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2Boreal Avian Modelling Project, University of Alberta, Edmonton, Alberta, Canada

3Department of Mathematical Sciences, Norwegian University of Science and Technology, Trondheim, Norway

Citation: Adde, A., C. Casabona i Amat, M. J. Mazerolle, M. Darveau, S. G. Cumming, and R. B. O'Hara. 2021.
Integrated modeling of waterfowl distribution in western Canada using aerial survey and citizen science (eBird) data.
Ecosphere 12(10):e03790. 10.1002/ecs2.3790

Abstract. Although the exceptional spatiotemporal extent of the Waterfowl Breeding Population and
Habitat Survey (WBPHS) has substantially contributed to our understanding of the ecology of North
American waterfowl, vast geographical areas remain excluded from the survey. The unprecedented num-
ber of observations generated by the recent boom in citizen science initiatives could help resolve these spa-
tial gaps and increase the density of records in regions already covered. The study objective was to assess
the value of the integrated species distribution modeling (ISDM) approach for integrating WBPHS and
eBird data to model waterfowl distribution across the Canadian western boreal forest, where WBPHS data
are sparse. Following the ISDM approach, we used a state-space point process formulation that combined
a model for the “true” species distribution and two observation models for how WBPHS and eBird data
were generated. Our results highlighted the importance of observational processes related to sampling
effort and site accessibility for modeling eBird data. In addition, our models allowed identifying water-
fowl–habitat associations related to geoclimatic, forest, and hydrological factors that explained the distri-
bution of target species. To assess the individual contribution of WBPHS and eBird data, we re-fitted the
models using only one of the two data sets and compared the results obtained against those from the inte-
grated approach. Waterfowl–habitat associations and predictions derived from the models using both data
sets and those fitted with WBPHS data only were close and consistent with the observed species distribu-
tion. However, it was more difficult to extract an ecological signal from models fitted with eBird data only.
Interestingly, predictions from models combining both data sets were closer to the WBPHS records than
the predictions from models fitted with WBPHS data only. By facilitating the combination of all available
data sources, we demonstrated the potential of the ISDM approach for modeling and mapping species dis-
tributions. We encourage future North American waterfowl modeling attempts to use this method, espe-
cially for resolving gaps in the WBPHS coverage. As multiple data sets can be added to the original
framework, integration efforts must not be restricted to the additional contribution of eBird data alone and
could consider, for example, provincial atlases and regional helicopter surveys.
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INTRODUCTION

Thanks to the economic importance of
waterfowl hunting (Johnsgard 2010, Carver
2015, Mattsson et al. 2018) and their status
under the Migratory Bird Convention Acts of
Canada and the U.S. (ECCC 2020, USFWS
2020), North American waterfowl benefit from
one of the most extensive wildlife surveys
worldwide: the Waterfowl Breeding Population
and Habitat Survey (WBPHS) (USFWS 2019).
This annual aerial survey was established in
the early 1950s to inform hunting regulations.
It now covers ~3.6 million km² of breeding
habitat (Smith 1995, Nichols and Williams
2006). The exceptional spatiotemporal coverage
of the WBPHS has contributed to maintaining
high population levels and improved our
understanding of the ecology of North Ameri-
can waterfowl (Sorenson et al. 1998, Barker
et al. 2014, Doherty et al. 2015). However, vast
areas remain uncovered by the survey (Fig. 1).
Consequently, extrapolating results inferred
from WBPHS data to these areas is problem-
atic. For example, the widest prediction inter-
vals obtained from WBPHS-borne waterfowl
abundance models for Canada are found in
regions poorly covered by the survey, includ-
ing British Columbia and Yukon (Barker et al.
2014, Adde et al. 2020a). This uncertainty is a
barrier to the conservation of waterfowl and
their habitat in these regions (Ducks Unlimited
2020).

Over the last 15 yr, the boom in citizen
science initiatives has generated a vast quantity
of ecological records (Dickinson et al. 2010,
Amano et al. 2016, Pocock et al. 2017). eBird
alone, the world’s largest biodiversity-related
citizen science initiative (Sullivan et al. 2014),
gathers more than 100 million bird sightings
each year (https://ebird.org/home). Seizing this
opportunity to increase the spatiotemporal
extent and density of observational data, the sci-
entific community has started to apply citizen
science to conservation challenges (Devictor
et al. 2010, Chandler et al. 2017, McKinley et al.
2017). In particular, species occurrence records
from citizen science have proved useful for
inferring distributional patterns (Humphreys
et al. 2019), population trends (Fink et al. 2020),
and migratory behavior (Fournier et al. 2017) of

avian species. This suggests that citizen science
records could help to resolve spatial gaps in the
WBPHS coverage. However, because citizen
science data are generally obtained under
unstructured protocols with uneven spatiotem-
poral sampling effort, it has been challenging to
use them in combination with standardized sur-
vey data (Dickinson et al. 2010, Isaac et al. 2014,
Geldmann et al. 2016). Filtering procedures and
hierarchical modeling methods that, respec-
tively, facilitate data homogenization and fusion
have proved useful in meeting these challenges
(Pacifici et al. 2017, Fletcher et al. 2019, Miller
et al. 2019).
Isaac et al. (2020) formalized the concept of

integrated species distribution modeling (ISDM),
the practice of fitting species distribution models
with more than one observation model. Building
upon attempts to combine species occurrence
records obtained under heterogeneous observa-
tion processes (Dorazio 2014, Pagel et al. 2014,
Fithian et al. 2015), ISDM aims to take advantage
of all available data while accounting for hetero-
geneities in the sampling protocol, the spatial
structure, and the nature of the data (e.g., pres-
ence only, detection/non-detection, or abun-
dance). To facilitate the implementation of the
ISDM approach, Isaac et al. (2020) proposed a
flexible modeling framework based on a state-
space formulation where a single model infers
“true” species distributions corrected for sam-
pling biases, while different observation models
account for the observation processes of each
data set. Species distributions are modeled as a
log-Gaussian Cox process (LGCP) (Møller et al.
1998), which aims to estimate an intensity surface
of the density of points (i.e., of individuals) in an
area (Renner et al. 2015, Soriano-Redondo et al.
2019, Sicacha-Parada et al. 2020). Point process
models of this kind facilitate data set integration
because they alleviate the need to discretize
records into a priori spatial units, thereby pre-
serving the spatial accuracy of the underlying
observation while remaining invariant to spatial
scale (Illian and Burslem 2017, Miller et al. 2019,
Isaac et al. 2020). Computationally expensive
LGCPs belong to the class of latent Gaussian
models and so can be estimated in a Bayesian
context using integrated nested Laplace approxi-
mations (INLA) (Rue et al. 2009, Illian et al. 2013,
Illian and Burslem 2017) and stochastic partial
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differential equations (SPDE) (Lindgren et al.
2011), which speed up model inference.

The objective of this method paper was to
assess the value of the ISDM approach for inte-
grating WBPHS and eBird data to model water-
fowl distribution across the Canadian western
boreal forest, where WBPHS data are very
sparse. To do this, we adapted the conceptual
method proposed by Isaac et al. (2020) to inte-
grate the two data sets, using a common under-
lying distribution model, and two data set-
specific observation models for how WBPHS
and eBird data were generated. We analyzed
the fitted ISDM model by examining the
parameter estimates and mapping model pre-
dictions obtained for three test species. The
added value of the integrated approach and the
individual contributions of the two data sets
were assessed relative to two data set-specific
models.

METHODS

Study area
Our study area was the Canadian western bor-

eal forest (CWBF) (Fig. 1), a central breeding
ground for many waterfowl species. This area
ranks third out of the 25 most important and
threatened waterfowl habitats in North America
(Ducks Unlimited 2020). We delineated the
CWBF using the extent of the boreal bird conser-
vation regions (BCRs) (NABCI 2014) 4, 6, 7, and
8 in Manitoba, Saskatchewan, Alberta, British
Columbia, Nunavut, Northwestern Territories,
and Yukon, an area of ~3 million km².

Waterfowl data
We retrieved waterfowl data from the WBPHS

and eBird databases for three ecologically con-
trasted example species commonly found in the
CWBF: Mareca americana (American wigeon;
AMWI), Bucephala albeola (bufflehead; BUFF),
and Branta canadensis (Canada goose; CAGO).
Details on the ecology of these three species can
be found in Mack and Morrison (2006). In short,
AMWI is a ground-nesting species whose pri-
mary breeding area is within the CWBF. It was of
regional conservation concern until the early
2010s. BUFF is an emblematic CWBF cavity
nester and the only duck from this nesting guild
recorded at the species level in the WBPHS

database. CAGO is a generalist ground-nesting
species, with a wide breeding range in North
America that extends from the remote arctic tun-
dra to urban areas.
WBPHS data.—Each May, WBPHS observers

count adults of waterfowl species seen within
200 m of transects flown by fixed-wing aircraft.
Transects are subdivided into segments of
~30 km (Smith 1995) to which observations
are registered. We retrieved segment-level
(n = 814) annual counts of waterfowl species
conducted in the CWBF portion of the WBPHS
for a 27-yr period (1990–2017). The spatial cov-
erage of WBPHS segments within the CWBF is
highly heterogeneous (Fig. 1). The highest
WBPHS segment density was found in the
southern part of BCR 6 (Boreal Taiga Plains)
and BCR 8 (Boreal Softwood Shield). In con-
trast, BCRs 4 (Northwestern Interior Forest)
and 7 (Taiga Shield and Hudson Plains) are
almost excluded from the WBPHS. Survey cov-
erage within the boreal has expanded consider-
ably over time (Barker 2015). We chose the
1990–2017 period because it (1) provided a rea-
sonably long time series for many segments to
limit the effects of interannual variation in
waterfowl populations; and (2) it included the
recent period of maximum spatial coverage of
the CWBF to allow the best possible characteri-
zation of current conditions therein. This per-
iod was also consistent with the availability of
eBird data (see Methods: Waterfowl data: eBird
data). WBPHS data for 2018 and 2019 were not
available to us as of February 2020, when the
present analysis was conducted. Data from
2007 were excluded because of a deviation in
that year from the usual survey design (Barker
et al. 2014).
eBird data.—eBird is an assemblage of species

observations reported by members of the public
with no central coordination of sample charac-
teristics (Sullivan et al. 2014). Volunteer obser-
vers submit eBird records to https://ebird.org in
the form of checklists listing counts of encoun-
tered species. Checklist metadata include infor-
mation on the general context of the
observations (e.g., geographical coordinates,
date, and time) and the sampling effort (e.g.,
checklist duration, distance traveled, and the
number of observers). On 20 February 2020, we
retrieved eBird records collected across our
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Fig. 1. Study area in western Canada with its coverage by Waterfowl Breeding Population and Habitat Survey
(WBPHS) segments. Top. Delineation of the Canadian western boreal forest (CWBF; green line), our study area.
White lines: provinces (AB: Alberta; BC: British Columbia; MB: Manitoba; NT: Northwestern Territories; NU:
Nunavut; ON: Ontario; SK: Saskatchewan; YT: Yukon Territory). Bottom. Location of the 814 WBPHS segments
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study area during the breeding season (April–
July) for the period 1990–2019. Data were fil-
tered according to the best practices for using
eBird data (Strimas-Mackey et al. 2020). Specifi-
cally, we included (1) only completed checklists
(i.e., all the birds observed are reported); (2)
surveys conducted between 5:00 a.m. and
9:00 p.m.; (3) covering <5 km; (4) collected over
a period of no longer than 5 h; and (5) with no
more than 10 observers.

Covariates
Observational covariates.—We considered five

candidate observational covariates to explicitly
account for sampling biases in our models
(Table 1). Observational covariates for eBird data
were related to checklist effort (2/5) and site acces-
sibility (3/5). The two checklist-effort covariates,
“checklist duration” and “distance traveled,” were
directly retrieved from the eBird checklists. The
three site-accessibility covariates, “distance to
road,” “road density,” and “travel time to city,”
were extracted at each checklist location and

standardized (centered and scaled to a mean value
of zero and unit variance) (Appendix S1: Fig. S1).
There were no strong pairwise correlations among
the five covariates (Pearson product–moment cor-
relation coefficient: |r| < 0.70).
Ecological covariates.—We included a literature-

based (Adde et al. 2020a, b, Adde et al. 2021) suite
of 14 candidate ecological covariates aimed at
explaining the large-scale distribution of water-
fowl across our forest-dominated study area
(Table 1 and Appendix S1: Fig. S2). The covariates
were classified as “Geoclimatic” (4/14), “Hydro-
logic” (2/14), and “Forest composition” (8/14). For
consistency with the scale at which WBPHS
records are provided (~30 km × 400 m segments)
and to avoid issues related to multiresolution, we
resampled all covariates to the 300-arcsecond grid
on which the geoclimatic covariates were pro-
vided (cell areas ranged from 31 to 56 km²) to
resample all 14 ecological covariates. All ecological
covariates were standardized to zero mean and
unit variance. There were no strong pairwise cor-
relations among covariates (|r| < 0.70).

Table 1. Definitions, spatial resolution, and temporal coverage of the source data sets used to compute the candi-
date covariates.

Category Theme Data set
Period
or year

Spatial
resolution Covariates

Observational Checklist effort eBird checklists (Sullivan
et al. 2014)

1990–2020 Spatial point Distance traveled; checklist
duration

Observational Site accessibility National Road Network
(Statistics Canada 2012)

2010s 1:50,000 Distance to road; road density

Observational Site accessibility Malaria Atlas Project
(Weiss et al. 2018)

2015 1 km Travel time to cities (> 50,000
inhabitants) via surface transport

Ecological Geoclimatic WorldClim (Fick and
Hijmans 2017)

1970–2000 300 arcsec Mean temperature; mean
precipitation; mean climate
moisture index

Ecological Geoclimatic ENVIREM (Title and
Bemmels 2018)

2000s 300 arcsec Mean topographic wetness index

Ecological Hydrologic Land Cover of Canada
(Latifovic et al. 2017)

2010 30 m % area of wetland; % area of open
water

Ecological Forest kNN-Canada’s forest
attributes (Beaudoin et al.
2017)

2011 250 m % of aboveground tree biomass
(Betula papyrifera; Larix laricina;
Picea glauca; Picea mariana; Pinus
banksiana; Pinus contorta; Populus
balsamifera; Populus tremuloides)

used in our study. Segment, shown as black dots are ~30 km units arrayed along linear transects BCRs: Bird Con-
servation Regions used to delineate the CWBF (outlines from NABCI 2014; 4: Northwestern Interior Forest; 6:
Boreal Taiga Plains; 7: Taiga Shield and Hudson Plains; 8: Boreal Softwood Shield).

(Fig. 1. Continued)
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Integrated modeling framework
We analyzed the data for each of the three

waterfowl species separately. To predict the spa-
tial distribution of a species across the CWBF, we
followed the ISDM approach (Isaac et al. 2020)
by formulating a state-space point process
model, which was then fitted in a Bayesian
framework using INLA (Rue et al. 2009). INLA is
a fast and flexible alternative to traditional Mar-
kov chain Monte Carlo methods for approximate
Bayesian inference in latent Gaussian models
(Rue et al. 2009), a wide class of regression mod-
els that includes LGCPs (Møller et al. 1998). By
facilitating model formulation and fitting in com-
plex and high-dimensional settings, INLA has
contributed to the recent popularity of point pro-
cess models in ecological sciences (Illian et al.
2013, Soriano-Redondo et al. 2019, Opitz et al.
2020). Data preparation and model fitting were
conducted using the R-package “PointedSDMs”
(https://github.com/oharar/PointedSDMs; not yet
on CRAN), which is built on the widely used “R-
INLA” package (Lindgren and Rue 2015). The
complete R-code to implement our models is
provided in Data S1.

Fig. 2 illustrates the hierarchical modeling
structure used in this study. Our state-space for-
mulation can be thought of as the combination of
a process model for the “true” species distribu-
tion with two data set-specific observation mod-
els for how WBPHS and eBird data were
generated. The “true” species distribution is

treated as an unobserved state λ(s) function of
ecological covariates X and parameters ϕ such as
p(λ(s), X, ϕ). The observation models link the
recorded species distribution to the underlying
state such that the likelihood for a data set Yi is
Pr(Yi|λ(s), θi), with θi denoting the parameters of
the observation models. Combining these ele-
ments, the full likelihood for the model becomes:

LðYijX,ϕ,θiÞ / p λ sð Þ, X,ϕð Þ
YM
i¼1

PrðYijλ sð Þ,θiÞ (1)

Process model.—The true species distribution
was modeled as a log-Gaussian Cox process
(Møller et al. 1998) with intensity λ(s) = eη(s)

defining the expected number of points (i.e., indi-
viduals) at location s. The intensity was a func-
tion of ecological covariates X(s) and u(s) a
spatially continuous Gaussian random field that
aimed to account for unmeasured covariates and
potential spatial autocorrelation:

η sð Þ ¼ ∑
P

i¼1
βiXi sð Þ þ u sð Þ (2)

For computational efficiency, we used the
SPDE approach to model the spatial field in the
form of a Gaussian Markov random field with
zero mean and Matérn covariance function
(Lindgren et al. 2011). Briefly, the INLA-SPDE
approach evaluates the continuous random field
as a discretely indexed random process based on
a spatial mesh defined by triangulation of the

Fig. 2. Schema of the hierarchical modeling structure used in our study.
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study area (Appendix S1: Fig. S3). The mesh
design was exploratory, and here, we sought a
trade-off between the computational costs and
precision of the spatial field. For additional
details on the INLA-SPDE approach, the reader
is referred to the foundational paper and other
practical implementations (e.g., Cameletti et al.
2013, Blangiardo and Cameletti 2015, Krainski
et al. 2019).

Given this structure (Eq. 2), the expected num-
ber of points within an area B follows a Poisson
distribution with mean:

μ Bð Þ ¼
Z

B

λ sð Þds (3)

This integral is analytically intractable but can
be approximated numerically using integration
points obtained after discretizing the study area
into triangles (Simpson et al. 2016) such as:

μ Bð Þ ≈ ∑
nB

s¼1
A sð ÞeηðBðsÞÞ (4)

where nB is the number of integration points in
B, each located at B(s), and A(s) is the area of the
triangle around s. Under this framework, the
value of the intensity is only calculated at the
integration points. For any other location, the
intensity is interpolated between the three points
that form the corners of the surrounding triangle.
The mesh designed for computing the Gaussian
Markov random field was used to define the
integration points (Appendix S1: Fig. S3).

WBPHS observation model.—We treated the
WBPHS counts as simplified segment-level
detection/non-detection data (i.e., detection
when waterfowl count N > 0; non-detection
otherwise) replicated over the number of years
surveyed. This simplification was applied
because we had no information on the distribu-
tion of individual waterfowl across the ~30 km
segments, which is necessary for point process
intensity estimation. WBPHS segment centers
were used as model points in the analyses. To
integrate the binary detection/non-detection
information with the process model, we modeled
the probability of having a waterfowl count > 0
using a binomial model with a complementary
log-log link function (cloglog; f(x) = log(−log
(1 − x))). As demonstrated in previous applica-
tions (Kéry and Royle 2016, Bowler et al. 2019),

this is equivalent to expressing the detection/
non-detection probability as a function of the
intensity λ(s) of an underlying Poisson process,
such as:

Pr N sð Þ> 0ð Þ ¼ 1� Pr N sð Þ ¼ 0ð Þ ¼ 1� e�λ sð Þ

¼ 1� e�eη sð Þ
(5)

which corresponds to the inverse of the cloglog
link function

logð�logð1� Pr N sð Þ> 0ð ÞÞÞ ¼ η sð Þ (6)

where η(s) includes the shared process model
components from Eq. 2 (the set of ecological
covariates and the random field) and an inter-
cept. This extra intercept simply assumed a con-
stant observation bias for the WBPHS data.
eBird observation model.—Because they are

prone to high sampling biases and absences can-
not be confidently assessed, we treated eBird
records as presence-only data (i.e., presence
when the species was on the checklist) emerging
from a thinned Poisson process of the underlying
LGCP (Eq. 2). The observed pattern of points
(eBird records) being a thinned-out version of the
complete distribution of individuals (Isaac et al.
2020). The intensity of the thinned LGCP is λ(s)
b(s), with b(s) the thinning probability, which we
assumed to be dependent on the observational
covariates Zj(s) for sampling effort and site acces-
sibility. As demonstrated in Renner et al. (2015),
λ(s) and b(s) can be modeled with a log link func-
tion using a standard generalized linear model
formulation:

log λ sð Þb sð Þð Þ ¼ ∑
P

i¼1
βiXi sð Þ þ u sð Þ þ ∑

Q

j¼1
δ jZ j sð Þ

(7)

Accessibility covariates such as “distance to
road” and “travel time to cities” were included
as components of the vector of regressors Z(s). In
contrast, measures of sampling effort (i.e.,
“checklist duration” and “distance traveled”)
were included as log-transformed offsets to
adjust for differential exposures. In preliminary
analyses, effort covariates were also tested as
standard regressors, but we obtained better
model performances (see Covariate selection pro-
cedure) when using these variables as offsets.
Similarly to the WBPHS observation model, an
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intercept was also estimated for the eBird obser-
vation model.

Prior specification
The prior distributions for fixed effect coeffi-

cients were set to the R-INLA “non-informative”
defaults, allowing the data to predominate in cal-
culating the posterior distributions. Accordingly,
Gaussian priors with 0 mean and precision of
0.001 were used for the fixed effects. Preliminary
tuning analyses showed that the choice of priors
had no effect on fixed parameter estimates.

Despite multiple tests of penalized complexity
priors (Simpson et al. 2017), preliminary analyses
revealed systematic overfitting of the random
field (i.e., perfectly reproducing spatial patterns
found in observed data). To avoid this problem,
fixed prior values were used for the parameters
“prior.range,” the distance at which spatial corre-
lation declines to ≈0.1 (Krainski et al. 2019), and
“prior.sigma,” the standard deviation of the
field. On an exploratory basis, we searched for a
combination of “prior.range” and “prior.sigma”
values that would result in a random field that
explained up to 25% of the variations in model
predictions. This objective was achieved by fix-
ing “prior.range” to 0.25° and “prior.sigma” to
0.1.

Covariate selection procedure
The covariate selection procedure was con-

ducted first for observational and then for ecolog-
ical covariates. The small number of candidate
observational covariates (n = 5) allowed us to
analyze the models fitted using all 32 possible
combinations of these covariates (Data S2). Each
candidate model included the intercepts and the
random field, but no ecological covariates. The
32 models were ranked by the Watanabe-Akaike
information criteria (WAIC; Watanabe 2010), a
Bayesian approach for estimating the out-of-
sample expectation (Gelman et al. 2014). The
models were ranked by WAIC in increasing
order. We retained the top-ranking model.

Candidate ecological covariates (n = 14) were
added to the best observation model. As an
exhaustive evaluation of the 16,384 possible vari-
able subsets was infeasible, we applied a back-
ward elimination procedure. We started by
fitting a full model that included all 14 ecological
covariates. We examined the 95% credible

intervals (95% CrI) of the estimated coefficients
and identified those that included zero. A final
model was then fitted, excluding all these “non-
significant” ecological covariates.

Model checking and spatial predictions
As a preliminary visualization step to help

interpret model results, we mapped WBPHS and
eBird data used in the model for each of three
waterfowl species. We mapped WBPHS data as a
segment-level ratio of the number of years when
the species was detected at least once (NPres-
ence) and the number of years the segment was
surveyed (NTrials). For eBird data, we mapped
the location of each recorded presence point over
a plot of the smoothed density obtained using a
kernel density estimator (Silverman 1986).
We interpreted the model inferential properties

using the mean, standard deviation (SD), and
95% CrI of the posterior distributions of the
model parameters. A regular grid of 0.20-degree
resolution was used to map model predictions
for each species, obtained as a function of both
the ecological covariates and the estimated ran-
dom field. We mapped the predicted intensity
and estimated SD for each grid cell (n = 12,933).
To evaluate the common variance between the
mapped intensities of two species, we calculated
Pearson’s R2 for each species pair (AMWI vs.
BUFF, AMWI vs. CAGO, and BUFF vs. CAGO).
To disentangle the effects of ecological covariates
from the random fields, we re-mapped the pre-
dicted intensity obtained as a function of either
(1) the ecological covariates only or (2) the ran-
dom field only. We used Pearson’s R2 to evaluate
the proportion of variance in full-model predic-
tions explained by covariate-only and random
field-only predictions.

Integrated vs. single data set models
We assessed the behavior of models fitted with

WBPHS or eBird data only and investigated the
individual contributions of the two data sets to
the integrated models. To do so, we iteratively
re-fitted our models using only one of the two
data sets and compared the results obtained with
those of the integrated approach. Using Pearson’s
R2, we estimated the proportion of variance in
integrated model predictions explained by
WBPHS- and eBird-only predictions. In addition,
we compared the fit of the models to the
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recorded values by computing the R2 between
(1) the recorded segment-level NPresence/Ntrials
ratios (WBPHS data) and (2) the intensity pre-
dicted at the center of each segment. This exer-
cise was done individually for each of the three
species and prediction sets (integrated data sets,
WBPHS only, and eBird only).

Finally, we summarized the BCR-level distri-
bution of the total predicted intensity and stan-
dard deviation for each of the three prediction
sets by calculating the percentages of the total
intensity and standard deviation that belonged
to a given BCR weighted by the number of grid
cells in that BCR. These statistics were calculated
for the three species individually. Because our
study area included four BCRs, the weighted
percentages for each BCR should have been
approximately 25% if the predicted intensity and
standard deviation were homogeneously dis-
tributed.

RESULTS

Recorded waterfowl data
WBPHS data.—Waterfowl data extracted from

the WBPHS are displayed in Fig. 3 (left panel).
At the study area level, the mean NPresence/
NTrials ratios (NP/NT) were 0.49, 0.32, and 0.32
for BUFF, AMWI, and CAGO, respectively. The
three species were commonly encountered in the
southern part of our study area (<55° N) with
NP/NT of 0.56, 0.49, and 0.35 for BUFF, CAGO,
and AMWI, respectively. At higher latitudes
(>65° N), the probability of encountering BUFF
and CAGO decreased (NP/NT < 0.20), but not
for AMWI (NP/NT = 0.51). The lowest NP/NT
values for AMWI were found in the eastern por-
tion of our study area (<110° W), particularly
across BCR 7 (NP/NT = 0.16; see Fig. 1 for BCRs
map).

eBird data.—After applying the filtering proce-
dure (see Methods: Waterfowl data: eBird data), the
number of eBird records for AMWI, BUFF, and
CAGO was 5901, 6334, and 11,696, respectively.
Compared to WBPHS data, it was more difficult
to identify species-specific distributional patterns
from eBird data (Fig. 3; right panel). eBird
records were highly clustered around a few hot-
spots and were characterized by several linear
patterns corresponding to the road network. As
revealed by the kernel density surface of each

species, the highest density of points was found
in the westernmost BCR 4, in an area located
around 61° N and 134° W (Whitehorse and its
surroundings; Yukon’s capital city) (Fig. 3). The
small bounding box between 60–62° N and 132–
138° W gathered 40, 27, and 12% of the total
AMWI, BUFF, and CAGO records, respectively.
Several smaller hotspots were found in the
southern part of BCR 6 (<57° N), where CAGO
had the highest percentage of total records
(68%), and AMWI had the lowest (38%). We also
noticed two CAGO hotspots in the eastern por-
tion of our study area (51° N/97° W and 52° N/
92° W), which were unidentifiable for the other
two species.
From a species distribution modeling perspec-

tive, Fig. 3 shows that the presence of eBird data
in several areas not covered by the WBPHS could
provide important additional information to cap-
ture the ecological signal underlying the “true”
waterfowl distribution more effectively. This
result applies in particular to BCRs 4 and 8,
which are almost excluded from the WBPHS cov-
erage. However, the complex distribution of
eBird records indicates that their integration
would be challenging.

Integrated waterfowl distribution models
Covariate selection and estimates.—Our inte-

grated models were successfully fit for the three
species (Fig. 4; see Appendix S1: Tables S1–S3 for
full-model summaries). The details of the two
steps of the covariate selection procedure (1:
observational covariates, 2: ecological covariates)
are shown in Data S2.
For all species, three accessibility covariates

(“distance to road,” “road density,” and “travel
time to city”) and one checklist-effort covariate
(“checklist duration”) were retained after Step 1.
The intensity of the point process decreased with
an increase in travel time to cities. “Road den-
sity” had a negative effect on the intensity of the
point process for AMWI, but was not significant
for BUFF and CAGO. The intensity increased
with an increase in the distance to the nearest
road. The checklist duration was retained as an
offset (see eBird observation model).
The final models (after Step 2) included nine

ecological covariates for AMWI and BUFF and ten
for CAGO (Fig. 4). Of the initial set of 14 candi-
date ecological covariates, only “% of open water”
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was not selected in the final models. The highest
number of shared covariates was between BUFF
and CAGO (n = 8) and the lowest between
AMWI and BUFF (n = 5). Four covariates were

shared by the three species: “% of wetland,” “%
AGTB of Picea glauca,” “%AGTB of Picea mariana,”
and “% AGTB of Populus tremuloides” (AGTB:
aboveground tree biomass).

Fig. 3. Spatial distribution of the data extracted from the Waterfowl Breeding Population and Habitat Survey
(WBPHS) (left) and eBird (right) data sets. NPresence/Ntrials: segment-level ratio between the numbers of years
the species was detected at least once (NPresence; min = 0 and max = 27) and the numbers of years the segment
was surveyed (NTrials; min = 14 and max = 27). log(Density): logged kernel density surface of eBird records
(black dots).
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Spatial predictions.—For each species, the maps
of the predicted intensity and SD are shown in
Fig. 5. The broad spatial patterns in predicted
intensity were visually close between species,
with the highest degree of similarity found
between BUFF and CAGO (R2 = 0.32) and the
lowest between AMWI and BUFF (R2 = 0.08).
The most obvious common pattern was found in
the southern part (<60° N) of BCR 6, where the
three models predicted the highest densities.
Consistent with the presence of the largest eBird
cluster (Fig. 3), a high-intensity spot was

predicted for the three species around 61° N and
134°W.
For the three species, the SD was relatively low

(<0.10) and homogeneous across our study area
(Fig. 5). Locally higher SD occurred in areas
where the model covariates had the highest val-
ues. For example, the SD hotspot for BUFF pre-
dictions around 60° N and 128° W (Fig. 5,
middle row) matches the high Pinus contorta bio-
mass values in this area (Appendix S1: Fig. S2).
The R2 values between (1) the predictions

obtained as a function of both the ecological

Fig. 4. Posterior estimates of the regression coefficients (mean and 95% credible intervals) of the point process
intensity models for American wigeon (AMWI), bufflehead (BUFF), and Canada goose (CAGO). See Table 1 for
details on covariates.
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covariates and the random field, and (2) the pre-
dictions obtained as a function of the ecological
covariates only were 0.99, 0.98, and 0.97 for
BUFF, AMWI, and CAGO, respectively. Con-
versely, the R2 between (1) and (2) the predictions
obtained as a function of the random field only

dropped to 0.23, 0.17, and 0.08 for CAGO, BUFF,
and AMWI, respectively. These results and the
associated prediction maps (Appendix S1:
Fig. S4) revealed the main contribution of the
ecological covariates in the integrated model pre-
dictions. The random field remained useful for

Fig. 5. Maps of the predicted intensity (log(λ(s))) and standard deviation (SD) from the integrated models esti-
mated for American wigeon (AMWI), bufflehead (BUFF), and Canada goose (CAGO).
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capturing local hotspots of high intensity (visu-
ally related to eBird clusters; Fig. 3) that the
covariates alone could not explain (Appendix S1:
Fig. S4).

Integrated vs. single data set models
Comparison of covariate estimates.—The posterior

estimates of the coefficients obtained after refit-
ting our models with a single data set are shown
for a representative subset of ecological covari-
ates in Fig. 6 (see Appendix S1: Tables S4–S6 for
all covariates). The absolute coefficient values
were the highest for WBPHS-only models in 25
out of the 28 possible cases. In contrast, they
were the lowest for the eBird-only models (20/
28). The coefficient values for the integrated
models were generally in between (19/28). With
regard to the 95% CrI, many covariates (15/28)
lost their effect in the eBird-only models, reveal-
ing the complexity of capturing an ecological sig-
nal from eBird data. In a few cases, the eBird
model coefficients remained significant but had
an opposite effect to those revealed in the inte-
grated and WBPHS-only models. For example,

this occurred for the percentage of wetlands with
BUFF or Picea glauca with CAGO and AMWI, all
of which became positive in the eBird-only mod-
els (Fig. 6).
Comparison of spatial predictions.—The area-

weighted cumulative percentages of the total
predicted intensity (PTPI) and uncertainty
(PTPU; i.e., SD) accounted for by each BCR for
the integrated and single data set predictions are
shown in Fig. 7. The associated prediction maps
are provided in Appendix S1: Figs. S5 and S6.
Across the four BCRs, WBPHS-only PTPI was

the most heterogeneous (SD = 7.51) (Fig. 7, bot-
tom panel). The highest WBPHS-only PTPI
occurred in BCR 6, ranging from 37% for BUFF
to 32% for CAGO. The highest positive differ-
ences between WBPHS-only and integrated PTPI
were also found in BCR 6 (≥5 percentage points).
Conversely, the highest negative differences
between WBPHS-only and integrated PTPI were
found in BCR 4 for both AMWI (9 percentage
points) and CAGO (6 percentage points). eBird-
only PTPI was highly homogeneous across the
four BCRs (SD = 0.88) (Fig. 7, bottom panel).

Fig. 6. Comparative posterior estimates of the regression coefficients (mean and 95% credible intervals)
obtained for the models fitted with the Waterfowl Breeding Population and Habitat Survey data only (WBPHS
only), the eBird data only (eBird only), and the two data sets (integrated). See Table 1 for details on covariates.
See Appendix S1: Tables S4–S6 for all covariates. AMWI: American wigeon; BUFF: bufflehead; CAGO: Canada
goose.
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The highest PTPU for the three species came
from WBPHS-only predictions and was found in
BCR 4 (Fig. 7, top panel). Compared to WBPHS-
only PTPU (SD = 3.38), integrated PTPU was

more homogeneously distributed across the four
BCRs (SD = 0.90) and was lower in the areas
poorly covered by the WBPHS (negative differ-
ence up to 5 percentage points in BCR 4). PTPU

Fig. 7. Cumulative area-weighted percentages of total predicted intensity (bottom) and uncertainty (i.e., stan-
dard deviation) (top) accounted for by each bird conservation region (BCR) for the models fitted with the two
data sets (integrated), the Waterfowl Breeding Population and Habitat Survey data only (WBPHS only), and the
eBird data only (eBird only). AMWI: American wigeon; BUFF: bufflehead; CAGO: Canada goose.
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derived from the eBird-only predictions was spa-
tially homogeneous (SD = 0.69).

Visually, the WBPHS-only predictions were
close to the integrated predictions (Appendix S1:
Fig. S5). This was not the case for the eBird-only
predictions, which were relatively flat across our
study area, although a spot of higher intensity in
BCR 4 was identifiable for the three species
(Appendix S1: Fig. S5). At the grid-cell level, the
R2 between the WBPHS-only and integrated pre-
dictions were 0.90, 0.77, and 0.68 for BUFF,
CAGO, and AMWI, respectively. For the eBird-
only predictions, these values decreased to 0.02,
0.01, and 0.01 for AMWI, BUFF, and CAGO,
respectively.

Comparison of model fits.—For the three species,
the R2 between recorded segment-level NP/NT
and the intensity predicted at the segment centers
revealed that integrated predictions had the best
fits to recorded data (R2 = 0.39 � 0.06), although
these values were close to those obtained for
WBPHS-only predictions (R2 = 0.37 � 0.05).
eBird-only predictions poorly fitted recorded
data (R2 = 0.01 � 0.01).

DISCUSSION

In this method paper, we successfully adapted
the ISDM approach, recently conceptualized by
Isaac et al. (2020), for modeling and mapping the
large-scale distribution of North American boreal
waterfowl. Using a state-space point process for-
mulation, we showed that it is possible to effi-
ciently combine aerial survey (WBPHS) and
citizen science (eBird) data to benefit from the
complementarity of their records and spatial
extents. By allowing for multiple observation
models, the state-space formulation facilitated
data integration while allowing explicit account-
ing for how the data sets were generated. This
was useful to distinguish the ecological signal
explaining the “true” species distribution from
purely observational processes. This hierarchical
formulation presents the possibility of using dis-
tinct observation models for each data set, allow-
ing them to be treated separately and making the
most of their specificities. In our case, we took
advantage of the standardized and replicable
design of the aerial survey to model WBPHS data
as a binomial detection/non-detection process,
while opportunistic eBird data were treated as

presence-only records. With minimal effort, other
data types can be considered (e.g., point counts
or expert range maps), along with multiple com-
plementary data sets with associated observation
models.
Explicitly modeling the observational pro-

cesses was necessary for an optimal use of eBird
data. Indeed, citizen science records are most
often affected by observational biases related to
sampling effort and site accessibility (Warton
et al. 2013, Bonnet-Lebrun et al. 2020, Sicacha-
Parada et al. 2020). Although preliminary filter-
ing procedures are useful for removing outlier
records and improving the general quality of the
inference (Boria et al. 2014, Robinson et al. 2018,
Steen et al. 2019), they probably remain insuffi-
cient to account for the observational noise in
these data. This issue is perhaps most evident for
remote study areas, such as ours, where available
citizen science records are massively clustered
around a few hotspots corresponding to the
main human settlements. In this respect, our
study area is certainly one of the places where
this approach is the most challenging to apply,
but where a real need also exists. Our results con-
firmed the importance of the data generation
process: For all three example species considered
in our study, the covariate selection procedure
identified four out of the five candidate observa-
tional covariates (“checklist duration,” “distance
to road,” “road density,” and “travel time to
city”) as being important to model waterfowl
distribution across our study area. The purpose
of our study was mostly demonstrational and,
for this reason, we used covariates that were
already available. Thus, it is very likely that
refined observational covariates could have
enhanced the quality of the models. Particularly,
using a threshold <50,000 inhabitants for the
covariate “travel time to cities” (Weiss et al. 2018)
could have been of particular interest for our
study area, as we showed that smaller cities, such
as Whitehorse (~25,000 inhabitants), were major
hotspots for eBird records.
The “true” species distribution was modeled

according to a flexible LGCP aimed at estimating
the continuous density of points (i.e., individu-
als) in an area (Møller et al. 1998). The point pro-
cess approach is becoming increasingly popular
in ecological sciences, in particular thanks to the
development of tools and R-packages facilitating
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its application (Illian et al. 2013, Illian and Bur-
slem 2017, Bachl et al. 2019). However, it remains
far from being the norm in species distribution
modeling studies, which are dominated by the
grid-cell paradigm. Discretizing the spatial
domain into grid cells comes at the expense of
fixing the spatial scale and makes it difficult to
consider within-grid heterogeneity (Illian and
Burslem 2017, Miller et al. 2019, Isaac et al. 2020).
Conversely, in theory, point processes are spa-
tially continuous, so there are no more problems
of scale. Although the scale issue does not exist,
in practice, it is converted to an approximation
problem. To model a continuous intensity sur-
face, we divided our study area into triangles
whose vertices served as integration points
(Simpson et al. 2016). In the exploratory mesh
design defining the triangle location and num-
ber, we sought a trade-off between the computa-
tional costs and the quality of the approximation.
Complementary analyses conducted on a spatial
subset of our study area (Appendix S1: Fig. S7)
and the entire CWBF (Appendix S1: Table S7)
revealed that differences in alternative mesh res-
olutions had little influence on model estimates.

The predicted intensities were obtained as a
function of both the ecological covariates and
random fields. All but one of the 14 candidate
ecological covariates were selected in at least one
of the models. The significance of the candidate
covariates was not surprising, as they were cho-
sen with regard to the existing literature (Adde
et al. 2020a, b, Adde et al. 2021). Because of the
easily interpretable model parameters, it was
possible to assess the ecological meaning of our
results. We confirmed the importance and pre-
dictive value of the Canada’s forest attribute
covariates (Beaudoin et al. 2017) to model the
large-scale distribution of Canadian waterfowl
(Adde et al. 2020a). For the three waterfowl spe-
cies we considered, the intensity of the point pro-
cess increased with an increase in the AGTB of
Populus tremuloides, but decreased with the two
Picea species. The negative effect of the percent-
age of wetlands on AMWI and BUFF, and the
non-significance of the percentage of open water
for the three species might seem more unex-
pected. However, at the spatial extent of our
analysis (~3 million km²), and at the scale at
which the ecological covariates were extracted
(300-arcsecond), it is likely that there is a

confounding effect between causal relationships
and spatial proxies. In other words, for some
covariates such as the percentage of wetlands,
the significance of the association could simply
reflect a large-scale spatial correspondence
between recorded waterfowl and covariate distri-
butions without any causality link. It is also
probable that wetland–waterfowl associations
would be more easily identifiable at a finer spa-
tial scale.
The random fields were able to capture the

many otherwise-unexplained residuals that were
independent of the ecological covariates, includ-
ing spatial autocorrelation. These residuals were
gathered around the main clusters of the eBird
records. To avoid issues related to the overfitting
of the random field revealed during preliminary
analyses, we chose to use fixed prior values for
the parameters controlling the range and the
standard deviation of the field. We recognize that
this strategy is somewhat subjective and goes
against the complete reproducibility of the
approach, as other prior values would probably
be more suitable if different data were used. In
addition to the extremely clustered spatial distri-
bution of eBird data, issues related to the overfit-
ting of the random field and eBird covariate
coefficient estimates with unexpected magnitude
could have also been linked to other important
differences in the spatial processes underlying
the two data sets (i.e., point observations for
eBird and transect observations for WBPHS).
Because each data set exhibits specific spatial
patterns and degrees of autocorrelation, it is diffi-
cult to specify spatial parameters that can ade-
quately account for these factors simultaneously.
Complementary analyses aimed at tackling these
issues showed that neither increasing the mesh
resolution (Appendix S1: Table S7) or including
an independent and identically distributed effect
(IID) based on unique mesh node identifiers
(Appendix S1: Table S8) provided an effective
solution.
Comparing models fitted with different data

sets is not straightforward because their informa-
tion criteria are not comparable. In our study, we
compared the models fitted with either the two
data sets (integrated) or a single data set
(WBPHS and eBird only) based on their coeffi-
cients and spatial predictions. Although this
comparative analysis was useful to assess the
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potential contribution of each of the two data
sets, it remains complex to determine which
approach (integrated vs. single data set) pro-
vides the “best” results and to quantify the con-
tribution of each. When available, the use of a
third independent and reliable data source might
help answer these questions, but this seems to
run counter to the general philosophy of the
ISDM approach, which is to take advantage of
the maximum amount of available data. Overall,
we demonstrated that the outputs resulting from
the integrated and WBPHS-only models were
quite similar and consistent with the recorded
species occurrences. Compared to the WBPHS-
only models, the integrated models seem to have
the advantage of smoothing the uncertainty
more homogeneously across our study area, par-
ticularly in the areas not covered by the WBPHS.
It was much more difficult to extract an ecologi-
cal signal from the eBird data, for which the
observational noise seemed to dominate.
Accordingly, spatial predictions obtained with
eBird-only data did not match the recorded spe-
cies distribution. From an ecological modeling
perspective, for our study area, it appears that
citizen science records alone are still far from
being robust alternatives to standardized aerial
inventory data. Interestingly, spatial predictions
derived from the integrated models matched the
WBPHS records slightly better than the WBPHS-
only models. The greater amount of information
obtained by combining the two data sets could
have helped refine the associations with the eco-
logical covariates, resulting in a better fit. It also
shows that although the eBird data remain extre-
mely noisy, their role in the final model after
consideration of the observational process is
non-zero and even seems to improve the quality
of the predictions.

CONCLUSION

By enabling the combination of all available
data sources within a single hierarchical model-
ing framework, we demonstrated the potential of
the ISDM approach for modeling and mapping
large-scale species distributions. We encourage
future North American waterfowl modeling
attempts to use this method to resolve spatial
gaps in the WBPHS coverage. Although this will
require a considerable effort in data preparation,

integration efforts should not be restricted to the
additional contribution of eBird data, of which
the contribution at the scale of our study area
proved to be limited. As multiple data
observation models can be added to the original
framework, we encourage testing for the
potential contribution of provincial atlases, heli-
copter surveys, and all smaller past inventories.
Notably, the ISDM approach applied in our
study can be easily reproduced and transferred
to other taxa or study areas by using the
R-package “PointedSDMs” (https://github.com/
oharar/PointedSDMs), which facilitates both data
preparation and model formulation.
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