
Forecasting Electricity Load With
Hybrid Scalable Model Based on
Stacked Non Linear Residual
Approach
Ayush Sinha1*, Raghav Tayal 1, Aamod Vyas2, Pankaj Pandey3 and O. P. Vyas1

1CPSEC Lab, Indian Institute of Information Technology Allahabad, Department of IT, Prayagraj, India, 2Department of Business
Informatics, University of Mannheim, Mannheim, Germany, 3Norwegian University of Science and Technology (NTNU), Gjøvik,
Norway

Power has totally different attributes than other material commodities as electrical energy
stockpiling is a costly phenomenon. Since it should be generated when demanded, it is
necessary to forecast its demand accurately and efficiently. As electrical load data is
represented through time series pattern having linear and non-linear characteristics, it
needs a model that may handle this behavior well in advance. This paper presents a
scalable and hybrid approach for forecasting the power load based on Vector Auto
Regression (VAR) and hybrid deep learning techniques like Long Short Term Memory
(LSTM) and Convolutional Neural Network (CNN). CNN and LSTM models are well known
for handling time series data. The VARmodel separates the linear pattern in time series data,
and CNN-LSTM is utilized to model non-linear patterns in data. CNN-LSTM works as CNN
can extract complex features from electricity data, and LSTM can model temporal
information in data. This approach can derive temporal and spatial features of electricity
data. The experiment established that the proposed VAR-CNN-LSTM(VACL) hybrid
approach forecasts better than more recent deep learning methods like Multilayer
Perceptron (MLP), CNN, LSTM, MV-KWNN, MV-ANN, Hybrid CNN-LSTM and
statistical techniques like VAR, and Auto Regressive Integrated Moving Average
(ARIMAX). Performance metrics such as Mean Square Error, Root Mean Square Error,
and Mean Absolute Error have been used to evaluate the performance of the discussed
approaches. Finally, the efficacy of the proposedmodel is established through comparative
studies with state-of-the-art models on Household Power Consumption Dataset (UCI
machine learning repository) and Ontario Electricity Demand dataset (Canada).

Keywords: vector auto regression, convolutional neural network, long short term memory, electrical load
forecasting, time series

1 INTRODUCTION

As an option of petroleum products to create power, elective asset like sunlight based, wind and so on
have become , quite possibly, the most encouraging sustainable power sources within the presence of
greenhouse effect and polluted environment (Miller et al., 2009). The electric grid framework is
complex since it should keep up the equilibrium among production, transmission and distribution of
power. Taking into account the yield power from an alternate source is trademark in instability and
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discontinuity, presenting incredible difficulties to load
dispatching, exact electrical load estimating assumes a
significant part in soothing the pressing factor of managing
top load and improving robustness limit with respect to
electrical load demand. Electricity demand forecasting plays an
important role as it enables the electric industry to make
informed decisions in planning power system demand and
supply. Moreover, accurate power demand forecasting is
necessary as energy must be utilized as it is produced due to
its physical characteristics (Ibrahim et al., 2008). Albeit ample
studies have been dedicated to building powerful models to
predict accurate electrical load (Du et al., 2019), the greater
part of them are utilized for producing deterministic point
prediction with single-variable yield each time. Generally
applied point estimating models for electrical load can be
partitioned into two classes: statistical models and machine
learning models. Statistical models exploit as completely as
conceivable the past records by giving attention to connections
and patterns between the old and future exhibition of power load
data dependent on the development of mathematical models (Ma
et al., 2017). Nevertheless, statistical strategies can diminish the
anticipating mistakes when the data features are under ordinary
conditions, having high prerequisite for simple time series. Work
like ARMA (Bikcora et al., 2018) and ARIMA (Wu et al., 2020)
address traditional time series prediction strategies, however they
ordinarily neglect to consider the impact of other covariate
factors (Wu et al., 2020). Therefore, to counter the weaknesses
of statistical models, machine learning models, known as artificial
neural networks (ANN), are deployed for power load forecasting
(Khwaja et al., 2020), (Wu et al., 2019) and (Xiao et al., 2016).

As a promising part of AI strategies, deep learning, mostly
referring tomulti-layer network having feature learning potential,
has acquired a wide recognition for power load prediction due to
three significant properties: solid generalization ability, large scale
data processing and unsupervised way for the feature learning.
From the work (Bedi and Toshniwal, 2019), it is widely perceived
that deep learning models exhibit good performance in terms of
precision, scalability and stability. Nonetheless, one of significant
criticisms of picking up deep learning algorithms is, it lacks strong
theoretical foundation and mathematical induction. This is
additionally an effectively a disregarded issue in the viable use
of electrical load prediction. To keep away from that issue, this
paper presents a mathematical form of problem formulation
followed by the proposed solution as VACL model which is a
combination of statistical model VAR and Deep Learning
methods CNN,LSTM. The present work is an extension of our
previous work (Sinha et al., 2021).

Electricity demand forecasting can be of multiple types: short
term (day), medium term (week to month) and long term (year).
These forecasts are necessary for the proper operation of electric
utilities. Precise power load forecasting can be helpful in
financing planning to make a strategy of power supply,
management of electricity, and market search (Stoll and
Garver, 1989). It is a time series problem that is multivariate
as electrical energy depends on many characteristics that use
temporal data for the prediction. Temporal data depends on time
and represented using time stamps. Prediction using classical load

forecasting methods is challenging as power consumption can
have a uniform seasonal pattern but an irregular trend
component. To continue the discussions, the rest of the paper
is organized as: Section 2,literature review of existing state-of-
the-art models and issues relatingto them that will lead to the
problem statement as presented in Section 3. To understand the
basics about the multivariate time series analysis and deep
learning forecasting strategies, section 4 is presented. In
continuation to existing approach, Section 5 presents the
detail about proposed methodology followed by Section 6
which consists of experimental studies and discussion of
application of proposed model on two large datasets.
Finally,Section 7 is about conclusion and states the future
scope of the proposed method.

2 LITERATURE REVIEW

The new improvement of deep learning models, like Deep Neural
Network (DNN), Recurrent Neural Network (RNN),
Convolutional Neural Network (CNN), has had an incredible
impact in the fields of Natural Language Processing (NLP),
computer vision, and recognition of speech. DNN can exhibit
to model a function which is complex in nature and can efficiently
mine important features of a dataset. Many researchers have
explored these techniques for the multivariate time-series
forecasting. Some of the recent advancement in this area is
summarized as:

Authors in (Choi, 2018) discussed the ARIMA-LSTM hybrid
model for time series forecasting. They used LSTM for temporal
dependencies and their long-term predictive properties. To
circumscribe linear properties, ARIMA is used, and for
residuals that contain non-linear and temporal properties,
LSTM is used. This hybrid model is compared with other
methods, and it gave better results for evaluation metrics such
as Mean Squared Error (MSE), Root Mean Squared Error
(RMSE), and Mean Absolute Error (MAE). In (Kim and Cho,
2019), authors proposed a hybrid CNN-LSTM model that is
evaluated on power consumption data. It is proposed that CNN
can extract temporal and spatial features between several
variables of data. In contrast, LSTM takes data returned by
CNN as input and models temporal data and irregular trends.
The proposed model is compared with other models like GRU,
Bi-LSTM, etc., and it performed better on evaluation metrics such
as MSE, RMSE, MAE, MAPE, etc. While Mahalakshmi et al.
surveyed various methods for forecasting time series data and also
discussed various types of time-series data that are being
forecasted (Mahalakshmi et al., 2016), research has been done
on various types of data such as electricity data, stockmarket data,
etc. The performance evaluation parameter such as MAE, MSE
proves that the hybrid forecasting model yields good results
compared to other models. To investigate the forecasting
outcome for non-linear data, Gasperin et al. discussed the
problem of accurately predicting power load forecast owing to
its non-linear nature (Gasparin et al., 2019). The authors worked
on two power load forecast datasets and applied state-of-the-art
deep learning techniques to short-term prediction data. Most
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relevant deep learning models applied to the short-term load
forecasting problem are surveyed and experimentally evaluated.
The focus has been given to these three main models: Sequence to
Sequence Architectures, Recurrent Neural Networks, and
recently developed Temporal Convolutional Neural Networks.
LSTM performed better as compared to other traditional models.
In continuation to use the deep learning models for forecasting
no-linear data, authors in (Erica, 2021) propose a novel short-
term load forecasting approach with Deep Neural Network
architecture,CNN components to learn complex feature
representation from historical load series,then the LSTM based
Recurrent Neural component models the variability and
dynamics in historical loading.

Siami-Namini et al. in their proposed work (Siami-Namini
et al., 2018) compared deep learning methods such as LSTM
with the traditional statistical methods like ARIMA for financial
time series dataset. According to them, a forecasting algorithm
based on LSTM improves the prediction by reducing the error
rate by 85% when compared to ARIMA. On the similar lines,
Wang et al. (Wang et al., 2016) worked on CNN-LSTM
consisting of two parts: regional CNN and for predicting the
VA rating method used is LSTM. According to their evaluation,
regional CNN-LSTM outperformed regression and traditional
Neural Network-based methods. Authors in (Sherstinsky, 2018)
explained the essential fundamentals of RNN and CNN. They
also discussed “Vanilla LSTM” and discussed the problems
faced when training the standard RNN and solved that by
RNN to “Vanilla LSTM” transformation through a series of
logical arguments. The work done in (Hartmann et al., 2017)
adopted the Cross-Sectional Forecasting approach on the
AutoRegression model. It consumes available data from
multiple same domain time series in a single model, covering
a wide domain of data that also compensates missing values and
quickly calculates accurate forecast results. This model can only
deal with linear data but with multiple time series
simultaneously while in (Choi and Lee, 2018), authors
presented a novel LSTM ensemble forecasting algorithm that
can combine many forecast results from a set of individual
LSTM networks. The novel method can capture non-linear
statistical properties and is easy to implement and is
computationally efficient. In another domain with similar
characteristics, Chniti et al. (Chniti et al., 2017) presented
robust forecasting methods for phone price prediction using
Support Vector Regression (SVR) and LSTM. Models have been
compared for both univariate and multivariate data. In the
multivariate model, LSTM performed better as compared to
others. Another work like (Yan et al., 2018) attempted short-
term load forecasting (STLF) for the electric power
consumption dataset. Due to the varying nature of data for
electricity, traditional algorithms performed poorly as
compared to LSTM. To increase further accuracy, the
authors discussed a hybrid approach consisting of CNN on
top of LSTM and experimented on five different datasets. It
performed fairly better than ARIMA, SVR, and LSTM alone. As
a more advanced hybrid model, authors in (Babu and Reddy,
2014) proposed a linear and non-linear models combination
that is a combination of ARIMA and ANN models where

ARIMA is used for linear component and ANN for a non-
linear component. For further improvement, the authors
proposed that the nature of time series should be taken
into account so volatile nature is taken into account by
moving average filter, and then hybrid model applied; the
proposed hybrid model is compared with these individual
models and some other models, and it performed fairly well as
compared to other models. While the work in (Shirzadi et al.,
2021) showed that by utilizing deep learning, the model could
foresee the load request more precisely than SVM and
Random Forest (RF). However, it does not validate the
result on more than one dataset. In (Bendaoud and Farah,
2020) another type of CNNN for one-day ahead load estimate
utilizing a two-dimensional information layer (remembering
the past states’ utilizations for one layer and climatic and
relevant contributions to another layer). They applied their
model to a contextual analysis in Algeria and announced
MAPE and RMSE of 3.16 and 270.60 (MW), individually.
An approach based on clustering techniques, authors in
(Talavera-Llames et al., 2019) introduced a clustering
technique dependent on kNN to predict power price
utilizing a multivariate dataset. The proposed model was
applied on a power dataset in Spain (OMIE-Dataset, 2020)
and the authors juxtaposed the outcome with existing state of
art methods like MV-ANN (Hippert et al., 2001), MV-RF and
traditional multivariate Box-Jenkins (Lütkepohl, 2013) model
like ARIMAX (Box et al., 2011), autoregressive-moving-
average (ARMAX) and autoregressive (ARX).

Coming to a more popular model, authors have proposed
Elmann Recurrent Neural Networks (ERNN) in Elman (1990)
to sum up feedforward neural network to better take care of
ordered sequential data like time-series. Notwithstanding of
the model simplicity, Elmann RNNs are difficult to prepare
because of less efficiency of gradient (back) propagation.
While forecasting the time series with Multi-Step
Prediction method, authors in Sorjamaa and Lendasse
(2006) proposed a DirRec strategy based on the
combination of Recursive and Direct strategy. In this
approach, a model is trained in a single mode to predict
one next step of the time series data and combine it with a
multiple model predictor with the same input. Authors in
Bontempi (2008) presented a model as MIMO strategy where
a single model is evolved to predict complete output sequence
in a single effort. However the more advanced popular model
known as DIRMO model Taieb et al. (2009) was proposed
which is like a tradeoff with the MIMO and Direct approach.
This model was proved to be more advanced in terms of
multistep forecasting and computational time.

In a nut shell, the above literature survey generally centers
around DNN, RNN and CNN models and shows that deep
learning strategies can convey much better load forecasting
precision than those accomplished by traditional models.
Other deep learning models have not been investigated much
for load forecastings, for example, attention model (Bourdeau
et al., 2019), ConvLSTM and BiLSTM. Notwithstanding the
works referred to, a different researchers have also centered
around load anticipating at the structure scale, utilizing AI
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and deep learning strategies (Rashid et al., 2009), (Shi et al., 2017)
and (Rahman et al., 2018). In any case, fewer investigations have
analyzed the capacity of information digging methods for large-
scale data and established their model’s efficacy on multiple
datasets with different characteristics.

3 LOAD FORECASTING INTRICACIES

Stemming out the research gap from the literature survey from
Section 2, the present work aims at building a model that can
accurately forecast power load data. The mathematical
formulation and objectives of the problem is as follows:

1) Given fully observed time series data Y � {y1, y2,., yT} where yt
belongs to Rn and n is the variable dimension, aim is to predict
a series of future time series data

2) That is, assuming {y1, y2,., yT} is available, then predicting yT+h
where h is the desirable time horizon ahead of the current
timestamp (Chatfield, 1996).

3) The following constraints need to be satisfied by the model:
a) Model should be able to handle numerous series data
b) Model should be able to handle incomplete data
c) Model should be able to handle noisy data

4 MULTIVARITE TIME SERIES ANALYSIS
WITH DEEP LEARNING

4.1 Time Series
It is a series of discrete data points which are taken at fixed intervals
of time (Wikipedia, 2021). An explicit order dependence is added
between observations by time series via time dimension. Order of
observations in time series gives a source of extra information
which can be used in forecasting. There may be one or more
variables in the time series. A time series that is having one variable
changing over time is univariate time series. If greater than one
variable varying with time, then that time series is multivariate.

It can have applications in many domains such as weather
forecasting, power load forecasting, stock market prediction,
signal processing, econometrics, etc.

4.2 Time Series Analysis
It constitutes methods for analyzing and drawing out meaningful
information and patterns from data which can help in deciding
the methods and getting better forecasting results (Cohen, 2021).
It helps to apprehend the nature of the series that is needed to be
predicted.

4.3 Time Series Forecasting
Time series forecasting involves creating a model and fitting it
on a training set (historical data) and then using that model to
make future predictions. In classical statistical handling,
taking forecasts in the future is called extrapolation. A time
series model can be evaluated by forecasting the future term
and analyzing the performance by specific evaluation metrics
like MSE, MAE, and RMSE.

4.4 Time Series Types
Time series forecasting techniques are inspired by various research
on machine learning and have been changed from regression
models to neural network-related models. There are multiple
types of time series, of which two types are most common.

• STATIONARY: If statistical properties like mean, variance,
autocorrelation, etc., of time series do not change with time,
then that time series is stationary. As we know, stationary
processes are easy to predict; we simply need to find out their
statistical properties, which will remain the same over a while.

• NON-STATIONARY: In a non-stationary time series, data points
have statistical properties like mean, variance, covariance,
etc. and vary with time. There may be non-stationary
behavior like trends, seasonality, and cycles that exists in
the series data. Some of the most common patterns observed
in non-stationary time series are(Erica, 2021):

• TREND: If there is a long duration increment or decrement in
data, then trend exists. It need not be linear.

• SEASONALITY: When seasonal factors such as month of year,
day of month etc. impact time series, then seasonal patterns
are said to exist in time series with firm and known frequency.

• CYCLIC:When data exhibit rise and fall patterns without fixed
period, then cyclic patterns occur.

4.5 Time Series Evaluation Metrics
The most commonly used error metrics for forecasting are:

• MEAN SQUARED ERROR: It is the average cumulative sum of the
square of all prediction errors. It is formulated as:

MSE � ∑n
i�1

(yi − ŷi)2/n (1)

• MEAN ABSOLUTE ERROR: It is the average cumulative sum of
the absolute value of all prediction errors. It is formulated as:

MAE � ∑n
i�1

‖yi − ŷi‖/n (2)

• ROOT MEAN SQUARED ERROR: It is a square root of the mean of
the cumulative sum of the square of all prediction error. It is
formulated as:

RMSE �
������������∑n
i�1

(yi − ŷi)2/n
√

(3)

4.6 Terminology in Time Series Forecasting
• DIFFERENCING: It is a technique to transform non-stationary
time series into a stationary one. In differencing, we take the
difference of each value in the time series from its next value
and continue until the new series become stationary.

• AIC: It refers to Akaike’s Information Criterion. For models
such as VAR, it provides information about how well a
model can be fitted on the data by considering the terms
count in the model.
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• NOISE: The randomness in data series is frequently known
as noise.

• TIME SERIES MODEL: It is a derived function that considers past
observations of time series along with some parameters to
predict the future.

• WEIGHT: Weights stipulate the importance given to individual
parameters in forecasting, respectively. In order words, it
decides the impact of each item on forecasting.

• DECOMPOSITION: It refers to splitting a time series into
seasonal, trend, and cyclic components.

4.7 Artificial Neural Network
Artificial Neural Network (ANN) (Yao, 1993) consists of nodes
that are interconnected, simulating neurons in the biological
neural system. It can be utilized for various tasks such as
regression, forecasting, and pattern recognition in
circumstances of complex features such as seasonality and
trends observed, handling linear and non-linear data, etc.
ANN model that is being used is Multilayer Perceptron, as
earlier ANNs consists of only a single layer with no hidden
layers, which resulted in some limitations:

• Single neurons cannot solve complex tasks.
• The model cannot learn difficulty in learning non-linear
features.

MLP is a feed-forward neural network that is comprised of
inputs, many hidden layers, and an output layer (Shiblee et al.,
2009). In MLP, every layer is connected fully to the next layer
such that neurons between contiguous layers are fully connected
while neurons between the same layers have no connection. Input
is fed into the input layer, and output is extracted from the output
layer. The number of the hidden layers can be increased to learn
more complex features according to the task.

Input represents the data that is needed to be fed in the model.
Data and weights are fed to next layer. Suppose X(x1, x2, . . . , xn)
be the input vector and w(w1, w2, . . . , wn) are weights associated
for a neuron,then input to neuron of hidden layer is Input:

f(X) � ∑n
i�1
(xi.wi) (4)

Primary learning of the model takes place at the hidden
layer (also known as the processing unit). Using the activation
function, it remodels the value received from the input layer.
Activation function is non-linear function applied on hidden
layer input that enables the model to describe erratic relations.
Sigmoid, ReLU, and tanh are the most widely used activation
functions. Activation Functions mostly used are as (Yao,
1993):

• SIGMOID: It is formulated as:

σ � 1/(1 + e−x) (5)

• Rectified Linear Unit (ReLU): It is most extensively used
activation function having a minimum 0 threshold and
formulated as:

f(x) � max(0, x) (6)

• tanh(x): Non-linear activation function with values lying
between 0 and 1. It is formulated as:

tanh(x) � 2/(1 + e−2x) − 1 (7)

The main issue with MLP is the adjustment of its weights in
the hidden layer, which is necessary to get better results as output,
is dependent on these weights to minimize the error. Back
propagation is used for the adjustment of weight parameters
in the hidden layer. After loss calculation in the forward pass, the
loss is backpropagated, and the model weights are updated via
gradient descent. Backpropagation rule is given
mathematically as:

δw � w − wprev � −η p δE

δw
(8)

Where weights are represented by w, E(w) represents cost
function, representing how far the predicted output is, from
actual output, and η represents the learning rate.

4.8 Long Short Term Memory
RNN (Jordan, 1990), (Elman, 1990), (Chen and Soo, 1996) are
types of neural networks where the goal is to predict the
sequence’s next step given previous steps in the sequence. In
RNN, the basic idea is to learn information about the earlier state
of sequence to predict the later ones. In RNN, hidden layers store
the information captured about previous states of data. The same
tasks (same weights and biases) are performed on every element
of sequential data to capture information for the sequence to
forecast future unseen data. The main challenge for RNN is the
problem of Vanishing Gradients. To overcome the problem of
Vanishing Gradients, a particular type of RNN is used, which is
LSTM (Hochreiter and Schmidhuber, 1997), which is specifically
designed to handle long-term dependency issues. The way LSTM
achieves that, is by the use of a memory line. Remembering early
data trend is made possible in LSTM via some gates which can
control information flow through the memory line, LSTM
consists of cells that capture and store the data streams.
Adding some gates in each cell of LSTM enables us to filter,
add or dispose of the data. It enables us to store the limited
required data while forgetting the remainder. There are three
types of gates that are used in LSTM. Gates are based on the
sigmoid layer enabling LSTM cells to pass data or disposing of it
optimally (Olah, 2013).

There are three types of gates mainly (Hochreiter and
Schmidhuber, 1997):

• Forget Gate: This gate filters out the information cell state
should discard. It considers previous hidden state (ht-1)
and input (xt) and returns a vector consisting of values
between zero and one for each number respectively in cell
state Ct-1 determining what to keep or discard. It is
formulated as:

ft � σ(Wf.[ht−1, xt] + bf (9)
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• Input Gate: It decides new information that we need to put
in a cell. It consists of a sigmoid-based layer that decides
what values need to be updated. Moreover, it contains a tanh
layer that creates a new candidate values vector, ~C that is
needed to be added to the state. We need to combine these
two to define the update:

it � σ(Wi.[ht−1, xt] + bi) (10)

C̃t � tanh(Wc.[ht−1, xt] + bc) (11)

Now, the cell state will be updated by first forgetting the things
from the previous state that was decided to be forgotten earlier
and then adding it p C̃t. It is formulated as:

Ct � ft p Ct−1 + it p C̃t (12)

• Output Gate: This gate decides the output out of each cell. To
get output, we run a sigmoid layer on input data and a hidden
layer that decides what will be output. Then cell state (Ct) is
passed through the tanh layer and multiplied by the output
gate such that we get the values that are decided as output:

ot � σ(Wo.[ht−1, xt] + bo) (13)

ht � ot p tanh(Ct) (14)

4.9 CNN-Long Short Term Memory Neural
Network
This model extracts temporal and spatial features for
effectively forecasting time series data. It consists of a
Convolutional Layer with a max-pooling layer on top of
LSTM. CNN (Fukushima, 1980), (Rawat and Wang, 2017)
consists of an input layer that accepts various correlated
variables as input and an output layer that will send
devised features to LSTM and other hidden layers. The
convolution layer, ReLU layer, activation function, and
pooling layer are types of hidden layers. The convolutional
layer reads the multivariate input time series data, applies the
convolution operation with filters, and sends results to the
next layer, reducing the number of parameters and making the
network deeper. If x0

i � {x1, x2, . . . , xn} is input vector, y1
ij

output from first convolutional layer is (Fukushima, 1980),
(Rawat and Wang, 2017):

yl
ij � σ b1j + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (15)

y1
ij is calculated by input x0

ij from previous layer and bias bij
represents bias for jth feature map, weights of kernel is
represented as w and σ denotes the ReLU (Nair and Hinton,
2010) like activation function. Similarly resultant vector from kth
convolutional layer is formulated as:

yl
ij � σ blj + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (16)

The convolution pooling layer is followed by a pooling
layer that reduces the space size of the devised results from
the convolutional layer, thereby reducing the number of

parameters and computing costs. The most commonly used
pooling approach is Max Pooling (Albawi et al., 2017) which
uses the maximum value from previous neuron clusters. Suppose
k is the stride and Z is the pooling cluster size. Max pooling
operation is formulated as:

Pl
ij � max

z∈Z
yl−1
ixk+z,j (17)

After convolution operation, LSTM is used, which is the lower
layer in CNN-LSTM neural network, which stores temporal
information from features extracted from the convolution layer.
It is well suited for forecasting as it reduces vanishing and exploding
gradient, which is generally faced by Recurrent Neural Networks.
Remembering early data trend is made possible in LSTM by gates
which control the flow of information down the memory line.

LSTM consists of cells that capture and store the data streams.
Adding some gates in each cell of LSTM enables us to filter, add or
dispose of the data. Gates are based on the sigmoid layer, enabling
LSTM cells to pass data or disposing it optimally.

Last unit of CNN-LSTM consists of dense layer (also known as
fully connected layer) which can be used to generate the final
output result. Here as we are forecasting for 1 h so no of the
neuron units in dense layer is 1.

5 PROPOSED HYBRID MODEL FOR LOAD
FORECASTING

Themodel which is best suited depends on historical data analysis
and relationships between data to be forecasted. Neural networks
can extract complex patterns from data thus are better suited as
compared to statistical models. Among neural networks, RNNs
are better suited for time series forecasting tasks. RNNs can
remember the past inputs, thus improving the performance of
sequential data, while neural network models like Multilayer
Perceptron will treat the data like numerous inputs without
considering the significance of time.

5.1 VAR-CNN-Long Short Term Memory
Hybrid (VACL)
This model combines the ability of the statistical model to learn
with combination with deep learning models. Time series data is
known to be made of linear and non-linear segments which can
be expressed as:
dt � Nt + Lt + ϵ

Lt is a linear component at time t, Nt is a component that is
non-linear at time t and ϵ is the error component. VARector is a
traditional statistical model for time series forecasting, which
performs well on linear problems. On the other hand, neural
network models like CNN-LSTM seem to work well on problems
that have non-linearity in data. So, a combination of both models
can identify both linear and non-linear patterns in data.

In this model, VAR can identify linear interdependence in data
and residuals left from VAR used by CNN-LSTM to capture non-
linear patterns in data. Now we will discuss each of these sectors
used in the algorithm.
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5.1.1 Vector Auto Regression Sector
When two or more time-series influence each other, then vector
auto-regression can be used. This model is autoregressive, and in
this model, each variable is formulated as a function of past values
of variables (Prabhakaran, 2020). Compared to other models like
ARIMA, the variable output is built as a linear combination of its
past values and values of other variables in this model. In contrast,
ARIMA output depends on the value of those particular variables
on which we want to make predictions. A typical Auto Regression
with order “p” can be formulated as:

Yt � α + β1Yt−1 + β2Yt−2 +/ + βpYt−p + ε (18)

where α is a constant denoting the intercept, β1, β2, . . . , βp are lag
coefficients. To understand the equation for VAR (Biller and
Nelson, 2003)let us assume there are two time-series Y1 and Y2
and have to be forecast at time t.We know that to calculate predicted
values, VAR needs to consider past data of all related variables. So,
equations of the value predicted at time t and order p become:

Y1,t � α1 + β11,1Y1,t−1 + β12,1Y2,t−1 +/ + β11,pY1,t−p + β12,pY2,t−p

(19)

Y2,t � α2 + β21,1Y1,t−1 + β22,1Y2,t−1 +/ + β21,pY1,t−p + β22,pY2,t−p

(20)

As a prerequisite, time series needs to be stationary to apply the
VARmodel. If it is stationary, we can directly predict using the VAR
model; or else we need tomake data differences tomake it stationary.
For checking the time-series stationarity, the Augmented Dickey-
Fuller Test (ADF Test) can be used. It is a unit root stationarity test.
The property of time series that makes it non-stationary is a unit
root. The number of unit roots determines how many differencing
operations are needed to make the series stationery. Consider the
following equation (Biller and Nelson, 2003):

Yt � α + βt + cYt−1 + δ1ΔYt−1 + δ2ΔYt−2 +/ + δpΔYt−p + ε

(21)

For the ADF Test, if the null hypothesis δ � 1 in the model
equation proves to be true, then the series is non-stationary; or
else the series is stationary. Since the null hypothesis assumes the
presence of unit root (δ � 1), the value of p should be less than the
significant level of 0.05 for rejecting the null hypothesis, hence
proving that series is stationary.

After the series becomes stationary by differencing the series and
verifying using ADF Test, we need to find the right order for VAR.
For that purpose, we will iterate over different order values and fit
the model. Then find out the order which gives us the least AIC.

AIC stands for Akaike Information Criterion, which is a
method for selecting a model based on score. Suppose m be
the no of parameters estimated for the model and L be the
maximum likelihood. Then AIC value is the following:

AIC � 2 pm − 2ln(L) (22)

We will select that model which has the least value of AIC.
Though AIC rewards the goodness of fit, but the penalty function
is implemented as increasing with an increase in several estimated
parameters. After testing and getting all requisite parameters,

forecasting can be performed on the data. The residual received
after subtracting forecasted data from original test data is used as
input to CNN, and that data contains non-linear patterns. It is
formulated as:

dt − Lt � Nt + ϵ (23)

5.1.2 CNN-Long Short Term Memory Sector
As we know, neural networks have a good performance on non-
linear data primarily due tomany versatile parameters. Moreover,
due to non-linear activation functions in layers, they can quickly
adapt to non-linear trends. They can model residuals received
from VAR very effectively.

This model extracts temporal and spatial features for effectively
forecast time series data. It consists of a convolutional layer with a
max-pooling layer on top of LSTM. CNN (Fukushima, 1980),
(Rawat and Wang, 2017) consists of an input layer that accepts
various correlated variables as input and an output layer that will
send devised features to LSTM. The convolution layer, ReLU layer,
activation function, and pooling layer are types of hidden layers.
The convolutional layer reads the multivariate input time-series
data, applies the convolution operation with filters, and sends
results to the next layer to reduce the number of parameters and
make the network deeper. If x0

i � {x1, x2, . . . , xn} is input vector,y1
ij

output from first convolutional layer is as from (Fukushima, 1980),
(Rawat and Wang, 2017):

y1
ij � σ b1j + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (24)

y1
ij is calculated by input x0

ij from previous layer and bias bij
represents bias for jth feature map, weights of kernel is
represented as w and σ denotes the Rectified Linear Unit
(ReLU) (Nair and Hinton, 2010) like activation function.
Similarly resultant vector from kth convolutional layer is
formulated as:

yl
ij � σ blj + ∑M

m�1
w1

m,jx
0
i+m−1,j⎛⎝ ⎞⎠ (25)

The convolution pooling layer is followed by a pooling layer
that reduces the space size of the devised results from the
convolutional layer, thereby reducing the number of
parameters and computing costs. Max pooling (Albawi et al.,
2017) operation is formulated as:

Pl
ij � max

z∈Z
yl−1
ixk+z,j (26)

After convolution operation, LSTM is used, which is the lower
layer in CNN-LSTM neural network, which stores temporal
information from features extracted from the convolution layer.
It is well suited for forecasting as it reduces the problem of vanishing
and exploding gradient, which RNNgenerally face. Remembering
early data trends is made possible in LSTM using some gates that
control the flow of information through the memory line. LSTM
consists of cells that capture and store the data streams. Adding
some gates in each cell of LSTM enables us to filter, add or dispose of
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the data. Gates are based on a sigmoid layer that enables LSTM cells
to pass data or dispose of it optimally. There are three types of gates
mainly (Hochreiter and Schmidhuber, 1997):

• Forget Gate: This gate filters out the information that the
cell state should discard. It is formulated as:

ft � σ(Wf.[ht−1, xt] + bf) (27)

• Input Gate: It decides what new information should bein a
cell. It consists of a sigmoid-based layer that decides which
values need to be updated. Moreover, it contains a tanh layer
that creates a new candidate values vector, ~C that needs to be
added to the state. We need to combine these two to define
the update:

it � σ(Wi.[ht−1, xt] + bi) (28)

C̃t � tanh(Wc.[ht−1, xt] + bc) (29)

Cell state is updated by disregarding the things from the
previous state that was decided to be disregardedearlier and
then adding it p C̃t. It is formulated as:

Ct � ft pCt−1 + it p C̃t (30)

• Output Gate: This gate decides the output out of each cell.
To get output, we run a sigmoid layer on input data and a
hidden layer for deciding what we are going to output. Then
cell state (Ct) is passed through tanh layer and gets
multiplied by the output gate such that we get the
parameters to output:

ot � σ(Wo.[ht−1, xt] + bo) (31)

ht � ot p tanh(Ct) (32)

The last unit of CNN-LSTM consists of a dense layer (also
known as a fully connected layer) which can be used to generate
the final output result. As we are forecasting for 1 h, the number
of neuron units in a dense layer is 1.

6 EXPERIMENTATION AND RESULT
DISCUSSION

The experimentation has been done on two publicly available
datasets:Household Electricity Consumption Dataset (Hebrail
and Berard, 2012) and Ontario Electricity Demand Dataset
(ontario Energy Price-Dataset, 2020) and (official website of
the Government of Canada, 2020). The detail description of
both the datasets and outcome of the proposed model using
that dataset is presented in next two sections 6.1 and 6.2.

6.1 Discussion on Household Power
Consumption Dataset
It is a multivariate time series dataset consisting of household
energy consumption in a span of 4 years (2006–2010) at per
minute sampling provided by UCI machine learning repository

(Hebrail and Berard, 2012). It consists of seven time series
namely:

1) global active power: total active power consumption by
household (measured in kilowatt);

2) global reactive power: total reactive power consumption by
household (in kilowatt);

3) voltage: average voltage of household (in Volts);
4) global intensity: average intensity of current (measured in

amperes);
5) sub metering 1: active energy utilized for kitchen (watt-

hours);
6) sub metering 2: active energy utilized for laundry (watt-

hours);
7) sub metering 3: active energy utilized for climate control

systems (watt-hours).

6.1.1 Preliminary Analysis
Preliminary analysis of data is being done, and patterns are
evaluated, enabling us to make correct predictions. It is
observed that given time series follow the seasonal pattern but
with irregular trend components. We also performed correlation
analysis and see there is a positive correlation between the two
variables. Global Intensity has a significant impact on forecasting
GAP value, and global active power and voltage do not have a
strong correlation.

6.1.2 Performance Comparison of Models
The best-fitted model to be used depends on historical data
availability and the relationship between variables to be
forecast. Experiments are conducted for other neural network
models consisting of MLP, LSTM, CNN-LSTM, etc., to establish
the effectiveness of the proposedmodels, and results are evaluated
with MSE and RMSE. Next, we will go through the architecture of
each of these models and compare the results:

6.1.3 Multilayer Perceptron Model
Multilayer perceptron architecture is dependent on parameter
adjustment and the number of hidden layers in the network.
Multilayer perceptron consists of the input layer consisting of
input neurons, hidden layers, and output layer. Hidden layers
consist of dense layers. Parameters such as number of neurons in
hidden layers, learning algorithm, and loss function can be
optimized based on input data. Here input data is resampled
to convert it into hour-based sampling. Input data consist of a
sliding window of 24 data points for which we will predict the
next hour of the result. Input is basically 24 × 7 size data where 24
is the number of time steps, and the number of variables is seven
in each step. Adopted architecture has two hidden layers, each
with 100 neurons used to extract patterns from the data. Model is
trained with up to 50 epochs, and early stopping is used on data
with a patience value of eight, which ensures if there is similar
validation loss in each of eight consecutive epochs, then the
model will stop running, and most optimal weights will be stored
as output. ReLU activation is being used in the hidden layers, and
for optimizing the weights adam optimizer is used. The result of
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this model is as MAE:0,395, MSE:0,303, and RMSE:551. The
graph of actual vs predicted is as Figure 1:

6.1.4 Long Short Term Memory
The architecture of LSTM is dependent on the types of layers and
parameters adjustment of layers in the network. It consists of the
LSTM layer, Dropout Layer (to prevent overfitting), and Dense
layer to predict the output. After preliminary analysis of data
parameters such as number of layers, neurons in each layer, loss
functions, and optimization, algorithms are adjusted to give the
best possible outcome.

Input data consists of a sliding window consisting of 24
data points (resampled to an hour). So, the input to the LSTM
is 24 × 7 size data. There are a total of seven variables used to
make the prediction. The proposed architecture for the LSTM
layer with 100 neurons has been used for extracting patterns
from the data. Model is trained with up to 100 epochs, and
early stopping is used on data with a patience value of eight. It
ensures that if there is a similar validation loss in each of eight
consecutive epochs, then the model will stop running, and the
most optimal weights will be stored as output. For optimizing
the weights adam optimizer with a learning rate 0.0001 is used
with a batch size of 256.

The result of this model is asMAE:0,382, MSE:262, and RMSE:
512. The graph of actual vs predicted is as Figure 2.

6.1.5 CNN-Long Short Term Memory
The architecture of CNN-LSTM varies according to the number
of layers, type of layers, and parameter adjustment in each layer. It
consists of convolution layers, pooling layers, flatten layer, LSTM
layers, and dense layer to predict the corresponding output. For
convolution, the number of filters, size of the filter, and strides
need to be adjusted. By adjustment of these parameters to an
optimal level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed
appropriately. As we already know that in CNN-LSTM, CNN
layers use multiple variables and extract features between them
hence improving time series forecasting significantly.

The correlation matrix shows a high correlation between
different time-series variables with the variable we want to
predict, i.e., Global Active Power (GAP). Input data consists
of a sliding window consisting of 24 data points (resampled to
an hour). So, the input to the CNN-LSTM is 24 × 7 size data.
There are a total of seven variables used to make the
prediction. The result of this model is as MAE:0,320, MSE:
221, and RMSE:470. The graph of actual vs predicted is as
Figure 3.

6.1.6 VAR-CNN-Long Short Term Memory(VACL)
In this model architecture, first, we estimate VAR correctly on
training data, and then we extract what VAR has learned and use
it to refine the training of the CNN-LSTM process, giving better
results. Firstly, to properly create a VAR model, data should be
stationary. As already discussed, using ADFTest, it can be
verified whether a time series is stationary or not. We
applied the ADF Test on variables like global active power,
global reactive power, voltage, global intensity, sub-metering 1,
sub-metering 2, and sub-metering 3 with the null hypothesis
that data has a unit root and is non-stationary. The ADF Test
shows that all-time series are stationary, so differentiation is not
needed for the series.

After doing this preliminary check, we need to find out the
lag order, which can be calculated using AIC. All we need to
do is to iterate through lag orders and find out the lag order
with a minimum AIC score compared to its predecessors. In
this case, 31 comes out to be the best lag order, as evident in
Table 1. After getting the best order for VAR, we fit the VAR
model on differentiated data. VAR can learn linear
interdependencies in time series. This information is
subtracted from raw data and gets the residuals that contain
non-linear data.

The architecture of the above model varies according to the
number of layers, type of layers, and parameter adjustment in
each layer. It consists of convolution layers, pooling layers, flatten
layer, LSTM layers, and dense layer to predict the corresponding
output. For convolution operation, the number of filters, filter

FIGURE 1 | Prediction vs Actual result of Multilayer Perceptron (Household Electricity Data).
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size, and strides need to be adjusted. By adjustment of these
parameters to an optimal level, accuracy can be significantly
improved. To properly adjust the parameters of the model, data
should be analyzed appropriately. Input provided to the model
consists of a sliding window of 24 data points (resampled to an
hour). So, the input to CNN-LSTM is 24 × 7 size data. The result
of this model is as MAE:0,317, MSE:210, and RMSE:458. The
graph of actual vs predicted is as Figure 4.

The combined results of all the algorithms are displayed in
Table 2. We can observe that from the above table that both
CNN-LSTM and the proposed approach perform well for given
data, but the proposed model performed slightly better in terms
of error metrics.

6.2 Discussion on Ontario Power Demand
Dataset
Amultivariate time-series dataset consists of characteristics about
Ontario Electricity Demand and corresponding Ontario Price
and various other variables affecting these per 5-min sampling. It
consists of ten time-series namely:

Ontario Price, Ontario Demand, Northwest, Northwest Temp,
Northwest Dew Point Temp, Northwest Rel Hum, Northeast,
Northeast Temp, Northeast Dew Point Temp, Northeast Rel
Hum. The target is to forecast Ontario Price into the future by
taking these variables. For the problem of price forecasting, two

FIGURE 2 | Prediction vs Actual result of LSTM model (Household Electricity Data).

FIGURE 3 | Prediction vs Actual result of CNN-LSTM model (Household Electricity Data).

TABLE 1 | Akaike information criterion on HouseHold data (Hebrail and Berard,
2012).

Lag order AIC BIC

29 −5.3868 −5.0376
30 −5.3882 −5.0271
31 −5.3893 −5.0161
32 −5.3892 −5.0040

AIC, Akaike Information Criterion; BIC, Bayesian Information Criterion.
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datasets from the Ontario region (Canada) are collected and
combined from the following data sources:

1) ieso Power Data Directory. (ontario Energy Price-Dataset,
2020);

2) climate and weather data, Canada. (official website of the
Government of Canada, 2020).

6.2.1 Preliminary Analysis
Preliminary analysis of data is being done, and patterns are
evaluated, enabling us to make correct predictions. It is
observed that time series follow seasonal patterns but there are
irregular trend components. Figure 5 depicts that only the
Ontario Demand time series should be considered for
forecasting the Ontario Price time series. The reason is the
approximately minimum coefficient value of correlation
should be 0.3 for having a constructive relationship between
each of these time series.

6.2.2 Performance Comparison of Models
The best-fitted model to be used depends on available historical
data, and the relationship between variables to be forecast.
Experiments have been conducted for other neural network
models consisting of MLP, LSTM, CNN-LSTM, etc., to

establish the effectiveness of the proposed models, and results
are evaluated with MSE and RMSE. Next, we will go through the
architecture of each of these models and compare the results:

6.2.3 Multilayer Perceptron Model
Multilayer perceptron architecture depends on parameter
adjustment and the number of hidden layers in the network.
Multilayer perceptron consists of input layer consisting of input
neurons, hidden layers, and output layer. The hidden layers
consist of dense layers. We can optimize the number of
neurons in hidden layers, learning algorithm, and loss
functions based on input data. Here input data is resampled to
convert it into hour-based sampling. Input data consists of a
sliding window of 24 data points for which we will predict the
next hour of the result. Input is 24 × 2 size data where 24 is the
number of time steps, and 2 is the number of variables in
each step.

The used architecture has one hidden layer with 100
neurons used to extract patterns from the data. Model is
trained with up to 80 epochs, and early stopping is used on
data with a patience value of eight. It ensures, if there is a
similar validation loss in each of eight consecutive epochs,
that the model will stop running, and the most optimal
weights will be stored as output. ReLU activation is being
used in the hidden layers, and for optimizing the weights,

FIGURE 4 | Prediction vs Actual result of VAR CNN-LSTM model (Household Electricity Data).

TABLE 2 | Combined results of all the algorithms on Household Data (Hebrail and Berard, 2012).

Mean absolute error Mean squared error Root
mean squared error

VAR 0.698 0.654 0.865
MLP 0.395 0.303 0.551
ERNN-MIMO Bontempi (2008) 0.56 0.201 0.79
Seq2Seq Sutskever et al. (2014) 0.56 0.201 0.78
LSTM Hochreiter and Schmidhuber (1997) 0.57 0.221 0.512
Hybrid CNN-LSTM Alhussein et al. (2020) 0.310 0.220 0.462
CNN-LSTM 0.320 0.221 0.470
VAR-CNN-LSTM(VACL) 0.317 0.210 0.458
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adam optimizer with learning rate, 0.000001 is used. The
result of this model is as MAE:0,309, MSE:00204, and RMSE:
0452. The graph of actual vs predicted is as Figure 6.

6.2.4 Long Short Term Memory
The architecture of LSTM depends on the types of layers and
parameters adjustment of layers in the network. It consists of the
LSTM layer, Dropout Layer (to prevent overfitting), and Dense
layer to predict the output. After preliminary analysis of data
parameters such as the number of layers, neurons in each layer,
loss functions, and optimization algorithms are adjusted to give
the best possible outcome.

Input data consists of a sliding window consisting of 24 data
points (resampled to an hour). So, the input to the LSTM is 24 × 2
size data. There are a total of two variables used to make the
prediction. The proposed LSTM layer, each with 64 neurons, has
been used for extracting patterns from the data. Model is trained
with up to 100 epochs, and early stopping is used on data with a
patience value of eight, which ensures if there is similar validation

loss in each of eight consecutive epochs, then the model will stop
running, and most optimal weights will be stored as output. The
result of this model is as MAE:0,265, MSE:0015, and RMSE:0389.
The graph of actual vs predicted is as Figure 7.

6.2.5 CNN-Long Short Term Memory
The architecture of CNN-LSTM varies according to the
number of layers, layer type, and parameter adjustment in
each layer. It consists of the convolution layers, pooling layers,
flatten layer, LSTM layers, and dense layer to predict the
corresponding output. For convolution operation, the
number of filters, size of the filter, and strides need to be
adjusted. By adjustment of these parameters to an optimal
level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed
appropriately.

It is known that in CNN-LSTM, CNN layers use multiple
variables and extract features between them, improving time
series forecasting significantly. As from the correlation matrix

FIGURE 5 | Correlation matrix (Ontario Demand Data).

FIGURE 6 | Prediction vs Actual result of Multilayer Perceptron (Ontario Demand Data).
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in Figure 5, it is observed that there is a high correlation
between Ontario Price and Ontario Demand. Input data
consists of a sliding window consisting of 24 data points
(resampled to an hour). So, the input to the CNN-LSTM is
24 × 2 size data. There are a total of 2 variables used to make
the prediction. The result of this model is as MAE:0,119, MSE:
00068, and RMSE:02616. The graph of actual vs predicted is as
Figure 8.

6.2.6 VAR-CNN-Long Short Term Memory(VACL)
In this model architecture, we first estimate VAR correctly on
training data, and then we extract what VAR has learned and
use it to refine the training of the CNN-LSTM process. Firstly,
to properly create a VAR model, we need to make data
stationery, if not in the requisite format. As already
discussed, using the ADFTest, we can check whether a time
series is stationary or not. Results from the ADF Test show
that every time-series are stationary, we do not need to
differentiate the series.

After doing these preliminary checks, we need to find out the lag
order, which can be calculated using AIC. All we need to do is to
iterate through lag orders and find out the lag order with a
minimum AIC score compared to its predecessors. In this case,
29 comes out to be the best lag order, as evident in this Table 3.
After getting the best order for VAR, we fit the VAR model on
differentiated data. VAR can learn linear interdependencies in time
series. This information is subtracted from raw data to get the
residuals which contain non-linear data as evident from Figure 9.

FIGURE 7 | Prediction vs Actual result of LSTM model (Ontario Demand Data).

FIGURE 8 | Prediction vs Actual result of CNNLSTM model (Ontario Demand Data).

TABLE 3 | Akaike information criterion on ontario demand data (ontario Energy
Price-Dataset, 2020) (official website of the Government of Canada, 2020).

Lag order AIC BIC

28 17.5311 17.5587
29 17.5303 17.5589
30 17.5304 17.5598
31 17.5266 17.5571
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After getting forecasting results from VAR, CNN-LSTM
is trained on those forecasted results along with original
data to learn all the intricacies from the data. The
architecture of the CNN-LSTM model varies according to
the number of layers, layer type, and parameter adjustment in
each layer. It consists of convolution layers, pooling layers,
flatten layer, LSTM layers, and dense layer to predict the
corresponding output. For convolution operation, the
number of filters, filter size, and strides need to be
adjusted. By adjustment of these parameters to an optimal
level, accuracy can be significantly improved. To properly
adjust the parameters of the model, data should be analyzed

appropriately. Input provided to the model consists of a
sliding window of 24 data points (resampled to an hour).
So, the input to CNN-LSTM is 24 × 2 size data as shown in
Figure 10. The result of this model is as MAE:0,123, MSE:
00054, and RMSE:0233. The graph of actual vs predicted is as
Figure 11.

The combined results of all the algorithms for Ontario
Demand Data is displayed in Table 4. From the results of
Table 4, it is clearly observed that the proposed VAR-CNN-
LSTM(VACL) hybrid model has been compared with state of
art models MV-KWNN(Talavera-Llames et al., 2019), MV-
ANN(Hippert et al., 2001), ARIMAX (Box et al., 2011), VAR,

FIGURE 9 | Residuals left after applying VAR (Ontario Demand Data).

FIGURE 10 | VAR CNN-LSTM model summary (Ontario Demand Data).
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MLP, LSTM and CNN-LSTM, and it outperforms all other
models in terms of performance.

7 CONCLUSION AND FUTURE SCOPE

In this paper, the forecasting method for electricity load is
investigated on a large dataset having linear and non-linear
characteristics. We first formulated the problem as predicting the
future term of multivariate time-series data, and then the proposed
hybrid model VAR-CNN-LSTM(VACL) was deployed for efficient
short-term power load forecasting. We have shown that the
historical electrical load data is in the form of time series that
consists of linear and non-linear components. Due to hybrid nature
of the proposed model, the linear components were handled by
VAR and residuals containing non-linear components by the
combined CNN-LSTM layered architecture. The output
efficiency was further enhanced by data preprocessing and
analysis. With data preprocessing, the problem of missing values
was solved, and data were normalized to bring values of the dataset
to a common scale (Jaitley, 2019). From the data analysis, the
correlation between variables have been discovered for, e.g., in
household power consumption data, it was found that Global
Active Power is correlated with all the variables in time series,
so all variables wereused for forecasting. Since in Ontario Demand

Dataset, only two variables were correlated, so all others were
filtered out. The proposed method is modeled and tested on two
publicly available datasets: Household Power Consumption Dataset
and Ontario Demand dataset for short-term forecasting. The
evaluation metrics used were MAE, MSE, and RMSE to show
the effectiveness and errors respectively. From the results, it was
established that the proposed hybrid VACLmodel performed better
than other statistical and deep learning based techniques like VAR,
CNN-LSTM, LSTM, MLP, and state-of-the-art model like MV-
KWNN, MV-ANN and ARIMAX in all evaluation metrics.

One of the limitations of the proposed model was that
determining all the hyperparameters like number of neurons,
learning rate, number of epochs, batch size, etc., required great
effort and time. As a future scope, more advanced
hyperparameter optimization techniques may be used. Since
the model has been tested for short-term load forecasting, the
presented model will further analyze for the medium and long-
term forecasting scenario.
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VAR 0.651 0.521 0.569
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MV-ANN Hippert et al. (2001) 0.0596 0.0623 0.0696
ARIMAX Box et al. (2011) 0.0460 0.0583 0.0596
VAR-CNN-LSTM(VACL) 0.0123 0.00054 0.0233
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