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Abstract. In this paper a wind turbine high-speed gear stage model is developed for the
purpose of real-time virtual sensing of gear and bearing loads in a Digital Twin framework.
The model requirements are: accurate representation of gear meshing and shaft dynamics,
high computational efficiency and compatibility with other Digital Twin components, such as
physical sensors signals and virtual sensing methods. State equations are derived analytically
using the Bond Graph method and implemented in the software 20sim for simulation. As
opposed to standard multi-body simulation (MBS) software, 20sim allows for higher flexibility
in implementing interfaces to other Digital Twin components. The model fidelity is close to
state-of-the-art MBS models considering 6 DOF body motion, however a simplified gear contact
formulation is used, which assumes ideal kinematic meshing. Nonetheless, the Bond Graph
model is able to accurately reproduce the inhomogeneous load distribution over the tooth flank,
as well as the cyclic compression and decompression for each meshing period. The results suggest
that the presented model is capable of monitoring fatigue loads in gear contacts and bearings
in a Digital Twin framework.

1. Introduction
Digital Twin (DT) is an emerging technology fueled by advances in information and
communication technologies with many proposed applications in prognostics and health
management (PHM). Especially the offshore wind industry could benefit from DT solutions to
increase reliability and availability, and reduce unscheduled, expensive down times [1]. DT can
be defined as a ’virtual representation of a physical asset enabled through data and simulators
for real-time prediction, optimization, monitoring, controlling, and improved decision making’
[2]. We envision a DT framework loosely based on the model of Tao et al. [3] to facilitate
predictive maintenance (PdM) strategies in wind turbine drivetrains. The central components
of the DT framework are the Virtual model, Data and Decision support (Fig. 1).
Data that can be leveraged in wind turbines include process, operational or organizational
data, e.g. sensor measurements of the drivetrain condition monitoring system (CMS) and the
Supervisory Control and Data Acquisition (SCADA) system. The virtual model is a virtual
representation, that experiences the same environment as its physical counterpart and evolves
over its life cycle. To ensure that the virtual and physical wind turbines are synchronized at all
times, the virtual model is supplied with real-time, physical measurements and updated using
system identification [4] and state estimation techniques [5]. Decision support is a collective term
for services that the DT provides to assist in the operator’s maintenance or control decisions.
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Figure 1. Digital Twin framework for predictive maintenance of wind turbine drivetrains.

Focus of our research is online monitoring of gear and bearing loads through virtual sensors and
subsequent estimation of the remaining useful life (RUL) using fatigue damage models.
This study is concerned with developing a dynamic simulation model of a wind turbine high-
speed gear stage to fit such a DT framework. The most essential model requirements are
formulated based on Moyne et al. [6]:

• Accuracy in the representation of gear meshing and shaft dynamics

• Computational efficiency to enable real-time simulation

• Interoperability to interact with other DT-components, such as physical sensor signals and
virtual sensing methods

• Maintainability to update model properties and match physical changes, such as material
degradation

The task of balancing model accuracy and computational speed involves finding the optimal
fidelity. Guidelines on modelling of wind turbine drivetrains are reported by Guo et al. [7],
where recommendations on the degrees of freedom (DoF) for each moving drivetrain component,
consideration of body flexibility and the fidelity of gear contact and bearing formulations are
given, which concludes to a relatively high model fidelity. Hence, state-of-the-art multi-body
simulation (MBS) models of wind turbine drivetrains including virtual test benches [8] and
academic reference models [9, 10] are generally not capable of real-time simulation. Developing
efficient Reduced Order Models (ROM) is identified as one of the major challenges in Predictive
Maintenance and Condition Monitoring [11]. ROM are constructed either as data-driven
surrogate models [12] or by physical simplification. In this study a simplified gear contact
formulation is developed.
Secondly, to satisfy the requirements of interoperability with other DT-components, appropriate
interfaces must be implemented. For instance, the virtual load sensor in the decision support
component must be supplied with a mathematical description of the virtual model, which is
elaborated further in Sec. 2.4. However, commercial MBS software including SIMPACK [13]
and ADAMS only support the export of linearized models (state-space representation), which
is insufficient to represent the highly non-linear dynamics of drivetrains [5].
Similar shortcomings of MBS software are identified concerning the model’s maintainability. The
DT paradigm requires the virtual model to evolve along its physical counterpart and be updated
to match physical changes, such as material fatigue or component faults. While parametric
updating is possible in MBS software, it is challenging to model gear and bearing faults due to
restricted access to the respective component subroutines.
In this study a wind turbine gear stage model is developed with respect to the above mentioned
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Figure 2. Gear stage model topology

DT requirements. The Bond Graph (BG) method, a graphical, energy-based modelling language
[14], is employed to construct the model and derive state equations.

2. Methodology
2.1. Bond graph theory
BG is an energy-based, graphical modelling language that bridges the gap between purely
equation-based modelling approaches and diagram techniques such as electrical circuit
diagrams[14]. The universal currency of BG are the multi-physical effort e(t) and flow f(t)
variables, which multiply to the instantaneous power P (t). In the mechanical domain, for
example, the energy variables are force and velocity, but the BG method also extends to other
physical domains. The system is divided into components according to their capability of
energy storage, dissipation or transmission. Kinetic and potential energy storage is represented
by I- an C-elements, energy dissipation by R-elements and lossless energy transformation by
TF-elements. The components are interconnected with power bonds representing the energy
exchange. Power bonds are denoted with half arrows and define both the sign of the power by
the arrow orientation and the causality of effort and flow variables with an orthogonal stroke.
Causality determines whether variables are considered as input or output in the respective BG
elements. The BG method is selected as modelling approach for the following reasons: First,
it provides a systematic approach to deriving state equations for numerical simulation, while
maintaining the physical structure of the system. Second, BG is not limited to any physical
domain. Hence, other wind turbines components, for instance generator and converter, could
be developed and integrated in the same framework. Third, the causality of state variables is
visible in the BG structure, which eases the identification and prevention of algebraic loops that
are detrimental to computational speed.

2.2. Reference model
The BG model in this study is based on a reference model of the NREL 5MW baseline wind
turbine and respective gearbox [9] in terms of parameterization and topology. The reference
model implemented in MBS software SIMPACK satisfies general guidelines on model fidelity [7]
and is the basis for validation of the BG model’s dynamics (Sec. 3). Parameter values of both
models are listed in Tabs. 1 and 2, and the overall topology is shown in Fig. 2. The scope
is limited to the high-speed stage, a helical gear stage with the bodies of intermediate speed
shaft (IMS), high-speed shaft (HSS), gear wheel and pinion. Both gear shafts are considered
rigid bodies with six degrees of freedom (DOF). Each shaft is supported by one cylindrical roller
bearing (-A) and two tapered roller bearings (-B,-C), which are modelled as spring-damper
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Figure 3. Bond graph structure of high-speed gear stage model

connections to the static gearbox housing. Gear wheel and pinion are rigidly connected to their
respective shafts (0 DOF). The elasticity of gear bodies and teeth is lumped into a spring-
damper element with time-variant mesh stiffness connecting pinion and gear wheel. External
loads Tin are applied on the IMS, while a PI-controller sets the desired speed of the HSS with
the counter-acting generator torque TGen.
The key difference between BG and reference model lies in the gear contact formulation, which
in SIMPACK is realized with the built-in force subroutine 225. The subroutine incorporates
an algorithm to find the 3D contact points and respective surface normal vectors of gear tooth
pairings. The contact forces are then determined as a function of relative contact displacement.
Hence, the SIMPACK subroutine is able to capture non-linear effects of backlash, micro geometry
(profile modifications) and misalignment of shaft axes. Contact stiffness is load-dependent and
accounts for gear wheel body deformation stiffnesses, tooth bending and shear stiffnesses, and
Hertzian contact stiffness using the ’Weber/ Banaschek’ approach. In comparison, the BG model
employs a simplified contact formulation, which assumes ideal, kinematic meshing, as presented
in Sec. 2.3.4.

2.3. Bond graph model
In the following sections the BG model of a wind turbine high-speed gear stage is presented
consisting of submodels of the shafts (Sec. 2.3.2), bearings (Sec. 2.3.3) and helical gear
contact (Sec. 2.3.4). The underlying model equations of each submodel given and the graphical
representation as BG structure is shown in Fig. 3.

2.3.1. Coordinate systems and transformations The BG model relies on different coordinate
systems in the body fixed and inertial frame. The formulation of shaft inertia is most convenient
with body-fixed velocities vx ∈ R6×1 comprising of lateral and angular velocities (Eq. 1), while
the boundary conditions align with the inertial frame

vx = [v1,v2]
T = [vx, vy, vz, ωx, ωy, ωz]

T . (1)

Transformation from body-fixed vx to inertial velocities vX is realized by three consecutive
rotations around the Euler angles ψ (yaw), θ (pitch), ϕ (roll) [15]

vX = mψθϕ · vx, mψθϕ =

[
RψRθRϕ 0

0 RψRθRϕ.

]
, (2)
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Table 1. Geometric parameters.

Variable Symbol Unit Value
IMS HSS

Mass m [kg] 5059.26 350.89
Moments of inertia Jxx/Jyy/Jzz [kg ·m2] 994.1 / 723.7 / 723.7 4.6 / 11.1 / 11.1
Number of teeth z [-] 95 24
Normal modul mn [mm] 14
Axis distance a [mm] 861
Gear tooth width b [mm] 360
Operating pitch radius rw [mm] 687.4 173.6
Base radius rb [mm] 633.4 160.0
Tip radius ra [mm] 697.7 190.3
Pressure angle α [deg] 20
Helix angle β [deg] 10
Operating pressure angle αw [deg] 22.86
Transversal operating pressure angle αwt [deg] 22.54
Number of gear tooth slices N [-] 11
Gear contact stiffness kG [N/m] 4.69 · 108
Slope of gear contact stiffness function ∂K/∂ϕi [N/m/deg] 116
Gear damping to stiffness ratio ξ [s] 10−3

with the individual rotational matrices

Rψ =

cosψ −sinψ 0
sinψ cosψ 0
0 0 1

 , Rθ =

 cosθ 0 sinθ
0 1 0

−sinθ 0 cosθ

 , Rϕ =

1 0 0
0 cosϕ −sinϕ
0 sinϕ cosϕ

 . (3)

The time-variant Euler angles are found by integration of body-fixed angular velocities

θ̇ = cos(ϕ)ωy − sin(ϕ)ωz,

ψ̇ =
sin(ϕ)

cos(θ)
ωy +

cos(ϕ)

cos(θ)
ωz,

ϕ̇ = ωx + sin(ϕ)tan(θ)ωy + cos(ϕ)tan(θ)ωz

(4)

In addition to rotational Euler transformations, lateral transformations are necessary, for
instance to relate velocities at bearings with center of mass velocities. The lateral change of
coordinate systems from a point A to B is expressed as

vB = mA→B · vA, mA→B =

[
I −[δA→B]×
0 I

]
. (5)

The notation [·]× is used for compact matrix representation of the cross product between two
vectors ([a]×b = a × b). The rotational and lateral transformation matrices mψθϕ, mA→B

are orthogonal and thus power-conserving, which are represented in bond graph terminology
by transformer elements (TF). In the case of Euler transformation, the transformation matrix
is time-variant and a function of the continuously changing Euler angles. Hence, a modulated
transformer element (MTF) is used here (Fig 3).



The Science of Making Torque from Wind (TORQUE 2022)
Journal of Physics: Conference Series 2265 (2022) 032065

IOP Publishing
doi:10.1088/1742-6596/2265/3/032065

6

Table 2. Bearing parameters.

Variable Symbol Unit Value
IMS-A IMS-B IMS-C HSS-A HSS-B HSS-C

Bearing stiffness Kxx [N ·m−1] 0 7.41 · 107 7.87 · 107 1.26 · 108 6.70 · 107 7.93 · 107
Kyy [N ·m−1] 6.12 · 107 5.17 · 108 7.37 · 108 8.21 · 108 8.09 · 108 1.04 · 109
Kzz [N ·m−1] 1.16 · 109 4.84 · 108 3.26 · 108 8.21 · 108 1.33 · 108 7.29 · 107

Bearing damping Dxx [N ·m−1 · s] 4.53 · 104
Dyy [N ·m−1 · s] 4.20 · 104
Dyy [N ·m−1 · s] 3.06 · 104

Axial position xB [mm] -230 230 260 -230 230 260

2.3.2. Shaft model Each gear shaft is considered a rigid body in six DOF. The equations of
motion (EOM) governing rigid bodies are derived with the Langrange-Hamiltonian method,
which yields second order differential equations for each shaft [15]

Mv̇ +C(v)v = τ, (6)

where M ∈ R6×6 denotes the mass matrix, C(v) ∈ R6×6 the coriolis matrix, v ∈ R6×1 the
velocity vector and τ ∈ R6×1 the vector of external forces. It is convenient to align the coordinate
system with the body-fixed, principal axes at the center of mass (v = vx,COM) to eliminate off-
diagonal elements in the mass matrix, which then becomes

M =

[
mI 0
0 J

]
, J =

Jxx 0 0
0 Jyy 0
0 0 Jzz

 , (7)

where m represents the body mass, J the moments of inertia and I ∈ R3×3 denotes the identity
matrix. The coriolis matrix can then be expressed with Eq. 1 as

C =

[
0 −m[v1]×

−m[v1]× −[Jv2]×

]
. (8)

The coupled, second order EOM (Eq. 6) can be reformulated as a set of first order differential
equations (Lagrange-Hamiltonian form) with the unknowns of generalized displacements q and
momenta p

q̇ = M−1p

ṗ = −C(q̇)q̇+ τ
(9)

This relationship is represented with an IC-field in the BG model, highlighted in blue in Fig. 3.
Velocities q̇ are determined according to the constitutive laws of a classical I-field (Eq. 9, line
1). Then, gyroscopic forces e′ = ṗ are computed as a function of given velocities in the fashion
of a C-field (Eq. 9, line 2) [16].

2.3.3. Bearing model The gear shafts are connected with bearings to the gearbox housing,
which is considered static in the inertial frame (v0 = 0). Supporting bearing forces are
determined by relative velocities ∆vX,B given by local shaft velocities vX,B at the respective
bearing seats

∆vX,B = vX,B − v0 = vX,B (10)
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The local, inertial shaft velocities vX,B are related to body-fixed velocities vx,COM at the center
of mass through consecutive Euler and lateral transformations

vX,B = mψθϕmCOM→B · vx,COM, δCOM→B =

xB0
0

 . (11)

Bearings are considered parallel spring-dampers with diagonal stiffness matrices KB and
damping matrices DB. The elastic force component fB,K is proportional to the relative
displacement, which is obtained by integration of relative velocities

fB,K = KB

∫
∆vX,B dt, KB =

Kxx 0 0
0 Kyy 0
0 0 Kzz

 . (12)

The damping force component fB,D is expressed as follows

fB,D = DB ·∆vX,B , DB =

Dxx 0 0
0 Dyy 0
0 0 Dzz

 . (13)

Bearings are represented with a combination of C- and R-elements for their energy storing
(elastic) and the dissipative (damping) capabilities, as shown in green in Fig. 3.

2.3.4. Helical gear contact model The helical gear contact is modelled with a parallel spring-
damper connection with a time-variant contact stiffness. The tooth flanks are evenly discretized
in N slices with superscript i to account for the uneven load distribution. The contact forces
are calculated for each slice separately and are a function of relative, normal velocities ∆viX,CPn
in the teeth contact points CP

∆viX,CPn = (viX,CPn)HSS − (viX,CPn)IMS. (14)

To obtain the velocity component normal to the tooth’s surface, the assumption of ideal,
kinematic meshing is taken. Under kinematic meshing the normal surface vector and thus the
contact force vector is aligned with the line of action at all times. The line of action connects
the base circles of gear and pinion and can be expressed in terms of the operating pressure angle
αw and the helix angle β. The normal velocity component viX,CPn is then given by

viX,CPn = mCPn vi
X,CP,

mCPn =
[
−sin(β) sin(αw)cos(β) cos(αw)cos(β) 0 0 0

]
.

(15)

The inertial velocities in the contact points vi
X,CP are related to body-fixed, COM velocities

vx,COM through lateral and Euler transformations

vi
X,CP = mψθϕm

i
COM→CP · vx,COM. (16)

The contact points are defined in the center of each tooth slice with radial distance of
rw (operating pitch radius) to the COM. The relative distance δiCOM→CP for the lateral
transformation can be expressed as follows

δiCOM→CP =

xiCPyCP
zCP

 =

(i− N+1
2 ) bN

−cos(ϕ)rw
sin(ϕ)rw

 . (17)
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Figure 4. Gear contact stiffness as a
function of gear slice angular position ϕi

and periodical for each meshing period
2π/z1.

Figure 5. Geometric relations defining the
angular position ϕe, ϕd of the IMS when
tooth pairings engage and disengage.

The elastic gear contact forces f iG,K are a function of the relative contact displacements obtained
by integration and time-variant contact stiffness

f iG,K = Ki
G(ϕ

i)

∫
∆viX,CPn dt. (18)

Additionally, stiffness proportional damping is considered in the gear contacts. The damping
forces f iG,D are a function of relative contact velocities, where the damping coefficient is Di

G(ϕ
i)

is assumed proportional to the contact stiffness

f iG,D = Di
G(ϕ

i)∆viX,CPn

Di
G(ϕ

i) = ξKi
G(ϕ

i).
(19)

The formulation of the contact stiffness takes the periodical change in the number of actively
engaging teeth into account. For this model with a transverse contact ratio of 1.48 either one or
two teeth are in contact simultaneously. As depicted in Fig. 4 the contact stiffness is formulated
as a piece-wise linear function of the gear angle ϕi switching from a value of kG, when one tooth
is in contact, to 2kG, when two teeth are in contact. For improved numerical properties the
discrete step in contact stiffness is smoothed with a linear function. The gear angles ϕi of each
slice are shifted relative to the shaft Euler angle ϕ1 due to the helical shaping of gear teeth

ϕi =

(
ϕ1 −

xiCP
rw

tan(β)

)
mod

2π

z1
. (20)

The gear angles ϕe, ϕd, at which the contact stiffness function changes values are defined by the
engaging and disengaging contact points E and P , as shown in Fig. 5. Under the assumption
of ideal, kinematic meshing, E and P are positioned in the intersections of tip radii and the line
of action. Using geometric relations, ϕe, ϕd can be derived as a function of only time-invariant,
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geometric parameters

ϕe,d = tan(γe,d + αw)− αw − αb,

αb =
π

2z1
+ tan(αw)− αw,

sin(γe) = −
cos(αw)

√
r2a,1 − r2b,1 − sin(αw)rw,1

ra,1
,

sin(γd) =
cos(αw)

√
r2a,2 − r2b,2 − sin(αw)rw,2

ra,1
.

(21)

where γe,d are auxiliary parameters, αw denotes the operating pressure angle, αb the half angle
of tooth thickness on the base circle, z1 the tooth number and ra, rb, rw the tip, base and pitch
radii respectively.
Analogously to the bearing model, the gear contact model comprises of an energy storing C-
element and dissipative R-element representing stiffness and damping forces, as indicated in red
in Fig. 3.

2.3.5. Boundary conditions The gear stage is under load from external sources such as
aerodynamic excitations. In this model all external loads are applied at the IMS’s center of
mass, while a PI-controller provides the counter-acting generator torque to reach the desired
HSS speed. External loads and generator torque constitute force boundary condition and
are represented by effort source elements (Se) in the bond graph structure (Fig. 3, yellow).
Furthermore, the model assumption of a static gearbox housing sets a zero velocity boundary
condition, which is represented with flow source elements (Sf).

2.4. Model Integration in Digital Twin Framework
This section provides an outlook on the integration of the presented BG model in the envisioned
DT framework, shown in Fig. 1. State estimation methods such as the Extended Kalman Filter
(EKF) are employed to synchronize the virtual model with the physical turbine on the basis of
physical sensor measurements. These require a mathematical description of the virtual model
in the form of state-transition function f(x,u), and measurement function g(x,u)

ẋ = f(x,u),

y = g(x,u).
(22)

The independent state variables x can be identified from the BG structure (Fig. 1) as the
momenta p1,p2 of each shaft, displacements of bearings qB and gear slices qG and euler angles
[ψ, θ, ϕ]T1,2

x = [p1,p2,qB,qG, ψ1, θ1, ϕ1, ψ2, θ2, ϕ2, ]
T . (23)

The measurement variables y include the HSS rotational speed ωgen and the generator torque
Tgen from SCADA data, as well as bearing accelerations ẍB from CMS vibration data. In the
virtual model the interface to these physical measurements is represented with effort (e) and
flow (f) sensors (Fig. 1)

y = [ωgen, Tgen, ẍB]
T . (24)

The state equations (Eq. 22) can be derived analytically using the systematic procedure of the
BG method or automatically generated with the BG software 20sim [17]. 20sim supports the
export as executable MATLAB functions, which can be referenced by an EKF implemented in
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Figure 6. Run-up spectrogram of angular
velocity ωX of IMS. l.: reference model
(SIMPACK), r.: bond graph model (20sim)
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Figure 7. Slice of run-up spectrogram
(Fig. 6) at 400 rpm.

MATLAB. The EKF is extended to incorporate virtual sensors for estimation of gear and bearing
loads by augmenting the state vector similar to the approach of Branlard et al. [18]. Preliminary
studies show compatibility of the BG model with the proposed virtual sensing method, however
analysis and verification is part of future work.

3. Results and Discussion
3.1. Model validation
Validation of the BG model is conducted with the reference model implemented in SIMPACK
(Sec. 2.2) under two basic load cases: run-up from standstill to rated speed ngen = 1165.94 rpm
and a stationary load case at rated speed. Under each load case the gear stage is loaded with
rated torque of Tin = 162.1 kNm at the IMS.
The torsional system dynamics are evaluated in the run-up load case using the angular velocity
ωX of the IMS. As evident from the spectogram depicted in Fig. 6, the bond graph model
displays dynamic behaviour similar to the reference model. The bright line indicates excitation
from gear meshing at the mesh frequency fmesh = ngen/60 · zHSS , while the darker lines show
higher harmonics (2×fmesh, 3×fmesh). The decreasing line segments can be attributed to aliasing
effects, since the higher harmonics exceed the Nyquist frequency of 500 Hz here. Resonance can
be observed at particular shaft speeds where the gear meshing frequency coincides with the
system’s natural frequencies. As shown in Tab. 3 the natural frequencies of both models match
with a relative error of less than 2%. A slice through the spectrogram at a shaft speed of 400
rpm also shows a good agreement in the amplitudes of ωX .
The stationary load case allows a closer look at time series of gear contact forces and bearing
forces. Shown in Fig. 8 are gear contact forces at the left edge slice 1, center slice 6 and right
edge slice 11. The bond graph model is able to accurately reproduce the inhomogeneous load
distribution over the tooth flank, as well as the cyclic compression and decompression for each
meshing period. The mean values of gear forces agree well across all slices with a maximum
error of 5.6%, while the amplitudes appear to be overestimated by up to 22.0% at the left edge
slice.
Axial and radial forces of bearing HSS-A are selected as representatives for bearing behaviour
(Fig. 9). Bearing forces have a large stationary component due to supporting a stationary gear
stage torque and an oscillatory component induced by gear meshing. The error in mean value of
forces is below 2.0% for all gear stage bearings, however force amplitudes differ by up to 37.1%.
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Table 3. First five non-trivial eigen frequency pairs of bond graph model (20sim) and reference
model (SIMPACK).

fi [Hz] f4/5 f6/7 f8/9 f10/11 f12/13 f14/15

SIMPACK 5.98 19.14 27.56 67.05 98.93 105.5
20sim 6.06 19.13 27.66 67.16 98.74 106.5
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Figure 8. Gear contact forces at rated
speed and torque for bond graph model
(20sim) and reference model (SIMPACK).
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Figure 9. Axial and radial bearing forces
at HSS-A at rated speed and torque for
bond graph model (20sim) and reference
model (SIMPACK).

3.2. Computational speed
Since the BG model is intended for real-time simulation in DT, it is important to consider
the computational efficiency. A real-time factor of tCPU/treal = 3.0 is measured with the
BG model and tCPU/treal = 4.1 with the reference model in SIMPACK, when simulating
the stationary load case on a desktop computer. The explicit solver Runge-Kutta 4 is used
for simulation of the BG model, while for the reference model the default SIMPACK solver
SODASRT2, an implicit backward differential solver is used. Admittedly, real-time capability
is not reached with the BG model, however an improvement in computational speed can be
observed. Further investigations on optimizing the computational performance are planned.
One numerically advantageous property of the BG model is the absence of any algebraic loops.
Algebraic loops are circular dependencies of state variables and result in constraint equations
of the form 0 = h(x,u), which have to be solved iteratively for each time step adding to the
computational cost. In the BG model algebraic loops are avoided by modelling gear contact
forces explicitly as a function of body velocities (Eq. 18). The gear contact model in SIMPACK
on the other hand is formulated implicitly, as the position of tooth contacts and the resultant
force vector orientation are calculated iteratively

4. Conclusion
In this paper a wind turbine high-speed gear stage model for the purpose of for real-time
virtual sensing of gear and bearing loads in a DT framework was presented. The model
was developed with the energy-based BG method and implemented in the software 20sim
for numerical integration. The BG method provides a systematic approach to derive state
equations, which are required for the state estimating methods employed in virtual sensors. The
model fidelity is close to state-of-the-art MBS models considering 6 DOF rigid body motion,
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however a simplified gear contact formulation with the assumption of ideal, kinematic meshing is
used. Nonetheless, comparative simulations with a with a reference model implemented in MBS
software SIMPACK show good agreement in gear contact and bearing loads in a stationary and
a run-up load case. Errors in mean value are below 5.6% and 2.0% for gear and bearing forces
respectively. Force amplitudes are overestimated by the BG model with maximum errors of
22.0% and 37.1%. The BG model shows favourable computational performance with a real-time
factor of 3.0 as opposed to 4.1. This is likely a result of the explicit gear contact formulation,
which avoids computationally expensive iterations to find contact displacements. The results
suggest that the developed model is capable and suitable for the proposed virtual load sensing
approach. Further investigations are planned on the analysis and verification of this approach.
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