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a b s t r a c t 

In the streaming learning setting, an agent is presented with a data stream on which to learn from in an online 

fashion. A common problem is catastrophic forgetting of old knowledge due to updates to the model. Mitigating 

catastrophic forgetting has received a lot of attention, and a variety of methods exist to solve this problem. In 

this paper, we present a divided and prioritized experience replay approach for streaming regression, in which 

relevant observations are retained in the replay, and extra focus is added to poorly estimated observations 

through prioritization. Using a real-world dataset, the method is compared to the standard sliding window 

approach. A statistical power analysis is performed, showing how our approach improves performance on rare, 

important events at a trade-off in performance for more common observations. Close inspections of the dataset 

are provided, with emphasis on areas where the standard approach fails. A rephrasing of the problem to a binary 

classification problem is performed to separate common and rare, important events. These results provide an 

added perspective regarding the improvement made on rare events. 

• We divide the prediction space in a streaming regression setting 
• Observations in the experience replay are prioritized for further training by the model’s current error 
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Introduction 

In supervised learning, generalizability is a primary focus during the development of a model. 

During training, the labels are available, and are used to supervise the learning of a function that maps

from inputs to an output. The goal is for the model to learn a function that gives accurate predictions

for unseen observations, for which labels are not available. This is the essence of generalization, and

relies on the assumption that the unseen observations come from the same distribution as the training

observations. However, this assumption fails for many real-word problems. Shifts in independent or 

dependent variables, an evolving underlying process, and dependence on variables not included in the 

model are all examples of nonstationarity, which is harmful to the predictive power of such models

[1,2] . Nonstationarity occurs to some extent in most real world data sets, and has been a motivating

factor for the paradigm of streaming learning, where a model is presented with a stream of data

on which to continuously learn from in an online fashion. This allows adaptation to changing data

distribution, although the approach is prone to catastrophic forgetting [3] . In the setting of streaming

learning, the goal is to leverage newly available data to adapt to changing environments while still

performing well on previous observations [4] . These two objectives might be conflicting, giving rise to

the stability-plasticity dilemma [5] , asking how one can stay stable to irrelevant events, while plastic to

new information. This problem has been addressed in several ways, perhaps most commonly by use

of experience replay, where new observations from the data stream are mixed with older observations

as they become available [6] . 

Streaming data can occur in many situations, and several problems can be solved by learning from

these streams. Classification with dynamic selection of appropriate window [7] , and classification 

using a streaming random forest [8] have been investigated. Clustering of data streams [9] , multi-

task learning with a global loss function [10] , and multiple output linear regression [11] are other

examples. The challenges of streaming learning have been discussed in many earlier publications, 

with emphasis on managing catastrophic forgetting. Reducing the risk of catastrophic forgetting has 

been approached in several ways, among them regularization, Kirkpatrick et al. [12] , Li and Hoiem

[13] , where weight updates are constrained so previously learned relationships are not erased, and

ensembling methods, where multiple models are trained, and their outputs are combined with some 

form of majority voting [2,14,15] . Various experience replay configurations have also been developed

for this purpose, among them stream clustering methods to retain valuable information [16] , and

prioritization of samples to train on [17] , where the former has with benefit been applied to streaming

classification, and the latter to reinforcement learning. These differ from the aforementioned methods, 

as they focus on which observations to retain and train on rather than on the model itself. 

In the current work, a divided and prioritized experience replay approach for streaming 

regression is presented to mitigate the effects of catastrophic forgetting while allowing adaptation 

to nonstationarity. We adopt both the philosophy of retaining relevant knowledge in the replay, along

with that of prioritization. A deep neural network (DNN) is trained and validated on historical data.

This model serves as a baseline model which is deployed for streaming learning during operation,

using this approach. To demonstrate its effect, the method is applied to a real-world dataset,

and benchmarked against a standard sliding window approach. The method was first presented in 

Arnøet al. [18] as a case study. In the current work, however, a thorough comparison to the standard

sliding window approach for streaming regression is given, with focus on rare, important events, and

discussions of areas where the standard sliding window fails. 
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The paper is structured as follows: Section 2 presents the methods used in this work, and Section

 presents our results in a case study, comparing our method with a standard sliding window. Lastly,

ection 4 offers conclusions. 

ethod 

The selected model architecture for this work was a DNN. DNNs consist of multiple layers of

nterconnected neurons with nonlinear activation functions. This allows extraction of latent, possibly

onlinear features within the data. First, we provide notation for the DNN: 

L : number of layers in the DNN 

m : number of observations 

f : number of features 

x : features 

y : target variable 

s l : number of neurons in layer l ∈ 1 , . . . , L 

(x i , y i ) : i th observation, i ∈ 1 , . . . , m 

w 

[ l] : trainable weight matrix for layer l 

b 

[ l] : trainable bias vector for layer l 

nd 

x = 

⎡ 

⎢ ⎢ ⎣ 

. 

. 

. 
. 
. 
. 

. 

. 

. 

x 1 x 2 . . . x m 

. 

. 

. 
. 
. 
. 

. 

. 

. 

⎤ 

⎥ ⎥ ⎦ 

∈ R 

f x m , (1)

y = 

[
y 1 y 2 . . . y m 

]
∈ R 

1 x m , (2)

w 

[ l] = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

. . . w 

[ l] � 
1 

. . . 

. . . w 

[ l] � 
2 

. . . 

. 

. 

. 

. . . w 

[ l] � 
s l−1 

. . . 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∈ R 

s l−1 x s l , (3)

b 

[ l] = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

b 
[ l] 
1 

b 
[ l] 
2 
. . 
. 

b 
[ l] 
s l 

⎤ 

⎥ ⎥ ⎥ ⎦ 

∈ R 

s l x 1 . (4)

o make a prediction on a single observation of inputs x i , the input is mapped to ˆ y i by forward

ropagation through the DNN: 

z 
[ l] 
i 

= w 

[ l] � a [ l−1] 
i 

+ b 

[ l] l = 1 , . . . , L, (5)

a 
[ l] 
i 

= g [ l] (z 
[ l] 
i 

) l = 1 , . . . , L − 1 , (6)

a 
[ l] 
i 

= max { γ z 
[ l] 
i 

, z 
[ l] 
i 

} l = 1 , . . . , L − 1 , (7)

ˆ y i = a 
[ L ] = z 

[ L ] 
. (8)
i i 
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Eq. (5) describes the linear part of the forward propagation, mapping from one layer to the next

throughout the DNN. This starts at a 
[0] 
i 

= x i . At each hidden layer, these linear combinations are

passed through nonlinear activation functions g [ l] , as described in Eq. (6) . In this work, the leaky ReLU

activation functions given in Eq. (7) are used, where γ is the slope in the left half plane. Lastly, the

output layer outputs the prediction, which for this work is a real number, resulting in a regression

layer. This is described in Eq. (8) . 

For learning on a mini-batch of size m b , inputs x b and outputs y b are used. The forward

propagation for the mini-batch is given by: 

z [ l] = w 

[ l] � a [ l−1] + b 

[ l] 1 l = 1 , . . . , L, (9)

a [ l] = g [ l] (z [ l] ) l = 1 , . . . , L − 1 , (10)

a [ l] = max { γ z [ l] , z [ l] } l = 1 , . . . , L − 1 . (11)

ˆ y b = a [ L ] = z [ L ] , (12) 

where 1 ∈ R 

1 x m b is a row vector of ones broadcasting the bias term to each observation of the mini-

batch. 

The weight initialization is He normal [19] , which pulls the weights in each layer from a truncated

normal distribution with mean μ = 0 and standard deviation σ = 

√ 

1 
s [ l−1] 

. The weight initialization for

layer l is then given by: 

w 

[ l] ∈ R 

s l−1 x s l ∼ N 

([
0 , (s [ l−1] ) 

−1 
])

. (13) 

The biases, b 

[ l] , are initialized as zeros. The optimizer used was Adam optimization [20] , which

adaptively estimates appropriate momentum for the gradient updates. 

The parameters w 

[ l] and b 

[ l] are iteratively updated by means of a gradient-based optimizer to

minimize some cost function describing a distance between true labels and predictions. This is done

by finding the gradients of the cost function J, w.r.t the trainable parameters, ∂ J 
∂w 

and 

∂ J 
∂b 

. For this

work the cost is the mean squared error between the true labels and the predictions, defined by: 

J = 

1 

2 m b 

∣∣∣ˆ y − y 

∣∣∣
2 

. (14) 

For supervised learning, the procedure of iteratively updating the trainable parameters, along with 

other hyperparameters such as model architecture, is typically done repeatedly in a validation process 

to assess the model’s ability to generalize to unseen observations. However, the ability to generalize

relies on the assumption that the unseen observations come from the same distribution as the training

data, which for many real-world datasets is an invalid assumption. The target variable may depend on

features not included in the model, shifts may occur in the independent or dependent variables, or

the underlying process may evolve. These can all be contributors to poor generalization, and are called

nonstationarity. In streaming learning, the goal is to bridge the gap between data distributions by

adapting to new available observations. For this to work, labels must be available so that supervision

of the updates can be achieved. In addition to adaption to changing distributions, it is of interest to

”remember” older, relevant observations. 

To stay stable to older observations while being plastic to new ones, the prioritized

n −bin experience replay was developed. This experience replay configuration allows retention of 

observations spanning the prediction space y ∈ [ y min , y max ] by splitting it into bins. We denote the

buffer as D ∈ R 

n x N , where n is the number of bins, and N is the capacity of each bin. When

observation ( x i , y i ) becomes available from the data stream, it will be placed in a bin after assessment

of which bin in the prediction space y i belongs to. Subsequently, the oldest observation in the same

bin is discarded. Using this configuration, observations spanning the prediction space are retained, 

eliminating bias towards the distribution of the latest available observations, which occurs in the 
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tandard sliding window. Additionally, the mini-batch sampled from the experience replay for further

earning is sampled by prioritization using the softmax function, so that each observation is assigned

 probability of being sampled for training by: 

p j = 

e (y j − ˆ y j ) 
2 

∑ C 
c=1 e 

(y c − ˆ y c ) 2 
, j = 1 , . . . , C, (15)

here C = nN is the total number of observations in the replay. Assigning the probabilities based

n the softmax of the model’s mean squared error on the observations results in added focus

n observations for which the model performs poorly, as they are more likely to be sampled. By

ombining the prioritized n -bin with the DNN using the Adam optimizer, we obtain our streaming

earning algorithm, given in Algorithm 1 . 

β1 , β2 and ε are tunable hyperparameters for Adam optimization, V dw 

and V db are biased first

oment estimates, and S dw 

and S db are biased second raw moment estimates. Superscript c denotes

heir bias-corrected counterparts. α is the learning rate. 

ase study 

roblem description 

The method presented in this work was developed in order to estimate the density of drilled

ithology. This is traditionally measured using the density logging tool, which is a specialized logging

hile drilling (LWD) tool. Determining the density of the drilled lithology is of interest for several

easons, among them best-practice selection of drilling parameters to ensure a safe and efficient

peration. Especially, accurate separation of high-density and low-density lithology can reduce the risk

f dysfunctions like buckling, severe doglegs, washout and vibrations, resulting in lost time. However,

he density log is delayed due to its placement behind the bit, making mechanical drilling parameters

he earliest indicators of change in drilled lithology, although it is very difficult for humans to directly

nterpret density from these. 

To eliminate the density log delay, we propose to estimate a virtual density log using parameters

vailable at the bit, i.e. mechanical drilling parameters. Since the true label of the density log is

vailable after the distance from the log to the bit is drilled, we can pair the delayed density log with

rilling parameters measured earlier at the same depth to obtain complete input/output observations

hat can be used to further supervise updates to our model during operation. This turns the problem

nto a streaming regression problem with delayed labels. Drilling data from wells on a field operated

y Equinor was used for this work. After data cleaning and removal of irrelavant observations, the

raining set contained approximately 740 0 0 0 observations from 5 different wellbores, while the

alidation set contained 365 0 0 0 observations from one wellbore. Lastly, the test set contained 227

 0 0 observations from one wellbore. As per standard convention for deep learning, the data was

ormalized and scaled so that each feature had zero mean and unit variance. 

Several mechanical drilling parameters are available during drilling. v is the drilling velocity (ft/hr),

 is the weight on bit (lb), T is the torque (lb-ft), φ is the drillstring rotation (rpm). The driller may

irectly control v , w , and φ, while T is dependent on a variety of factors, among them rock properties,

 , and φ. A metric commonly monitored during drilling is the mechanical specific energy, U ms , which

uantifies the energy required to remove a unit volume of rock. It is independent of the driller’s

ctions, is different for different lithologies [21] , and is given by: 

U ms = 

w 

a b 
+ 

120 π · φ · T 

a b · v 
, (16)

here a b is the bit area (in 

2 ). To account for weakening of the rock ahead of the bit due to flow

hrough the nozzles, the hydraulic mechanical specific energy [22] , U hms , can be defined by: 

U hms = 

w 

a b 
+ 

120 π · φ · T 

a b · v 
+ 

1154 η · �p b · q 

a b · v 
, (17)

here η is the hydraulig energy reduction factor, �p b is the bit pressure drop at the nozzle (psi), and

 is the flow rate of drilling fluid (gpm). From the available mechanical parameters, we define the
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Algorithm 1. Streaming Learning Using Prioritized n −bin Experience Replay & Adam Optimization 
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Fig. 1. Top: Measured and estimated density log using the standard sliding window. Bottom: Measured and estimated density 

log using the prioritized n -bin sliding window. 
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nput vector of predictors for the DNN, x , as: 

x = [ v , φ, w, T , U ms , U hms ] 
� . (18)

re-training and validation 

Pre-training and validation of the baseline model was performed in an informal search. Training

as performed using Adam optimization, where the training set was randomly shuffled, and divided

nto mini-batches of size m b . The calculated gradients for each mini-batch are noisy estimates of

he true gradients of the entire data set, and this additive noise is useful for avoiding getting

tuck in poor local minima or saddle points early in training, and for improving generalization [23] .

eural network architecture and training configuration hyperparameters were iteratively tuned on the

raining and validation set split. Upon completion of this process, the streaming hyperparameters were

uned iteratively on the validation set. These hyperparameters are related to the streaming learning

uring operation. The density log limits on this field lies in the range 2.0–2.7 (g/cm 

3 ). Tuning of

he experience replay parameters resulted in 3 bins with limits at 2.115 (g/cm 

3 ) and 2.535 (g/cm 

3 ),

ffectively dividing the prediction space so that one bin retains observations below 2.115 (g/cm 

3 ),

he second between 2.115 (g/cm 

3 ) and 2.535 (g/cm 

3 ), and the last retains observations above 2.535

g/cm 

3 ). These parameters can be seen in Table 1 , which summarizes the hyperparameters. We can

lso see that the learning rate is decreased by one order of magnitude for the streaming learning,

hich was necessary in order to facilitate stability. 
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Fig. 2. Zoom 1. Top: Measured and estimated density log using the standard sliding window. Bottom: Measured and estimated 

density log using the prioritized n -bin sliding window. 

Table 1 

Summary of hyperparameters. 

Pre-training hyperparameter Value 

Learning rate 7 . 5 × 10 −5 

Hidden layers 3 

Neurons in hidden layers 12 

Mini-batch size 128 

Epochs 25 

Optimizer Adam 

Streaming learning hyperparameter Value 

Learning rate 7 . 5 × 10 −6 

Experience replay bins 3 

Experience replay bin sizes 256 

Experience replay bin limits [2.115, 2.535] 

Mini-batch size 16 

Epochs 1 

Optimizer Adam 

 

 

 

 

Test set results 

After pre-training and validation of the baseline model, it was deployed for streaming regression

during operation on the test set, where the density logging tool is placed 20 m behind the bit.

This was done using both the prioritized n -bin experience replay, and a standard sliding window

for comparison. As summarized in Table 1 , the prioritized n -bin replay consisted of 3 bins, each

containing 256 observations at all times. The standard sliding window used for comparison contained 
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Fig. 3. Zoom 2. Top: Measured and estimated density log using the standard sliding window. Bottom: Measured and estimated 

density log using the prioritized n -bin sliding window. 
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he same amount of observations in total, 768. Although the algorithm is run on data in time domain,

he density log (along with other LWD tools) are most interesting in depth domain. For this reason,

he presented results are converted to depth domain with equidistant points at 1 m resolution by

ownsampling. At every integer depth, observations within 0.5 m are averaged. Since detection of

he hard stringers is important, we evaluate both approaches in terms of mean absolute error (MAE)

eparately for low density ( < 2 . 35 (g/cm 

3 )) and high density ( ≥ 2 . 35 (g/cm 

3 )) observations. 

Fig. 1 illustrates measured and estimated at-bit density vs. depth on the entire test set for both

ethods. We define a false high density estimate a low risk error. If the driller takes action, lowering

 and increasing w based on such an estimate, the drilling will simply be sub-optimal. Conversely,

e define a false low density estimate as a high risk error. If hard stringers are not detected, and

ction is not taken, risk of dysfunctions such as buckling, severe doglegs, washout and vibrations are

ncreased. On the test set as a whole, the prioritized n -bin experience replay leads to a 22% increase in

AE for true low density observations and a 22% decrease in MAE for true high density observations,

ompared to the standard sliding window. 

We wish to investigate these results in more detail to provide some insight into the effect

f applying the prioritized n -replay, both on low density and high density observations. First, we

erform paired, two-tailed t -tests to investigate the statistical significance of the changes in MAE,

hrough obtaining p-values. The null hypothesis becomes H 0 : μ1 = μ2 , where μ1 is the population

ean absolute error for the standard sliding window approach, and μ2 is the population mean

bsolute error for our method. For this test, we select a significance level of α0 = 0 . 05 . To quantify

 standardized effect size , we also calculate Cohen’s d. This value, in combination with α0 , can in turn

e used to calculate the statistical power, 1 − β , where β is the probability of a type II error. Table 2

ummarizes the results of our statistical analysis, where m is number of observations, MAE s is the
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Table 2 

Results of power analysis. 

True observation value m MAE s [g/cm 

3 ] MAE n [g/cm 

3 ] �MAE [g/cm 

3 ] d p 1 − β

< 2 . 35 3422 0.0544 0.0662 −0.01175 −0.3021 4 . 63 × 10 −35 ≈ 1 

≥ 2.35 358 0.1528 0.1192 0.03359 0.4578 2 . 51 × 10 −9 ≈ 1 

Fig. 4. Zoom 3 Top: Measured and estimated density log using the standard sliding window. Bottom: Measured and estimated 

density log using the prioritized n -bin sliding window. 

 

 

 

 

 

 

 

 

 

 

 

 

 

mean absolute error using a sliding window, MAE n is the mean absolute error using our method,

and �MAE = MAE s − MAE n . Through the t -tests, we confirm the statistical significance at our chosen

significance level. Observing Cohen’s d show that for true low density observations, our method leads 

to a standardized effect size of d = −0 . 3021 (where the negative sign signifies worsening), while for

the true high density observations, d = 0 . 4578 . Interpreting these along a continuum, as proposed

in literature [24] , where 0.2, 0.5, and 0.8 are low, medium and high effect sizes, we see that our

approach leads to a small to medium worsening on low density observations, and a medium to large

improvement on high density observations. 

Figs. 2 –5 are zoomed plots on the test set. In Fig. 2 , at 2755 m, a hard stringer occurs. Using

the standard sliding window, this event is completely undetected. We can see at 2779 m that the

model accurately detects the next stringer. Here, 24 m further down, high density observations

from the missed stringer has been passed by the density logging tool (20 m behind), and these

observations are available for training in the sliding window. We can assume that the model misses

the first stringer since the sliding window only contains observations from the earlier low density

observations, resulting in catastrophic forgetting . Using our approach, we can see that also the stringer

missed by the standard sliding window is detected. 
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Fig. 5. Zoom 4 Top: Measured and estimated density log using the standard sliding window. Bottom: Measured and estimated 

density log using the prioritized n -bin sliding window. 
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In Fig. 3 , we can see that the sliding window misses the stringer at 3157–3170 m, along with

he one at 3250 m. Our approach accurately detects these events. At the same time, we observe

hat some observations at approximately 3050 m and 3285 are overestimated. In Fig. 4 , stringers at

500 m and 3523–3536 m are missed by the sliding window, but detected by our approach. Lastly,

ig. 5 shows missed stringers by the sliding window at 4450–4530 m, along with a poor transition

o low density observations at approximately 4850 m. These are all improved using our approach.

owever, we observe some false high estimates at 4650–4700 m. 

Since the density log is naturally divided into low- and high density observations, we rephrase

he problem into a binary classification problem. Although this is an oversimplification, it adds

o the previous analysis in terms of detection of hard stringers, and high risk/low risk errors,

s defined previously. As can be seen from m in Table 2 , less than 10% of the observations in

he test set are stringers, which makes this an unbalanced data set. Fig. 6 shows the resulting

onfusion matrices for both approaches, dividing the observations into low density and high density

bservations as previously. We see that the sliding window is very accurate in prediction of low

ensity observations, with an accuracy rate of 0.97. However, only an accuracy of 0.55 is achieved

or high density observations. Using the prioritized n -bin, the accuracy on low density observations is

lightly decreased, to 0.92, while detection of high density observations is greatly improved, scoring

n accuracy of 0.8. The balanced accuracies for the sliding window and the prioritized n -bin are 0.76

nd 0.86, respectively. Due to drillstring compression and elongation, measurement error on depth can

ccur. To account for this, a 1 m acceptance was implemented, meaning that if a prediction is within

 m of the correct label, it is accepted as correct. The confusion matrices using the 1 m acceptance

re shown in Fig. 7 . We observe that the results for both approaches are improved. Here, the balanced

ccuracies are 0.89 for the sliding window and 0.95 for our approach. 
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Fig. 6. Confusion matrices. Left: Standard sliding window. Right: Prioritized n -bin method. 

Fig. 7. Confusion matrices applying a 1 m acceptance. Left: Standard sliding window. Right: Prioritized n -bin method. 

 

 

 

 

 

 

 

 

Conclusions 

A divided and prioritized experience replay suited for streaming regression has been presented, 

making use of known ideas such as retention of relevant observations along with prioritization. This

makes the model less biased to the distribution of the latest available observations, and results in

more frequent sampling of observations where the model performs poorly. 

Comparison to a standard sliding window has been made on real-world data. From our results, we

can deduce that the standard sliding window results in forgetting of old, rare events, leading to failure

to detect them. Especially in cases where exclusively common events have been observed, the model

becomes biased towards these observations, failing to detect new, important events. The presented 

n -bin method, on the other hand, retains observations from the entire range of the prediction space,

resulting in more accurate estimates for these observations at a small cost in accuracy on the common

events. Also, some false detections are observed. In addition to analyses on the regression formulation,
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 simplified rephrasing to a binary classification problem has been performed. These results divide

he observations into two classes to provide added insight into the improved performance on the rare

vents. 
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