
Received October 17, 2021, accepted November 20, 2021, date of publication November 30, 2021,
date of current version December 10, 2021.

Digital Object Identifier 10.1109/ACCESS.2021.3131419

Blockchain State Channels: A State of the Art
LYDIA D. NEGKA 1 AND GEORGIOS P. SPATHOULAS 2
1Department of Computer Science and Biomedical Informatics, University of Thessaly, 351 31 Lamia, Greece
2Department of Information Security and Communication Technology, Norwegian University of Science and Technology (NTNU), 2802 Gjøvik, Norway

Corresponding author: Georgios P. Spathoulas (georgios.spathoulas@ntnu.no)

This work was supported in part by the European Commission under the Horizon 2020 Programme through the Project LOCARD (Lawful
evidence collecting and continuity platform development) under Grant 832735.

ABSTRACT Blockchain technology has been quite popular during recent years and it finally seems to
present a significant rise with respect to its use for real-world applications. This advancement has brought up
a critical challenge that public blockchain systems face, which is scalability. Most of the currently deployed
systems fail to cope with increasing usage. In order to provide the promised security guarantees, large delays
and high usage fees are imposed for submitted transactions and thus widespread adoption of the technology
is hindered. A number of different approaches have been proposed to increase the capacity of blockchain
systems with respect to processing transactions. The present survey focuses on one of the most popular ones,
that of state channels, and to the extent of our knowledge constitutes the first collective survey of research
in this field. An extensive analysis of relevant publications is conducted and a general view on the domain
is provided. We have identified the limitations discussed through all relevant research efforts along with the
various features that differentiate proposed designs. A comparison between retrieved papers is carried out
on the basis of those limitations and features. Finally, future research directions are analysed while the role
of state channels in the general public blockchain ecosystem is also discussed.

INDEX TERMS Blockchain, layer 2, scalability, state channels, survey.

I. INTRODUCTION
It is an undeniable fact that blockchain technology’s popular-
ity has recently seen a wild surge [1]. Even though this was
predicted, it is still evident that most of the public blockchain
systems are not ready for widespread use, since they suffer
from very low capacity with respect to transactions’ process-
ing rate (the number of transactions that can be processed
per second). The first blockchain system to be proposed,
Bitcoin [2] has a transaction rate of around 4 tx/sec as of
September 2021, while in the case of Ethereum [3], the
secondmost popular blockchain platform, the transaction rate
is slightly better, approximately 30 tx/sec. The main idea
behind the proof of work blockchain consensus mechanism
requires that every transaction is processed by every network
node before it is confirmed and published. On top of that,
because of security reasons the block generation rate and the
upper size limit for blocks are restricted, thus a hard upper
limit has to be imposed on the transactions rate. While this
approach is efficient in terms of security, it directly clashes
with blockchain systems scalability [4], as it hinders the use
of such systems by a large number of users.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lorenzo Mucchi .

Hence, the matter of addressing scalability issues in
blockchain systems has popped up as an issue of unprece-
dented urgency, since it is causing immense hindering in the
widespread application of blockchain technology in multiple
fields that could greatly benefit from it. The latency of trans-
actions and the imposed high usage cost (transaction fees)
that permissionless blockchains suffer from usually outweigh
the benefits of using them and many possible applications
become irrelevant.

More than one approach has been explored to remedy
those issues. It is a prevailing practice to divide such efforts
into two large categories. Layer 1 solutions aim to directly
enhance the blockchain functionality and employ alternative
protocols [5], [6] or sharding [7], [8]. Those approaches do
come with their own set of drawbacks since they require
fundamental adaptations of core blockchain systems’ com-
ponents to be applied. Especially for deployed systems that
are already in use, the transition to a modified layer 1 is a
very challenging process.

Layer 2 approaches are developments on top of an under-
lying blockchain without requiring significant modifications
of that [9]. The most popular proposals in this category are
sidechains [10], [11], plasma [12], rollups [13] and state
channels. They are generally preferred to Layer 1 solutions,

VOLUME 9, 2021 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 160277

https://orcid.org/0000-0002-7954-4240
https://orcid.org/0000-0003-2947-486X
https://orcid.org/0000-0001-6389-0221


L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

as they are easier to implement directly on top of existing
platforms and they do not come to the expense of fundamental
concepts like decentralisation and security.

The focus of this paper is on the State Channels
approach [14]. It is one of the leading solutions proposed
against the scalability problem and allows the trust-less com-
munication of parties that wish to mutually execute a contract
while allowing them to dodge high cost, high latency and
any privacy issues that often come up through using a public
blockchain system. However, there presently has been no
extensive study focusing on this solution. State channels have
only been studied along with other Layer 2 solutions and
this has led to overlooking their unique characteristics mostly
in favour of their close counterparts, Payment Channels.
Therefore this survey is solely focused on the State Channels
approach and the benefits it can bring when to any existing
system by minimizing the transactions’ load for any given
application.

The main contribution of the present survey is to study,
record, analyse and compare all existing state channel efforts,
found either in related literature or in the general blockchain
ecosystem. The present survey:
• Records all existing state channels approaches
• Analyses how those have eventually contributed to the
ecosystem

• Identifies the main requirements those protocols set to
operate

• Identifies the main features those protocols offer
• Compares existing approaches
• Sets the main focus points for future research
By making all existing contributions readily available and

by providing a concentrated reference point, we aim at facil-
itating researchers that wish to contribute to this domain,
as anyone that wants to be introduced to the state channels’
ecosystem will be provided with a good starting point. The
commentary and classifications that can be found in this work
make it significantlymore feasible to pinpoint theweaknesses
in the current state of the art and further needs to be addressed
in future research.

The rest of this paper is organised as follows: Section II
introduces the notion of scalability, how it affects existing
blockchain technology and the existing solutions. Section III
presents an overview of the State Channel concept as well as
an abstract definition. Section IV organises all the included
proposals in subcategories and present a detailed analysis
of each one. Section V contains comparative reviews of
the aforementioned designs across different factors. Finally,
in Section VI all conclusions and results from the present
survey are discussed.

II. BLOCKCHAIN SCALABILITY
A. BLOCKCHAIN SCALABILITY PROBLEM
The unforeseen popularity of blockchain technology has
highlighted the major scalability issues of the original design.
Public blockchain platforms have been unable to cope
with the exponential increase of transactions, that has been

triggered by the increase in their usage. A limitation known as
the blockchain trilemma [15], has been extensively discussed
in recent years. Three desirable properties for a blockchain
system are security, decentralization and scalability, but it is
very difficult, at least given existing approaches, to maximise
all three of those for a given system. Various factors combine
to cause major issues and current systems have to prioritise
on at most two of the mentioned properties and make a com-
promise with respect to the level on which the third property
is supported. The common approach that has been followed
in the ecosystem is to retain a high level of decentralization
and security and limit the scalability of the public blockchain
systems.

The problem stems from the root of the design. The data
verification process that gives blockchain the robustness it is
famous for allows the network to be only as fast as its slowest
node, since blocks need to be propagated at the very least to
the vast majority of nodes before the generation of the next
block.

Additionally, the consensus mechanism most commonly
used, called Proof of Work (PoW), with the intensive, expen-
sive calculating process it demands from the miners, plays
a big role in terms of network latency. A block can contain
a finite number of transactions, and miners will prefer to
include in their prospective blocks transactions that offer
higher fees. Hence, those that do not provide as high a profit
get pushed back in this transaction confirmation process.
The obvious solution to this matter, increasing block size,
is not optimal in many aspects. Beyond being just a tempo-
rary measure that would have to be re-adopted every time
latency shows up again, a bigger block size also decreases
decentralization and increases the chance of forks occurring
in the chain, since block size affects block propagation time.
Another actionwith the same goal that has been proposed is to
reduce the size of transactions so that more of them can fit in
a block. Such approaches have been implemented in Bitcoin
Unlimited [16] and by Bitcoin’s SegregatedWitness [17], but
neither of those methods has brought significant improve-
ments to the situation.

B. BLOCKCHAIN SCALABILITY MEASURES
Various approaches have been proposed to increase the capac-
ity of existing blockchain systemswith respect to transactions
processing. Those are categorised in two broad categories as
layer 1 or layer 2 solutions.

1) LAYER 1
Proposals on this layer refer to fundamental alterations to
the design of the blockchain system under consideration.
A change in the consensusmechanism [18], [19], like the case
of Ethereum 2.0 replacing Proof ofWork with Proof of Stake,
can measurably improve scalability, but changes of this scale
are risky and difficult to implement and enforce. Moreover,
the alternative consensus mechanisms may come with com-
promises with respect to security or decentralization.

160278 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

Another popular approach on the same level is
sharding [20]–[22]. This concept refers to replacing the
requirement for all peers to sequentially process transactions.
Instead, it suggests breaking up the blockchain network into
individual segments (or shards). Each shard would hold a
unique set of smart contracts and account balances. Nodes
are assigned to individual shards to verify transactions and
operations, instead of each being responsible for verifying
every transaction on the entire network, while secure commu-
nication between shards is enabled to provide a global view
of all data.

2) LAYER 2
Solutions that do not require fundamental changes to
blockchain systems’ design, but rather enable increased scal-
ability through supportingmechanisms that function on top of
the systems’ chain are broadly labelled as layer 2 scalability
solutions [23].

a: SIDECHAINS
Sidechains are schemes on which additional chains operate in
a parallel and in an independent way to the main-chain. They
do not have to share the main-chain’s consensus protocol but
enable secure assets transfer back and forth to themain-chain.
Even though sidechains are a tried and tested approach, they
demand a trade-off between scalability and security.

b: PLASMA
Plasma is an Ethereum specific solution that can be described
as a separate blockchain that operates beside it. The plasma
chain is secured through periodic commits of its state to
the main-chain. It has increased transaction throughput and
reduced costs, but is limited in what transactions it supports,
as it is not compatible with generic smart contracts. Addition-
ally, it brings on other kinds of delays to enable challenges
and ensure fund security.

c: ROLLUPS
Rollups enable transactions to be executed off-chain and
have their data stored on-chain. They require a stake deposit
and a contract that can monitor off-chain execution when
need be, and inherit the security guarantees of the under-
lying blockchain. They are further divided into two sub-
categories: Zero Knowledge (ZK) and Optimistic Rollups.
Their main difference lays in the transaction validation pro-
cess. ZK rollups require each one to be accompanied by a
fraud-proof bond, while Optimistic rollups assume all trans-
actions are valid until a challenge is issued. ZK rollups offer
instant finality, but demand intense calculations for the valid-
ity proofs and are not always EVM compatible. Optimistic
rollups are prone to delays due to challenges but offer full
smart contract support.

d: PAYMENT AND STATE CHANNELS
Payment and State channels are based on the same fun-
damental concept, performing the majority of transactions

completely off-chain in the case of no malicious activity. Pay-
ment channels apply this logic for the purpose of conducting
payments and materialize an unlimited series of such through
a pair of deposit and withdrawal transactions. State channels
extend this functionality to include the execution of code and
more arbitrary state transitions. Both require an initial fund
deposit from participants to operate, and in the optimistic case
communicate with the blockchain system only during the
channel’s opening and closing. The present survey focuses on
existing approaches for state channels, the general concept of
which is sufficiently described in the following Section.

III. STATE CHANNELS
A. STATE CHANNELS OVERVIEW
Themain reason behind the aforementioned scalability issues
of blockchain systems is the fact that each update of the
state of a smart-contract is required to go on-chain and be
executed by all nodes of the network, even if it is relevant to
a limited subset of users. State channels effectively counter
this phenomenon, by limiting the on-chain operations through
the means of a session of off-chain interaction between the
interested users, and thus reduce the corresponding overhead.

State channels were first mentioned by Coleman [24], but
the concept was first tested in a chess game implementation
around the same time [25]. Even though they have proven
to be an undoubtedly useful mechanism for complex interac-
tions on the blockchain, they have been greatly inspired by
the simpler idea of payment channels [26], that only focus
on payments. Payment channels were the first approach that
introduced the idea of keeping blockchain users’ interaction
off-chain, when this is feasible without undermining the secu-
rity of the said interaction. Payment channels are confining
in terms of possible use cases, as they emerged to solve
Bitcoin’s significant scalability problem [27], and only focus
on conducting off-chain payments. Payment channels have
been successful in general [28], and have been applied to
other blockchain platforms with different functional require-
ments (e.g. Raiden in Ethereum [29]). Despite the restricted
application domain of payment channels, they are one of the
main focus points of current blockchain scalability research.
As a result, they have been already analysed much more
extensively [30]–[32] than state channels, their more broadly
applicable counterparts. The present analysis focuses on state
channels but it has to be noted that any advancement observed
in the payment channel domain does indirectly benefit state
channels, since many ideas can be carried over from payment
channels and adjusted to the state channels’ requirements.

State channels approach is essentially the extension of the
payment channels approach, to go from simple payments to
arbitrary state transitions. This extension aims at allowing the
off-chain execution of smart contracts of generic function-
ality (without interacting with the blockchain system) while
still reaping all of its security guarantees.

When two or more users interact with a smart contract,
they sequentially update the contract’s state. The underlying

VOLUME 9, 2021 160279



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

blockchain guarantees that the content of those updates (also
noted as state transitions) is common for all participants and
that the order under which those transitions are submitted is
strictly defined. Because of the consensus mechanism used,
it is not feasible (or it is at least extremely hard in practice) for
any user to claim that a state transition has not been applied,
that a state transition has different content or that past state
transitions should be in a different order than the one those
actually appeared in.

The main idea behind state channels is to achieve the same
security guarantees but at the same time minimise the number
of the required on-chain transactions. In practice, there are
two distinct cases with respect to state channels operation;
(a) the optimistic one in which users do not intend to cheat
others and off-chain exchanging of state updates between
users is sufficient and (b) the pessimistic one in which there
are users that may attempt to cheat others and so the com-
munication with the blockchain system is required to resolve
disputes over malicious users’ behaviour.

State channels aim at reducing to minimum on-chain inter-
actions between participants, but they do have a great depen-
dency on the liveness of the underlying blockchain system,
since, to remain secure, they have to assume any transaction
happening on the channel can always be published on-chain
when required. The blockchain system is necessary to take on
the role of a trusted arbitrator that will function as a guarantee
for honest parties and settle any occurring disputes. To that
end, state channel protocols require participants that want to
collaboratively execute an app, to bind (lock) a predetermined
set of assets (funds, tokens) on-chain. Those assets can be
retrieved (with a different distribution for users) through the
finalisation of the state channel. Through this constraint, the
state channel can satisfy the requirement for establishing
trust between users and it keeps parties incentivised to oper-
ate according to the protocol, a condition that enables the
off-chain collaborative execution of the app. The main factor
that forces participants to behave according to the rules is the
fact that they have an amount of assets put in as stake on-
chain, and that any misbehaviour will result in them losing
their amount of assets.

The activity in a state channel can be described as a session
of interactions between participating actors and a blockchain
system (usually through a coordination smart contract).
Participating actors mainly interact with each other, while
they sporadically interact with the blockchain system to
(a) initiate the state channel (b) terminate the state channel
and (c) resolve any disputes that may come up. A state
channel can be in one of the following four phases throughout
its operation:

1) OPENING PHASE
At this phase participants have to go through a protocol to ini-
tiate the state channel. Usually, it involves the funding of the
channel, during which participants commit assets on-chain
that will function as a stake for the duration of the channel
existence. Additionally, all participants sign an initial state for

the channel, to which they all agree upon, to set the starting
point of the state channel.

2) UPDATE PHASE
This phase is the one in which the core functionality of the
state channel takes place. Participants typically communicate
with each other (and not with the blockchain system) through
cryptographically signed messages. Through such messages,
they propose updates of the state channel and they also accept
status updates proposed by others. The main concept is that
a state update that has been signed by all participants is of
equal finality with submitting this state on-chain. The channel
remains in the update phase as participants behave according
to the protocol.

3) DISPUTE PHASE
If users’ behaviour deviates from the protocol then the state
channel transitions to the dispute phase. Participants need
to be in full consensus regarding the state channel’s state
updates. If this is not the case, because of a participant
remaining silent, or proposing invalid state updates then a
dispute arises and participants revert to the communication
with the blockchain system to ensure a fair outcome. The
dispute phase is the phase for whichmost differences amongst
the various state channel implementations can be spotted.
As the dispute is resolved the state channel may return to the
update phase or progress to the closing phase.

4) CLOSING PHASE
This is the phase during which state channel finalises and
locked assets are returned to the participants. In the opti-
mistic case, closing occurs when participants have concluded
their interaction and all agree to publish its outcome to the
blockchain system, to finalise the app execution and release
locked funds accordingly. In the pessimistic case, the state
channel might be forced to transit to this phase through
an unresolved dispute. In that case, to protect the assets
of the honest parties, the state channel is closed and the
locked assets are distributed to them according to the last
agreed-upon state and/or in favour of the honest parties.

The main requirements for a functional state channel
could be summarized in a few straightforward and funda-
mental concepts that have been carried over from traditional
blockchain systems and are still the pillars of the whole
scheme: trustlessness and finality. Trustlessness relates to the
guarantee that a participant is not significantly endangering
their stake regardless of the behaviour of other parties, and
finality relates to the fact that a given channel state has the
same validity as an on-chain state. Of course, state channels
are also expected to serve their main purpose, which is to
reduce the number of times that participants need to go
on-chain and thus improve the load of usage a traditional
blockchain system can serve.

A significant improvement on the state channels ecosystem
was introduced with the development of state channel net-
works [33], [34], which enable the establishment of a virtual

160280 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

state channel on top of multiple existing state channels, with-
out requiring any on-chain transaction. Through state channel
networks interaction with the blockchain system is further
reduced, while a higher level of privacy is achieved since
the on-chain publicly available footprint of state channels is
even smaller.Moreover, further optimisation of state channels
has taken place to handle multiple state updates in parallel
and also support multiple virtual channels on top of a single
existing channel without imposing any latency. Those are the
main directions to which research in the domain has been
targeted during recent years and the corresponding results are
analysed in the present survey.

B. ABSTRACT DEFINITION OF STATE CHANNELS
In the present Subsection, an abstract definition of state
channels is given and the main concepts that exist in most
of the current state channel implementations are analysed.
State Channels can only be relevant in the context of a Turing
complete blockchain, therefore let’s assume a blockchain
platform that supports smart contracts’ execution and a set of
users (accounts) that want to interact with a deployed smart
contract. For every interaction with the contract that alters its
state, the users have to submit an on-chain transaction. This
creates significant implications with respect to time delays,
as the transaction rate of public blockchain systems is limited,
and with respect to finality time, as even after the transaction
is processed, the users have to wait for a couple of blocks
to be mined to be sure that the transaction is not reverted.
On top of that, the use of public blockchain systems requires
the payment of fees for each transaction. The level of the fees
is highly affected by the usage of the network and this is one
of the main factors that limit public blockchain systems wide
adoption by the users.

A large portion of deployed smart contracts are used by
a limited number of users and in such cases, the aforemen-
tioned scheme is very inefficient. The imposed time delays
and financial costs are disproportional to the volume of
interactions, the security of which is ensured. An alternative
approach proposed by the state channels ecosystem is to limit
the main part of the interaction to a user to user communica-
tion (called state channel) and require users to go on-chain
only when there is a substantive reason to do so. This mainly
happens during setting up or closing a state channel or when
one of the users behaves maliciously or goes offline.

Users interacting with a smart contract deployed on a
traditional blockchain system, call its functions to update the
state of the contract. The main reason behind state channels
introduction is that the established workflow for transactions
creates highly problematic time and cost overheads. In return,
it ensures the secure update of the contract’s status, but this
is of interest only to the interacting users. State channels
propose that the same level of security can be ensured by
off-chain communication between interacting users in the
optimistic case (when users are not malicious) and limited
on-chain interaction in the pessimistic case (one ormore users
are malicious).

FIGURE 1. Traditional smart contracts workflow.

FIGURE 2. State channels workflow (optimistic case).

The main component that enables this interaction is a
smart contract deployed on the blockchain that governs the
operation of the state channel. While this is implemented in
various formats, in each of the research efforts analysed in the
next Section, its mission is standard and two-folded:
• It serves as an on-chain account to which participants
deposit (or lock) funds. Those funds are eventually
redistributed to participants according to the final state
of the channel and ensure that users interact with the
channel properly, because otherwise, they may lose their
deposited funds.

• It implements functionality that validates transitions
between two states of the channel. This is the basic
mechanism that enables the secure operation of a state
channel. It lives on-chain and it is employed by users
that have been victims of the malicious behaviour of
other users, to ensure a fair advancement of the state
channel. On the other hand, the existence of the tran-
sition validation mechanism limits the applications that
can be deployed to a state channel environment, as there
is a strong requirement for an explicit description of all
possible states of the application.

Figure 1 presents the workflow followed in the traditional
context. Alice and Bob interact with a smart contract, which is
deployed on-chain. Every such interaction that alters the state
of the smart contract corresponds to an on-chain transaction
that brings in all the time and cost issues discussed above.

Figure 2 presents the general workflow that is followed
by most state channel protocols and specifically shows what
happens in the optimistic case. Alice and Bob need to execute
the same application as previously but this time they use a
state channel instead of interacting with an on-chain contract.
For the sake of simplicity, we assume that there are only two
users that operate a single state channel and that they deploy
on it a single app. Let’s assume that the state channel app is

VOLUME 9, 2021 160281



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

noted as app while its random state i (i stands for order) is
noted as stateiapp. The smart contract that supports the state
channel is noted as SC . The first step requires both partici-
pants Alice and Bob to fund the state channel by making an
on-chain transaction of funds from their personal account to
the SC contract (interactions 1,2). Those funds are locked in
SC and will be redistributed back to the users according to
the final stateiapp of the app and under specific circumstances.
The funding of the state channel brings the app to its initial
state state0app.
Then comes the main operation of the app, during which

the users may submit transactions to the state channel
(off-chain communication between them) that update the
state of the app. These transactions include a nonce i, the
previous state, the updated state and an action/operation that
triggers this transition and are signed by the users. The trans-
action is in the following format:

tri = (i, statei−1app, state
i
app, operation, sigAlice, sigBob) (1)

There are implementations that in two-party interactions
only one of the parties, the one that makes the state transition
signs it, but the general case is that all participants should
sign the latest app state. At the end of the transition, each
participant holds the signed transition tri. Based on that, they
can prove on-chain that this is the valid current state, unless
another participant holds a more recent signed and valid state
transition trj, j > i. In the optimistic case, users keep on
operating the state channel and running the app off-chain
until its execution reaches an end. Then one of the users
submits the final state transition to the SC (interaction 3). The
SC allows a time period for challenges, that aremainly related
to the existence of a later valid state transition and then
releases the locked funds back to the users according to the
final state (interactions 4,5).

On the contrary, there are cases where one of the partic-
ipants does not behave according to the protocol because
the valid advancement of the app’s state is not aligned with
their benefit or interests or because of communication failure
(e.g. the user goes off-line). Such a user may:
• Become unresponsive with respect to proposing a state
transition in their turn

• Become unresponsive with respect to signing a valid
state transition another participant proposes

• Propose an invalid state transition
Most state channel implementations include a challenge-

response scheme, under which users are protected from coun-
terparts the behaviour of which deviates from the defined
protocol. The result of such mechanisms is that the misbe-
having user ends up losing all or part of the funds they have
transferred to SC during the initial funding of the channel.

The pessimistic use case is depicted in Figure 3. Initially,
both participants fund the channel (interactions 1,2) and then
start exchanging app state updates. Let’s assume that at some
point in time, Bob becomes inactive and does not respond
with a state transition in his turn (interaction 3). Alice can
challenge Bob by submitting the last valid state transition tri

FIGURE 3. State channels workflow (pessimistic case).

to the SC (interaction 4).

tri = (i, statei−1app, state
i
app, operation, sigAlice, sigBob) (2)

This includes Bob’s signature and thus proves that Bob
has agreed upon it. Then a time period is allowed for Bob
to respond by submitting the next state transition tri+1 to
the SC .

tri+1 = (i+ 1, stateiapp, state
i+1
app, operation, sigBob) (3)

If this happens, then the state transition is checked with
regards to its validity and the execution of the app can
be continued (either on-chain or off-chain according to the
design of the implementation). If Bob does not respond in
the predefined time, then the app execution ends and the state
channel is closed, with the funds being redistributed in favour
of Alice (interaction 5).

Let’s also assume another scenario in which Bob proposes
to Alice (requesting her to sign it) for an invalid state transi-
tion for the app:

tri = (i, statei−1app, state
i
app, operation, sigBob) (4)

Alice can revert to the SC contract again and report the
invalid transition Bob is proposing. According to the imple-
mentation, SC may directly close the channel or again provide
a time period for Bob to come up with a valid state transition.

In any case, the main concept is that when a user holds
a valid state transition, signed by all participants, and also
knows that it is the latest state they have signed, then they
are provided with the same finality guarantees they would get
on-chain. There is an additional step to be taken, that is to
go on-chain and challenge the counter-parting entity, but it is
definite that there may be no other result than finalising the
latest signed, valid state they have access to.

IV. STATE CHANNEL IMPLEMENTATIONS
In the present Section, significant research efforts in the state
channels domain are analysed. Those are discussed in four
distinct groups, formed with each publication’s focus as a
criterion. Early state channel implementations may have a
payment channel design as their main contribution but are
credited with the earliest significant state channel implemen-
tations. General state channel designs have the development
of a widely applicable state channel framework as their focal
point. General state channel networks implementations have
extended the idea of state channels to networks and virtual

160282 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

channels. Finally, there are application-specific implementa-
tions that while being centred around a specific domain and
its needs, still present interesting findings.

A. EARLY STATE CHANNEL IMPLEMENTATIONS
In this Subsection, we present the research efforts that
conceptualised the state channels approach and made the
very first steps towards implementing such schemes. Those
designs paved theway for the evolution of the idea of payment
channels and moved from updating only the balances of par-
ticipants to updating the state of smart contracts while staying
off-chain. The efforts described herein have repeatedly been
leaned on by later proposals that refined those very first
efforts.

1) SPRITES AND STATE CHANNELS: PAYMENT NETWORKS
THAT GO FASTER THAN LIGHTNING
Even though the main contribution of Sprites [35] is focused
on a payment channels protocol, that protocol is designed
in a modular way, based on a generic state channel abstrac-
tion. Sprite payment channels are modelled on state chan-
nels as they require an adaptable connection between on
and off-chain processes. They incorporate a digital signature
exchange scheme through which processes handle off-chain
communications.

State channels are primarily used by Sprites protocol
to implement its dispute handling process and to enable
the adding and withdrawal of funds from an applica-
tion contract without referring to the blockchain. They are
straightforwardly described as a state machine that is con-
stantly replicated between two parties and can progress
through a transition function that is application-specific to
implement. In the channel environment, a guarantee for live-
ness is provided, as all participating parties are guaranteed
that the most recent state is identical for every other party
and can be eventually finalised on-chain at any time.

An open channel will go forward in rounds, during which
parties will submit inputs containing signed messages that
include the current round number, the state to which the
channel transitions, and the resulting blockchain output if
applicable.

A dispute can be raised in the case that a party tries to sub-
mit an invalid response or becomes unresponsive, which will
result in a state lacking one or more signatures. In either case,
an honest party can trigger the dispute process that includes
providing evidence that the previous round has already been
validated and informing the rest of the participants of the
dispute process’s commencement. The dispute can then be
cleared off-chain if evidence that contributes to the validation
of the controversial round or evidence that support a later
valid round is submitted. In case of insufficient evidence,
resolving can happen on-chain by any party and will result
in the channel exiting with the most recent committed valid
state.

The layout described in the Sprites protocol with regards to
the dispute process is commonly encountered in other efforts

since the same or a similar approach has been also used on
many later proposals on state channels.

2) PERUN: VIRTUAL PAYMENT CHANNELS OVER
CRYPTOGRAPHIC CURRENCIES
The work of Dziembowski et al. [36] and others introduced
an innovative modification on payment channels, as they
were the first to present the concept of virtual channels,
where intermediary parties enable payments between ‘‘side’’
parties they are already connected to without being involved
in the payments. Perun virtual channels paved the way for
other efforts with respect to virtual channels and their main
contributions were the minimisation of interaction with the
blockchain and the increased privacy for conducted pay-
ments. The same concept has been extended later on by
some of the authors [34] to be applied to state channels as
well. Perun protocol describes an implementation of payment
channels that are built recursively over a custom, novel design
of a state channel that is called multichannel. Multichannels
were constructed to fit into the role of supporting virtual
payment channels, but they can also be used beyond that
aspect, for generic state channels.

A multichannel is identified by a unique identifier that
can never be repeated. It can be created in one of two ways:
(a) parties cooperatively agree on the channel parameters and
the round execution begins, or (b) an initiator begins the pro-
cess without consulting the other prospective participants. For
every created multichannel a corresponding smart contract is
deployed on the blockchain, and the multichannel remains
active as long as the said contract is up and running.

A distinguishing feature of multichannels is a delicate
conditional state update mechanism. This essentially means
that the user is given the option to only accept some of the
proposed updates, in contrast to a standard state channel
in which such updates have to be treated as a group. This
feature has been developed to support the functionality of
creating and running in parallel many contract instances,
called nanocontracts, while a mechanism that prevents parties
from initiating many concurrent processes that will lead them
to overspend has been put in place.

In the optimistic case, participants can update the con-
tract state after locally executing it, without contacting the
blockchain system. An on-chain transaction is required in
the case of a nanocontract’s registration, which happens for
every contract separately, in the case of a dispute between
parties, and duringmultichannel close. To ensure the safety of
parties’ funds, and also that participants will pay their due in
every case, they must lock a stake in the nanocontract. In case
a dispute occurs, nanocontracts are deactivated while it is
ensured that no funds are blocked. Funds cannot be added to
the contract after execution has begun, although authors state
that such a functionality would be possible through a global
double-spending mechanism for all registered nanocontracts.

A multichannel can be closed by any party, but only
if all nanocontracts supported by it are inactive. Its state
can be modified if all participants agree on the outcome.

VOLUME 9, 2021 160283



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

Otherwise, in case of a dispute, the protocol leaves it up to the
channel’s contract to handle malicious or inactive behaviour.
This is done through an application-specific mechanism that
terminates the channel by distributing nanocontracts’ funds
to participants if a certain amount of time lapses with no
response after the dispute has been submitted.

The authors went on to further improve their work through
a more recent publication [37] that extends PERUN and also
includes a security analysis.

B. GENERAL STATE CHANNEL DESIGNS
The majority of state channels focused research efforts aim
to realise adaptable, generic designs that satisfy as many
requirements as possible. There are cases in which research
efforts focus more heavily on specific aspects or require-
ments. Collectively such implementations are the backbone
of the state channels ecosystem and offer various outlooks
on building protocols that enhance the efficient operation of
blockchain systems.

1) FORCEMOVE: AN N-PARTY STATE CHANNEL PROTOCOL
Authors of the Force-Move protocol [38] identified that con-
flicting state submissions, external states dependence and
inactivity are the three main factors that can lead to disputes
between participants in a state channel. The Force-Move pro-
tocol was designed to combat the last one, namely the unre-
sponsiveness of participants that threatens to lock all assets
in a channel indefinitely. The authors have mainly focused
on turn-based applications for which information required
for dispute resolution is always fully embedded into the state
of the application. In this way, they eliminated the external
state dependency and conflicting states issues and focused
only on providing an efficient solution for dealing with the
unresponsiveness case. They primarily focus on applications
that are or have similarities to, games, though any other
application that complies with the Force-Move specifications,
like payment channels, can be implemented through it.

The main component of the protocol is the Adjudicator:
a most often, but not always, an on-chain smart contract
that is integral to the functionality of this design. A generic
interface to be implemented by the Adjudicator component
of each different application is provided. This includes meth-
ods to interpret the different types of states as defined by
the protocol, to facilitate off-chain communication and to
validate states. A method called ValidTransition is arguably
the most important method to implement, as it is the core
of the protocol, giving the ability to separate a valid state
transition request from an invalid one, and eventually produce
the outcome of a dispute. The functionality of this method
strongly depends on the content of the application and has to
be implemented accordingly. Additionally, the Adjudicator
is funded with the assets that participants are putting in as
stake during their interaction. Those locked funds are the
main mechanism that forces participants to act according to
the rules of the application, as the Adjudicator releases and

distributes those funds as indicated by the game’s (app’s)
outcome.

A Force-Move channel’s id has to be unique to prevent
replay attacks, and it is the participants’ responsibility to
define it and double-check that the uniqueness requirement
holds. State structure in Force-Move protocol is configurable
according to the specific application that is to run, but there
are some standard attributes, such as the number of the current
turn and those that define how assets would be distributed to
participants if the channel was to close at the specific state.

The key countermeasure that the authors applied against
the inactivity of participants is the force-move method. It is
triggered by one of the participants to force an unresponsive
or non-complying opponent to act. It must be noted that in
this protocol an invalid move is treated as a non-existent one.
The force move process will result in either the smooth con-
tinuation of the game off-chain or its immediate termination
and distribution of staked assets. This depends on the validity
of the response of the challenge, or the absence of one. There
are four valid ways for the challenged party to reply to the
force-move request; respond with a move, prove a response
to an alternative move, refute challenge, provide conclusion
proof. If the challenged party responds with one of those
four before the expiry of the dispute time window, the game
progresses normally. Otherwise, it concludes based on the last
accepted state.

There are five different phases for a Force-Move chan-
nel the PreFundSetup phase, the Collaborative phase, the
Challenge phase, the Concluded phase and the Terminated
phase. Force move challenges can be triggered only while the
channel is in the Collaborative state, and triggers its transition
to the Challenge state. The funding of the game happens
externally, through an Adjudicator contract.

The authors themselves point out how their design is sus-
ceptible to various cases of malicious parties’ behaviour and
the causing of problems through firing invalid force move
challenges, that still needing to be responded to.

2) COUNTERFACTUAL: GENERALIZED STATE CHANNELS
A ‘‘template’’ to make the adoption of state channels less of a
burden for applications whose developers do not want tomed-
dle with the blockchain is presented in this framework [39].
The design also allows the expansion of the template in an
open-source style, providing an easy-to-use API so that added
functionality can be developed for a channel and then used by
any application that fits in a similar category. This concept has
the added benefit of relieving developers of solely covering
deployment costs and encourages sharing between different
applications.

The counterfactual design stands upon four pillars. The
Safety Criterion ensures the protection of participants’ assets
and trustlessness in the channel. The Finality Criterion sets
the requirement for final state validity. Equally fundamental
are the Responsiveness and Off-Chain Desideratums that
stress the importance of encouraging participant behaviours
that align with basic state channel functionality.

160284 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

Similarly to most existing state channel implementations,
the Counterfactual approach is dependant upon the liveness of
the blockchain system it operates on top of, the availability
of channel participants and the insurance that they have no
incentives external to the channel, as well as the absence of
errors in the application code.

Like an abundance of state channel designs, this one is also
vulnerable to griefing attacks and stale update posters. The
first can be halfwaymitigated by practices that either sacrifice
privacy or require a very large stake to be effective, while
the second is the main reason most frameworks only address
turn-based applications, since they depend on this concept to
punish the posters.

The name of the protocol comes from the counterfactual
concept that the approach is centred around. Authors take the
idea of an event that, even though it has not happened yet,
it can happen at any time and everyone can behave as if it
already has, and apply it with slight variations to the three
main components of a state channel construction:
• Counterfactual Outcomes: finalizable channel outcomes
that have not yet been finalized but participants can act
as if they have been.

• Counterfactual States: states that can be brought
on-chain by any participant that is involved with them,
but still only exist in the channel.

• Counterfactual contract Instantiations: a new process
of instantiating a contract to a channel without involv-
ing the blockchain. It requires a registry that maps
the counterfactual code to its Ethereum equivalent
and also predetermines how its Ethereum address will
occur.

Along with the aforementioned registry, the other func-
tionality that has to be implemented on-chain is participants’
deposits holding. Authors claim that such functionality can
be adequately implemented by a multi-signature wallet as
long as it is secure enough. On top of that, the authors state
this approach brings in preferable characteristics, such as
increased privacy and upgradability.

The proposal has been influenced by and made to fit on
top of Ethereum’s object-oriented design, resulting in high
compatibility between the two layers. Every channel has
a separate counterfactual state and functionality, and this
approach facilitates the implementation of conditional pay-
ments and the enabling of instant on-chain fund deposits and
withdrawals.

Channels that can be formed between users through a
common intermediary are also implemented and are named
Metachannels. Through this, the protocol supports the impor-
tant functionality of virtual channels, which enables less
interaction with the chain and has been consistently proposed
in other research efforts since then. Also, popular third-party
services like watchtowers [40], that aim at reducing the
requirement for constant connectivity for participants, have
been taken into account so that the framework is compatible
with them.

3) CELER NETWORK: BRING INTERNET SCALE TO EVERY
BLOCKCHAIN
The Celer Network [41] is an assortment of technologies
aiming to improve scalability by any means possible. State
channels along with sidechains are employed to that end,
along with a value transfer routing method that increases
throughput and a redesigned cryptoeconomic model.

The term network is used to describe the relationship
between the various layers of the design, the base of which
is the state channel and sidechain layer which is very relevant
to the scope of this work. Celer uses state channels, called
cChannels, to accomplish their goal of enabling fast off-chain
interactions that can run on top of any blockchain system that
supports smart contracts.

Because the design is destined to be blockchain-agnostic,
authors identified common points between blockchain plat-
forms that support the execution of Turing-complete pro-
grams, and incorporated such points in cChannels. One of
those necessary components is an off-chain address translator
that maps off-chain features to blockchain functions, through
the use of a unique identifier dubbed as an off-chain address.
Another key point, is the use of a Hash Time Lock Reg-
istry, which is implemented on-chain and is required for the
implementation of atomic transactions that happen between
multiple channels.

The concept of conditional updates and dependencies
amongst states is greatly stressed in this work. The focus
however seems to be on the more specific case of condi-
tional payments. A detailed analysis is given for a General
Payment Channel design as an example that could be of
great use and fits the state channel specification. Based on
common requirements that exist for state channels, authors
have implemented several optimisations that are beneficial
for their operation. There is an option for cooperative parties
to sign every state as the final one and hence be able to close
the channel in one transaction, and similarly, there exists a
process that allows the opening of a channel in only one
transaction as well.

Dependencies between states could bring great latency
when claiming for a final state since it would be necessary
to await the cooperation of every party that is involved with a
depended-upon state. To avoid this overhead, a final state can
be directly claimed by submitting a fraud-proof stake.

Celer also contains an alternative state channel model
that is based on sidechains instead of the main chain of a
blockchain platform. While it comes with added benefits
concerning stake deposits and a reduced number of necessary
on-chain transactions, it also has a set of drawbacks, namely
the finality delay enforced by sidechains which will affect
data availability and the absolute necessity of a fraud-proof
bond to be deposited by the block proposer. Those disad-
vantages are recognised by the authors but no corresponding
countermeasures are provided.

In general, no extensive security analysis has been done,
and for the most part, the proposal seems focused on

VOLUME 9, 2021 160285



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

a payment channel analysis, without providing sufficient
details on the dispute process that is required for the secure
operation of state channels.

4) TWO-PARTY STATE CHANNELS WITH ASSERTIONS
State Assertion Channels [42] were presented, in an effort to
disburden honest parties from shouldering the costs of issuing
a challenge in case of inactivity or of an invalid state sub-
mission. The design of State Assertion Channels proposes an
alternate dispute settling process. A party issues a challenge
when a counter-party is inactive. After that, the counter-party
shall respond with a state assertion (state’s hash) within a
predefined time window. A response to that state assertion
is a second state assertion issued by the first party. Either
the first party responds with the next state assertion, hence
stating that they accept the previous one, or they challenge it
by submitting to the contract the full state in plaintext. If the
assertion was indeed invalid, then the honest party gets the
other’s bond as a refund for the process.

Even though the requirement to stay connected to respond
with assertions exists, the design is not compatible with out-
sourcing frameworks like Pisa [40]. Additionally, timers and
countdowns are difficult to implement on blockchain appli-
cations without sacrificing security. The applications that
can implement this state channel design are quite restricted
since it only supports those that involve strictly two parties,
interacting in a turn-based scenario that only allows single
transition functions and never for an exception to be thrown.

5) YOU SANK MY BATTLESHIP! A CASE STUDY TO EVALUATE
STATE CHANNELS AS A SCALING SOLUTION FOR
CRYPTOCURRENCIES
Kitsune [43] is another state channel design by the authors
off [42]. It supports channels of n parties regardless of the
application they intend to run and combines features from
previous implementations [35], [36] in an effort to integrate
their features.

The authors provide an application contract template to
facilitate the deployment of any app within a state channel.
This allows the application contract to cease its operations
on-chain, transitioning to a ‘‘locked’’ state, given the fact that
participants’ consent to move the app to a state channel. The
state contract is instantiated and the list of participants and
duration of the dispute period are defined. While the app is
running off-chain, any participant can submit a state update
that will only become valid if signed by all parties. Close
can occur optimistically, if all parties sign a closing state,
or through a dispute.

Once a dispute is initiated, which can be done by any party,
a dispute timer starts to force participants to submit the latest
valid state they hold along with state identification infor-
mation and corresponding signatures. The channel contract
will store the most recent valid state and after the time-out
of the dispute timer, the channel is set to OFF state. The
dispute’s duration and its outcome are stored on-chain, while
the execution of the process returns on-chain. The application

contract can also be deactivated if the state channel remains
inactive for long time periods.

The authors attempt to analyse the performance of their
approach, along with any challenges faced and also estimate
the actual cost of running a battleship application on it.
They conclude that the proposed state channels scheme is
an optimal solution only for applications without a strong
dependency on liveness. Also in the case of participants that
are not cooperative by default, the usage costs outweigh any
of the benefits.

The framework allows non-turn-based submission of states
but does not address how a simultaneous submission is han-
dled. Additionally, it is common for a party to start a dispute
once they do not receive all requested signatures on time (with
respect to a local clock) and end up moving the application
execution back on-chain. This approach seems like it will
complicate and delay the progression of the channel. The
dispute processes only possible outcome seems to be closing
the channel, and return the application on-chain, even in
cases where disputes could be resolved and the application
execution could have been allowed to continue off-chain.

6) HYDRA: FAST ISOMORPHIC STATE CHANNELS
In this proposal [44] the concept of isomorphic state channels
is introduced, to replace the sequential state processing that
is predominant in state channel approaches. Hydra chan-
nels address applications that are run by multiple parties
but require those parties to remain connected throughout the
process, having liveness as an important condition. The proto-
col’s main advantages are funds’ security, high performance
and preservation of the smart contract capabilities on the state
channel.

Hydra makes use of the Extended UTXO model [45] to
provide support for general state machines and therefore
make Bitcoin Turing complete and able to support state chan-
nels. This enables the Hydra channels, called heads, to make
use of the underlying blockchain’s state representation with-
out any translations or modifications being required. Thanks
to the EUTXO use, heads can boast faster confirmation times,
simultaneous transaction processing and full asynchrony in
the optimistic case, along with smaller round complexity. The
authors provide simulation results to assess the efficiency of
their design and compare it to baseline approaches, to lay out
the performance related characteristics.

Creating a head follows a commitment process similar to
other state channels. Any party can take on the initiator role
and announce the identities that are invited to be head mem-
bers. Public key information is exchanged between parties
through authenticated channels to be used for on-chain trans-
action authentication and off-chain multi-signature based val-
idation of state updates. An initial transaction establishes the
head, initialises the state machine and forges the participation
tokens for every party, which will be integral to the state
verification procedure.

Since the channel progresses and transactions are pro-
cessed, it is common for parties to have conflicting views

160286 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

of the head state. Snapshots are an effective conflict reso-
lution mechanism that also improves on storage load since
any transaction included in them can be discarded. Snapshot
leaders are tasked with creating and getting snapshots signed
by all participants, in order to create points that can resolve
conflicting state cases.

Any head party can procure a certificate for the current
UTXOs in the channel at any time and use it to initiate the
head’s closing. Members are given a contestation period to
upload UTXO certificates and the most recent valid one gets
finalised on-chain with the end of the contestation period.

Beyond the basic protocol, Hydra functionality has been
extended to incorporate, among other features, the support of
committing and decommitting UTXOs in the head without
blockchain interaction and the ability to execute an optimistic
close without a contestation period.

7) PISA: ARBITRATION OUTSOURCING FOR STATE
CHANNELS
Pisa [40] builds upon the concepts first expressed in theMon-
itor [46] and Watchtowers proposals, with the same end goal,
eliminating the requirement for state channel’s participants to
be constantly online and synchronised with the chain, in order
not to be vulnerable to disputes with unfortunate timing and
execution fork attacks by malicious parties. Pisa introduces
the concept of bringing in a third party, named custodian,
to prevent the above incidents from taking place while a
participant, dubbed customer, is unable to do so themselves.
The customer is also provided with evidence in the form of a
receipt that can be used to punish the custodian in case they
do not fulfill their obligations.

The implementation is supported on three contracts, that
of the channel, that of the custodian, and one based on a
simpler variation of the Sprites model [35]. Any channel
participant wanting to hire a custodian to watch over their
channel can submit payments in real-time to the custodian’s
smart contract, wired through a payment channel. In return,
the customer receives a receipt that counts as evidence of the
appointment and the accountability of the custodian. Custodi-
ans receive payment for every hash of state they are provided
with, to be used to prevent an execution fork attempt. Note
that the custodian gets a salted hash of the state and not the
state itself to ensure channel members’ privacy. Additionally,
the nature of payment channels protect the customer from
having their payment stolen, and the receipt protects them
from a misbehaving custodian. However, this receipt has to
be ratified before it is received, and the custodian will only do
so after checking the validity of the conditional transfer sent
by the customer, guaranteeing fair exchange on both sides.
Protocol design protects the custodian from being framed
by parties or any efforts by them to increase the storage
load. It does not, however, offer an efficient way to protect
a customer from a custodian colluding with the rest of the
participants if the benefit offered is enough to make the
custodian willing to waive their stake.

This solution only works if the participant knows and has
planned to be offline for a while, not in the case of an unex-
pected crash unless they are proactively paying a custodian.
Also, it does not secure against a challenge addressed to the
customer while they are online, only against the attempt for
an execution fork attack.

8) BRICK: ASYNCHRONOUS STATE CHANNELS
The authors of this work [47] have correctly identified the
assumption of a synchronous network as a security weakness
that most state channel implementations suffer from. Mali-
cious entities are provided with valuable information, like
the duration a network would need to be under attack for a
successful disruption, and it is an obvious motive to attempt
to censor honest parties during dispute periods so that they
cannot respond to or receive challenges and hence timeouts
can be manipulated to go off to the attacker’s benefit.

The authors of Brick implement a system that needs to
make no assumptions regarding message delivery to claim
that it is secure. By redesigning the dispute handling process
to involve a committee of third-party members, they have
introduced intermediaries that enable the architecture to work
on an asynchronous network and removed the necessity for
parties to remain online.

In Brick, a valid state is defined as a state that has been
signed by all members, is the most recent state (freshest) and
has not been invalidated by the committee. A committed state
has to have been signed by a sufficient number of committee
members or be part of a block on the chain.

The phases of a Brick state channel’s life cycle are divided
into various sub-protocols. The initial phase is the Open
phase, during which the channel is funded, its closing fee
is determined, hashes of members’ public keys are stored,
and the collateral for committee members is deposited. The
channel then moves on to the Update phase, during which
the members create the announcement for the state that they
agreed upon to follow. The sub-protocol that follows is the
Consistent Broadcast phase when said announcement is sent
by every party to the committee members in the form of
a hash. Finally comes the Close phase, instantiated as the
Optimistic Close, in which all members sign and publish
the freshest state or the Pessimistic Close, for which a party
requests committee signatures on the freshest state.

The authors of the paper execute an extensive analysis to
prove they live up to the conditions they claim Brick meets.
Security is achieved through the guarantee that a channel
can only close in the freshest state, and liveness is assured
since every valid operation will eventually be committed if
not invalidated. To maintain privacy, there is no way for
unauthorised external entities to gain information about the
state of the channel before the initiation of a close protocol.

Incentives are provided to encourage honest behaviour
assuming rational entities that aim to increase their profit.
Committee members, apart from locking an initial collateral
into the contract, also receive guaranteed fees for provid-
ing signatures and participating in the closing of channels.

VOLUME 9, 2021 160287



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

Therefore, honest behaviour of rational committee members
is guaranteed, and that also guarantees the security of the
network.

Brick aims to get rid of the necessity for state channel
participants to remain online for the entirety of the procedure.
By extent, the risk of parties losing their funds or otherwise
finding themselves susceptible to attacks that would interfere
with their connectivity is also eliminated. The authors lay
down the groundwork by re-imagining the dispute handling
process so that a committee is involved in it, guaranteeing net-
work activity without relying on time windows. Apart from
the intended result, this has the additional benefit of eliminat-
ing the requirement tomeasure time in the blockchain system,
a process that is known to be problematic. A possible negative
point of this design is the financial rewards that have to go out
to responsive committee members that weigh on the channel
participants.

C. GENERAL STATE CHANNEL NETWORKS DESIGNS
Research efforts analysed in the previous Subsection have
established the building blocks for developing state chan-
nel designs. To enhance the benefits of those designs, there
have been subsequent attempts that aim at combining mul-
tiple state channels into networks. The concept of virtual
channels has been integral to the state channel environment
since it commenced the advancement beyond mere channel
designs to channel networks that could further benefit the
scalability prospects of blockchain systems. State channel
networks have attracted various efforts to develop robust and
secure protocols for off-chain set up of state channels between
blockchain users on top of already established state channels.

1) GENERAL STATE CHANNEL NETWORKS
In this work [34] the authors set a course to provide a formal
definition for a state channel network, along with security
specifications, that had been missing from the environment
until that point. They present a design for virtual channel
constructions, that are built on top of existing channels,
funded on-chain and noted as ledger channels. Through this
approach, it is feasible to operate a state channel without
the requirement to commit on-chain transactions during its
opening and closing and also to potentially resolve disputes
through intermediaries.

Virtual channels are recursively built on top of
multi-contract ledger channels, which enables every ledger
channel to support many virtual ones simultaneously and
every party to involve themselves in the off-chain execution
of more than one contract at a time. There is no limit on the
number of intermediaries a channel can span across, while
there is an assumption for a synchronous communication
network.

The described implementation allows the building of vir-
tual channels even between seemingly incompatible cryp-
tocurrencies, under the single requirement that they support
smart contracts. Virtual channels also increase privacy as
they function on a peer-to-peer communication scheme.

The existence of an intermediary improves security, adding
an extra step before forcing participants to resort to the
blockchain.

The intermediary is contacted and if they agree to host
the virtual channel, they optimally need to be contacted only
during open and close phases, while they are not required to
interact with the blockchain. In the pessimistic case, when
a dispute occurs it is handled differently than on a ledger
channel. Since the intermediary, contrary to an on-chain
contract, cannot be trusted, consensus has to be reached
through the execution of contract instances on the underlying
ledger channel of each participant with the intermediary. This
enables the parties to settle on the last state signed by both.
The intermediary is required to lock funds for every virtual
channel they support for the channel to be functional, and
those funds are protected by the contract instances shared
with the parties that make use of the channel.

In terms of efficiency, the creation and optimistic execution
of channels happen in a constant number of rounds that does
not depend on the channel’s length. The execution of the
channel in the pessimistic scenario requires a number of
rounds that are proportional to the length of the channel.

The design is limited in that it only accommodates 2-party
state channels, and that execution delay may be increased
in comparison to on-chain execution since the execution
happens in rounds and not in real-time and that triggers
communication delays. Additionally, the requirements placed
on an intermediary, locking coins for the duration of contract
execution and the responsibility to be available to mediate
disputes, may discourage a party from undertaking that role.
Authors suggest that this shall be balanced with a service
fee, but this would have to be sufficient to motivate the party
while at the same time still provide a cheaper alternative than
running the application on-chain.

2) MULTI-PARTY VIRTUAL STATE CHANNELS
Two major additions in the state channel environment were
introduced by the same authors [48] in a later stage. They
expanded the 2-party virtual state channels design to support
multi-party virtual state channels, while they also redesigned
the dispute process, so that the time complexity of the chan-
nel, in the worst-case scenario, is independent of its length.

The implementation of multi-party virtual state channels
happens by layering them on top of networks, formed out
of 2-party ledger channels, that connect every participant to
all other participants. That allows any party connected to the
network to easily set up a state channel with any subset of the
rest of the network participants. Those multi-party channels
can execute off-chain contracts that concern more than two
parties. To guarantee that the outcome of those contracts’
execution will be reflected on the sub-channels, on which
the multi-party channel is built upon, corresponding contract
instances have to be instantiated on each one of the sub-
channels. Those instances also protect the safety of the funds
provided by the intermediary regardless of the behaviour of
the rest of the participants.

160288 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

The dispute board is the integral component of this
redesigned dispute process. This process requires honest par-
ties to rely on the ledger every time malicious behaviour is
detected, in contrast to relying on the channel intermediaries.
The dispute board functions as a state registration point on
which all parties can register their latest valid view. In case
of a dispute, the honest party detects and uploads a valid state
to the board while it allows for other parties to respond in a
given time frame, measured in rounds. Submitted states are
then compared and the valid one is finalised. In case of a
malicious party not responding or trying to enforce a false
view, all other participants should register their own instances
on the dispute board. This new approach can significantly
decrease the worst-case time complexity, even if it creates a
larger overhead for the underlying blockchain. Also, because
the dispute process results are published, they can be securely
used by other processes/contracts.

Virtual channels that support this model are dubbed
‘‘hybrids’’ since they adopt the same update and execution
process as ledger channels but open and close as virtual
ones. Channels that utilise direct and indirect disputes can
cooperate seamlessly, in a balance that is according to the
demands of each respective application.

The protocol makes some assumptions about the net-
work, such as synchronous communication that guarantees
the delivery of messages within a single round. This has
as a result that adversaries, while able to see and reorder
communications sent in the same round, cannot alter, delay,
drop or add any. In terms of security, channel creation and
update can only happen in total consent of participants and as
long as a single honest party exists, they can always ensure the
execution of a state. Regarding the framework’s efficiency,
the creation, as well as the optimistic update and close of a
channel happen in a limited number of rounds, while in the
pessimistic case those suffer a delay that is not dependant on
the length of the channel. The authors claim that their design
can guarantee high levels of fairness and efficiency in cases
where a single malicious participant exists.

The proposed method is strongly coupled with the authors’
previous work [34]. This is the reason why they recursively
build long channels on top of two participants channels and
do not opt for the creation of channels with greater length
from scratch.

3) NITRO PROTOCOL
The Nitro protocol [33], extends an earlier scheme, Force-
Move [38] and mainly relies upon three fundamental con-
cepts; namely finalisation, redistribution and unbeatable
strategies.

The first two are directly related to the process of channel
termination, which should invoke the distribution of assets
locked in the channel to its participants. Finalisation repre-
sents the storing of the state channel’s outcome on-chain,
while redistribution is an on-chain process (succession of
operations) that enforces the redistribution of assets, that are
locked in the channel according to this finalised outcome.

Participants operate on the basis of unbeatable strategies,
which stand for the cases in which a participant can be
sure that they can force the finalization of the channel to a
specific state, given the data they hold, irrespective of the
actions other participants may make. The series of actions the
participant has to make is called an unbeatable strategy and
is theoretically equal to a final event on-chain. Unbeatable
strategies are defined with a slight difference between Turbo
and Nitro, the two protocols analysed by the authors.

The simpler Turbo protocol allows for a single type of
channel outcome and operation. Allocation outcomes essen-
tially define the asset distribution between participants at
every point in the channel. Turbo introduces manually set
priority orders that govern the distribution of channel funds.
The implementation of a channels’ network is mainly based
on Ledger channels, which are funded on-chain, and their
sub-channels which operate completely off-chain and are
funded by Ledger channels. All Ledger channels implement
the Consensus Game, an operation that essentially enables
participants to progress the state of the channel through
finalisable outcomes they all agree on (called universally
finalisable outcomes).

Nitro protocol builds on the foundations set by the Turbo
protocol. It introduces guarantee channel outcomes that
define the priority order for an allocation outcome of a chan-
nel. It is possible to have more than one guarantee addressing
an allocation, and therefore obtaining an unbeatable strategy
is a more intricate process, as there are not only different pos-
sible outcomes for every channel, but also different ways to
distribute value for every outcome, thanks to the guarantees.

Proper virtual channels can be created by the use of the
Nitro Protocol. Any number of participants can create a
virtual channel as long as there is a common intermediary.
That requires the creation of a single allocation channel, and
a guarantee channel per participant targeting that allocation.

D. APPLICATION SPECIFIC IMPLEMENTATIONS
State channels research has been focused on developing
generic protocols that could benefit the blockchain and net-
work designs and be used for every possible application.
However, this Section focuses on the special case of more
targeted state channel implementations, that have been devel-
oped to support a specific application.

1) ÆTERNITY BLOCKCHAIN
Æternity is a blockchain platform that aims to support decen-
tralised applications, while it integrates oracle services and
scalability enhancements [49]. State channels have been inte-
grated intoÆternity, to make the architecture highly scalable.
The only transactions that are recorded on-chain are those
concerning finalised channels or settling disputes, and since
channels function independently from each other, those few
transactions can be processed by the blockchain in parallel.

An Æternity channel’s lifecycle follows a pretty standard
pattern.

VOLUME 9, 2021 160289



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

To open, participants submit an on-chain opening transac-
tionwith the amount of funds theywill commit to the channel.
The starting participant essentially leaves the counterparty
with a free option to co-sign and activate the channel at any
point, which leaves their initial deposit in a vulnerable state.
To mitigate this security issue, channels are funded through
a series of interactive steps to protect the funds of honest
parties.

During the operation of the channel, the two parties
exchange signed channel states that are accompanied by a
nonce that represents states order and enables the identifica-
tion of the most recent state in case of a dispute.

Channel closing can happen by cooperatively signing a
closing transaction, or through a dispute that allows a time
period for the other party to challenge it with a newer state.
Disputes are charged to the initiator, which initially unbur-
dens the party that is usually at fault, but authors expect this
to be balanced by the redistribution of funds that will occur if
the dispute is valid.

Æternity blockchain platform operates only on the basis of
state channels. Distribution of funds, as well as oracle mes-
sage interpretation, are handled by Æternity smart contracts
that provide the basis upon which state channels are built.
Those contracts do not store state, but only securely output it
after a transition takes place. Contracts are maintained locally
by channels’ participants and are deployed on-chain only
when a dispute occurs. This provides enhanced privacy for
every interaction.

Hashlocks are used in Æternity to enable functionality that
resembles virtual channels, allowing parties to interact with
each other even if they do not have an active channel estab-
lished between them, as long as they are connected by a path
of state channels. However, this is a bothersome process for
the intermediaries that will have to lock an immense amount
of funds, and will probably need to be compensated by a fee,
making this a sub-optimal option, especially if parties wish
to interact more than once.

2) FUNFAIR TECHNOLOGY ROADMAP AND DISCUSSION
AND A REFERENCE IMPLEMENTATION OF STATE CHANNEL
CONTRACTS
Funfair technologies attempted to enhance the casino gaming
experience, through decreasing costs and latency by the use
of state channels [50]. Their state channel design, named Fate
channels operate much like most other state channels, but
focus mainly on serving the needs of online gambling and
thus focus on actions/events that could potentially happen
during such a game.

The lifetime of a fate channel is equal to a single game
session, duringwhich parties, usually a client and a server that
is the house, can communicate in rapid succession through a
channel they have placed a stake in. The user is charged with
the opening fees of the channel. Updates happen while partic-
ipants sequentially sign new states. The client can terminate
the channel whenever they wish through a cash-out option,
while the house covers the closing fees.

Fate channels were described in more detail [51] in a later
stage. Funfair reintroduced their bidirectional 2-party chan-
nels and went on to analyse the technical processes through
which they operate.

Funding is based on ERC20 tokens and it takes advantage
of their built-in multi-sig capability. Participants co-sign a
single transaction that transfers tokens from both of their
accounts to a third account, which funds the channel. Par-
ticipant balances are stored on the channel, but the channels
total funds are kept on-chain to prevent inconsistencies while
multiple channels are simultaneously running.

To open a channel, parties have to deposit funds and sign
the opening commitment. A timestamp is used on the com-
mitment so it cannot be maliciously exploited at a later date.
The application’s code exists on the state machine so that it
can be accessible and verifiable. The first, or initial state of the
channel has to be signed by both parties before the opening of
the channels because at least one reference point is necessary
for a dispute or the channel’s close.

An action is the only way to advance the state, and only
a single party can be taking one at a time. Once an action
is submitted, the state machine checks that the suggested
state is valid and the occurring balances non-negative before
approving it.

The protocol’s fundamental rules require that participants
react in a reasonable time after receiving a state update. Upon
receiving a state update, they have to perform necessary vali-
dation checks, sign it and send it back. A dispute can be raised
by a party when the counter-party strays from that setup.
Disputes can be resolved by a valid response by the counter-
party, if they notice it, or by a timeout. Dispute initiators with
malicious intent, that may challenge with a stale state or try
to change their move through a dispute, are punished.

At the channel’s close, parties send a signed close action
on-chain with all the necessary parameters so that the state
can be deemed valid and finalisable.

The State machine maintains a contract for each game or
game type.

3) GAME CHANNELS: STATE CHANNELS FOR THE
GAMBLING INDUSTRY WITH BUILT-IN PRNG
GameChannels [52] proposal also targets the implementation
of gambling and casino games through state channels, with
authors targeting 2-party fraud-proof channels. The process
for game channel use is quite straightforward and along with
the basic principles of most state channel frameworks.

Typically the two parties are a player and a dealer since
everything is discussed in the scope of casino games. The
player initiates the process to create a channel, but both
parties have to agree and sign an initial state, and that has
to be verified by the on-chain contract for the process to
move forward. The player subsequently submits the tokens
to be held in escrow to the dealer, the contract confirms both
parties are in full consent for the creation of the channel and
realises it.

160290 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

FIGURE 4. Timeline.

The state advancement process happens in rounds during
which participants take actions regarding the game and com-
municate those to the dealer, who in turn provides an answer.
As long as there is no cause for dispute, the channel keeps
advancing to the next round.

Every time the state of a game channel is updated,
a transaction with game-related information is sent to the
blockchain, which partly hinders the supposed state channel
functionality of reducing transaction load on the chain.

Either participant can place the call to close the channel
and activate the protocol that corresponds to the situation.
Specifically, the approach to closing differs whether it is
a cooperative close, funds have run out, the channel has
reached its expiration point or if a party is faced with a
maliciously behaving (non-responding or submitting fraud-
ulent data) party. In case of dispute, the validity of the data
comprising the claim is checked by the smart contract.

Authors have modified their base protocol to expand its
use cases and include channels between two players with
no dealer involved, and also a setup where a third party can
observe the game without participating in it.

4) CRYPTOPOLY: USING ETHEREUM STATE CHANNELS FOR
DECENTRALIZED GAME APPLICATIONS
Through the Cryptopoly implementation [53], the author
aims to prove that developing a complex game likeMonopoly
on the blockchain, given that it is turn-based, is both feasible
and cost-effective.

After choosing Ethereum as a platform, the necessity to
address scalability issues led them to state channels as the
optimal option with regards to latency and usage fees. The
design adopts the dispute mechanism from Force Move [38],
as well as the random number generation process used in Fate
Channels [50].

A state machine with an approach that is as general as
possible was designed since Monopoly is a highly customis-
able game. An Ethereum contract to handle the functionality

FIGURE 5. Radar depicting publication source, implementation quality,
correlations and security analysis extent.

of the channels (open, close, dispute) was also developed.
Because validation processes differ per application, a generic
applyChange method is used for its adaptability compared to
hard coding the parameters. The specific effort has limited
contribution as it only aims at applying already developed
approaches to a specific application.

V. ANALYSIS OF IMPLEMENTATIONS
A. GENERAL ANALYSIS
Through the extensive study of the existing research efforts in
the state channels’ domain, various aspects to be commented
on have emerged. Figures 4 and 5 depict observations with
regards to the general landscape as this has been formed by
all papers presented in Section IV. In both Figures, a divi-
sion of the efforts according to their field of origin can

VOLUME 9, 2021 160291



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

be discerned. The blockchain ecosystem is a diverse space
and this classification provides an insight regarding which
sector (academia/industry) motivated conducted research and
also what is the level of interaction between the two sectors.
Additionally, this distinction also provides data as to which
designs are functional purely within an academic environ-
ment and which expand beyond that and into available and
usable products. The categories are the following:
• Academia: includes papers that have been published
by academic researchers, affiliated with a univer-
sity/research institution.

• Industry: includes any research done by commercially
oriented groups, e.g. startup companies, usually con-
cerning a product.

• Combined: includes any work published either by
authors affiliated with both aforementioned fields, or a
group of authors that have a different field of origin.

It should be noted that only the focus of the present sur-
vey is state channels. Therefore, for schemes that partially
included state channels [35], [36], [41], [49], any evaluation
attempted only concerns the relevant parts of the overall
designs.

In Figure 4 the categorization of the evaluated papers
according to the divisions is especially useful since it enables
observations regarding which sector was more active per time
frame.

To visually illustrate the progression and evolution of the
state channels ecosystem since the concept’s introduction
in 2015, Figure 4 depicts a timeline that shows all the major
milestones and every state-channel related publication. It can
be observed that for the first period from 2015 through the
beginnings of 2017, the only noteworthy advancement is
only a state channel proof of concept implementation [25].
In the first quarter of 2017 the first specification for a
state channel design as a part of a larger payment channel
scheme is analysed in Sprites [35], while Perun [36] fol-
lows the same year on a similar note. Counterfactual [39]
provided a very detailed design, that was the first to be
exclusively state channel related, in early 2018. In the second
half of 2018, state channel networks and the concept of
virtual channels is introduced by Generalised State Channel
Networks [34]. At the start of 2019 comes the noteworthy
extension of the concept to n-party channels, with Nitro [33]
being the first protocol to build on the idea. In the second
half of 2019, Pisa [40] focuses on resolving the common
security assumption according to which all state channels
participants are required to be constantly online, extending
the concept of Watchtowers that had been introduced ear-
lier. Another work focused on the same problem but with a
different approach that comes around the same time is the
design proposed by Brick [47]. The most recent noteworthy
contribution regarding state channels is the Hydra [44] pro-
posal that presents isomorphic channels, a very interesting
enhancement.

Figure 5 also utilises the distinction of proposals according
to their sector of origin introduced in Figure 4. This allows the

comparative evaluation between this factor and every other
aspect of the radar.

All designs analysed in this survey have been evaluated for
their technical maturity. In Figure 5, efforts are depicted on
a radar with those with a more well-rounded and advanced
implementation in the outer ring. This allows the evaluation
of the average quality of implementation per sector of origin.
It can be seen that the vast majority of papers stemming from
the industry and startup sector average a high level of techni-
cal maturity, while academic papers are split between the two
most mature rings of the graph. Proposals that occurred from
the combined efforts of academia and the industry sector tend
to fall on the second ring. It is a fortunate observation that the
works analysed herein score a high average on the quality and
extent of their practical implementations, with all providing a
more or less extensive technical analysis in their appendices
or through a corresponding code repository.

Another dimension in Figure 5 is the extent of the security
analysis present in each research proposal. According to the
thoroughness and detail of the analysis, three distinct ranks
have emerged.
• Lacking: The majority of designs seem to find it suffi-
cient to mention the security properties state channels
inherit from the underlying blockchain system, or to
claim security guarantees fundamental to the state chan-
nel, such as liveness and fund safety. They do not go as
far as to analyse how those concepts are achieved, how
the blockchain system’s security extends to the protocol,
and how security vulnerabilities occur because of the
properties of the specific proposal. For example, more
often than not, the way the dispute process is designed
in ways that leave honest parties vulnerable to griefing
attacks, or the channel’s security becomes obsolete in
the case of a software error in the contract. Methods to
secure against those phenomenons are not provided by
designs that fall in this category.

• Average: Designs that have been deemed to adequately
cover the security analysis aspect by providing proofs
for the security claims they make, have been placed in
this category. Authors usually do that according to a
defined threat model that seems to cover possible cases
to a satisfactory degree.

• Extensive: There exist a couple of designs that provide
very rigorous security analysis and use established pro-
tocols like the Universal Composability framework [54]
or similar variants to evaluate the security of their design
to the utmost extent.

It can be noticed that papers originating from the industry
domain seem to be lacking a formal security analysis, while
publications from academia tend to score a higher average on
this front. Papers from the third domain appear to be falling
in between.

Additional information that can be drawn from Figure 5
is the correlations between published works. The edges
coloured in dark blue join papers that share at least one
author. This enables evaluation of the diversity in the state

160292 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

TABLE 1. State channel implementations comparison.

channel research field as well as observation of interconnec-
tions between works that seem to have a different sector of
origin. It has to be noted, that there is significant interaction
between academia and industry on the state channels domain.

While it may seem like an obvious categorisation in terms
of supported blockchain platforms has been omitted, the
vast majority of designs address Ethereum or Ethereum-like
platforms that support smart contracts. The only exceptions
can be found in Hydra [44] that means to be implemented on
Bitcoin running EUTXO protocol and Aeternity [49] that is
in itself a blockchain platform.

B. COMPARATIVE ANALYSIS
Through the analysis of the state of the art, common points
between research efforts have been identified. Through this
process, the main restrictions imposed by authors for their
protocols to be functional along with the main features those
offer have been summarized and are presented in Table 1.
In the Table research efforts are categorized according to the
Subsections presented in Section IV:

• Early State Channel Implementations papers were the
first to implement a state channel infrastructure, even
if that was not their main contribution. It is therefore
expected that some characteristics were considered out
of their scope.

• General State Channel Designs includes state channel
designs of a generic nature that focus on being as broadly
applicable as possible.

• General State Channel Networks proposals also have
a wide area of applicability but focus on introducing the
concept of virtual channels and the interactions within a
state channel network.

• Application Specific Implementations covers any state
channel related design that was developedwith a specific
use inmind, and therefore some features are often passed
by in favour of others that better serve the implementa-
tions’ goals.

Many proposals impose restrictions on the applications
their state channel design supports. Those restrictions may
be limiting but at the same time, they enable designs that
are robust and can securely support a specific subset of apps.

VOLUME 9, 2021 160293



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

On the other hand, it is not uncommon for proposals to omit
to place such restrictions and then fail to adequately analyze
how the issues that may occur from the allowed scenarios are
handled. The first section of Table 1, entitled Requirements,
depicts said restrictions that are present or absent in each of
theworks analysed. The Table indicateswhich are the specific
conditions each research effort requires to hold. When this is
not the case the Table indicates whether or not each scenario
has been explored to a satisfactory degree.

The second section of Table 1, entitled Features, presents
positive characteristics supported by each design. It is desir-
able for each effort to have as many checks as possible on this
end of the Table, as that corresponds to offering a wide variety
of features and covering an abundance of scenarios. All in all,
an ideal design would score zero marks in the Requirements
section and all marks in the Features one. Of course, no such
proposal exists, but a detailed comparison between existing
proposals can be conducted based on Table 1.

1) REQUIREMENTS
In this Subsection, the different requirements set by state
channel implementations are discussed.

• Turn-based Applications: To facilitate the handling of
the dispute process and the assignment of blame, most
designs limit their applicability to strictly turn-based
applications. This has the added benefit of not getting
caught up in trying to handle simultaneous state update
proposals and facilitating the process of punishing stale
update posters. There exist a number of applications that
do not impose or do not address this parameter. However,
most of those designs do not explain how to efficiently
and securely handle applications that do not adhere to
the turn-based paradigm.

• Timers: In the great majority of cases, dispute han-
dling is based on challenge-response schemes and thus
requires a time measuring operation, to manage a time
out period. This is necessary to allow an interval dur-
ing which the dispute can be contested, while also
ensuring the channel’s progression will not stall indef-
initely. However, there still is no provably secure way
to measure time on the blockchain. Using block time is
sub-optimal as it is subject to change and also bounds
the granularity of time measurement.

• Constant Connectivity: This assumption is derived
from the conditions related to dispute resolution. Since
there tends to be a time limit on the ability to respond
to/contest a dispute, a party that gets offline for any
reason at an unfortunate moment can face severe con-
sequences. Because an online connection can be unpre-
dictable, having such significant stakes depending on
it is a major security issue. Pisa [40] and Brick [47]
recognise the importance of this matter and focus their
designs on the effort of mitigating it. Because those two
efforts are rather specific and aim to diminish only this
specific requirement, they cannot be directly compared

to other solutions and they have not been included in the
comparison of Table 1.

• Predefined Participant Sets: A requirement that has
been present in every one of the works discussed in
this survey is that the set of participants forming a state
channel is predefined and remains unchanged through
the channel’s entire lifespan. The reason this is such a
widespread assumption is that changes to the participant
set would complicate the funding process and require
communication with the blockchain for the addition or
removal of a party. While this assumption simplifies the
development of the protocols, it substantially limits the
applications that can be served by such designs.

2) FEATURES
• Multi-party Channels: The initial payment and state
channel designs could only accommodate interactions
between two predefined participants. The same is true
for the initial virtual channel designs that could only be
formed between two parties. Proposals further down the
road enabled communication via state channels, virtual
or not, amongst an unlimited number of participants,
given that those were predefined. Such a feature allows
a wider set of applications to be deployed on top of state
channels.

• Virtual Channels:Virtual channels enable the creation,
progression and closing of the channel without interac-
tion with the underlying blockchain system. Depending
on the design, disputes can even possibly be resolved
without any on-chain interaction. Virtual channels are
practically synonymous with the concept of a state chan-
nel network as they rely on the existence of underlying
channels that have been directly funded on-chain (ledger
channels). A common intermediary that maintains such
a channel with both participants can enable the creation
of a virtual channel between them, while even n-party
virtual channels can be built through such ‘‘paths’’.

• Smart Contract Compatibility: An important point to
consider when deploying an application to a state chan-
nel is related to developing a smart contract to support
the application. The installation of the application has
to cope with the requirements set by the state channels
design used in terms of the contract that needs to be run-
ning on-chain. The least the development effort required
to port an application from on-chain to a state channel
the better. Low compatibility refers to the requirement
for a contract to be written from scratch to be state chan-
nels compatible. Medium compatibility corresponds to
the majority of the cases, where a contract is expected
to go through some alterations (make use of a library,
implement a specific function) to be state channel ready.
High compatibility is only achieved in a handful of cases
that allow the deployment of an existing contract to a
state channel with no development requirements.

• Parallel Transaction Processing: Transactions on state
channels are often dependent on each other, especially

160294 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

since the turn-based scenario is heavily favoured. How-
ever, if a design minimizes the dependencies between
transactions, then those can be concurrently processed
and thus latency is reduced. While this is a desirable fea-
ture it requires specific conditions to hold with respect
to the underlying blockchain protocol.

• Parallel Contract Processing: Virtual channels are
built on top of ledger channels. Ledger channels need
to have a contract instantiated in them for each vir-
tual channel they support. Therefore, a channel with
the ability to process more than one contract at a time
also enables the support of more than a single virtual
channel at a time. This feature enables more efficient
use of deployed ledger channels as it provides a greater
magnitude of application capacity for a given set of
established channels.

3) EFFICIENCY
Since the main goal of state channel designs is to reduce
the transaction load and keep the, often hefty, fees associ-
ated with on-chain transactions to a minimum, it would be
optimal to evaluate every proposal according to the degree
of success regarding the aforementioned goals. However,
an assessment for fees is impossible, since fees have an abso-
lute dependency on factors beyond the state channel imple-
mentation (blockchain application, blockchain system, state
of contract etc.) and cannot be consistently calculated for all
approaches.

Table 2 represents the closest to a fair efficiency evaluation
between the state-channel proposals by calculating the num-
ber of on-chain transactions necessary in each major phase
of the state channel as described in Section III. Those phases
are Opening, Update, Dispute, and Closing and in most of
the cases the number of transactions is expressed in rele-
vance to the number of channel participants denoted on the
table as p.

a: OPENING
The processes that are included in this phase are typically
identical for every state channel: (a) the deployment of the
channel contract (b) the funding of the channel. Variations
in how the funding takes place and the occasional, design
specific, additional actions cause diversity in the number of
necessary on-chain transactions. The most significant dif-
ferences can be seen between designs that refer to ledger
channels, that are directly funded and those that refer to
virtual channels. The latter, since funded by pre-constructed
ledger channels, require no on-chain operations at this stage.

b: UPDATE
It is generally expected, for a state channel to be beneficial,
that during optimistic state progression there will be no con-
tact with the blockchain. However, it is made obvious through
this analysis that this is not an absolute rule and that there is
a single implementation that requires an on-chain transaction
for each state transition.

c: DISPUTE
Even though this is the phase where designs diverge the most
from one another, it is most often in the form of the dispute
transaction submitted rather than the number of transactions
necessary. To better analyse the Dispute phase we have split
it into two sub-phases on Table 2, Dispute Initiation and
Dispute Resolution.

d: CLOSING
Similarly to the opening phase, closing also has a universally
adopted form. It signals the distribution of assets after either a
dispute (resolved or unresolved) or a cooperative update to a
finalisable state. The diversity once again is mostly observed
between the ledger and virtual channels, with the second
category being able to close entirely off-chain.

Many of the designs allow users to withdraw and deposit
funds even after the channel has begun operating. Those
scenarios have not been taken into account since they always
involve an on-chain transaction.

A noteworthy effort to eliminate the correlation between
fees and the several factors it relies on is made by the authors
of [42]. This is achieved through introducing a static form
for the dispute submission irrespective of the nature of the
application and eliminating the need for the valid state to be
computed by the contract. However, this still only applies to
the optimistic case of a dispute where the initial request is
obviously valid and not challenged further.

It must be pointed out that the information we were able
to extract for setting up Table 2 was very disproportionate
from one work to another. Some designs gave enough detail
to depict both a best and worst-case scenario, while others
presented only a general idea. The values on the table marked
with an asterisk (*) are our best interpretation from the limited
descriptions and might not be entirely accurate. In a handful
of situations, the data was insufficient or absent and those
cases have been marked with a dash (-).

VI. DISCUSSION
The relatively short history of state channels makes it fea-
sible to comment on the evolution of the domain from its
initiation up to today. It is an interesting observation that the
introduction and initial efforts in the field were pioneered by
the industry sector, as discussed in Section V. The industry
has also been very active overall, claiming the majority of
state channel related publications. This points to the fact that
the need for this scalability-enhancing technology was quite
apparent in real-world blockchain deployments. The first
major state channel implementations were products of joint
efforts between industry and academia, and this collaboration
went on to contribute a number of publications later on. The
introduction of virtual channels marked the first proposal
of fully academic origin, with academic researchers being
increasingly active ever since, as state channel designs have
evolved and progressed.

VOLUME 9, 2021 160295



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

TABLE 2. Comparison of state channel designs regarding on-chain transaction load.

At the point that has been reached, it can be said
that the state channel approach is quite effective when
applied to applications that adhere to specific rules. How-
ever, as it stands currently, the application scope is rather
narrow. It is easily discernible from Table 1 that there is
a high number of requirements maintained amongst pro-
posals, for a state channel design to be effective and
beneficial.

Such specifications vastly limit the applicability of state
channel technology resulting in a downplay of its effective-
ness on the overall improvement of blockchain scalability.
It is a dire priority that future research focuses on applications
that can eliminate at least some of themost restrictive require-
ments, so that state channels can be used broadly enough to
have their advantages fully exploited. Such requirements that
it is critical to be rescinded are the predefined participants’ set

and the turn-based interaction. Constant connectivity seems
to be partially resolved, while time management is a general
issue in blockchain systems.

In terms of features, beyond those outlined in Section III,
some others have also emerged, as the applications using state
channels have increased. A design must prioritise keeping
the storage requirements to a minimum by preventing the
state from endlessly expanding. It is also positively viewed
if a design is blockchain agnostic and can be painlessly
used between different blockchain platforms. Going beyond
necessities, there is a number of desirable characteristics for
a proposal to have and those are outlined clearly in Table 1.
What is currently missing from this research field is a pro-
posal with a good balance, if not a perfect score, between
the absence of requirements and the presence of features. The
development of such a design is what future research should

160296 VOLUME 9, 2021



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

focus on if state channel technology is to advance beyond its
current point.

As a general outline of the state channels domain, it has
to be noted that research outcomes are significant but not
at the level the blockchain community requires. While the
concept is sound and early implementations have paved the
way for creating a robust layer 2 solution, it seems that efforts
have slowed down from early 2020 and on-wards. Apart from
that, it is evident that the number of publications is lower
than the expected one, given the importance of the scalability
problem of public blockchain systems. On top of that, there is
also significant redundancy among proposed protocols. The
main reason behind this limited research impact is mainly
due to the existence of alternative layer 2 schemes that aim at
providing similar solutions to the scalability problem. During
the early state channels years, the side-chains approach was
very popular, while recently optimistic and zero-knowledge
roll-ups have emerged as better layer 2 solutions.

To our view, the scalability problem in public blockchain
systems sources from two factors (a) actual low transactions
processing capacity and (b) misuse of given capacity. While
all other layer 2 proposals aim at improving the transac-
tions processing capacity, state channels aim at minimizing
the on-chain interaction. State channels attempt to minimize
the utilization of the limited on-chain resources. While a
blockchain system is the source of ground truth, it is inef-
ficient to make use of it continuously. The state channels
approach proposes to make use of it only when this is highly
required (e.g. a user acts maliciously), given that it is feasible
to operate off-chain in all other cases. In other words, state
channels is the only protocol that aims at enhancing the
way apps utilise the given capacity of a blockchain system.
Because of that, state channels will remain relevant even if
another layer 2 solution achieves to significantly multiply
processing capacity. A combination of state channels with
any other layer 2 solution, that increases processing capacity,
is feasible and makes sense given that state channels will
enable the best possible use of the increased capacity.

REFERENCES
[1] H. Treiblmaier and T. Clohessy, Blockchain and Distributed Ledger Tech-

nology Use Cases. Cham, Switzerland: Springer, 2020.
[2] S. Nakamoto, ‘‘Bitcoin: A peer-to-peer electronic cash system,’’ Manubot,

Tech. Rep., 2019.
[3] V. Buterin, ‘‘A next-generation smart contract and decentralized applica-

tion platform,’’ Ethereum Found., Zug, Switzerland, White Paper, 2014,
vol. 3, no. 37.

[4] Y. Xiao, N. Zhang, W. Lou, and Y. T. Hou, ‘‘A survey of distributed
consensus protocols for blockchain networks,’’ IEEE Commun. Surveys
Tuts., vol. 22, no. 2, pp. 1432–1465, 2nd Quart., 2020.

[5] Y. Sompolinsky, Y. Lewenberg, andA. Zohar, ‘‘Spectre: A fast and scalable
cryptocurrency protocol,’’ IACR Cryptol. ePrint Arch., vol. 2016, p. 1159,
Jan. 2016.

[6] I. Eyal, A. E. Gencer, E. G. Sirer, and R. V. Renesse, ‘‘Bitcoin-NG: A
scalable blockchain protocol,’’ in Proc. 13th USENIX Symp. Netw. Syst.
Design Implement. (NSDI, 2016, pp. 45–59.

[7] M. Al-Bassam, A. Sonnino, S. Bano, D. Hrycyszyn, and G. Danezis,
‘‘Chainspace: A sharded smart contracts platform,’’ 2017,
arXiv:1708.03778.

[8] E. Kokoris-Kogias, P. Jovanovic, L. Gasser, N. Gailly, E. Syta, and B. Ford,
‘‘OmniLedger: A secure, scale-out, decentralized ledger via sharding,’’ in
Proc. IEEE Symp. Secur. Privacy (SP), May 2018, pp. 583–598.

[9] J. Stark. (2018). Making Sense of Ethereum’s Layer 2 Scaling
Solutions: State Channels, Plasma, and Truebit. [Online]. Available:
https://medium.com/l4-media/making-sense-of-ethereums-layer-2-
scalingsolutions-state-channels-plasma-and-truebit-22cb40dcc2f4

[10] A. Back, M. Corallo, L. Dashjr, M. Friedenbach, G. Maxwell,
A. Miller, A. Poelstra, J. Timón, and P. Wuille. (2014). Enabling
Blockchain Innovations With Pegged Sidechains. [Online]. Available:
http://www.opensciencereview.com/papers/123/enablingblockchain-
innovations-with-pegged-sidechains

[11] A. Singh, K. Click, R. M. Parizi, Q. Zhang, A. Dehghantanha, and
K.-K.-R. Choo, ‘‘Sidechain technologies in blockchain networks: An
examination and state-of-the-art review,’’ J. Netw. Comput. Appl., vol. 149,
Jan. 2020, Art. no. 102471.

[12] J. Poon and V. Buterin, ‘‘Plasma: Scalable autonomous smart contracts,’’
Ethereum Found., Zug, Switzerland, White Paper, 2017, pp. 1–47.

[13] (2021). Layer 2 Rollups. Accessed: May 16, 2021. [Online]. Available:
https://ethereum.org/en/developers/docs/scaling/layer-2-rollups/

[14] I. Allison, ‘‘Ethereum’sVitalik Buterin explains how state channels address
privacy and scalability,’’ Ethereum Found., Zug, Switzerland, White Paper,
2016.

[15] Q. Zhou, H. Huang, Z. Zheng, and J. Bian, ‘‘Solutions to scalability of
blockchain: A survey,’’ IEEE Access, vol. 8, pp. 16440–16455, 2020.

[16] P. R. Rizun. (2016). The Excessive-Block Gate: How a Bitcoin
Unlimited Node Deals With ‘Large’ Blocks. Accessed: May 16, 2021.
[Online]. Available: https://medium.com/@peter_r/the-excessive-
block-gate-how-a-bitcoin-unlimited-node-deals-with-large-blocks-
22a4a5c322d4#.riqy7lm36

[17] A. Singh, R. M. Parizi, M. Han, A. Dehghantanha, H. Karimipour, and
K.-K. R. Choo, ‘‘Public blockchains scalability: An examination of shard-
ing and segregated witness,’’ in Blockchain Cybersecurity, Trust and Pri-
vacy. Cham, Switzerland: Springer, 2020, pp. 203–232.

[18] S. Bouraga, ‘‘A taxonomy of blockchain consensus protocols: A survey
and classification framework,’’ Expert Syst. Appl., vol. 168, Apr. 2021,
Art. no. 114384.

[19] S. M. H. Bamakan, A. Motavali, and A. B. Bondarti, ‘‘A survey of
blockchain consensus algorithms performance evaluation criteria,’’ Expert
Syst. Appl., vol. 154, Sep. 2020, Art. no. 113385.

[20] H. Dang, T. T. A. Dinh, D. Loghin, E.-C. Chang, Q. Lin, and B. C. Ooi,
‘‘Towards scaling blockchain systems via sharding,’’ in Proc. Int. Conf.
Manage. Data, Jun. 2019, pp. 123–140.

[21] G.Wang, Z. J. Shi, M. Nixon, and S. Han, ‘‘SoK: Sharding on blockchain,’’
in Proc. 1st ACM Conf. Adv. Financial Technol., Oct. 2019, pp. 41–61.

[22] S. S. Chow, Z. Lai, C. Liu, E. Lo, and Y. Zhao, ‘‘Sharding blockchain,’’
in Proc. IEEE Int. Conf. Internet Things (iThings), IEEE Green Comput.
Commun. (GreenCom), IEEE Cyber, Phys. Social Comput. (CPSCom),
IEEE Smart Data (SmartData), Jul./Aug. 2018, p. 1665.

[23] (2021). Layer 2 Scaling. Accessed: Apr. 29, 2021. [Online]. Available:
https://ethereum.org/en/developers/docs/layer-2-scaling/

[24] J. Coleman. (2015). State Channels. Accessed: Mar. 29, 2021. [Online].
Available: https://www.jeffcoleman.ca/state-channels/

[25] P. Grau. (2016). Lessons Learned From Making a Chess Game for
Ethereum. Accessed: Mar. 29, 2021. [Online]. Available: https://medium.
com/@graycoding/lessons-learned-from-making-a-chess-game-for-
ethereum-6917c01178b6

[26] Payment Channels. Accessed: Mar. 29, 2021. [Online]. Available:
https://en.bitcoin.it/wiki/Payment_channels

[27] J. Poon and T. Dryja, ‘‘The Bitcoin lightning network: Scalable off-chain
instant payments,’’ Lightning Netw., San Francisco, CA, USA, White
Paper, 2016.

[28] S. Lee and H. Kim, ‘‘On the robustness of lightning network in Bitcoin,’’
Pervasive Mobile Comput., vol. 61, Jan. 2020, Art. no. 101108.

[29] BrainBot. (2021). Raiden Network. Accessed: Mar. 29, 2021. [Online].
Available: https://raiden.network/

[30] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
‘‘SoK: Off the chain transactions,’’ IACR Cryptol. ePrint Arch., Tech. Rep.
2019/360, 2019.

[31] L. Gudgeon, P. Moreno-Sanchez, S. Roos, P. McCorry, and A. Gervais,
‘‘SoK: Layer-two blockchain protocols,’’ in Proc. Int. Conf. Financial
Cryptogr. Data Secur. Cham, Switzerland: Springer, 2020, pp. 201–226.

[32] M. Jourenko, K. Kurazumi, M. Larangeira, and K. Tanaka, ‘‘SoK: A taxon-
omy for layer-2 scalability related protocols for cryptocurrencies,’’ IACR
Cryptol. ePrint Arch., vol. 2019, p. 352, Apr. 2019.

[33] T. Close, ‘‘Nitro protocol,’’ IACR Cryptol. ePrint Arch., vol. 2019, p. 219,
Feb. 2019.

VOLUME 9, 2021 160297



L. D. Negka, G. P. Spathoulas: Blockchain State Channels: State of Art

[34] S. Dziembowski, S. Faust, and K. Hostáková, ‘‘General state channel net-
works,’’ in Proc. ACM SIGSACConf. Comput. Commun. Secur., Oct. 2018,
pp. 949–966.

[35] A. Miller, I. Bentov, R. Kumaresan, C. Cordi, and P. McCorry, ‘‘Sprites
and state channels: Payment networks that go faster than lightning,’’ 2017,
arXiv:1702.05812.

[36] S. Dziembowski, L. Eckey, S. Faust, and D.Malinowski, ‘‘PERUN: Virtual
payment channels over cryptographic currencies,’’ IACR Cryptol. ePrint
Arch., Tech. Rep. 2017/635, 2017.

[37] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, ‘‘Perun: Virtual
payment hubs over cryptocurrencies,’’ in Proc. IEEE Symp. Secur. Privacy
(SP), May 2019, pp. 106–123.

[38] T. Close and A. Stewart, ‘‘ForceMove: An n-party state channel protocol,’’
Magmo, White Paper, 2018.

[39] J. Coleman, L. Horne, and L. Xuanji, ‘‘Counterfactual: Generalized
state channels,’’ L4 Ventures, Toronto, ON, Canada, White Paper, 2018.
Accessed: Nov. 4, 2019.

[40] P. McCorry, S. Bakshi, I. Bentov, S. Meiklejohn, and A. Miller, ‘‘Pisa:
Arbitration outsourcing for state channels,’’ in Proc. 1st ACM Conf. Adv.
Financial Technol., Oct. 2019, pp. 16–30.

[41] M. Dong, Q. Liang, X. Li, and J. Liu, ‘‘Celer network: Bring internet scale
to every blockchain,’’ 2018, arXiv:1810.00037.

[42] C. Buckland and P. McCorry, ‘‘Two-party state channels with assertions,’’
in Proc. Int. Conf. Financial Cryptogr. Data Secur. Cham, Switzerland:
Springer, 2019, pp. 3–11.

[43] P. McCorry, C. Buckland, S. Bakshi, K. Wüst, and A. Miller, ‘‘You sank
my battleship! a case study to evaluate state channels as a scaling solution
for cryptocurrencies,’’ in Proc. Int. Conf. Financial Cryptogr. Data Secur.
Cham, Switzerland: Springer, 2019, pp. 35–49.

[44] M. M. Chakravarty, S. Coretti, M. Fitzi, P. Gazi, P. Kant, A. Kiayias, and
A. Russell, ‘‘Hydra: Fast isomorphic state channels,’’ IACRCryptol. ePrint
Arch., Tech. Rep. 2020/299, 2020.

[45] M. M. Chakravarty, J. Chapman, K. MacKenzie, O. Melkonian,
M. P. Jones, and P. Wadler, ‘‘The extended UTXO model,’’ in Proc. Int.
Conf. Financial Cryptogr. Data Secur. Cham, Switzerland: Springer, 2020,
pp. 525–539.

[46] T. Dryja and S. B. Milano, ‘‘Unlinkable outsourced channel monitoring,’’
Lightning Netw., San Francisco, CA, USA, White Paper, 2016.

[47] G. Avarikioti, E. K. Kogias, R. Wattenhofer, and D. Zindros, ‘‘Brick:
Asynchronous payment channels,’’ 2019, arXiv:1905.11360.

[48] S. Dziembowski, L. Eckey, S. Faust, J. Hesse, and K. Hostáková, ‘‘Multi-
party virtual state channels,’’ in Proc. Annu. Int. Conf. Theory Appl.
Cryptograph. Techn. Cham, Switzerland: Springer, 2019, pp. 625–656.

[49] Z. Hess, Y. Malahov, and J. Pettersson. (2017). Æternity Blockchain.
[Online]. Available: https://aeternity.com/aeternity-blockchainwhitepaper.
pdf

[50] J. Longley and O. Hopton, ‘‘Funfair technology roadmap and discussion,’’
Funfair Technol., New York, NY, USA, White Paper, 2017, p. 6.

[51] J. Longley. (2019). A Reference Implementation of State Channel Con-
tracts. Accessed: Mar. 29, 2021. [Online]. Available: https://funfair.io/a-
reference-implementation-of-state-channel-contracts/

[52] A. Chernyaeva, I. Shirobokov, and A. Davydov, ‘‘Game channels: State
channels for the gambling industry with built-in PRNG,’’ IACR Cryptol.
ePrint Arch., Tech. Rep. 2019/362, 2019.

[53] M. Xu, ‘‘Cryptopoly: Using Ethereum state channels for decentral-
ized game applications,’’ Barrett, Honors College, Arizona State Univ.,
Phoenix, AZ, USA, White Paper, 2020.

[54] R. Canetti, ‘‘Universally composable security: A new paradigm for cryp-
tographic protocols,’’ in Proc. 42nd IEEE Symp. Found. Comput. Sci.,
Oct. 2001, pp. 136–145.

LYDIA D. NEGKA is currently pursuing the bach-
elor’s degree with the Department of Computer
Science and Biomedical Informatics, University of
Thessaly. She is also engaging in research focused
on distributed ledger technology, blockchain scal-
ability, and layer 2 solutions.

GEORGIOS P. SPATHOULAS received the
Diploma degree in electrical and computer
engineering from the Aristotle University of
Thessaloniki, in 2002, the M.Sc. degree in com-
puter science from The University of Edinburgh,
in 2005, and the Ph.D. degree from the Depart-
ment of Digital Systems, University of Piraeus,
in 2013. He is currently a Laboratory Teaching
Staff Member of the Department of Computer
Science and Biomedical Informatics, University

of Thessaly, in 2014, and he teaches in both undergraduate and postgraduate
study programs of the Department. He is also a Postdoctoral Researcher
with CCIS, Critical Infrastructures Security and Resilience Group, NTNU.
He has coauthored more than 30 publications in peer reviewed journals and
conference proceedings. His research interests include network security,
privacy preserving techniques, and blockchain technology. He has also
served as a program committee member for international conferences and
has taken part in both national and international research programs.

160298 VOLUME 9, 2021


