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Abstract
Principal component analysis (PCA) is well established as a powerful statistical 
technique in the realm of yield curve modeling. PCA based term structure mod-
els typically provide accurate fit to observed yields and explain most of the cross-
sectional variation of yields. Although principal components are building blocks of 
modern term structure models, the approach has been less explored for the purpose 
of risk modelling—such as Value-at-Risk and Expected Shortfall. Interest rate risk 
models are generally challenging to specify and estimate, due to the regime switch-
ing behavior of yields and yield volatilities. In this paper, we contribute to the lit-
erature by combining estimates of conditional principal component volatilities in a 
quantile regression (QREG) framework to infer distributional yield estimates. The 
proposed PCA-QREG model offers predictions that are of high accuracy for most 
maturities while retaining simplicity in application and interpretability.
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1  Introduction

Interest rate risk is pervasive in the balance sheet of banks. Financial assets; such as 
loans, fixed income portfolios and derivatives books—and liabilities; such as depos-
its, commercial paper and bonds, are all exposed to interest rates with different time 
to maturity—collectively referred to as the yield curve. While managing interest rate 
risk is of crucial importance for banks, this is a complex task for several reasons. 
Firstly, the number of financial assets and liabilities exposed to interest rate risk is 
typically high. As a consequence, separate modeling of each financial instrument is 
infeasible. Secondly, the time to maturity of the financial instruments carrying inter-
est rate risk ranges from one day and up to 30 years. Hence, multivariate models are 
required to capture the dynamics of the yield curve. However, multivariate modeling 
in the context of interest rate risk has proven very challenging, due to parameter pro-
liferation and estimation convergence issues. Thirdly, interest rate risk models are 
generally difficult to specify and estimate from a statistical point of view, caused by 
regime switching behavior and time-varying dynamics of the yields.

To accommodate these constraints, financial institutions typically aggregate inter-
est rate risk. In the cross-sectional dimension, long and short exposures are com-
bined to form net positions. In the time-to-maturity dimension, exposures of adja-
cent maturities are mapped into predefined time buckets.1 Although this alleviates 
the complexity of the underlying portfolio risk composition, banks are still faced 
with the challenging problem of constructing a model which appropriately captures 
the risk level under prevailing market conditions. In lack of readily available models 
which can be implemented without demanding data requirements or complex opti-
mization routines,2 historical simulation3 and stress testing4 are frequently applied 
for this purpose.

In this paper we propose a model which aims to resolve some practical limitations 
for banks in relation to interest rate risk management. The proposed model is based 
on principal component analysis (PCA), which is well established as a powerful sta-
tistical technique in the realm of yield curve modeling. Litterman and Scheinkman 
(1991) were the first to document the ability of the first three principal components 
to explain most of the cross-sectional variation in yields, and to assign meaningful 
economic interpretations as level, slope and curvature factors, respectively, to the 
first three principal components. PCA based term structure models typically provide 

1  The granularity of the time buckets depends on preferences. In practice, quarterly frequency is often 
applied in the short end of the yield curve and annual thereafter.
2  A representative example of this class of models is the LIBOR Market Model (LMM) (Brace et al., 
1997; Jamshidian, 1997). Although LMM is typically calibrated in the risk-neutral measure for the pur-
pose of derivatives pricing, LMM can be calibrated in the empirical measure using Kalman-filtering. 
However, it has proven difficult to calibrate the model when yields are close to zero, which is currently 
the case in many currencies.
3  Among the financial institutions that disclose their methodology, 73% use historical simulation to esti-
mate Value-at-Risk (Pérignon & Smith, 2010).
4  Stress testing is often advocated by regulators, see for example the Fundamental Review of the Trading 
Book (FRTB), newly issued by the Basel Committee: https://​www.​bis.​org/​bcbs/​publ/​d457.​htm.

https://www.bis.org/bcbs/publ/d457.htm
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accurate fit to observed yields and explain most of the cross-sectional variation of 
yields. Although principal components (PCs) are building blocks of modern term 
structure models, the approach has been less explored for density estimation and 
the purpose of risk modelling—such as Value-at-Risk (VaR) and Expected Short-
fall (ES). The novelty is on combining estimates of conditional principal compo-
nent volatilities in a quantile regression (QREG) framework to infer distributional 
yield estimates—which we call PCA-QREG model. Quantile regression, introduced 
by Koenker and Bassett Jr. (1978), has found several applications in finance, due to 
its flexible and semi-parametric nature. The latter is of particular importance for the 
purpose of this paper, in light of the complex stylized facts of yields (Deguillaume 
et al., 2013). The PCA-QREG model is parsimonious, accurate for most maturities 
and does not require data beyond the time-series of yields. We also show that it fits 
well into the typical mapping of interest rate risk performed by banks and is rela-
tively easy to estimate. As such, the PCA-QREG model can readily be applied by 
banks and other practitioners.5

The remainder of the article is organized as follows. Section 2 presents a compre-
hensive literature review within both subjects: term structure modeling and quan-
tile regression. Section 3 describes the data, while Sect. 4 explains the methodol-
ogy proposed. Section 5 shows the results from the empirical investigation. Finally, 
Sect. 6 discusses the contribution of the paper and concludes.

2 � Literature review

2.1 � Term structure modeling

The yield curve is an important economic object and has been extensively studied 
by researchers in macroeconomics and finance. As noted by Jacobs Jr. (2017), mod-
eling the term structure of interest rates is critical in two domains of finance; the 
pricing of bonds and interest rate derivatives under the risk-neutral measure ℚ , and 
the management of interest rate risk under the physical measure ℙ.6 This paper con-
tributes to the latter class of models.

The no-arbitrage class of models (Heath et al., 1992; Hull & White, 1990; Jam-
shidian, 1997) focus on perfectly fitting the term structure at a point in time to 
ensure that no arbitrage possibilities exist, which is of crucial importance for rep-
licating interest rate derivatives. These ℚ-measure models are not constructed to 
describe a realistic evolution of different components of the term structure, and has 
little to say about dynamics or forecasting. In the realm of derivatives pricing, the 
market consensus has been to assume a log-normal distribution for forward rates, 

5  An implementation to estimate the PCA-QREG model and replicate the results in this paper can be 
found in this GitHub repository: https://​github.​com/​Morte​nRiss​tad/​PCAQR​EG.
6  See Diebold and Rudebusch (2013) and Rebonato (2018) for comprehensive expositions of modern 
term structure models. Also, Bianchetti and Morini (2013) contains a current overview of risk-neutral 
term structure modeling.

https://github.com/MortenRisstad/PCAQREG
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as implied by the Black model (Black, 1976).7 This is strongly motivated by the 
analytical tractability of the models, albeit slightly at odds with statistical analysis, 
which has revealed complex behaviour of interest rate volatility.

The first study to compare the empirical performance of single factor short-rate 
models in a unified generalized method of moments framework is Chan et al. (1992). 
They carry out a parametric estimation of some of the drivers of the short-rate pro-
cess, and find constant elasticity of variance models to perform best. Stanton (1997) 
discovers strong evidence for non-linearity in the short-rate drift. Statistically com-
plex behaviour of short-rates is further supported by Ait-Sahalia (1996), who argues 
that the short rate should be close to a random walk in the middle of its historical 
range but strongly mean-reverting outside this range. In a similar fashion, Bekaert 
and Ang (1998) and Bansal and Zhou (2002) find that a switch behaviour, with a 
reversion level and reversion speed for each regime, should be appropriate for the 
short-rate. The multifactor affine equilibrium term structure models, first introduced 
by Duffie and Kan (1996) and Duffee (2002), are concerned with the dynamics of 
the full yield curve, as opposed to the typical short-rate focus of the single-factor 
model. The multifactor models have gained attention, due to their affine structure 
and ability to model yields of all maturities under various assumptions about the 
risk premium. A shortcoming of these models, however, is a common assumption of 
stationary state variables. As for most financial variables, yields have time-varying 
covariances, but this stylized fact cannot yet be accommodated by the affine multi-
factor term structure models.

Gray (1996) investigates the dynamics of the short-term interest rate and con-
cludes that a model of time-varying mean reversion and time-varying GARCH 
effects is appropriate. Similarly, Dayioğlu (2012) and Hassani et al. (2020) imple-
ment GARCH models and find that asymmetric models with skewed error distribu-
tions are better than symmetric models. Ang and Bekaert (2002), Dai et al. (2007) 
and Bansal and Zhou (2002) focus on regime-switches in the parameters character-
izing the mean, the mean-reversion speed and the volatility of the short rate pro-
cess and generally find support for the presence of two volatility states. Deguillaume 
et al. (2013) take a slightly different approach. Instead of focusing on heteroscedas-
ticity or time-varying model parameters, they use data from several currencies and 
find that the observed dependence of the magnitude of rate changes on the level of 
rates is a function with three regimes; approximate log-normal behaviour for high 
and low rates and normal at the intermediate level. Similarly, Meucci and Loregian 
(2016) assumes two level-dependent regimes for interest rates; where high rates are 
normally distributed and low rates are log-normally distributed.

As for the cross-sectional variation of yields, Litterman and Scheinkman (1991) 
were the first to point out that eigenvectors and eigenvalues convey interest summary 
information about the underlying yield curve dynamics, and introduced the interpre-
tation of the first three principal components as level, slope and curvature factors, 

7  The LIBOR market model (Brace et al., 1997; Jamshidian, 1997)—whose most salient feature was its 
ability to recover the log-normal (Black) prices of caplets and swaptions, is still the reigning paradigm 
for interest rate derivatives pricing.
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respectively. Since the seminal contribution of Ang and Piazzesi (2003), PCA has 
been the building blocks of discrete time term structure models (Adrian et al., 2013; 
Bauer & Rudebusch, 2016; Cochrane & Piazzesi, 2008; Hamilton & Wu, 2012; Jos-
lin et al., 2011).8 Although these models have proved to be relatively successful for 
predicting yields and are able to disentangle risk-neutral yields and term premia, 
estimating interest rate distributions is not their primary purpose. Estimating interest 
rate distributions through risk factor simulation, such as PCA, is relatively unex-
plored. Hagenbjörk and Blomvall (2019), who use a Copula-GARCH approach to 
simulate yields, is a notable exception. Their focus, however, is to investigate the 
accuracy of alternative methods for interpolating forward rates, which is a different 
topic than what is covered in this paper.

To model the conditional dynamics of the entire yield curve, multifactor volatility 
models are needed. Multivariate stochastic volatility models (Harvey et al., 1994), 
which specify that the conditional variance matrix depends on some unobserved 
or latent process rather than on past observations, have gain limited attraction in 
practice due to the complexity of estimation. Multivariate GARCH models jointly 
estimate the univariate heteroscedastic process of the risk factors and their correla-
tions. Bauwens et al. (2006) and Boudt et al. (2019) survey this class of models, and 
classify them into three categories; direct generalizations of the univariate GARCH 
model (Bollerslev et al., 1988), linear combinations of univariate GARCH models 
(Van der Weide, 2002) and non-linear combinations of univariate GARCH models 
(Bollerslev, 1990; Colacito et al., 2011; Engle, 2002; Tse & Tsui, 2002).

2.2 � Quantile regression

Quantile regression, introduced by Koenker and Bassett Jr. (1978), has found a num-
ber of applications within risk management. Taylor (1999) finds that a quantile regres-
sion approach delivers a better fit to multi-period data when forecasting volatility com-
pared to variations of the GARCH(1,1) model. In a comparable setting, Taylor (2000) 
finds that an artificial neural network yields better results when estimating the tails 
of the distribution compared to a linear quantile regression model. The Conditional 
Autoregressive Value at Risk (CAViaR) approach developed by Engle and Manganelli 
(2004) models VaR as an autoregressive process and involve an explicit modeling of 
the dynamics of the conditional quantile. Huang et al. (2011) use quantile regression 
to forecast foreign exchange rate volatility. Their proposed model performs better in-
sample than a number of benchmark models in a nineteen year sample of daily data on 
nine currency pairs. Chen et al. (2012) forecast VaR using the intraday range of stock 
market indices and exchange rates in a nonlinear quantile regression model. Haugom 
et al. (2016) propose a parsimonious quantile regression model to forecast day-ahead 
value-at-risk across asset classes which performs comparably well to the more compli-
cated CAViaR model. Pradeepkumar and Ravi (2017) analyze a set of machine learn-
ing algorithms with the purpose of forecasting volatility of financial variables using 

8  The spanning problem—whether inclusion of explanatory variables beyond the PCs of the yield curve 
increase the predictability of yields—is still under academic debate (Bauer & Hamilton, 2018).
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quantile regression. They use foreign exchange rate data, among other financial vari-
ables, and find that a Particle Swarm Optimization (PSO)-trained Quantile Regression 
Neural Network performs best. Christou and Grabchak (2019) estimate a non-iterative 
quantile regression model on five US stock market indices. Taylor (2019) jointly esti-
mates VaR and ES in a CAViaR-framework using maximum likelihood. Ghysels et al. 
(2016) incorporate quantile regression in the MIDAS framework.

Fig. 1   Zero coupon yields as reported by Liu and Wu (2021), 1985/01–2019/12

Table 1   Descriptive statistics of 
zero coupon yields

Yields as reported by Liu and Wu (2021), 1985/11–2019/12
a
�
1m and �

1y are autocorrelations at 1 month and 1 year lags, respec-
tively

Mean Std.dev. Min. Max. �
1m

a
�
1y

a

3 months 3.17 2.54 0.02 9.34 0.99 0.83
1 year 3.48 2.62 0.10 9.74 0.99 0.84
5 years 4.35 2.47 0.21 9.73 0.99 0.86
10 years 4.97 2.27 0.51 10.14 0.98 0.86
30 years 5.39 1.95 1.05 9.97 0.98 0.85
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3 � Data

For the empirical investigation, we use a dataset recently developed by Liu and Wu 
(2021).9 The authors provide U.S. Treasuries zero coupon yields with maturities 
ranging from 1 month to 30 years, from 1961 to 2020. They report smaller pric-
ing errors in the short end of the curve, compared to the frequently analysed GSW-
dataset (Gürkaynak et al., 2007). Due to missing observations in the long end of the 
curve, we start our sample in 1985.

The descriptive statistics in Table 1 and a visual inspection of Fig. 1 confirm the 
stylized facts typically observed for yields: level, slope and curvature is time-vary-
ing; yields are correlated and highly persistent; short-term rates are more volatility 
than long-term rates. As evident from Fig.  1, yields have generally declined dur-
ing this period. Bernanke (2013) assigns this long-run decline in yields to cycli-
cal factors, including the slow pace of economic recovery, modest inflation rates, 
and accommodative monetary policy. Jotikasthira et al. (2015) points to lower term 
premia in long-term yields. Although yields of different maturities tend to move in 
the same direction, the slope of the yield curve has varied over time. The yield curve 
is typically upward sloping, but the slope has been negative at some occasions, such 
as during the global financial turbulence in 2008. These dynamics are consistent 
with an interpretation of the yield curve slope as a recession indicator.10

The sample covers important economic events; such as the 1987 stock market 
crash, the Asian crisis, the dot.com asset pricing bubble in the beginning of this 
century, the global financial crisis initiated by the Lehman-brothers default, the euro 
sovereign and banking crises as well as the recent period of quantitative easing and 
unprecedentedly low rates.

4 � Methodology

4.1 � Conditional volatility of PCs as risk factors

The density of yields has complex statistical characteristics, with time-varying 
moments and regime switching behaviour. Still, due to high persistence and cor-
relations, PCA typically explains most of the cross-sectional variation of yields.11 
Furthermore, low-dimensional PCA-based term structure models provide accu-
rate fit to observed yields. Thus, PCs lend themselves to parsimonious risk model 
specifications.

To motivate our choice of risk factors backed out of PCs, we briefly sketch the 
main principles in the application of PCA to term structure modeling: the matrix X 

10  The Federal Bank of New York reports that the slope of the yield curve can predict US recessions and 
financial crises (Fed, 2021).
11  The same applies to other groups of financial variables, such as commodity term structures and vola-
tility surfaces—see Alexander (2009a) for applications.

9  The dataset is publicly downloadable from the author’s website:  https://​sites.​google.​com/​view/​jingc​
ynthi​awu.

https://sites.google.com/view/jingcynthiawu
https://sites.google.com/view/jingcynthiawu
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contains T × n demeaned changes in yields, where T is the number of time points 
and n is the number of yield maturities. PCA is performed on V, the covariance 
matrix of X.The matrix X in the new referential of the PCs is given by

where W is the n × n orthogonal matrix of eigenvectors of V. Note that W is ordered 
so that its first column is the eigenvector corresponding to the largest eigenvalue of 
V, and the last column corresponding to the smallest eigenvalue. Using only k prin-
cipal components to represent the variability in X, we consider the T × k matrix, P*, 
which is given by the first k columns of P.

The n × n covariance matrix of yield log-changes X, with n(n + 1)∕2 different 
elements, is obtained from k different conditional variance estimates. For instance, 
in the n = 360 dataset reported by Liu and Wu (2021), we only need to compute 
three conditional variances of principal components to obtain time varying estimates 
of more than several thousand covariances and variances.

Since the PCs are uncorrelated by construction, their unconditional covariance 
matrix is diagonal. This is however not necessarily the case for their conditional 
covariance matrix. Generally, multivariate conditional volatility models decompose 
the conditional covariance matrix of returns Vt as

where Dt is the diagonal matrix of conditional volatility standard deviations and Ct 
is the correlation matrix.12

Subsequent to the seminal contributions of Engle (1982) and Bollerslev (1986), 
the GARCH family of models have proven successful in capturing heteroscedasticity 
across asset classes. We apply the multivariate exponentially weighted moving aver-
age (EWMA) model, which is defined as

with individual elements of Σ̂t given by

In the previous equations, Σ̂t = [𝜎̂t,ij]i,j=1,2,…,n represents the estimate of the covari-
ance matrix for period t, yt = [yt,i]

T
i=1,2,…,n

 is the vector of the yield log-changes 
for period t, and 0 < 𝜆 < 1 is the decay factor. EWMA can be seen as a restricted 
iGARCH model, with � = � and � = 1 − � . The main reasons for choosing EWMA 
over other more flexible alternatives are parsimony and ease of implementation.

P = XW,

Vt = DtCtDt,

(1)Σ̂t = 𝜆Σ̂t−1 + (1 − 𝜆)y⊤
t−1

yt−1

(2)𝜎̂t,ij = 𝜆𝜎̂t−1,ij + (1 − 𝜆)yt−1,iyt−1,j.

12  In the Constant Conditional Correlation model of Bollerslev (1990), C
t
 is a historical (realized) cor-

relation matrix. In the Dynamic Conditional Correlation model of Engle (2002), C
t
 is an exponentially 

weighted moving average (EWMA) correlation matrix. In the GO-GARCH specification (Van der Weide, 
2002), D

t
 is the conditional volatility of principal components whereas C

t
 is the identity matrix.
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4.2 � Quantile regression

The Quantile Regression method originally introduced by Koenker and Bassett  Jr. 
(1978), is particularly well suited for the purpose of our approach.13 QREG does 
not require complex optimization routines, is relatively simple to estimate and can 
readily be applied by practitioners. Also, QREG has a parsimonious specification, 
which reduces the risk of overfitting and biased parameter estimates. Furthermore, 
the flexible nature of QREG does not require specific parametric assumptions on the 
explanatory variables themselves nor the residuals. Regression quantile estimates 
are known to be robust to outliers, a desirable feature in general and for application 
to financial data in particular.

In the general case, the simple linear quantile regression model is given by

where the distribution of �q is left unspecified.14 The expression for the conditional 
q quantile, with 0 < q < 1 , is defined as a solution to the minimization problem 
(Koenker & Bassett Jr., 1978),

where

The Least Absolute Error (the conditional mean) is a special case, but the quantile 
regression method explicitly allows one to model all relevant quantiles of the distri-
bution of the dependent variable.

4.3 � The PCA‑QREG model

In our proposed model, the conditional quantile function Δŷ
𝜏,t+1,T∣t can be expressed 

as

where Δŷ is the yield log-change, � is the quantile, t is calendar time and T is time 
to maturity of y . A unique vector of regression parameters [𝛼̂

𝜏,t, 𝛽
PC1

𝜏,t , 𝛽
PC2

𝜏,t , 𝛽
PC3

𝜏 ] is 

obtained for each quantile of interest. Estimates of conditional PC volatilities, �PCi

t  

(3)Yq = � + �X + �q,

(4)min
�,�

T
∑

t=1

(q − I{Yt≤�+�Xt}
)(Yt − (� + �Xt)),

(5)I{Yt≤�+�Xt}

{

1 if Yt ≤ � + �Xt

0 otherwise.

(6)Δŷ
𝜏,t+1,T∣t = 𝛼̂

𝜏,t + 𝛽
PC1

𝜏,t 𝜎
PC1

t + 𝛽
PC2

𝜏,t 𝜎
PC2

t + 𝛽
PC3

𝜏,t 𝜎
PC3

t + 𝜖
𝜏,t,

13  For a detailed description of quantile regression, see Koenker (2017). Koenker and Hallock (2001) 
provide selected empirical examples in economics. For applications in financial markets, see Alexander 
(2009b).
14  This is different than a standard error term because its distributional properties are not required to 
meet the same criteria as those in standard regression models.
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with i = 1, 2, 3 , are obtained from the EWMA model defined in Eq. (1). Hence the 
whole distribution of yield-changes can be found by using conditional volatilities of 
PCs as predictors in the estimated quantile regression model.

The PCA-QREG model accommodates the empirical findings of Deguillaume 
et al. (2013). They show that interest rate volatility is dependent on interest rate lev-
els in certain regimes. For low rates, below 2%, and for high rates, above 6%, volatil-
ity increases proportionally to the interest rate level. In the intermediate 2–6% range, 
however, interest rate volatility does not seem to depend on the interest rate level. 
Although these findings of regime switching behaviour are interesting, we choose 
to model interest rate volatility separated from interest rate levels. If volatility is 
dependent on the current regime, a volatility model based on actual principal com-
ponent changes will capture this behavior for these different regimes indirectly. This 
approach works regardless of the regime, even under negative interest rates. Fur-
thermore, the inherent flexibility of the quantile regression specification, which does 
not make parametric assumptions about dependent or independent variables, is well 
adapted to the stylized facts reported by Deguillaume et al. (2013).

The PCA-QREG approach is computationally highly effective, due to the com-
bination of PCA and EWMA as the basis for conditional risk estimates. Further-
more, the approach carries additional practical advantages: the number of principal 
components k can be changed to control approximations from the model, depending 
on the statistical characteristics of the specific yield curve under consideration - for 
instance, to reduce noise in conditional yield correlations. Moreover, since it is based 
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Fig. 2   PCA on zero coupon yields as reported by Liu and Wu (2021), 1985/01–2019/12. The left panel 
shows the shape of the eigenvectors of the first three PCs. The right panel shows the contribution of the 
first three PCs in explaining total cross-sectional yield variation



1 3

Digital Finance	

on PCA, PCA-QREG quantifies how much risk is associated with each systematic 
risk factor. In term structures, the three first principal components have meaningful 
economic interpretation as systematic level, slope and curvature factors.15 This can 
be an advantage for risk managers as their attention is directed towards the most 
important sources of risk.

5 � Empirical investigation

In this section we test the empirical performance of the PCA-QREG model out-of-
sample. First, we investigate the ability of the model to provide accurate univariate 
estimates for key maturities in the term structure. We proceed to illustrate the PCA-
QREG’s practical applicability for Value-at-Risk (VaR) estimation and benchmark 
the model to historical simulation—which is the most frequently applied VaR-model 
by practitioners.

5.1 � Risk factor modeling

Figure  2 displays the results from PCA on log-changes of zero-coupon yields 
reported by Liu and Wu (2021) over the full sample period 1985/11–2019/12 and 
broadly concur to typical findings in the literature. The left panel shows eigenvectors 
of the first three components. The first principal component (PC1) impacts all rates 
more or less by the same magnitude and can thus be considered a level factor. PC2 
switches sign as maturity increases and impact short rates differently than long rates, 
which supports the interpretation of the second PC as a slope factor. PC3, while hav-
ing negative loading on intermediate rates, has positive loadings on short- and long 
term rates, which indicates that the third PC can be viewed as a curvature factor. The 
right panel shows that the first three PCs explain most of the cross-sectional varia-
tion of yields.

5.2 � Out‑of‑sample testing

The estimation procedure at each t is as follows: For each i, with i = 1, 2, 3 , we com-
pute the principal components of yield log-changes, PCi

t−w∶t
 . From this, we filter 

the principal component conditional volatilities, �PCi
t−w∶t

 , over the estimation window 
using the multivariate EWMA specification. Quantile regression coefficients for all 
� ; 𝛽PCi

𝜏,t
 can then be estimated, by regressing conditional volatilities of PCs on yield 

log-changes. Finally, t + 1 distributional yield estimates are obtained from the PCA-
QREG model defined in (4).

We use a moving estimation window w of 4000 observations. The first estima-
tion window starts in 1985/11/25 and ends 2001/12/03, which implies that the 

15  Figure 2 confirms that this is indeed the case for the Liu and Wu (2021) dataset used in this paper.
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first out-of-sample estimates are for 2001/12/04. We repeat the procedure until 
2019/12/31, which leads to 4513 daily out-of-sample estimates in total.

To balance accuracy and bias, we use three PCs, k = 3 . The EWMA persistence 
parameter, � , is fixed and set equal to 0.98.

5.2.1 � Univariate tests of key maturities

The main purpose of the PCA-QREG model is to provide multivariate conditional 
density forecasts characterising the full yield curve, since this is a necessity in daily 
interest rate risk management. Still, the model should provide accurate univariate 
estimates for all points of the curve. To investigate this we use the standard approach 
for backtesting.16 In our study this involves recording the number of occasions over 
the sample period where the realized return exceeds the quantile estimate from the 
PCA-QREG model, and comparing this number to the prespecified level.

According to Christoffersen (2011), a proper model should satisfy two conditions: 
(i) the number of exceedances should be as close as possible to the number implied 
by the quantile, and (ii) the exceedances should be randomly distributed across the 
sample, meaning that we observe no clustering of exceedances. In other words, we 
want to avoid that the model overestimates or underestimates the number of exceed-
ances in certain periods. To test both conditions, we employ the unconditional test 
of Kupiec (1995) and the conditional coverage test of Christoffersen (1998).17

Table 2 shows that PCA-QREG model performs well for most maturities and quan-
tiles in terms of estimating the unconditional distribution, as the hit-% from the model 
is fairly close to the prescribed quantiles. This is confirmed in Table 3, which reports 
p-values for the Kupiec (1995) and Christoffersen (1998) coverage tests evaluated in 
the tails of the distributions. High p-values support the null-hypothesis of correctly 
specified models for most of the yields investigated, which implies that the PCA-QREG 
model is able to provide dynamically accurate distributional estimates. The exception 
is the 3 months yield, for which the PCA-QREG model appears to be misspecified. 
From the left panel of Fig. 3 it becomes evident that the model is only partly able to 
capture the dynamics of the short end of the yield curve. There are several likely expla-
nations for this. First and foremost, the literature has well documented the difficulties 
of calibrating short-rate models, due to structural shifts and time varying stochasticity 
of the short rate. The EWMA conditional volatility model that we apply in this study 
might not be flexible enough. This is especially relevant when taking the fairly long 
out-of-sample period of nearly 20 years into account, since the sample most likely con-
tains structural shifts which cannot be econometrically easily accommodated. Also, the 
2009–2016 period, where short-rates were close to the zero lower bound, seems to be 
especially problematic. These unprecedentedly low levels might cause difficulties for 
any time-series based model. Also, at levels close to zero, even modest basispoint vola-
tility will create high lognormal volatility.18 Notably, as illustrated in the right panel of 

16  Backtesting refers to testing the accuracy of a model over a historical period when the true outcome is 
known.
17  See Appendix for further details.
18  1 basispoint change in yields is relatively more at low rates than at high rates.
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Fig. 3, the PCA-QREG model does not seem to suffer from the same problem at the 
long end of the curve—possibly due to the fact that long-term rates have been higher 
than the shortest rates. 

5.2.2 � Empirical application

In this section, we evaluate the accuracy of VaR estimates from the PCA-QREG 
model and compare to those from the historical simulation (HS) benchmark model. 
For this purpose, we analyze the daily returns on a portfolio equally invested in 
3 months, 1 year, 5 years, 10 years and 30 years securities.

The relation between the yield y(n)t  and log-price p(n)t  of a n-year discount bond at 
time t is given by

Table 3   Univariate coverage tests of key yield-curve maturities (p-values)

P-values for the Kupiec (1995) and Christoffersen (1998) backtests. See Appendix for further details

Quantile 1.0% 2.5% 5.0% 95.0% 97.5% 99.0%

Test UC CCI UC CCI UC CCI UC CCI UC CCI UC CCI

3 months 0.02 0.00 0.02 0.00 0.15 0.00 0.00 0.00 0.02 0.01 0.00 0.00
1 year 0.53 0.56 0.02 0.04 0.02 0.02 0.04 0.08 0.58 0.81 0.87 0.64
5 years 0.05 0.07 0.16 0.04 0.37 0.14 0.67 0.75 0.25 0.46 0.47 0.67
10 years 0.09 0.22 0.44 0.47 0.72 0.91 0.80 0.97 0.16 0.28 0.57 0.72
30 years 0.98 0.77 0.79 0.01 0.96 0.51 0.38 0.44 0.76 0.12 0.20 0.23
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Fig. 3   Out-of-sample distributional estimates for the 3-month (left) and 30-year (right) zero-coupon 
yields
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The log holding period return from buying a n-year bond at time t and selling it as a 
n − 1 year bond at time t + 1 is

Hence, the return wt+1 on the equally weighted portfolio of j bonds with maturity 
n ∈ N is

We estimate VaR for the assumed portfolio using the historical simulation method 
and the PCA-QREG model. Under historical simulation, the VaR�

t
 estimate is the �

(7)y
(n)
t = −

1

n
p
(n)
t .

(8)r
(n)

t+1
= p

(n−1)

t+1
− p

(n)
t .

(9)wt+1 =
1

j

j
∑

i=1

p
(n−1)

t+1,i
− p

(n)

t,i
.
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Fig. 4   Out-of-sample Value-at-Risk estimates for a portfolio equally invested in 3  months, 1  year, 
5 years, 10 years and 30 years securities, compared to realized daily returns

Table 4   Diebold–Mariano tests

p-values from the Diebold–Mariano test (Diebold & Mariano, 1995; 
Harvey et  al., 1997), comparing VaR-loss differentials from the 
PCA-QREG and HS models using Eq. (10)
The DM-test requires a stationary loss differential. Standard tests 
confirm that this is the case for the difference between VaR losses of 
HS and PCA-QREG

Quantile 1.0% 2.5% 5.0%

p-value 0.07 0.01 0.01
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-th quantile of the historical return distribution for the hypothetical portfolio over 
estimation period, covering w = 4000 observations from time t. To estimate VaR�

t
 

from the PCA-QREG model, we start by estimating conditional yield estimates from 
Eq. (6). We then revalue the bond portfolio using Eq. (7) and compute daily returns 
from Eq. (9). The resulting VaR-estimates for the 5% quantile are displayed in Fig. 4. 
This figure reveals that the PCA-QREG model is significantly better at estimating 
the conditional dynamics of the bond portfolio then the HS model. The HS model 
is unable to capture the heteroscedasticity of yields, and the resulting VaR-estimates 
are consequently too stable. The PCA-QREG model on the other hand, is able to 
adapt to changing market conditions and adjust VaR-estimates correspondingly.

To statistically compare the HS and PCA-QREG models, we use the asymmetric 
loss function of González-Rivera et al. (2004):

where d𝜏
t
= 1(yt < VaR

𝜏

t
) is the � quantile loss function and 1 is the indicator func-

tion. We compute VaR losses using (10) for the HS and PCA-QREG models respec-
tively. We then apply the modified Diebold–Mariano (DM) test (Diebold & Mari-
ano, 1995; Harvey et al., 1997) to verify whether the PCA-QREG model provides 
significantly more precise VaR-estimates than the HS model, as measured by the 
VaR loss function in (10). Table 4 shows p-values for the DM-test of VaR estimates 
at different quantiles. The null hypothesis in the DM test is that the PCA-QREG 
and HS models have equal predictive ability. p-values from the DM-test support the 
alternative hypothesis—the PCA-QREG is the better performer.

6 � Discussion and conclusion

Interest rate risk management is a core activity in the asset-liability management 
of banks. Banks have long and short exposures along all maturities, and there is a 
need to model and forecast possible future outcomes for the whole yield curve. This 
multivariate distributional forecast is very challenging due to complex yield curve 
dynamics, and there is no consensus with regards to consistent and appropriate risk 
modelling of interest rates. Hence, there is a need for parsimonious models which 
are able to capture time-varying market dynamics and provide accurate forecasts of 
yield distributions, while retaining interpretability and simplicity in application.

In this paper we combine principal component analysis and quantile regression 
and propose the PCA-QREG model, which alleviates some of these issues. We first 
model the main principal components of the yield curve, calculate their volatilities 
using exponential weighted moving averages and then let these be explanatory vari-
ables in a quantile regression model. The volatilities of the first three principal com-
ponents have meaningful economic interpretations as they describe the variations of 
level-, slope,- and curvature factors, respectively. In this way, we have a risk model 
where risk factors can be explained and where stress testing/scenario analysis can be 
directly applied. Further, we document that the volatility of these principal compo-
nents carry predictive information relevant for predicting yield curve distributions. 

(10)1(yt, VaR
�

t
) = (� − d�

t
)(yt − VaR

�

t
),
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Trough extensive out-of-sample testing over a sample period that covers multiple 
major global economic events, we show that the model is robust and generally pro-
vides accurate forecasts, most notably in the tails of the yield distributions—which 
are most important for risk management purposes. In sum, we propose a risk model 
for interest rates that contains economic intuition, transparency, is easy to imple-
ment and understand, and also displays excellent out of sample performance.

There are several directions for further research. One is to apply this framework 
to other financial markets, such as commodities. Consumers, producers and traders 
in these markets have great need for consistent modelling and forecasting of futures 
curves. These market participants need to predict the distributions of futures prices 
(hence risk) for all sets of maturities, mapping their long and short positions in these 
contracts. Here, higher order principal components (and their volatilities) might be 
included, to capture seasonality effects. The performance of our model for these 
markets remains an open question. Another direction is to adopt other methods for 
modelling the volatility of the principal components (e.g. use more advanced mul-
tivariate GARCH models) and establish more tests for out of sample distributions. 
Furthermore, non-linear quantile regression models might prove appropriate.

Appendix

Unconditional coverage test

The Kupiec (1995) test is a likelihood ratio test designed to reveal whether a VaR 
model provides the desirable unconditional coverage. For a long position, the daily 
VaR will be a negative number, and we define an indicator sequence as follows:

If the return is more negative than the long VaR estimate on a given day, we count 
an exceedance.

Under the null hypothesis that the number of exceedances is equal to the prespec-
ified VaR, the test statistic is (Kupiec, 1995):

where n1 and n0 is the number of exceedances and non-exceedances, respectively. 
�exp = p is the expected proportion of exceedances, while �obs = n1∕(n0 + n1) 
represents the observed fraction of exceedances. The asymptotic distribution of 
−2 ln(LRUC) is �2 with one degree of freedom.

Conditional coverage test

The unconditional test does not take into account whether several violations occur 
in rapid succession or if they tend to be isolated. Christoffersen (1998) extended the 

(11)Ht =

{

1 if rt < VaR
q

t

0 if rt ≥ VaR
q

t .

(12)
−2 ln(LRUC) = −2[n0 ln(1 − �exp) + n1 ln(�exp) − n0 ln(1 − �obs) − n1 ln(�obs)]
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Kupiec test and proposed a joint test for correct coverage and for the detection of 
whether a quantile exceedance today has implications for the probability of a quan-
tile exceedance tomorrow. Under the null hypothesis that the number of violations 
is equal to the prespecified VaR and the violations are randomly distributed, the test 
statistic is:

where nij denotes the number of times an indicator variable with value i is immedi-
ately followed by an indicator variable with value j. Further, �01 = n01∕(n00 + n01) , 
�11 = n11∕(n10 + n11) and the rest of the notation is as described for the Kupiec test. 
The test statistic follows a �2 distribution with two degrees of freedom. As a practi-
cal matter, one may incur samples where �11 = 0 . In this case, the test statistic is 
stated as Christoffersen (2011):

A drawback of the conditional coverage test of Christoffersen is that the test only 
takes into account one violation immediately followed by another, ignoring all other 
patterns of clustering.
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