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ABSTRACT Medical datasets are usually imbalanced, where negative cases severely outnumber positive
cases. Therefore, it is essential to deal with this data skew problem when training machine learning
algorithms. This study uses two representative lung cancer datasets, PLCO and NLST, with imbalance
ratios (the proportion of samples in the majority class to those in the minority class) of 24.7 and 25.0,
respectively, to predict lung cancer incidence. This research uses the performance of 23 class imbalance
methods (resampling and hybrid systems) with three classical classifiers (logistic regression, random forest,
and LinearSVC) to identify the best imbalance techniques suitable for medical datasets. Resampling includes
ten under-sampling methods (RUS, etc.), seven over-sampling methods (SMOTE, etc.), and two integrated
sampling methods (SMOTEENN, SMOTE-Tomek). Hybrid systems include (Balanced Bagging, etc.). The
results show that class imbalance learning can improve the classification ability of the model. Compared
with other imbalanced techniques, under-sampling techniques have the highest standard deviation (SD),
and over-sampling techniques have the lowest SD. Over-sampling is a stable method, and the AUC in the
model is generally higher than in other ways. Using ROS, the random forest performs the best predictive
ability and is more suitable for the lung cancer datasets used in this study. The code is available at
https://mkhushi.github.io/

INDEX TERMS Class imbalance, data resampling, healthcare, lung cancer, machine learning.

I. INTRODUCTION
In a class-imbalanced dataset, one of its classes has a sig-
nificantly lower number of samples than the other [1]. There
are challenges inherent in learning such class imbalanced
data. The skewed distribution of the training examples makes
standard learning classifiers biased, favouring the majority
class and cannot detect rare instances [2], [3]. Rare minority
samples may be treated as noise, and noise may be incor-
rectly identified as minority samples [4], [5]. In the medi-
cal field, this type of imbalance problem often exists. The
number of normal samples in the dataset is often more than
that of abnormal samples, and the gap between the two is
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relatively large [6]. Researchers have developed various class
imbalance methods and performance evaluation metrics to
address these challenges, briefly discussed in Section II-A
and Section II-B, respectively. The most commonly used
abbreviations are presented in Table 1. To investigate class
imbalance methods, we implemented them on two real-world
class imbalanced datasets: (i) the Prostate, Lung, Colorec-
tal, and Ovarian (PLCO) Cancer Screening Trial dataset
and (ii) the National Lung Screening Trial (NLST) dataset.
PLCO and NLST are high-profile datasets in the field of
lung cancer, and many researchers have done some research
on them [7], [8]. Both datasets contain anonymised clinical
information from trial participants, including whether they
have confirmed lung cancer or not. In these lung cancer
datasets, the ratio of most samples (normal people) to a few
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TABLE 1. List of acronyms.

samples (lung cancer patients) is around 25. Therefore, they
all belong to the class imbalance dataset, which can explore
the class imbalance methods.

II. CLASS SKEWNESS IN DATA
Class skewness is a well-known problem in machine learn-
ing [9]. Suppose the distribution of the class in the data is
imbalanced. In that case, the machine learning model will
tilt towards the samples in the majority class and cannot
give enough attention to the samples in the minority class.
It will cause the model’s output to be biased towards the
majority class [10], [11]. The accuracy of the classifier is
unreliable due to the lack of consideration ofminority classes.
In the current field of machine learning, the class skewness
in data has caused many scholars to pay attention to class-
imbalanced learning [12], [13].

A. TYPES OF IMBALANCED METHODS
In the Biomedical Sciences, class imbalance methods have
already been used in many applications, such as gene
expression [14], medical diagnosis [15] and medical side
effects [16]. Class imbalanced data methods can be classified
into three categories: (i) data-level methods, (ii) algorithm-
level methods and (iii) hybrid methods [17].

1) DATA-LEVEL METHODS
Data-level methods involve procedures applied in the train-
ing data to make the class distribution more balanced by
reducing the number of samples in more classes or increasing
the number of samples in minority classes [18]. At present,
the data-level method is mainly in the data pre-processing
stage, using resampling to redistribute the training data of
different classes in the data space [19], [20]. This kind of

method can change the dataset structure as much as possible
to balance the imbalanced class. Some studies have shown
that the resampling method can improve the model’s abil-
ity to a certain extent by resampling the data samples to
adjust the analog distribution of the samples [21], [22]. In the
data-level method, resampling and the work of the classifier
do not affect each other, which is also one of its advan-
tages [23]. Resampling procedures can be further organised
into (i) under-sampling, (ii) over-sampling and (iii) hybrid
methods [24]. In the following, we briefly describe these
methods.

In Under-sampling methods, samples from the majority
class are discarded until the number of samples in each class
are nearly equal while preserving valuable information for
learning [25], [26]. However, it is inevitable that when under-
sampling the dataset, some samples that are meaningful to the
training model may be ignored [27], [28]. After all, different
under-sampling methods have different filtering principles.
Under-sampling methods include:

1) Random Under-Sampling (RUS): RUS is the earliest
under-sampling technique developed; it discards ran-
dom samples from the majority class 29].

2) All k-Nearest Neighbors (All k-NN): For all values
from 1 until the given value of k , this method performs
k-NN to each sample. If the majority of its neigh-
bours classify an instance incorrectly, that instance is
discarded [30].

3) Cluster Centroids: This method performs k-means
and replaces the majority class samples with their
respective cluster centroids to reduce the number of
samples [31].

4) Edited Nearest Neighbors (ENN): Each instance is
tested using k-NN with the rest of the samples in
this method. Those incorrectly classified will be dis-
carded, and the remaining samples will form the edited
dataset [32].

5) Instance Hardness Threshold (IHT): This under-
sampling method first trains a classifier to determine
hard instances or those with a high probability of being
misclassified, then removes them [33].

6) Near Miss: This technique selects majority samples
close to some minority samples; that is, their average
distances to the three closest minority samples are
smallest [34].

7) Neighbourhood Cleaning Rule (NCR): This method
considers three nearest neighbours of each instance in
the dataset. If a sample belongs to the majority class
and is misclassified by its three nearest neighbours, it is
removed from the dataset. Also, if a sample belongs
to the minority class sample and is misclassified by
its three nearest neighbours, then the majority class
samples among its neighbours are removed [35].

8) One-Sided Selection (OSS): First, minority class sam-
ples and misclassified majority samples are selected by
1-NN. Then a majority of class samples in the Tomek
Links are removed [36].
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9) Repeated ENN: This method performs ENN repeatedly
until the edited training set becomes unaffected by
further elimination [37].

10) Tomek Links (TL): Two instances a and b are Tomek
Links if they belong to different classes and are one
another’s nearest neighbour. Thus, Tomek Links are
boundary or noisy instances, and the sample from the
majority class is removed [38].

11) Condensed Nearest Neighbour (CNN): Use the nearest
neighbour algorithm to iterate, and use under-sampling
to put the majority class sample and all the minority
class samples together into a set C. The remaining part
uses 1-NN to judge whether it can be classified cor-
rectly, and the wrongly classified samples are put into
set C. Repeat the above process to determine whether
the majority class of samples can be retained [39].

In over-sampling methods, new samples are created based
on samples from the minority class to reach a more bal-
anced class distribution of samples while strengthening class
boundaries [40], [41]. However, over-sampling may lead
to overfitting because it duplicates or synthesises a minor-
ity of samples [42]. As the number of samples increases,
the training time also increases [43]. Over-sampling methods
include:

1) Random Over-Sampling (ROS): ROS is the earliest
over-sampling technique developed, which copies random
minority class samples to achieve a more balanced class
distribution of samples [44].

2) Adaptive Synthetic (ADASYN): This method uses a
weighted distribution of the minority class samples based
on their difficulty learning. More synthetic samples are gen-
erated for minority samples harder to learn than the easier
ones [45].

3) SyntheticMinority Over-Sampling Technique (SMOTE):
Synthetic samples are generated by interpolating k Nearest
Neighbors (kNN) of each of the minority samples [46].

4) Synthetic Minority Over-Sampling Technique - Nominal
Continuous (SMOTE-NC): This is a generalised version of
SMOTE that accommodates both continuous and nominal
data [46].

5) Borderline SMOTE: This method performs SMOTE
on borderline samples, which are instances that are often
misclassified by their nearest neighbours [47].

6) Support Vector Machine (SVM) SMOTE: This method
oversamples minority samples along the borderline and uses
an SVM classifier for predicting new instances [48].

7) KMeans SMOTE: This method uses the combination
of KMeans clustering and SMOTE method to form K clus-
ters through clustering and then uses over-sampling to retain
clusters that contain many minority samples. These clus-
ters will be allocated to synthetic samples and then put
into clusters with insufficient samples in the minority class.
Finally, SMOTE balances the proportion of categories in each
cluster [49], [50].

The hybrid method is a combination of under-sampling
and over-sampling. Under-sampling and over-sampling have

unavoidable disadvantages: under-sampling may discard use-
ful information, while over-sampling may lead to overfitting.
To break through these limitations, a technique combin-
ing under-sampling and over-sampling has been proposed.
These include (i) SMOTE-ENN [44], which combines
SMOTE for over-sampling and ENN for under-sampling,
and (ii) SMOTE-Tomek [44], which uses SMOTE for over-
sampling and Tomek links for under-sampling. The purpose
of using these two methods is to balance the training dataset
and remove the noisy points at the wrong side of the decision
boundary, to find better clusters and create models with good
generalisation ability.

2) ALGORITHM-LEVEL METHODS
Algorithm-level methods are techniques wherein (i) stan-
dard machine learning classifiers are modified and associated
with a weight or cost variable, or (ii) the classifier itself
is unaffected by the skew distribution [51]. Many schol-
ars have published relevant research results discussing the
class-imbalanced problem at the algorithm level [52]–[54].

3) HYBRID SYSTEMS
Hybrid systems involve a combination of sampling tech-
niques and algorithmic methods [55]. They use data-level
methods to process data externally and adjust the distribu-
tion of categories in the sample. Then algorithms are used
internally to modify the learning process [56]. In this way,
the model will not skew the majority class too much during
classification [9]. The common ensemble methods are as
follows:

1) Balanced Bagging: This method implements bagging
and uses RUS to make the dataset balanced. It resam-
ples each subset of the data before using each integrated
estimator. Therefore, its advantage over sci-kit- learn is
that it uses two additional parameters that control the
behaviour of the random sampler: sampling strategy
and replace [57].

2) Balanced Random Forest: This method first draws
bootstrap samples from the minority class, then ran-
domly draws with replacement the same number of
instances from the majority class, creating a balanced
sample from which each tree is drawn. The majority
vote determines the prediction 58].

3) Easy Ensemble: In this method, classifiers are trained
on balanced subsets using AdaBoost, then the output
of each classifier is combined, creating an ensemble
classifier [59].

4) Random Under-Sampling Boost (RUSBoost): This
method makes sampling and boosting combined and
performs RUS in each round of boosting [60].

5) Balance Cascade: This method is a double integration
algorithm combining bagging and boosting. The itera-
tive method is used to extract a partial subset from the
majority class and combine it with the minority class
to form a base learner, eliminating the majority class
samples that can be correctly classified during training.
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This method pays more attention to samples that are
easily misclassified [59].

Although both easy ensemble and balanced cascade are called
exploratory under-sampling, each time, they extract a subset
from the majority class to learn the classifier. But both mainly
use AdaBoost to train each bag, and it is classified as ensem-
ble methods [9], [28].

Various ensemble-based resampling techniques, i.e.,
Balanced Bagging [57], Balanced Random Forest [58], [61],
Easy Ensemble [59], RUSBoost [60], and Balance
Cascade [59], are widely known. Random balance,
SMOTEBoost, and RUS- Boost are identical due to random
balance. The randomness and repetition of ensemble methods
rely on random balance because each classifier utilizes the
random ratio during sample training with different class
proportions. SMOTE and RUS balance the samples con-
cerning a minority as well as a majority class. The hybrid
method of SMOTE and RUS provided better performance
than other state-of-the-art combined ensemble methods such
as SMOTEBoost and RUSBoost [62], [63]. The combina-
tion of UnderBagging and OverBagging termed as Under-
OverBagging based on resampling bagging algorithm has
proposed by Qian et al., [64] that oversampled the minority
class and undersampled the majority class. The resampling
ratio is calculated through the ratio of the minimum class size
and the maximum class size.

KNN, naïve Bayes, and neural networks are widely
employed as base learners both as homogeneous and het-
erogeneous ensembles. Previous researches show that the
performance of heterogeneous ensembles is highly efficient.
Another method developed by Liu and Zhou was named
as easy ensemble [59] for data resampling using ensemble
methods. Easy ensemble keeps the undersampling method’s
efficiency higher and reduces the risk of ignoring poten-
tially useful information in majority class samples. It has
been observed that using an ensemble as a base classifier
is more effective for imbalance classification than using a
single classifier. Balance Cascade tries to use guided rather
than random deletion of majority class samples. In contrast
to Easy Ensemble, it works in a supervised manner. Since
Balance Cascade removes correctly classified majority class
examples in each iteration, it should be more efficient on
highly imbalanced data sets.

Marcelino et al. [65] demonstrated that ensemble learners
might be affected by the dataset size, an important result
since collecting additional data may be costly or infeasible in
some cases. Thus, since dataset size may affect classification
performance, it is important to examine novel approaches to
this problem. Johnson and Khoshgoftaar [17] examined the
effects of datasets size and balance levels on the classification
performance of various ensemble methods. They concluded
that the average AUC value increases within each level of
class imbalance as the dataset size increases. Similarly, within
each dataset size, the average AUC value increases as the
minority distribution increases. In general, ensemble learning
methods perform better than any single base learner, tend

to be less susceptible to overfitting, and can reduce the bias
during data resampling.

RUS [29] is a computationally cheap baseline method that
naturally extends to the multi-class case and brings no distor-
tion to class distribution. It is risky because it deletes random
samples without checking their potential significance or rele-
vance. TL [38] is a method of border and noise-cleaning. The
algorithm is easily extendable to the multi-class case. Still,
its computational complexity is higher because it is needed
to find the nearest neighbours of each point in the data set.
Also, the number of found links is limited because the nearest
neighbours will break many candidate pairs from the same
class. CNN [39] utilized the one nearest neighbour algorithm
to choose which majority sample can be removed. The issue
with this method is that it is sensitive to noise by preserving
noisy samples. OSS [36] adds the use of TomekLinks to CNN
to remove links that are considered noisy. NCR [35] combines
C-NN and OSS to remove more noise samples. NM [34] is a
binary undersampling algorithm that uses average distances
between a given point and the nearest or farthest points of
an opposite class. It undersamples only the largest major
class because of intrinsic constraints of the binary NearMiss
algorithm. NearMiss technique highly distorts a distribution
of the major class, also NearMiss-4 has no meaning in the
multi-class case.

ROS [44] is a baseline method in which we oversample
all minor classes with a random selection of points up to
the number of points in the largest major class. However,
it can get many instances with the same points, which may
not be good for some learning algorithms. ADASYN [45]
oversampling algorithm for themulti-class case creates points
adaptively to minor classes distributions. The algorithm is
not computationally efficient because it computes the nearest
neighbours twice, firstly for the whole data to find many
points to generate. SMOTE [46], [66] is a widely used multi-
class case algorithm. SMOTE has some drawbacks: firstly, its
computational complexity is quadratic in the size of theminor
class because of the k-nearest neighbour’s search. Secondly,
selecting target points from the nearest neighbours creates a
serious distortion of the minor class distribution. Some points
will never be selected as targets; new points are generated
as edges of a graph but not in the middle of the distribution.
Borderline-SMOTE algorithm [47], [67] creates new points
as linear combinations of the borderline minor class points.
We have found some drawbacks of the algorithm: 1) low
computational efficiency because of k-nearest neighbours to
the minor class from the whole data set, 2) a substantial
distortion of the minor classes distributions, even more than
with pure SMOTE. SMOTE-SVM [48], [68] instead focuses
on creating samples on the decision borders of minority and
majority classes created by the SVM classifier.

B. PERFORMANCE EVALUATION METRIC FOR
IMBALANCED DATA
The performance of a classifier is commonly determined
through a confusion matrix shown in Table 2, where True
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TABLE 2. Confusion matrix.

Positive (TP) is the number of correctly classified positive
instances, False Negative (FN) is the number of positive
instances incorrectly classified to be negative. False Pos-
itive (FP) is the number of negative instances incorrectly
predicted as positive. In contrast, True Negative (TN) is the
number of correctly predicted negative instances [69]–[71].
From the confusion matrix, many standard evaluations met-
rics can be derived [72], [73]. The most commonly used
metric is accuracy, given by Eq. 1.

Accuracy =
TP+ TN

TP+ FP+ TN + FN
(1)

However, most studies on imbalanced class data point out
that accuracy may not be an appropriate metric in imbalanced
datasets [74]. This is because, inmost applications, theminor-
ity class is often more important, requiring methods with
improved recognition rates [75], [76], and errors (FN and FP)
have varying degrees of consequence. For instance, in cancer
diagnosis, one is more interested in correctly detecting the
minority (i.e., positive) cases to diagnose and treat the patient
effectively. Incorrectly diagnosing a person as cancer-positive
could entail additional, unnecessary costs for further medical
tests. On the other hand, incorrectly classifying a person as
cancer-negative could delay necessary treatment and cost the
person’s life.

We describe an alternative performance evaluation metric,
the area under the Receiver Operating Characteristic curve.
The Receiver Operating Characteristic (ROC) curve plots the
True Positive Rate (TPR = TP/(TP + FN)) on the y-axis
against the False Positive Rate (FPR = FP/(TN + FP))
on the x-axis at various threshold values [77]–[79]. The
area under the ROC curve (AUC) identifies the classifier’s
ability to distinguish between classes and compares ROC
curves [80], [81].

C. APPLICATION OF CLASS IMBALANCE METHODS TO
CANCER DATASETS
Concerning cancer, a comprehensive review of data-level
methods for diagnosing various types of cancer was per-
formed in the research of Sara et al. [13]. Compared
with other types of cancer, there is less study on class
imbalance methods for lung cancer. Few researches also
classified the Lung nodules [82], [83], chest-related dis-
eases [84], [85], identification of thoracic diseases [86],
forecasting of COVID-19 [83], [87], [88].

III. DATA DESCRIPTION
In this study, we utilise two different lung cancer datasets:
(i) the Prostate, Lung, Colorectal, and Ovarian (PLCO)

FIGURE 1. PLCO and NLST lung cancer data.

Cancer Screening Trial and (ii) the National Lung Screening
Trial (NLST). As shown in Figure 1, these two datasets are
imbalanced in class, and they will be explained below.

A. PLCO DATASET
The PLCO dataset collects anonymised information of
men and women age 55 to 74 years, including their
responses to baseline and supplementary questionnaires,
smoking status, screening test results, diagnostic and
treatment procedures [89]. The initial data consists of
154,897 participants, and after performing data cleaning dis-
cussed in Section IV-A.1 and Section IV-A.3, the number of
participants was reduced to 80,672. Among them, 3,137 or
about 3.89%, have confirmed lung cancer, while the rest have
no confirmed lung cancer. We took a subset containing age,
Body Mass Index (BMI) value and category, x-ray history,
education, smoking status, number of years smoking, pack-
years, number of years since quitting smoking, family history
of lung cancer, history of bronchitis and emphysema and
confirmed lung cancer. These variables were identified in the
PLCO model developed to predict lung cancer risk [90].

B. NLST DATASET
The NLST dataset collects participant information to com-
pare Low Dose Computed Tomography (LDCT) with chest
radiography in lung cancer screening. The data contained
information from 53,452 participants. There are 2,058 partic-
ipants with confirmed lung cancer or about 3.85% of them.

In this dataset, we created a subset containing variables
similar to the first PLCO subset, namely, age, weight, height,
x-ray history, education, smoking status, number of years
smoking, pack-years, age when participant quit smoking,
history of lung cancer of brother, child, father, mother and
sister, history of bronchitis and emphysema and confirmed
lung cancer.

IV. METHOD
This research is to explore the method of a class-imbalanced
dataset in biomedical data. The confirmed lung cancer cases
in the PLCO and NLST datasets make up 3.89% and 3.85%
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FIGURE 2. Procedure flow.

of the respective populations. This low proportion of positive
cases indicate that the class distribution is imbalanced. There-
fore, class imbalance techniques are applicable to predict the
presence of lung cancer. This research uses three classifiers
as baseline models according to the type of class-imbalanced
method to be explored. It performs the following two types:
(i) perform sampling techniques and build classificationmod-
els, or (ii) perform ensemble methods. The specific workflow
is shown in Figure 2, and this section will explain the methods
used in the research.

A. DATA PRE-PROCESSING
Data pre-processing includes addressing the issue of missing
values and adjusting the features of the datasets. The part
about scaling numerical data and one-hot encoding of cate-
gories features will be discussed later.

1) HANDLING MISSING VALUES FOR THE PLCO DATASET
Initial data from the PLCO Lung dataset consists of
154,897 participants. We excluded 4,953 participants with
no indicated cigarette smoking status cig stat. Whenever
this information was unknown, other variables such as the
number of years smoking, pack-years and years since quitting
smokingwere also unknown. Onewould not reasonably clean

these data without information on whether one is a current,
former or never smoker. Variables containing a mixture of
categorical and numerical data were cleaned. For instance,
the number of years since quitting smoking variable cig stop
contained the number of years for some former smokers, zero
for current smokers, but had no response for some former
smokers and non-smokers. The latter is reflected as NaN
and had to be cleaned up. For non-smokers, we set this
to be equal to the individual’s age (i.e., we assume non-
smokers to have ceased smoking since their birth). For those
with unknown X-ray history, we set the value to 3, corre-
sponding to the category value that indicates the participant
‘‘does not know’’ the answer. For current smokers with an
unknown number of years smoking and pack-years, we set
their respective cig years and pack-years with the median
values for current smokers. Likewise, for former smokers
with an unknown number of years smoking, pack-years and
years since quitting, we set their respective cig years, pack-
years and cig stop with the median value for former smokers.
For those with an unknown family history of lung cancer,
we set the value to 8, indicating a new category value. For the
rest of the variables where we could not reasonably assume
values for the cleanup, we used SimpleImputer from scikit-
learn [91], [92]. To handle missing values of the numerical
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BMI variable, we used the median strategy. In contrast, for
categorical variables represented by numbers, namely, educa-
tion, history of bronchitis and emphysema, we used the most
frequent strategy.

We also made a function to map the BMI value BMI
curr. We have just imputed to their corresponding categories
BMI cure as per World Health Organization (WHO) standard
categorisation of BMI. Further, we created a new subset of
the cleaned dataset containing our desired features (age, BMI
category, x-ray history, education, smoking status, number of
years smoking, pack-years, number of years since quitting
smoking, family history of lung cancer, history of bronchitis
and emphysema), and the target variable (confirmed lung
cancer).

2) HANDLING MISSING VALUES FOR THE NLST DATASET
We converted the columns’ data type to numeric since they
were all initially cast as a string. For the missing height
and weight values, we used imputation with the median
strategy. We computed the BMI value from the height and
weight values and mapped the result to the BMI category
using the same mapper we used in PLCO. Current smokers
have missing entries for their age when they quit smoking,
so we set them to their age. We imputed their median values
for former smokers with missing entries for their age when
they quit smoking. We then computed the corresponding
cig stop value by taking the difference of the participant’s
age, and age quit to align it with the definition in PLCO
data. Lung cancer history of family members in NLST are
indicated in separate fields for brother, child, father, mother
and sister. For the missing entries in these fields, we used
imputation with the most frequent strategy.We then collapsed
these features in a single column, lung FH, by taking their
resulting logical OR. For the missing history of bronchitis
and emphysema, we used imputation with the most frequent
strategy. We also introduced the binary target variable con-
firmed lung with a value of 1 if the participant has con-
firmed lung cancer and 0 otherwise, based on the variable
conflict. It simplifies our study to a binary classification
problem.

Further, we created a new subset of the cleaned NLST
dataset containing our desired features (age, BMI category,
x-ray history, education, smoking status, number of years
smoking, pack-years, number of years since quitting smok-
ing, family history of lung cancer, history of bronchitis and
emphysema), and the target variable (confirmed lung cancer),
using the same order and exact column names as the PLCO
dataset.

3) MAKE PLCO AND NLST DATASET CONSISTENT
In this section, the two datasets after preliminary cleaning are
further processed, and it is expected that the characteristics
of the two datasets are consistent. We removed the PLCO
non-smokers from the dataset because the NLST excludes
non-smokers from their screening selection criteria. We also
changed the PLCO’s former smokers cig stat with a value

of 2 to 0 to align with NLST’s former smoker’s cigsmok
value of 0. NLST’s categories 8, 95, 98 and 99 did not
correspond to PLCO’s education categories for the educa-
tion feature. We calculated the mode for NLST’s education
variable EDUCAT, which was 3, and used this value instead
for the mentioned categories. Family history of lung cancer
in PLCO had categories 8 and 9, which did not correspond
to NLST’s corresponding categories. We used the PLCO’s
mode for lung fh, which was 0, for these categories. For x-ray
history, to align with NLST’s binary 0-1 values, we collapsed
PLCO’s ‘‘Yes, Once’’ and ‘‘Yes, More Than Once’’ (with
values 1 and 2, respectively) into the same value of 1. Also,
for those who answered ‘‘Do not Know’’ (with the value
of 3), we assumed that if they were not sure of their x-ray
history, the results would not have been available, so we set
those at 0. Finally, we renamed NLST’s feature names to
follow those of PLCO’s for easier reference. We identified
the following variables as categorical: BMI curr, bronchit f,
cig stat, EDUCAT, emphys f, lung FH, Xray history, while
the following variables are numerical: age, cig stop, cig years
and pack years.

B. SPLIT DATASET
The researcher used Stratified KFold (K = 5) to split the
dataset, dividing the entire development set into five disjoint
subsets while still maintaining the sample category ratio. This
method uses four-fifths of the dataset for each split. As the
training set, the remaining one-fifth is used as the test set.
Each split can be regarded as the ith time (i = 1, . . . , 5), and
AUC is calculated on the ith test set [93]. It is worth noting
that the test set obtained each time will be placed aside, and
it will not participate in any stage of scaling or recoding and
model building. Since the over-sampling method will copy
or synthesise some minority samples, the data obtained in
this way cannot represent the original dataset, so the test set
should be far from the training process.

C. SCALING AND ENCODING DATA
Scaling data and re-encoding should be applied before sam-
pling because some sampling methods are related to the
distance between the data. For example, All-KNN is based
on the Euclidean distance of the data, and the magnitude
of the excessive difference will affect the sampling effect.
The methods of scaling and encoding will be explained in
detail.

1) FEATURE SCALING FOR NUMERIC DATA
As part of data pre-processing, we transformed the numeric
data to a range of [0,1] using Eq. 2.

X ′ = (x −min(x))/(max(x)−min(x)) (2)

2) ONE-HOT ENCODING FOR CATEGORICAL DATA
We performed one-hot encoding for categorical data. Each
categorical feature with n categories is converted to n binary
(0-1) features [94], [95].
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D. CLASS-IMBALANCED METHODS
The class-imbalanced learning methods used in this research
mainly include data-level methods and hybrid systems (this
research mainly explores the imbalance technologies in the
Imblearn library). We mainly use resampling techniques
for data-level methods, including under-sampling, over-
sampling, and hybrid sampling methods. Under-sampling
methods: Random Under Sampling (RUS), All k-Nearest
Neighbors (All k-NN), Cluster Centroids (CC), Edited Near-
est Neighbors (ENN), Instance Hardness Threshold (IHT),
Near Miss (NM), Neighbourhood Cleaning Rule (NCR),
One-Sided Selection (OSS), Repeated ENN (RENN), Tomek
Links (TL). In this study, due to the huge dataset, Condense
Nearest Neighbors(CNN) is an al- algorithm based on 1-NN,
which requires much time to run. Therefore, CNN is not dis-
cussed in this article. Over-sampling methods: Random Over
Sampling (ROS), Adaptive Synthetic (ADASYN), Synthetic
Minority Over-sampling Technique (SMOTE), SMOTE-
Nominal Continuous (SMOTE-NC), Borderline SMOTE,
Support Vector Machine (SVM) SMOTE, KMeans SMOTE.
Hybrid sampling methods: SMOTE-ENN, SMOTE-Tomek.
Those data-level methods are combined with classifiers to
predict lung cancer cases. For Hybrid systems, we trained
them with the inherent classifier. They are Balanced Bag-
ging, Balanced Random Forest, Easy Ensemble, and Random
Under-Sampling Boost (RUSBoost). The Balance Cascade
algorithm has been continuously adjusted by the Imblearn
library in recent years and was finally abandoned in version
0.6.0, so this article will not discuss this method.

E. BUILDING CLASSIFIERS
This study uses three classic classifiers as the baseline model
to find the most suitable class-imbalanced technique for the
dataset based on this standard: (i) Logistic Regression (LR),
(ii) Random Forest (RF), and (iii) Linear Support Vector
Classification (Linear SVC).

F. EVALUATION
1) EVALUATE SAMPLING – IMBALANCE RATIO
The imbalance ratio (IR) is an essential parameter in imbal-
anced learning. It measures the proportional relationship
between the majority and minority classes in the experi-
ment [96]. The formula is given by Eq. 3:

IR = InstancesMajority/InstancesMinority (3)

Most of the data-level methods used in the research are
by resampling the majority class or minority class in the
original dataset, thereby increasing the minority class sam-
ples or reducing majority class samples. Sampling will cause
the imbalance ratio of the dataset to change. As IR becomes
larger, the disparity in sample size between the majority class
and the minority class becomes more significant [97], [98].
The dataset at this time is imbalanced. When the IR value is
closer to 1, the dataset tends to be more balanced. Therefore,
this paper will use IR to evaluate sampling techniques.

2) EVALUATE MODEL – AUC
This study selected widely-used AUC as the metric to eval-
uate the ability of each classifier to distinguish between
confirmed and no confirmed lung cancer cases. After ith
attempts, we can get the mean AUC of ith training on the
ith test set. To make the experimental results more accurate
and reliable, this study repeated the above process five times
and calculated the final mean AUC to measure the model’s
predictive ability. In addition, this study will compare the
experimental results in the PLCO and NLST datasets and
discuss the methods of dealing with class-imbalanced data.

V. RESULTS
This section will list the imbalance ratio provided by the
resampling technique and then show the prediction results of
the imbalance technique model, which can help analyse the
effect of the imbalance technique comprehensively. We have
used the area under the curve (AUC) for the evaluation of pro-
posed methods. The AUC performs best when the dataset is
imbalanced [10], [69]. Our study had 16 imbalance datasets,
so various studies [57], [99], [100] employed the AUC curve
as a performance evaluation measure.

A. RESULTS FOR PLCO DATASET
The class-imbalanced PLCO dataset has an imbalanced ratio
of 24.7. Through resampling technology, the class proportion
of the dataset has changed. Table 3 lists the class distribution
in the training set after each sampling.

TABLE 3. Class distribution for data-level methods _-PLCO.

Since the sampling occurs in the training set, the baseline
of the dataset is the number of samples in the training set
(four-fifths of the whole dataset, which is 64537.6). It can be
seen from the result that under-sampling changes the major-
ity of samples, over-sampling only processes the minority
samples, and the hybrid method changes both categories.
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All sampling methods reduce the IR value, and the IR values
of over-sampling and hybrid sampling are close to 1, which
means that they achieve the class-balanced of the dataset as
much as possible.

Applying various under-sampling methods for the PLCO
dataset, we show the resulting AUCs for three different clas-
sifiers in Table 4. Each classifier had another best under-
sampling method. Logistic regression using RUS and Linear
SVC had higher scores, 0.7124 and 0.7126, respectively.
However, the random forest model using Repeated ENN got
the highest mean AUC of 0.8968 in the model using the
under-sampling method.

TABLE 4. AUC results for under-sampling methods - PLCO.

For over-samplingmethods, ROS had the best performance
among the three classifiers. These are shown in Table 5. The
random forest had the highest mean AUC of 0.8994 among
them.

TABLE 5. AUC results for over-sampling methods - PLCO.

For Hybrid Methods shown in Table 6, SMOTEENN
achieved a higher mean AUC in logistic regression and Lin-
ear SVC. Nevertheless, using SMOTETomek with logistic
regression had a higher mean AUC of 0.8684.

TABLE 6. AUC results for hybrid methods - PLCO.

For ensemble methods shown in Table 7, balanced bag-
ging achieved the highest mean AUC, followed by balanced
random forest.

TABLE 7. AUC results for ensemble methods - PLCO.

The researchers measured all resampling methods in
the random forest model with the highest baseline value.
In Figure 3, yellow represents the baseline, green represents
the under-sampling methods, orange represents the over-
sampling methods, and blue represents the hybrid meth-
ods. The baseline AUC value in PLCO is 0.8532; it can
be seen that the lowest value that appears in Near Miss
is 0.5035, the highest value appears in ROS, and its AUC
value is 0.8994. Observing the bar chart shows that the
AUC displayed by the under-sampling method has more
significant fluctuations than other methods. Through cal-
culation, the standard deviation (SD) of under-sampling in
PLCO is 0.1251, and the SD value of over-sampling is
0.0123. There are only two-hybrid methods, so their SD is
not calculated. Also, we separately calculated the standard
deviation of ensemble methods (because this method is a
separate classifier) as 0.0643. The result is between over-
sampling and under-sampling. It shows that over-sampling
is more stable than other imbalanced learning, and under-
sampling is the most unstable. Among all the class imbalance
techniques tested in the PLCO dataset, random forest using
ROS performs best.

B. RESULTS FOR NLST DATASET
The NLST dataset is also an extremely imbalanced dataset,
with an imbalance rate of 25.2. The imbalance rate of the
dataset obtained by the sampling method is shown in Table 8.
We can see similar results to the PLCO dataset. Over-
sampling and hybrid sampling make the IR adjustment of the

TABLE 8. Class distribution for data-level methods - NLST.
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FIGURE 3. Comparison of sampling method on random forest in PLCO.

dataset approximately 1. The sample size in the training set
shows that the number of samples is reduced after using the
under-sampling technique. In contrast, the total number of
samples is higher than the original dataset after using other
methods.

Table 9 shows the resulting AUCs upon applying various
under-sampling methods in conjunction with three different
classifiers for the NLST dataset. Each classifier had another
best under-sampling method. However, for Logistic regres-
sion and linear SVC, the difference between the best per-
forming AUC is very small, and their sampling methods are
both RUS. Besides, the performance of Random Forest using
Repeated ENN is much better than other models in under-
sampling methods.

TABLE 9. AUC results for under-sampling methods - NLST.

We show the AUC results for the over-sampling meth-
ods in Table 10. Logistic regression is similar to the best

TABLE 10. AUC results for over-sampling methods - NLST.

over-sampling method of Linear SVC. Random forest with
ROS achieved the highest mean AUC of 0.8960.

For hybrid methods shown in Table 11, SMOTETomek
achieved a higher mean AUC than SMOTEENN for all three
classifiers in the NLST dataset.

TABLE 11. AUC results for hybrid methods - NLST.

AUCs of ensemble methods performed in the NLST
dataset are shown in Table 12. Balanced bagging achieved
the highest mean AUC, followed by balanced random forest.

Similarly, like the PLCO dataset, we measure the perfor-
mance of the sampling method in the random forest, as shown
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TABLE 12. AUC results for methods - NLST.

in the figure. It can be seen that the AUC value of the
under-sampling Near Miss is the lowest, and the AUC value
of the over-sampling ROS is the highest. By calculating the
AUC standard deviation of various sampling methods in the
NLST dataset, the SD value of under-sampling is 0.1140,
and the SD value of over-sampling is 0.0089. In addition,
the standard deviation of hybrid systems is 0.1124, which
is between over-sampling and under-sampling. Combining
the standard deviation performance and the AUC in each
method, under-sampling fluctuates wildly compared to over-
sampling, which is more stable.

In general, AUCs obtained in the NLST dataset have been
lower than theAUCs obtained in the PLCOdataset, indicating
an inherent difference in the data.

VI. DISCUSSION
In this section, we will discuss the application of class-
imbalanced technology in this study in two aspects. One is to
discuss different class-imbalanced techniques, and the other
is to combine the performance of the two datasets to analyse
the results.

A. THE EFFECTS OF IMBALANCED LEARNING
Each classifier is combined with different imbalance tech-
niques in this study, including data-level over-sampling,
under-sampling, hybrid method, and methods. Among the
three baseline classifiers, the mean value of the random forest
is much higher than logistic regression and Linear SVC, and
random forest models provide the highest mean value of
AUC with different sampling techniques. It shows that the
random forest classifier is suitable for these imbalanced med-
ical data used in this study. It is worth noting that although
the baseline AUC values of logistic regression and Linear
SVC are as low as 0.5, the AUC values of most models
have been significantly improved through the use of class
imbalance techniques. It shows that the class imbalance tech-
nique helps to enhance the ability of model classification.
Besides, most of the average AUC in over-sampling methods
is higher than other sampling methods. The results show that
the over-sampling way is suitable for the imbalanced medical
data used in this study. The following will discuss the class
imbalance learning in two aspects: the class ratio (IR value)
of the samples generated from resampling and the stability of
the class imbalance techniques.

It is worth noting that although the baseline AUC values of
logistic regression and Linear SVC are as low as 0.5, the AUC
values of most models have been significantly improved
through the use of class imbalance techniques. It shows that

the class imbalance technique helps to enhance the ability of
model classification. Besides, most of the average AUC in
over-sampling methods is higher than other sampling meth-
ods. The results show that the over-sampling way is suitable
for the imbalanced medical data used in this study. The
following will discuss the class imbalance learning in two
aspects: the class ratio (IR value) of the samples generated
from resampling and the stability of the class imbalance
techniques.

To explore the relationship between the imbalance method
and the model’s AUC, we use IR to measure the ability
of resampling technology to adjust the class distribution.
From the sampling results, under-sampling discards part of
the majority samples, over-sampling duplicates or synthe-
sises minority samples, and the composite method samples
all classes. However, in this study’s extremely imbalanced
dataset, the performance of under-sampling is not excel-
lent, and the IR of most under-sampling methods is very
high. Because under-sampling needs to discard many major-
ity class samples to balance with the minority class, this
is likely to lose valuable information. When observing the
over-sampling and hybrid methods that perform well after
combining with the classifier, the researchers found that
the minority class samples were significantly increased. The
samples were more than the original dataset, and their IR
values were all-around 1. Therefore, it can be considered that
the resampling method can adjust the sample distribution of
the sample to make the IR of the dataset close to 1, which is
beneficial to improve the model’s predictive ability. Besides,
the researchers also used the standard deviation to assess the
stability of the imbalanced learning technique. Since the per-
formance of the random forest classifier is better than other
baseline classifiers, the researchers exemplified the AUC
value of the resampling model used in the random forest.
By calculating the standard deviation (SD value) within each
type of resampling method, the SD value of methods (hybrid
systems) is also calculated separately. We get the highest
SD value of under-sampling (In PLCO: 0.1251; In NLST:
0.1140) and the lower SD value of over-sampling (In PLCO:
0.0123; In NLST: 0.0089).

It shows that different methods may have very different
results when under-sampling is used, and using different over-
sampling methods may get relatively similar results. The
standard deviation of over-sampling is much smaller than
under-sampling, indicating that the over-sampling method
is stable. Therefore, if the resampling method is used to
process extremely imbalanced datasets like this research,
over-sampling is recommended. Because the over-sampling
method is relatively stable, it will not produce significant
results due to selecting different methods.

B. EVALUATION OF IMBALANCED LEARNING
TECHNIQUES APPLIED TO THE TWO DATASETS
After comparing the performance of different imbalance
methods in the two datasets, similar results can be obtained:
under-sampling pre-processing the two datasets, RUS has
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FIGURE 4. Comparison of sampling method on random forest in NLST.

FIGURE 5. Comparison of best performing sampling methods against classifier baseline on PLCO.

shown good logistic regression and linear SVC performance.
The combination of Repeated ENN and random forest both
got the highest average AUC in under-sampling. In the exam-
ple of using the over-sampling technique, the random forest
combined with ROS performed best among all models in both
datasets. For ensemblemethods, a balanced bagging classifier
performed well for both datasets.

In Figure 5 and Figure 6, we summarise the best
performing sampling methods for each classifier on the
two datasets and compare them with the baseline AUC

(i.e., no sampling performed). After each classifier is pro-
cessed by the sampling method in the table, the AUC of the
model has been significantly increased. Except for Linear
SVC, the best sampling methods for the other two classifiers
are ROS, and the performance of ROS in Linear SVC is
similar to the best results. Therefore, the random forest model
using ROS is more suitable for processing such imbalanced
medical datasets and achieving the highest AUC. The Near
Miss of the under-sampling method obtained results lower
than the AUC value of the corresponding baseline classifier
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FIGURE 6. Comparison of best performing sampling methods against classifier baseline on NLST.

in both datasets. It performed the worst among all resampling
techniques. Therefore, the AUC values obtained by Near
Miss on the three classifiers are all the lowest, and it can
be considered that it is not suitable for the datasets with an
imbalance rate of about 25 used in this study.

Conversely, the random forest model that uses ROS as a
whole is more suitable for the highly imbalanced lung cancer
dataset used in the research and can achieve the highest
AUC. The difference is that SMOTETomek performs very
well in the NLST dataset in hybrid methods. The average
performance of SMOTEENN in the PLCO dataset is slightly
higher than that in the NLST dataset. It shows that there are
still some potential differences between the two datasets.

It may beworthwhile to include algorithm-levelmethods to
complete the suite of class imbalance techniques and evaluate
their predictive performance. However, the costs and weights
assigned to the algorithm-level methods must be as close as
possible to realistic values.

VII. CONCLUSION
In this study, we have investigated class imbalance tech-
niques, including data-level and hybrid systems, to predict the
presence of lung cancer. Two medical datasets related to lung
cancer (PLCO and NLST) with imbalance ratios of 24.7 and
25.2 are used in this research. The imbalanced learning
method is used to solve the problem of a skewed majority
in prediction. This research discusses 23 imbalanced learn-
ing methods, including ten under-sampling techniques, seven
over-sampling techniques, two-hybrid resampling methods,
and four hybrid systems. The class imbalance technology

adjusts the majority or minority samples by discarding the
majority samples, copying or synthesising the minority sam-
ples to balance the categories in the dataset. In addition,
three classic classifiers (logistic regression, random forest,
linear SVC) combined with resampling techniques were used
to train the dataset. The prediction results obtained using
the classifier training pre-processing data (except for null
values, etc.) are used as a baseline for comparison with
models built using imbalance techniques. The method used
to evaluate the sampling technique is the imbalance ratio, and
the index used to assess the classification ability of the model
is AUC.

Further, the standard deviation was used to measure the
stability of class imbalance techniques. This study shows that
using the class-imbalance technique has higher performance
than the baseline model. Class imbalance technology helps
to improve the prediction performance of the model. The
data-level technology adjusts the IR of the dataset to be close
to 1 through resampling. Among the imbalanced learning
methods studied in this paper, the over-sampling technique
performed best, and the IR value of the over-sampling dataset
was about 1. Most of the models that use over-sampling have
higher AUC values than other models. The over-sampling
method has higher stability than other methods, and the
under-sampling method has the worst stability. Also, the ran-
dom forest with random over-sampling is the best predictive
model, and it is more suitable for the PLCO and NLST
datasets related to lung cancer. Using ROS technology to
process these two datasets in the random forest model can
achieve the highest AUC value.
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Conversely, the random forest using Near Miss is even far
below the baseline value. Therefore, the combination of ROS
technology and the random forest is worthy of promotion.
However, there are still some small gaps within different
datasets, and compound systems and over-sampling can be
suggested to deal with extremely imbalanced biomedical
datasets similar to those in the research. The contribution of
this research is to prove that the class imbalance techniques
can be used to diagnose lung cancer. The over-sampling
technique is better than other imbalanced learning methods.
Finally, the researchers proposed a model combining ROS
and random forest to screen for lung cancer so that more peo-
ple can receive timely treatment and reduce the loss caused
by misdiagnosis. In future research, the new class imbalance
technology is worthy of application and exploration. Com-
bining more diverse classifiers and imbalance techniques to
achieve higher model prediction capabilities is also worth
looking forward. Furthermore, a deep learning-based model,
i.e., GNN, AlexNet, ResNet etc., can also be deployed for the
imbalance dataset problem.
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