuning parameters are the number of leaves, number
of trees and the learning rate.

In a neural network there are a lot of possible variations. The hyperparameters that need to be
adjusted in the neural network are the number of layers, number of nodes in each layer, the look-
back period, activation functions, learning rate, bach size and number of epochs. This has been
achieved through an iterative approach, optimizing one parameter at a time.

Another possibility for tuning the models is the training and validation period. The training data
consists of data from 2009-07-07 to 2017-12-29. For the neural network there is also the training
period. We have split the training period 80/20 percent, into the neural network training set and
the test set respectively. The validation set is equal for both periods and consists of data from
2018-01-03 to 2020-09-25. Too short a training set can make the data prone to outliers, however
it may be less overfitted. Too long a training period makes the data prone to overfitting, and the
model may be useless for its actual task. This is because one cannot test the model on enough
data to detect anomalies in the model.

4.9.1 Neural network hyper parameters

Interaction parameter
A neural network needs many input parameters in order to find any type of patterns in the data.
In our data there are only two parameters. That may be too few for a neural network to work
properly. Thus, a third parameter has been created. This is an interaction term between the two
already existing parameters.

Interaction term; x3 = ATM volatility · 25% delta risk reversal

Look back period
Due to the mechanics of LSTM-networks, the importance of specifying an optimal lookback period,
is reduced as the network offers long and short term memory. Still, the LSTM-network does require
input data to be sequential. As such, for the neural network model, the inputs were set to a size of
10, meaning that any given prediction used the past 10 days of data. The same look back period
is used for the Recurrent Neural Network

Layers
A typical neural network has one input layer, one or more hidden layer(s), and one output layer.
The dense layer is the most prevalent type of layer and, as its name suggests, is completely connec-
ted to neurons in other layers. The dense layer, which offers learning features for all combinations
from the preceding layer, is quite simple in comparison to the LSTM and the RNN. The dense
layer does not account for temporal aspects and memory as the LSTM and RNN-layer does. In
this study, the FFNN-model, is constructed using dense layers only, as this is a simple feed forward
neural network. However, the LSTM and the RNN-models need their respective LSTM and RRN
layer, in addition to possible dense layers. For all three models the output layer consists of six
nodes, one for each quantile. Stacking of multiple layers enables the network to construct deeper
features from which the output can be based on [44]. However, a sparser model with fewer layers
can outperform their denser counterparts in the context for financial forecasting. This stems from
the low signal to noise ratio in financial data [45].
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Nodes
In general it is better to have too many nodes in a layer than too few [44]. This is because to few
neurons might leave out important non linear connections in the data. Boyd and Kaastra, give
different examples of potential rules of thumb for choosing the neurons in hidden layers. There
rules are based on n input neurons and m output neurons. Here are three:

√
n ·m (Masters, 1993),

0.75 · n (Baily and Thompson, 1990), and between one half to three times n (Katz, 1992) [46].

Miscellaneous improvements
The use of callbacks is a fundamental component in formulating the architecture of the neural
network. A callback is a function that is used at specific points throughout the neural network’s
training [47]. In this study, callbacks served three functions: automatic adjustment of the learning
rate, early stopping and model checkpoints.

The callback ReduceLRonPlateau monitors the loss function and automatically reduces the learning
rate by a factor of 0.1 if the loss has not improved over 15 epochs. The learning rate reduction
factor, the number of epochs before adjustment (i.e., patience), and the variable that is monitored,
can all be manually changed in this callback.

The callback EarlyStopping was used to introduce early stopping. This callback keeps track of
the validation loss and stops the training of the neural network if the validation loss does not
improve after 60 epochs. The variables in this callback can be manually changed, similar to
ReduceLRonPlateau.

Lastly, the callback ModelCheckpoint was used to save the best model during training. Early
stopping with a patience ≥ 1 has the risk of making the model worse after each epoch due to
suboptimal weight updates. Thus, it is important that the model that produced the best loss be
the one that is kept and used for prediction. In doing so, the model weights for that epoch are
saved when the validation loss value has improved throughout training and later rewritten if the
loss has improved at a later point in the training. The best model, which was saved while training,
is loaded and utilized for prediction when the training is finished.

The model also employs dropout layers, which are positioned between other model layers. The
layer sets a portion of the input units to zero at each training step, corresponding to a certain
frequency in the range [0, 1]. This means that during network training, some weights are not
updated. Therefore, the dropout layers aid in avoiding overfitting.

4.10 Explainable AI

We introduce Shapley values to enhance comprehension of how the machine learning models oper-
ate. Shapley (Shap) values arrive from Game Theory, and are frequently used for post-hoc model
explainability in machine learning models. The idea is to see the impact each feature has on the
target. For further explanation see the original paper [48].

4.11 Developed neural network models

For all models, a batch size of 5 has been used. Each model was allowed to run for 120 epochs,
but the final number varied based on whether or not early stopping was activated. All models had
their weights randomly initialized and used the Adam optimizer.

4.11.1 Feed forward neural network

The feed forward neural network has three dense layers consisting of 12 nodes, and a dropout
frequency of 0.2. After the three dense layers comes a suppress layer, with a dropout frequency of
0.2. This layer suppresses the data, and thus from the model developed, make the predictions more
stable. All layers have a ReLU activation function. The model output are the predicted quantiles:
α : [0.01, 0.025, 0.05, 0.95, 0.975, 0.99].
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Figure 5: The feed forward neural network used in this thesis.

4.11.2 Recurrent neural network

The recurrent neural network has two dense layers consisting of 12 nodes and between them a recur-
rent layer consisting of 8 nodes. All layers have dropout frequencies of 0.2 and a ReLU activation
function. The model output is the predicted quantiles: α : [0.01, 0.025, 0.05, 0.95, 0.975, 0.99].

Figure 6: The recurrent neural network used in this thesis.

4.11.3 Long short term memory neural network

The LSTM neural network starts with a dense layer of 12 nodes. Then comes two LSTM lay-
ers with 8 nodes, and in between them a suppress layer consisting of one node. Also, here the
model needed a suppress layer to make the model more stable. All layers have dropout fre-
quencies of 0.2 and a ReLU activation function. The model output is the predicted quantiles:
α : [0.01, 0.025, 0.05, 0.95, 0.975, 0.99].
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Figure 7: The LSTM neural network used in this thesis.

4.12 Evaluating the models

We let I(A) denote the indicator function, i.e., a function which returns 1 if the event A occurs
and 0 if not, represented by (19). The true return is given by R while the predicted return (VaR-
estimate) is given by R̂. N provides the total number of predictions. We introduce the following
metrics with this notation, which are used to examine superiority among the VaR models:

In(A) =

{
1 if the event A occurs.
0 else

(19)

If the VaR is specified at confidence level α the breach level should roughly be equivalent to α.
The Breach ratio is given as:

Breach Ratio = 100 ·
∑N

i=1 I(R̂i < Ri)

N
(%) (20)

Calculating the nominal breach of the model over the total number of predictions is one method
of evaluating performance. The model with smaller Sum if breach is favored given models with
comparable breach ratios since this would suggest that the model is at least closer to the true value
of the loss. The Sum if breach is given as:

Sum if breach =

N∑
i=1

I(R̂i < Ri)(Ri − R̂i) (21)

It is also interesting to know how close a prediction is to the predicted medium when no breach
occurs. Thus, the Sum if no breach is given as:

Sum if no breach =

N∑
i=1

I(Ri < R̂i)(R̂i −Ri) (22)

Both formulas are expressed for the higher quantiles. The same formulas, however, can be used
for the lower quantiles.

In addition, the following 4 metrics are used for further comparison:

Total sum if breach =
∑
q=α

|Sum if breachα|

Total sum if no breach =
∑
q=α

|Sum if no breachα|

Max. VaR = max(R̂1, . . . , R̂N )

Min. VaR = min(R̂1, . . . , R̂N )
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5 Results

In this section we present results. First, we present the proposed QR-IM quantile regression model
and the estimated coefficients. Second, the different ensemble method models are presented along
with the estimation results. Third, the neural networks are presented along with the estimation
results. Lastly, a summary of all the models are presented and discussed. Throughout all estimates,
a fixed training window from July 1, 2009 to December 31, 2017 is used, and the out-of-sample
period covers January 1, 2018 to September 28, 2020.

5.1 Estimating the quantile regression VaR model

Table 2 displays the estimated quantile regression coefficients for the ATM variables (middle panel)
and the 25 delta RR variables (bottom panel). The model is estimated on daily Bloomberg data
during the in-sample period (2009:07-2017:12). The coefficients are scaled by 100 for readability.
As for the sign, magnitude, shape, and statistical significance of regression coefficients, the results
are consistent for both the ATM variable and the RR variable.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Constant -0.61 (i) -0.21 -0.07 0.09 0.05 0.12
ATM -0.06 (i) -0.09 (i) -0.08 (i) 0.09 (i) 0.12 (i) 0.15 (i)
25-delta RR 0.21 (i) 0.16 (i) 0.10 (ii) 0.16 (i) 0.30 (i) 0.38 (i)
Breach Ratio 1.04 2.48 4.97 94.99 97.43 99.01

Table 2: QR-IM: ATM volatility, 25 delta risk reversal coefficients, along with the hit-percentage

The breach ratios of the estimated quantiles of the in-sample data is also shown in Table 2. The
breach ratio displays good coverage throughout the data with respect to the quantiles estimated.
This is in line with the coefficients being significant.

Figure 8: Quantile regression coefficients QR-IM

The estimated ATM coefficients support the view that the ATM is an indicator of overall market
risk. The coefficients show a nonlinear, increasing relationship between the quantiles and the ATM
regression coefficients. The coefficients are projecting the shape of the tails of the conditional
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return distribution. This arises from the coefficients being negative for the lower quantiles and
positive for the higher quantiles. In addition, the absolute value of ATM coefficients are slightly
higher in the right tail compared to the left tail. This indicates a non-linear relationship between
implied volatility and returns. Figure 8 shows the coefficients.

Figure 8 reveals that the RR coefficients form a U-shaped pattern, and are all positive. This indic-
ates that implied volatility is more important when estimating both ends of the tails. Normally, for
VaR estimates, the 1% and 99% -quantiles are the most valued. This is because they estimate the
outlines of the VaR. The implied volatility is thus an great asset to the model. However, because
all coefficients are statistically significant, all quantile-estimates of the return will improve when
including the implied volatility.

5.2 Ensemble methods

We now present results for the ensemble methods. We have tested different uses of the algorithms
for Random Forest, Extreme Gradient Boosting, Light Gradient Boosting, and Adaboost.

The data has been split in two for training and validation. The first part starts at the beginning
of the sample period and lasts until the end of 2017. This part of the data is used for training the
model. The second part of the data starts in 2018 and last until the end of the data-period. This
part is used for validation and testing the performance of the model. Both periods are illustrated
in Figure 9.

Figure 9: Ensemble training period and validation period

5.2.1 Random Forest

In this section we describe how the random forest algorithm has been tested. The data used in
the training originates from the data generated by the QR-IM model in Equation (4), discussed in
the previous section. The model is trained individually on each quantile. The in sample data, for
RR and ATM volatility, along with the in sample estimated quantiles in Section 5.1 are used for
training the model. For testing, only the sampling data for RR and ATM volatility is used. The
results are listed in Table 3.

The first thing to notice is the increased performance for estimates for higher-order quantiles; 95%.
97.5% and 99%. Second, the sum if no breach increases as one moves further away from the mean.
This makes sense as these estimates should be further away from the sampling data compared to
quantiles closer to the mean. Third, as expected, the sum if breach is less further into the tails of
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the distribution. Fourth, the sum if breach is almost equal to zero for the quantiles farthest out in
the tails. This signals that the model yields promising results when predicting spike behavior.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.7 2.1 5.75 95.09 97.62 99.44

Sum if breach -0.005 -0.018 -0.054 0.067 0.022 0.005
Sum if no breach -7.421 -5.641 -4.483 4.729 5.982 7.650

Min. VaR -0.023 -0.022 -0.019 0.004 0.005 0.006
Max. VaR -0.008 -0.005 -0.004 0.016 0.023 0.029

Table 3: Random forest performance

The graph shown in Figure 10 displays all the point-estimates for the different quantiles, with the
random forest algorithm. One thing to notice is how close the predictions move in unison with the
underlying data. This gives a good picture of how well the model works with the EURUSD data.

Figure 10: Random forest model. The black series is the daily log returns

Figure 11 shows a distribution of the Shap-values calculated from the random forest ensemble
method. First, the plot indicates symmetry in the estimation of the quantiles. Second, risk
reversal seems to be the significant model parameter as it shows both the substantial density and
the greatest magnitude in the figure. In this model, high values for the risk reversal has a positive
contribution to the prediction, and low values have a negative contribution. Excluding the outliers
in the implicit volatility, the high/ low values have the same contribution has seen for the risk
reversal.

Figure 11: Random forest variable importance
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5.2.2 Extreme Gradient Boosting

We have created a competing data set for training the model using gradient boosting. Both this
data set and the data set created by the QR-IM model from Equation (4), are used for training.

Training individal dataset
We use an ordinary gradient boosting algorithm to create a data set, exploring whether this model
can outperform the QR-IM model.

In Table 4 we see the Breach Ratio. The performance is not as accurate as the QR-IM model.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 1.08 2.62 4.92 94.94 97.29 98.92

Table 4: Gradient Boost training set performance

Validating and testing performance - XGBoost model 1
The first XGBoost prediciton model is trained with the QR-IM data set, and the output is displayed
in Figure 12 and Table 5. Again, the model performs better on the higher α-quantiles. This is
similar to the random forest algorithm in the previous section. Once more, the model shows
excellent prediction power when modelling the spike behaviour of the data. This is evident from
the small values for the sum if breach values in the 1% and 99% quantiles.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.7 2.1 5.47 95.09 97.9 99.44

Sum if breach -0.006 -0.019 -0.052 0.064 0.023 0.005
Sum if no breach -7.442 -5.680 -4.521 4.756 6.028 7.643

Min. VaR -0.024 -0.022 -0.019 0.004 0.004 0.006
Max. VaR -0.007 -0.006 -0.004 0.017 0.024 0.030

Table 5: XGBoost model 1 performance

The graph shown in Figure 12 displays all the point-estimates for the different quantiles, made
by the XGBoost model 1. Again, the predictions move in unison with the underlying data, and
clearly gives a good picture of on how well the model works with the EURUSD data.

Figure 12: XGBoost model 1. The black series is the daily log returns
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Figure 13 shows the Shap-values for the model. Again we see symmetry in the estimation of
the quantiles. We also note that risk reversal is the most important explanatory parameter in
the model. However, the explainable power is less eminent here, than with the random forest
algorithm.

Figure 13: XGBoost model 1 variable importance.

Validation and testing performance - XGBoost model 2
The second XGBoost prediction model we employ, is trained with the Gradient Boost generated
data set, and the output is displayed in Table 5. We note that this model clearly is outperformed by
the first extreme boosting model. The breach ratios are more remote from the desired threshold
breach ratios - being the α-quantile values. Also, the sum if breach is larger compared to the
first extreme boosting model. Thus, it is safe to conclude that the QR-IM-generated data set
outperforms the gradient boost-generated data set. Therefore the gradient boost-generated data
set is not considered for further modelling.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 1.26 3.65 7.01 95.37 98.46 99.16

Sum if breach -0.025 -0.056 -0.184 0.112 0.040 0.020
Sum if no breach -5.860 -5.152 -3.612 4.155 5.477 6.391

Min. VaR -0.015 -0.015 -0.011 0.001 0.002 0.003
Max. VaR -0.005 -0.002 -0.001 0.022 0.025 0.019

Table 6: XGBoost model 2 performance

The Shap-values in Figure 14 indicate a more caotic behaviour compared to the Shap-values of
the random forest and first extreme boosting model. These Shap-values show less of a dominant
predictor.

Figure 14: XGBoost model 2 variable importance

5.2.3 Light Gradient-Boosting Machine

In this section the light gradient-boosting machine has been used to create a competing data set
for training the model. Both this data set and the data set created by the QR-IM model from
Equation (4), are used for training.
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Traning individual data set
First we employ an ordinary gradient boosting algorithm to create the additional data set to see
whether it can outperform the QR-IM model.

EURUSD 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 1.67 2.62 5.06 95.71 97.7 98.74

Table 7: LGBM created data set performance

Validation and testing performance - LGBM model 1
Our first version of the LGBM prediction model is trained with the QR-IM dataset, and the output
is displayed in Figure 15 and Table 8. This model also produces similar forecasting results to the
random forest and extreme gradient boosting models. The best performance is accomplished at
the 95%, 97.5% and 99% quantiles. The LGBM model yields good results for the sum if breach,
indicating that the model is good at predicting spike behaviour in the out of sample data.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.55 1.82 5.33 95.09 97.62 99.44

Sum if breach -0.004 -0.017 -0.053 0.066 0.022 0.004
Sum if no breach -7.445 -5.668 -4.500 4.748 6.005 7.691

Min. VaR -0.024 -0.022 -0.018 0.004 0.004 0.006
Max. VaR -0.008 -0.006 -0.004 0.015 0.021 0.026

Table 8: LGBM model 1 performance

The graph shown in Figure 15 displays all the point-estimates for the different quantiles, made by
the first LightGBM model. Once again, the predicted quantiles match the underlying data. We
can see from the graph that the model performs well capturing the peak values.

Figure 15: LGBM model 1. The black series is the daily log returns

Figure 16 shows a distribution of the Shap-values calculated from the LGBM ensemble method.
The values indicates symmetry in the estimation of the quantiles. Furthermore, the risk reversal
seems to be the significant model parameter as it shows both substantial density and the greatest
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magnitude in the figure. The Shape values are very similar to the Shape values of the random
forest model.

Figure 16: LGBM model 1 variable importance

Hyper-parameter tuning
Employing the LGBM model, the user has the option of tuning wide range of hyper parameters,
based on the desired outcome. In this particular problem the objective is to improve the 5%-
quantile.

First, a new parameter is added to the input data set. This parameter called movement, is an
interaction variable between the At-the-money volatility variable and the 25 delta RR variable.
This new variable is included to test the impact of new data on the estimates, and to generate
information flow between the parameters. This is the same value used in hyper parameter tuning
of the neural networks explained in Section 4.9.1.

The tuning is done employing a Python package called verstack [49], which runs different combin-
ations of the parameters and chooses the best fit based on the test data. The training and test
period is shown in Figure 17.

Figure 17: Training and testing period used for hyper-parameter tuning.

Validation and testing performance - LGBM model 2
This leads to the second LGBM prediction model. This model is also trained with the QRIM
dataset. The output is displayed in Figure 18 and Table 9. Compared to the first LGBM model,
this second model, as expected, is better at predicting the 5% quantile. However, this comes at
a price of a less accurate 97.5% quantile estimate. This model, so far, is the most accurate when
predicting the three lower quantiles. Furthermore, this model, as XGBoost and random forest
models, yields excellent results for modeling the spike behavior in the data.
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quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.7 2.1 5.05 95.23 97.76 99.44

Sum if breach -0.005 -0.019 -0.055 0.060 0.020 0.005
Sum if no breach -7.445 -5.682 -4.526 4.816 6.046 7.712

Min. VaR -0.024 -0.023 -0.019 0.00404 0.005 0.006
Max. VaR -0.008 -0.005 -0.004 0.016 0.022 0.027

Table 9: LGBM model 2 performance

The graph shown in Figure 18 displays all the point-estimates for the different quantiles, made by
the second LightGBM model. We see similar results as for the first model.

Figure 18: LGBM model 2. The black series is the daily log returns

Figure 19 shows the three variables used in the second LGBM model. Again, the symmetry is
notable in the Shap plot. The biggest difference, compared to the second LGBM model, is the im-
pact of the implicit volatility parameter. By introducing the link between the two parameters, the
movement parameter has stolen some predictive power from the other parameters. As indicating
by the figure, implicit volatility is far less important in this prediction.

Figure 19: LGBM model 2 variable importance
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Validation and testing performance - LGBM model 3
The third LGBM prediction model is trained with the LGBM generated dataset, and the output
is displayed in Table 10.

First, this model clearly is outperformed by the two other light boosting-machine models. The
breach ratios are more remote from the desired threshold breach ratios - being the α-quantile values.
Second, the sum if breach is more substantial compared to the first extreme boosting model. Thus,
it is safe to conclude that the QR-IM-generated data set outperforms the LGBM-generated data
set, and is not considered for further modelling.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 1.4 4.49 8.42 95.65 96.63 99.3

Sum if breach -0.020 -0.054 -0.104 0.067 0.033 0.010
Sum if no breach -6.255 -4.860 -4.110 4.929 5.657 7.164

Min. VaR -0.014 -0.013 -0.012 0.003 0.003 0.007
Max. VaR -0.006 -0.004 -0.003 0.018 0.019 0.021

Table 10: LGBM model 3 performance

The Shap-values in Figure 14 indicate a more chaotic behaviour compared to the Shap-values seen
for the two other LGBM models. For the first time both variables have similar predictive power
in the model. The Shap values are clearly skewed and not symmetric.

Figure 20: LGBM model 3 variable importance

5.2.4 Categorical Boosting

The categorical boosting prediction model is trained with the QR-IM data set, and the output
is displayed in Figure 21 and Table 11. Once again, the model yields similar results to those
generated by the best models presented above. However, this model is the best at predicting the
2.5% quantile.

Implicit Volatility

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.7 2.23 5.47 94.95 97.62 99.44

Sum if breach -0.006 -0.020 -0.056 0.064 0.022 0.005
Sum if no breach -7.411 -5.641 -4.496 4.789 6.017 7.688

Min. VaR -0.023 -0.022 -0.018 0.004 0.004 0.006
Max. VaR -0.008 -0.005 -0.004 0.016 0.023 0.029

Table 11: CatBoost performance
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The graph shown in Figure 21 displays all the point-estimates for the different quantiles, made by
CatBoost model. The algorithm models the quantiles of the underlying data with good precision.

Figure 21: CatBoost model. The black series is the daily log returns

Figure 22 shows a distribution of the Shap-values calculated from the CatBoost ensemble method.
First, the Shap values are very similar to those of the random forest model. Symmetry is once
again present, as well as the risk reversal being the significant model parameter as it shows both
the highest density and the greatest magnitude in the figure.

Figure 22: CatBoost model variable importance

5.2.5 Stacking

Stacking is similar to hyper parameter tuning, it is a tool used for improving model performance.
As an example, a model based on a combination of the LGBM model 2 and the Catboost model
is used to generate an improved model. This stacking model is a combination with 37% of the
LGBM model 2 and 63% of the the CatBoost model. The model yields:

EURUSD 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 0.7 2.18 5.31 95.05 97.67 99.44

Table 12: 37% LGBM model 2 with 63% CatBoost, model performance

The stacking model leads to interesting results being a combining of two models. The model
generates good over all predictions for all quantiles. Despite the results of this model, a further
development of the stacking approach is not going to be looked into in further detail.
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5.3 Neural network

We now examine neural networks. We explore different uses of the algorithms for feed forward
neural network, recurrent neural network and the long short-term memory neural network. The
algorithms are going to be tackled in the same order, starting with feed forward neural network.

For training and validation the data has been split in three parts. The first part starts at the
beginning of the data set and lasts until the end of 2017. This part is used for training and testing
the model. From the first part 80% of the data is used for training and the remaining for testing.
While the second part starts in 2018 and lasts until the end of the data set. This part is used for
the model validation. All three periods are illustrated in Figure 23.

Figure 23: Neural network training period and validation period

All neural networks have problems modelling historical moments with high volatility. This can
easily be seen in the figures that show the predictions and compare them to Figure 23 which shows
the validation period. In periods of great volatility, the model is not able to capture this response.
The three neural network models have all used the additional movement variable explained in
Chapter 4.9.1 and also used in the hyper parameter tuning of the second LGBM model.

5.3.1 Feed forward neural network

The feed forward neural network prediction model is trained with the QR-IM data set, and the
output is displayed in Figure 24 and Table 13. First, we see that the model thinks the best
prediction is straight lines. This is also present in the sum if breach and sum if no breach values,
all of which are very high. This is an indication that the model is conservative in its predictions.
The predicted quantiles from the ensemble methods were much closer to the modeled data, than
those of this neural network.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 2.38 4.35 8.27 90.74 96.21 98.74

Sum if breach -0.052 -0.098 -0.188 0.186 0.086 0.038
Sum if no breach -9.477 -8.139 -6.752 6.420 7.917 9.873

Min. VaR -0.013 -0.011 -0.009 0.008 0.011 0.0137
Max. VaR -0.013 -0.011 -0.009 0.008 0.011 0.0137
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Table 13: FFNN performance

The graph shown in Figure 24 displays all the point-estimates for the different quantiles, made by
FFNN model. From the graph we can see the model predicts straight lines.

Figure 24: FFNN model. The black series is the daily log returns

5.3.2 Recurrent neural network

The recurrent neural network prediction model is trained with the QR-IM data set, and the output
is displayed in Figure 25 and Table 14. Again, the model chooses straight lines as its best prediction.
However, this time we notice an effort by the model to capture something different at the spikes in
volatility, but it fails. Similar to the feed forward neural network this model is conservative in its
predictions and actual data frequently exceeds the predicted quantiles, thus yielding high values
for both the sum if breach and sum if no breach values.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 2.42 4.27 7.68 90.75 96.02 98.72

Sum if breach -0.069 -0.157 -0.208 0.201 0.088 0.047
Sum if no breach -9.139 -7.613 -6.547 6.278 7.849 9.570

Min. VaR -0.018 -0.264 -0.009 0.008 0.011 0.013
Max. VaR -0.013 -0.011 0.636 0.237 0.353 0.200

Table 14: RNN performance

The graph shown in Figure 25 displays all the point-estimates for the different quantiles, made by
RNN model. From the graph we can see the model predicts straight lines. Furthermore, we see an
explosion in quantile predictions around the high volatility occurence in the beginning of March
2020 and the Covid19 outbreak.
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Figure 25: RNN model. The black series is the daily log returns

5.3.3 Long short-term memory

The long short-term memory neural network prediction model is trained with the QR-IM data set,
and the output is displayed in Figure 26 and Table 15. The model shows small fluctuations, but
close to straight lines. This model yields the smallest numbers for the sum if breach and the sum
if no breach of all the neural networks. However, the model is still far from the prediction level of
the ensemble methods.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Breach Ratio 3.13 4.97 8.68 96.16 96.16 98.44

Sum if breach -0.052 -0.095 -0.200 0.213 0.110 0.046
Sum if no breach -9.303 -8.114 -6.529 6.132 7.346 9.242

Min. VaR -0.028 -0.018 -0.012 0.007 0.010 0.013
Max. VaR -0.012 -0.010 -0.006 0.011 0.013 0.035

Table 15: LSTM performance

The graph shown in Figure 25 displays all the point-estimates for the different quantiles, made by
LSTM model. From the graph we can see the model predicts straight lines with some fluctuations
around the mean of the line. Furthermore, we see an explosion in the predictions around the high
volatility occurence in the beginning of March 2020 and the Covid19 outbreak. However, this
models is better at predicting volatility than the RNN model.
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Figure 26: LSTM model. The black series is the daily log returns
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5.4 Summary

In order to validate the performance of the different methods a base line model is needed. The
choosen base line model is the QR-IM model, from the paper by de Lange, Risstad and Westgaard
[2], when doing the out of sample estimates.

In general, the performance of the ensemble methods are more stable and consistent compared to
the neural network. The ensemble methods handle the periods with outliers better than the the
neural networks, whose predictions tend to explode around these events.

The ensemble models perform well, all in all, compared to the baseline QR-IM model. Three
models stand out in comparison to the baseline model: LightGBM model 2, Categorical boost,
and the stacking model between the two. These models all perform better or equal to that of the
QR-IM model on the lower quantiles; 1%, 2.5% and 5%. At the higher qauntiles; 95%, 97.5% and
99%, the QR-IM model is better or equal to the three models.

The neural network models are in general quite unstable and is probably not ideally suited for this
task. The models produce worse or equal quantile predictions compared to the QR-IM model for
all quantiles.

All the models are summarized with their breach ratios for the out of sample data in Table 16.

quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %

Base line model -Breach Ratio-
QR-IM 0.7 2.1 6.3 95 97.5 99.3

Ensemble methods
Random Forest 0.7 2.1 5.75 95.09 97.62 99.44
XGB (1) 0.7 2.1 5.47 95.09 97.9 99.44
XGB (2) 1.26 3.65 7.01 95.37 98.46 99.16
LightGBM (1) 0.55 1.82 5.33 95.09 97.62 99.44
LightGBM (2) 0.7 2.1 5.05 95.23 97.76 99.44
LightGBM (3) 1.4 4.49 8.42 95.65 96.63 99.3
CatBoost 0.7 2.23 5.47 94.95 97.62 99.44

Stacking Models
LGBM2&CatBoost 0.7 2.18 5.31 95.05 97.67 99.44

Neural network
FFNN 2.38 4.35 8.27 90.74 96.21 98.74
RNN 2.42 4.27 7.68 90.75 96.02 98.72
LTSM 3.13 4.97 8.68 96.16 96.16 98.44

Table 16: Summary of all model breach ratios

We note that for the sum if breach parameter, less is better. By having a small sum, the model
is better at predicting the outcome when a breach happens. However, if a small sum if breach
value is combined with a high value for sum if no breach then the model may be too conservative
in its predictions. In Table 17 both the if breach (i.b.) and if no breach (i.n.b.) sums are listed
for all models. It is difficult to distinguish between the models and find a superior model. The
random forest, XGB model 1 and CatBoost algorithms are all very similar when comparing the i.b.
scores, all having an approximate score of 0.17. However, the random forest is significantly better
when comparing the i.n.b scores, having the lowest score of 35.91. Thus, the random forest may
be considered superior amongst the three. It is more difficult to distinguish between the LBGM
model 1 and the LGBM model 2, each having its one superior trait. Thus the choice of model
is left to the user, based on which feature sum if breach and sum if no breach one deems more
important. The LBGM model 1 has the lowest i.b. score among all models, of 0.164.
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quantile - α 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 % |Sum|

Ensemble methods

Random Forest i.b. -0.005 -0.018 -0.054 0.067 0.022 0.005 0.171
i.n.b -7.421 -5.641 -4.483 4.729 5.982 7.650 35.91

XGB (1) i.b.h -0.006 -0.019 -0.052 0.064 0.023 0.005 0.169
i.n.b. -7.442 -5.680 -4.521 4.756 6.028 7.643 36.07

XGB (2) i.b. -0.025 -0.056 -0.184 0.112 0.040 0.020 0.437
i.n.b. -5.860 -5.152 -3.612 4.155 5.477 6.391 30.65

LightGBM (1) i.b. -0.004 -0.017 -0.053 0.066 0.022 0.004 0.166
i.n.b. -7.445 -5.668 -4.500 4.748 6.005 7.691 36.06

LightGBM (2) i.b. -0.005 -0.019 -0.055 0.060 0.020 0.005 0.164
i.n.b. -7.445 -5.682 -4.526 4.816 6.046 7.712 36.23

LightGBM (3) i.b. -0.020 -0.054 -0.104 0.067 0.033 0.010 0.288
i.n.b. -6.255 -4.860 -4.110 4.929 5.657 7.164 32.97

CatBoost i.b. -0.006 -0.020 -0.056 0.064 0.022 0.005 0.173
i.n.b. -7.411 -5.641 -4.496 4.789 6.017 7.688 36.04

Neural network

FFNN i.b. -0.052 -0.098 -0.188 0.186 0.086 0.038 0.648
i.n.b. -9.477 -8.139 -6.752 6.420 7.917 9.873 48.57

RNN i.b. -0.069 -0.157 -0.208 0.201 0.088 0.047 0.770
i.n.b. -9.120 -8.486 -6.287 6.274 8.406 10.064 47.00

LTSM i.b. -0.052 -0.095 -0.200 0.213 0.110 0.046 0.716
i.n.b. -9.303 -8.114 -6.529 6.132 7.346 9.242 46.66

Table 17: Summary of all model if breach values, i.b. and the if not breach values, i.n.b

In Table 18, all the models are summarized with their Christoffersen test p-values [50] and DQ-
test p-values with four lags [51]. Both the XGB model 2 and LightGBM model 3 rejects the
null hypotheses. Thus, the observed number of VaR breeches is significantly different from the
expected number of breeches for the two models. The remaining models generally display high
p-values, indicating high forecasting performance across the quantiles.

Christoffersen test (p-value) 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Random Forest 0.398 0.489 0.364 0.364 0.846 0.200
XGB (1) 0.398 0.489 0.564 0.917 0.489 0.200
XGB (2) 0.175 0.000 0.000 0.000 0.157 0.001
LightGBM (1) 0.200 0.343 0.810 0.917 0.846 0.200
LightGBM (2) 0.398 0.489 0.945 0.781 0.660 0.200
LightGBM (3) 0.306 0.002 0.000 0.419 0.157 0.398
CatBoost 0.398 0.660 0.564 0.945 0.846 0.200

DQ test (p-value) 1.0 % 2.5 % 5.0 % 95.0 % 97.5 % 99.0 %
Random Forest 0.622 0.929 0.191 0.727 0.255 0.965
XGB (1) 0.806 0.944 0.192 0.280 0.858 0.965
XGB (2) 0.128 0.000 0.000 0.000 0.084 0.001
LightGBM (1) 0.673 0.938 0.319 0.648 0.717 0.964
LightGBM (2) 0.617 0.942 0.491 0.381 0.201 0.963
LightGBM (3) 0.000 0.001 0.000 0.951 0.506 0.991
CatBoost 0.692 0.943 0.371 0.678 0.204 0.964

Table 18: Summary of all model containing p-values for the Christoffersen test and DQ-test (with
four lags).
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6 Conclusion

In this study we employ ensemble methods and neural networks to forecast Value at Risk for daily
exchange rates. The ensemble methods, which are forward-looking and utilizes directly observable
option prices as explanatory variables, show great potential at predicting the daily exchange rate.
The neural network, though also forward-looking and utilizing directly observable option prices as
explanatory variables, does not perform at a desired prediction level.

Six key outtakes from the models

• The ensemble methods are better at predicting the spike behavior of the EURUSD than the
neural networks. The ensemble methods are well suited for predicting the daily EURUSD
currency cross distribution, including its VaR.

• Neural networks could benefit from more training data and perhaps a better model archi-
tecture. It is clear that the neural network can improve a lot compared to the ensemble
methods. One way to do this is by introducing more layers and more nodes. However, by
doing so, the model becomes more of a black box.

• The advantage of neural networks compared to ensemble methods is the way they estimate
the quantiles. The neural network is constructed such that all quantiles can be estimated
simultaneously. On the other hand, the ensemble methods forecast one quantile at a time.
For huge data, the possibility of computing all quantiles simultaneously can be a significant
factor when it comes to computational time.

• Model stacking and hyperparameter tuning significantly improved the models in terms of the
over all performance of the breach ratio.

• The second LightGBM model, Categorical boost, and the stacking model between the two,
stand out when comparing the breach values to the base line, QR-IM, model. These models
all perform better or equal at the lower quantiles and have less or equal performance at the
higher qauntiles.

• The random forest and LightGBM model 1 and 2 have the best performances among the
stand alone models, in terms of i.b. and i.n.b. values.

Future research

Several possible directions can be taken to further examine the models explored in the work. First,
a potential improvement would be to test the models’ performance in less efficient markets than
EURUSD. Second, including more explanatory variables, such as macroeconomic variables, might
improve the models. This is very useful for machine learning methods, as they benefit from more
training data. Thirdly, one could try different types of combinations of layers in the neural network.
This could lead to better forecasts and more stable results. Lastly, ensemble methods might be
improved from exploring more hyperparameter tuning and stacking methods.
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