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A B S T R A C T   

In the face of green energy initiatives and progressively increasing shares of more energy-efficient buildings, 
there is a pressing need to transform district heating towards low-temperature district heating. The substantially 
lowered supply temperature of low-temperature district heating broadens the opportunities and challenges to 
integrate distributed renewable energy, which requires enhancement on intelligent heating load prediction. 
Meanwhile, to fulfill the temperature requirements for domestic hot water and space heating, separate energy 
conversion units on user-side, such as building-sized boosting heat pumps shall be implemented to upgrade the 
temperature level of the low-temperature district heating network. This study conducted hybrid heating load 
prediction methods with long-term and short-term prediction, and the main work consisted of four steps: (1) 
acquisition and processing of district heating data of 20 district heating supplied nursing homes in the Nordic 
climate (2016–2019); (2) long-term district heating load prediction through linear regression, energy signature 
curve in hourly resolution, providing an overall view and boundary conditions for the unit sizing; (3) short-term 
district heating load prediction through two Artificial Neural Network models, f72 and g120, with different pre-
diction input parameters; (4) evaluation of the predicted load profiles based on the measured data. Although the 
three prediction models met the quality criteria, it was found that including the historical hourly heating loads as 
the input to the forecasting model enhanced the prediction quality, especially for the peak load and low-mild 
heating season. Furthermore, a possible application of the heating load profiles was proposed by integrating 
two building-sized heat pumps in low-temperature district heating, which may be a promising heat supply 
method in low-temperature district heating.   

1. Introduction 

The background, literature review, and objective of this study are 
presented in Sections 1.1–1.3, respectively. 

1.1. Background 

In 2019, the building sector accounted for 35% of the global final 
energy use and 38% of energy-related CO2 emissions [1]. Although there 
was a drop in CO2 emissions in 2020, mainly due to the COVID-19 

pandemic, the building sector’s share of the final energy use and CO2 
emissions that year were 36% and 37%, respectively, almost the same as 
in 2019 [2]. 

District heating (DH) systems play a vital role in reducing primary 
energy use and CO2 emissions in the building sector. In general, the 
primary energy factor may vary due to variation of the fuel and in-
centives within national policies. In the European context electricity has 
a primary energy factor of 2–2.5 [3], while DH of 0.6–1.3 depending on 
the heating sources varying from renewable-based to fossil-based fuels 
[4]. For example, in Sweden DH supplies 60% of the total building 
heating demand [5], while in Norway DH use has doubled over the past 

* Corresponding author. 
E-mail address: yiyu.ding@ntnu.no (Y. Ding).  

Contents lists available at ScienceDirect 

Energy Conversion and Management 

journal homepage: www.elsevier.com/locate/enconman 

https://doi.org/10.1016/j.enconman.2022.116163 
Received 9 April 2022; Received in revised form 16 July 2022; Accepted 18 August 2022   

mailto:yiyu.ding@ntnu.no
www.sciencedirect.com/science/journal/01968904
https://www.elsevier.com/locate/enconman
https://doi.org/10.1016/j.enconman.2022.116163
https://doi.org/10.1016/j.enconman.2022.116163
https://doi.org/10.1016/j.enconman.2022.116163
http://crossmark.crossref.org/dialog/?doi=10.1016/j.enconman.2022.116163&domain=pdf
http://creativecommons.org/licenses/by/4.0/


Energy Conversion and Management 269 (2022) 116163

2

decade, and currently 26.7% of DH production is used for the residential 
heating and 54.5% of DH production for the service heating [6]. Given 
the rapid electrification process in buildings, and in countries like 
Norway also in the transportation sector, DH has great potentials to 
alleviate the pressure on power grid in climates with high heating de-
mands, such as the Nordic countries. However, DH expansion also faces 
two challenges, the competition from heat pumps (HPs) due to their high 
flexibility for the end users and consequent reduction in the final energy 
demand, and the decrease in the building heating demand. For the latter, 
this is due to the future building stock, with a growing share of reno-
vated existing buildings, low-energy buildings, passive houses, and 
nearly zero energy/emission buildings (nZEB), are commonly charac-
terized by improved building envelope, space heating (SH) demand will 
be greatly reduced, as noted in e.g., the Norwegian standards [7] and 
regulations [8], as well as the European Union’s legislative framework 
[9]. Low-temperature DH (LTDH) enables the exploitation of econom-
ical piping options, such as PEX/Aluminum/PE material with low heat 
loss through distribution networks, and more importantly, provides 
wider opportunities for integrating distributed renewable energy, such 
as by use of building-sized HPs or renewables for peak shaving [10]. 
These advantages of the LTDH were proven in a pilot study of a 
renewable energy-based Danish municipality, which showed that pri-
mary energy demand was reduced by 4.5%, thermal grid loss was 
reduced by 6%, and costs were reduced by 2.7%, when the current 3rd 
generation DH system was changed to an LTDH system with the supply 
and return temperature of 55 and 25 ◦C, respectively [11]. 

The desire for circular economy may facilitate LTDH expansion in 
the Nordic countries as a result of the ban of using oil for heating [10] 
and increased capacity stress on the power grid due to increased power 
trading among neighboring countries requiring resource recovery and 
expansion of renewables [12]. Therefore, decreasing the DH supply 
temperatures from the current 80–120 ◦C range to a much lower level is 
accelerated by both political landscapes and energy efficiency directives 
[10]. To upgrade either the existing DH system to LTDH or build new 
LTDH, the change of heating load is the fundamental premise. There-
fore, analyzing the potentials and challenges by understanding the key 
heating loads from planning and operating perspectives is the first 
necessary step to accelerate the LTDH transition. 

A review study investigated the existing low-temperature based 5th 
generation district heating and cooling (LTDHC) systems in Europe, and 
reported that the LTDHC requires more advanced control strategies due 
to bi-directional energy flows and decentralized interactions [13]. 
Therefore, the information and communication technologies will be 
required to advance LTDH [13]. For example, heating and electricity 
load profiles on demand side may change after using power-to-heat 
(P2H) technologies to couple LTDH with electricity networks [14]. 
The change on heat and power flow may lead to operational problems 
and require enhanced communication between the power supply and 

the DH system. A control algorithm applying fuel shift control was 
proposed to avoid high peak power load and reduce DH network loss 
[14]. Another example is the need to address the impacts on DH oper-
ation network when utilizing datacenter’s (DC) waste heat, e.g. due to 
the changing DC workload and dynamic heating load distribution, there 
is a need to improve DC management for automatic dynamic resources 
allocation, computing workloads for power management, and heating 
load balancing [15]. From the analysis of the challenges and potentials 
for LTDH in a Nordic climate, it can be seen that an LTDH system is very 
sensitive to the indoor set-point temperature, and it is necessary to 
optimize the outdoor temperature compensation curve prediction to 
facilitate the indoor temperature and mass flow rate [16]. Moreover, 
another crucial task in the LTDH system management is peak shaving, as 
this provides the possibility of expanding the heat network to connect 
more heat users without enlarging the infrastructure capacity [17]. To 
conclude, the above explained challenges and findings in achieving the 
best performance for LTDH and in establishing the feasible interaction 
among users; LTDH and electricity networks require intelligent predic-
tion of peak heating load and control system, which can be adjusted by 
measures such as thermal storage implementation [18] and load dis-
tribution over the preceding hours [19]. 

1.2. Previous studies 

As introduced above, LTDH and its integrations with renewables still 
face fundamental challenges to understand the heating load by using 
smart tools. Accordingly, energy prediction must be improved for 
effective sizing and operation of LTDH. By utilizing a large amount of 
measured data, data-driven methods, such as statistical methods and 
machine learning (ML), have shown strength in predicting heating load 
[20–22]. 

Artificial neural network (ANN), one of the ML methods, is found to 
be the most widely used one for energy planning, followed by support 
vector machine (SVM) and autoregressive integrated moving average 
(ARIMA) method, as well as statistical methods like linear regression 
(LR) [23]. A review of the last 30 years’ applications of ANNs in building 
energy analysis shows that there is a strong growing development of 
ANN-based building energy analysis towards the exploitation of newer 
and extended types of ANNs [24]. Due to early implementation of smart 
meters, ANN and other data-driven methods have been mostly focused 
on electricity use, but not on heat use. For example, to estimate 
occupancy-related electricity demand by air-conditioning systems in 
non-residential buildings, an ANN-based model was developed by using 
occupancy as the input, which was determined by the blind system 
identification, showing an improved accuracy of energy prediction [25]. 
However, the proposed model needed to be validated for at least a one- 
year period, to account for seasonal variations of occupancy interactions 
with the electricity profiles [25]. Another ANN-based model compared 

Nomenclature 

ANN artificial neural network 
ASHRAE American Society of Heating, Refrigerating and Air- 

Conditioning Engineers 
CPT changing point temperature 
CV(RMSE) coefficient of variation of the root mean squared error 
DC datacenter 
DHW domestic hot water 
ES curve energy signature curve 
f72 ANN model with 72 input units defined in this study 
g120 ANN model with 120 input units defined in this study 
HDD heating degree day 
HP heat pump 

LTDH low-temperature district heating 
(s)MAPE (symmetric) mean absolute percentage error 
NMBE normalized mean bias error 
SH space heating 
WD weekday 
WE weekend 
el electricity 
€ EUR (currency) 
n number of observations 
R2 coefficient of determination 
tτ outdoor ambient temperature at time instance τ 
yr year  
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two back-propagation learning algorithms (Bayesian regularization and 
Levenberg-Marquardt), which were carried out respectively for day- 
ahead and hour-ahead electricity load forecast in a district [26]. 
Comparing with the total forecasted load for the district, aggregating the 
forecasts of heterogenous building types in the district may improve the 
day-ahead load forecasting performance by 7.9–11.9% [26]. The recent 
broad implementation of smart heat meters collecting (sub-)hourly heat 
use data has largely accelerated better quality in heating load prediction 
and clustering research for heating use data analysis [20]. The knowl-
edge and experience gained from studies of building electricity demand 
data were transferable to heating demand analysis and uncertainties (i.e. 
weather forecasting), as mentioned in [27]. Two types of models, 
autoregressive multiple linear regression (MLR) and autoregressive 
multiple non-linear regression (MNLR), were firstly built to predict the 
DH load profiles of reference buildings and then aggregated the defined 
reference profiles into district levels [21]. In the work, it was shown that 
for predicting buildings with high daily load variation (such as office 
buildings), the ANN-based MNLR gives better performance than MLR in 
terms of a 4.2% reduction in mean squared error (MSE) [21]. Three ML 
methods, SVM, deep neural network (DNN, i.e. ANN with two or more 
hidden layers), and extreme gradient boosting (XGBoost), were respec-
tively adopted to establish a multi-step ahead forecasting model of DH 
load with direct strategy and recursive strategy [22]. By feeding day- 
before influential factors, all three ML methods using these two strate-
gies may accurately forecast the day-ahead DH load. Finally, it is rec-
ommended to further explore the potential of these heating load 
forecasting to optimize operation of the DH system [22]. Gaussian 
mixture model (GMM) clustering enables defining the four typical DH 
operation patterns in office buildings in a semi-arid climate (with cold 
and dry winters) by considering temperature and occupant behavior 
related sub-patterns [28]. After combining the GMM clustering with the 
regression and ANN models respectively, the qualities of hourly heating 
load forecasting are improved by 38.7–75.7% [28]. However, it was still 
difficult predicting the peak heating loads during night-to-daytime pe-
riods due to possible random operation behaviors [28]. A forecasting 
model based on convolutional neural network long-short term memory 
(CNN-LSTM) outperforms other ML methods when solving thermal 
inertia problems in DH system, mainly thanks to its integration of CNN’s 
feature extraction ability and LSTM’s two-dimensional space ability as 
shown in [29]. However, this model requires large numbers of sensors, 
large data storage, and re-training every day [29]. Two ML methods, 
SVM and nonlinear autoregressive exogenous recurrent neural network 
(NARX-RNN), were compared for DHC load prediction [30]. The results 
present that the NARX-RNN exceeds the SVM regarding the quality in-
dicators and computation time. However, the overfitting tendency of 
NARX-RNN needs further study [30]. As introduced above, ANN-based 
prediction methods have enhanced energy prediction, especially 
greatly improved heating load prediction performance, such as 
computation time and prediction quality. However, the models’ prob-
lems such as lack of big data for training, difficulty in peak load pre-
diction, regular re-training, and others, need to be solved. 

Additionally, Q-algorithm was used for developing a data-driven 
model by splitting the data into two parts with a reference load, QREF, 
under three-level decision trees [27]. This model is robust for heating 
load prediction at district scale. Nevertheless, the claimed favorable 
accuracy results (R2) in [27] are clearly lower than the common value, 
ca. 0.75 [31]. Based on 10-year DH production data, operation logics 
and outdoor temperatures were identified as the fundamental drivers for 
DH load prediction by analyzing load profile patterns and energy 
signature curves (ES curves) of the network [32]. The authors pointed 
out that, in the future, the parameters of a heating system should be 
studied according to features of each building type [32]. However, the 
conclusion that hourly time steps are not numerically useful is contrary 
to the research in [28], which presented ES curve in each cluster. 
Considering use of data-mining for DH operation, a temperature control 
method for the secondary network for transforming the existing DH to 

LTDH was introduced in [33]. Based on operation data and weather 
data, the optimized supply temperature could be obtained by summing 
the defined minimum return temperature and optimized temperature 
difference, which was evaluated by a LR model for hour-ahead return 
temperature prediction. This optimization strategy may contribute to 
stable daily operation. Meanwhile, the authors mention that this control 
strategy was limited within certain areas [33]. So far, only a few re-
searchers have addressed the problems of LTDH’s prediction, load 
analysis, and improved operation by using data-mining methods. 

As the IEA DHC Annex TS2 puts forward, future decarbonized 
heating systems need enhanced DH technologies [10], such as installa-
tion of HPs in future’s multi-energy systems [34]. This implies that 
shifting from competition between HPs and DH system to ensuring a 
collaboration between the two may be a promising approach in LTDH. 
An investigation of two combinations (central HPs only and central HPs 
plus booster HPs) for supplying space heating (SH) and domestic hot 
water (DHW), showed that the latter combination enables the DH sys-
tem running at significantly lower temperatures and reduces operation 
costs by 39% over the former combination [35]. With the focus on 
predictions at district scale, the authors used daily average ambient air 
temperatures instead of hourly values [35]. This may not accommodate 
well for predictions at building scale, where in-depth heating response 
from atmospheric condition is crucial to be accounted for. 

1.3. Objective and structure of this study 

Previous research that focusses on improving DH system treats the 
measured energy data as a package, while most energy forecasts have 
not yet conducted in-depth studies on sizing or energy demand re-
quirements for typical building types. Therefore, a bridge must be built 
to link the gap between smart meters and DH suppliers. In this study, the 
main objective was to develop hybrid heating energy prediction 
methods for typical building types, by combining the advanced ANN- 
based prediction method and a plant sizing method based on well- 
measured energy data. To focus the scope of the study, one important 
public building type, nursing home, was selected for the analysis. The 
reasons for selecting this building type and its wider applications are 
discussed in Section 4.1. The novel contribution of this study may be 
summarized as follows. Three-year measured DH use data in real 
buildings were utilized for analysis and modelling, which was to predict 
another year’s DH demand in hourly resolution. The heating load pro-
files predicted by the hybrid methods are of high accuracy and can help 
plant sizing and daily operation with different inputs. Finally, the pre-
dicted load was proposed to be fed as building user’s demand input in an 
LTDH system integrating two building-sized HPs, which may benefit the 
operation of building energy supply system in LTDH and compare the 
cost impacts from different load prediction, as discussed in Section 4.2. 

The rest of the paper is organized as follows. Section 2 briefs the 
methods including the data information of the observed buildings and 
description of the two DH prediction methods. The main results of this 
study are presented in Section 3. Lastly, the limitations, future work, and 
conclusions are discussed and summarized in Sections 4 and 5. 

2. Methods 

The proposed framework consists of four phases. Section 2.1 explains 
Step 1, how building information is collected. Sections 2.2 and 2.3 
explain Step 2 and Step 3, the two heating load prediction methods, 
dealing with the long-term and short-term prediction, respectively. Step 
4 works on the prediction performance evaluation, as introduced in 
Section 2.4. 

2.1. Building and energy data inventory 

Statistically, the annual representative specific energy demand of 
Norwegian nursing homes is 260 kWh/m2 with deviations between − 25 
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and +6 kWh/m2 according to different statistics sources, nearly half of 
which is for heating purpose owing to its high requirements of hygiene 
and thermal comfort under stable occupancy [36]. The high heating 
needs in the cold climates may involve considerable saving potential. In 
this study, 20 DH supplied nursing homes located in Trondheim, Nor-
way, were used for the analysis. These observed buildings have heated 
floor areas ranging from 1350 to 10,940 m2. DH delivers the SH and 
DHW to each building, which were recorded summarily in the meter. 
The DH use data in hourly resolution of the 20 buildings from 2016 to 
2019 were retrieved from the energy monitoring platform of Trondheim 
Municipality [37]. Weather impacts were considered in the heat energy 
analysis, and the local historical weather data over the period were 
obtained from the Norwegian Meteorological Institute [38]. 

The building information regarding annual DH demand, energy 
labelling, and construction year, is briefed in Table 1. The building 
construction year and energy labelling were obtained from the Norwe-
gian Energy Efficiency Agency (Enova) [39]. The labelling scheme goes 
from A (best building energy performance) to G (weakest performance) 
by considering the calculated delivered energy to each building. Except 
one building without information, all the others were built no earlier 
than 1980s, and most of them are labelled with C or D level [39]. The 
analysis was performed on the average specific DH load across the 20 
buildings (W/m2), to define the representative heating demand con-
cerning buildings with different characteristics. 

2.2. Prediction Method 1 – Prediction of annual district heating profile 
with energy signature curve models 

As addressed above, large proportion of energy is used to heat 
buildings in cold climates, following the building’s heating curve rela-
tive to the outdoor temperature. 

In nursing homes DHW heat usage accounts for 15–20% to 40–65% 
of their total annual heat use, depending on the building standard 
(buildings built in 1980 s, passive house standard, etc.) [40]. Since DHW 
heat use is less sensitive to climate than SH, it is reasonable to separate 
DHW from the total DH load, for exploring a more accurate relationship 
between the outdoor temperature and the SH load. The typical per- 
room’s hourly DHW heat use profiles for Norwegian nursing homes were 
identified in [41] providing detailed description and giving represen-
tative DHW profiles for the given climate and resident type. These 
typical hourly profiles (kW/room) were transferred into specific load 
density (W/m2) and used as reference profiles in this study. As sum-
marized in Fig. 1, there are apparent differences between the weekdays 
(WD as shortcut) and the weekends (WE) in the same season, especially 
during the peak load periods, as shown by the solid line and the dashed 
line of the same color. In Fig. 1, the solid lines represent the WDs, and 
the dashed lines the WEs. Meanwhile the seasonal differences between 
the same day type are small. As assumed elsewhere in literature [42], the 
daily DHW demand can be treated nearly constant throughout the year, 
and any effect on DHW would be insignificant. Similarly, in this study 
these four typical daily DHW profiles in Fig. 1 were extrapolated into an 
annual DHW profile, which was then extracted from the total DH to 
obtain SH use. The necessity and challenges of separating SH and DHW 
in the aggregated heating load was also mentioned in a Danish example 
for demand side management in DH networks [43]. 

The relationship between the outdoor temperature and SH load was 

identified by using energy signature curve (ES curve). This method has 
been widely employed in building energy planning and management by 
researchers and engineers at all levels. The ES curve generally consists of 
two parts, the temperature dependent part and temperature indepen-
dent part, which are divided by the changing point temperature (CPT) or 
heating effective temperature. The ES curve may be expressed as: 

if tτ ≤ CPT, P(tτ) = p1 • tτ +p2 +ε (1). 
if tτ > CPT, P(tτ) = p1 • tτ +p2 +ε;= p2 (2). 
In Eqs. (1) and (2), P(tτ) is the SH load for a given outdoor temper-

ature t, p1 and p2 are the coefficients of each ES curve model, and ε is the 
residual error. The SH load follows the linear growth under the slope of 
p1. In addition to the outdoor temperature, the building operation 
schedules were also considered in the models. The identified ES curve 
model may be applied to estimate building energy performance in 
another year by combining the regression coefficients in Eqs. (1) and (2) 
with the corresponding weather data. Finally, Method 1 was used for the 
following purpose in this study: (1) for the system sizing, (2) to define 
boundary conditions of the DH units, and (3) to check boundary for the 
prediction load by Method 2. 

2.3. Prediction Method 2 – Artificial neural network short-term district 
heating prediction 

In this study, day-ahead prediction refers to the problem of, at a 
given point in time, predicting the DH load for the following 24-hour 
period. This prediction was done with an hourly resolution. Two sepa-
rate ANN prediction models were developed to serve as decision- 
supporting tools for short-term planning and operation purposes in the 
future LTDH transitions. The first model considered only the historical 
and forecasted outdoor temperature, which are the measured outdoor 
temperature for the 48 h preceding the prediction period plus the 24- 
hour forecast for outdoor temperature. The second model included the 
historical DH load, the measured DH load for the 48 h preceding the 
prediction period, in addition to the outdoor temperature used in the 
first model. The first model might be helpful when there is difficulty to 
access real-time energy data or when data storage failure occurs with 
many missing values for planning energy generation. 

The two models can be mathematically formulated as follows: Qτ and 
tτ represent the measured DH load and the measured outdoor temper-
ature, at hour τ, respectively; and Q̂τ,s and ̂tτ,s represent the predicted DH 
load and the forecasted outdoor temperature, respectively, at hour τ for 
each of the hours τ+s (defined for s = 1,⋯,24). Historical data from the 
previous 48 h were used to make the prediction as the following: 

Q̂
24
τ =

(
Q̂τ,1,⋯, Q̂τ,24

)
, (3)  

t̂24
τ =

(
t̂ τ,1,⋯, t̂ τ,24

)
, (4) 

Q48
τ = (Qτ− 48+1,⋯, Qτ), and (5) 

t48
τ = (tτ− 48+1,⋯, tτ) (6)  

where Q48
τ and Q̂

24
τ represent, at hour τ, the historical measured DH load 

for the previous 48 h (including τ) and the predicted DH load for the next 
24 h, respectively. Similarly,t48

τ and t̂24
τ represent, at hour τ, the his-

torical measured outdoor temperature for the previous 48 h (including 

Table 1 
List of observed buildings’ information.  

Average measured annual DH demand (kWh/m2) ≤70 ≤90 ≤120 ≤160 ≤190 >190  
No. of buildings / 7 6 6 1 /  
Energy labelling with maximum 

Delivered annual energy (kWh/m2) 
A B C D E F, G No infor. 
140 190 240 295 355 440, >440  

No. of buildings / 4 6 6 3 / 1 
Construction year Before 1950 1950–1979 1980–1999 2000–2010 After 2010  No infor. 
No. of buildings / / 7 9 3  1  
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τ) and the predicted outdoor temperature for the next 24 h, respectively. 
Using these notations, the two models could be expressed mathemati-
cally as: 

if historical heating load is not an input to the model, Q̂
24
τ = f

(
t̂24

τ , t48
τ
)
, (7)  

if historical heating load is an input to the model, Q̂
24
τ = g

(
t̂24

τ , t48
τ ,Q48

τ
)

(8) 

where f and g are the abstract representations of the two ANN pre-
diction models. Eq. (7) presents the first model considering outdoor 
temperature as the predictor, while Eq. (8) presents the second model 
considering both outdoor temperature and DH load as the predictors. 

Both ANN models were established with one input layer (the first 
model, f , with 72 input units, and the second model, g, with 120 units), 
one hidden Rectified Linear Unit (ReLU) layer with 64 nodes and one 
output layer. 64 nodes were determined through hyperparameter 
search. For simplicity, notation f72 represents model f

(
t̂24

τ , t48
τ
)

in Eq. (7) 

and notation g120 represents model g
(
t̂24

τ , t48
τ ,Q48

τ
)

in Eq. (8). These two 
notations are used in the following text. All the layers are densely con-
nected. Mean squared error (MSE) was used as the loss function, and 
Adam was used for the parameter optimization with the maximum 
number of epochs at 100. The models were originally tested with 24, 48, 
and 72 h of historical data (weather and/or DH load). It was found that 
the difference between using 48 and 72 h of historical data was not 
significant while between using 24 and 48 h was significant, regarding 
the loss function. 48-hour historical data were therefore chosen due to 
the faster speed of running the models. The datasets of 2016 and 2017 
were used as the training set establishing the ANN model, and the 
dataset for 2018 were used as the validation dataset for assessing the 
model performance during building and tuning the model process. To 
examine whether the model overfits the training set and is capable for 
future deployment, the resulting models were used to predict the DH 
load profile for 2019 and the prediction quality was evaluated using the 
measured data for the entire 2019, which was an unseen dataset during 
modelling process. 

2.4. Evaluation of the prediction performance 

Quality of the prediction models was evaluated by the commonly 
used criteria: mean absolute percentage error (MAPE), normalized mean 
bias error (NMBE), and the coefficient of variation of the root mean 
squared error (CV(RMSE)); meanwhile symmetric mean absolute per-
centage error (sMAPE) was also used as a supplementary criterion of 

MAPE, with lower and upper bounds. MAPE summarizes the relative 
error between the actual and predicted use in absolute value with a 
division by the observation number n. The directionality of the NMBE 
implies whether there is over-prediction or under-prediction. CV(RMSE) 
indicates whether the predicted model can reflect the real load shape. 
The criteria NMBE and CV(RMSE) shall be no more than 10% and 30%, 
respectively, when analysis is on hourly basis, according to the ASHRAE 
guidelines [31,44], while the MAPE shall be no more than 20% for a 
good forecasting model [45]. 

MAPE was given as: 

MAPE =
1
n
∑n

i=1

⃒
⃒
⃒
⃒
Ai − Fi

Ai

⃒
⃒
⃒
⃒ • 100% (9) 

sMAPE was given as: 

sMAPE =
1
n
∑n

i=1

⌈Ai − Fi⌉

(⌈Ai⌉ + ⌈Fi⌉)/2
• 100% (10) 

NMBE was given as: 

NMBE =
1
n

∑n
i=1(Ai − Fi)

A
• 100% (11) 

CV(RMSE) was given as: 

CV(RMSE) =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(Ai − Fi)

2
√

A
• 100% (12)  

where Ai is the measured value, Fi is the predicted value, and n is the 
number of the observations. 

3. Results 

The daily SH profiles, analysis results of the ES curve model, and the 
predicted annual DH profiles are presented in Sections 3.1 and 3.2. The 
24-hour period prediction results for the warm and cold seasons are 
presented in Section 3.3. Lastly, the prediction performance is evaluated 
in Section 3.4. 

3.1. Average daily space heating profiles and heating degree day results 

After removing the daily DHW heat use in Fig. 1, the average daily 
SH load profiles for the nursing homes 2016–2018 were made by using 
arithmetic mean value of each hour, as shown in Fig. 2. This was to 

Fig. 1. Daily DHW heat load profiles in the nursing homes, divided by day of week and seasons.  
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compare the load profiles between seasons and day types in general. In 
Fig. 2, the solid lines with stars and the dashed lines represent weekdays 
(WD) and weekends (WE), respectively. 

The seasonal month group 1 included November – March, the sea-
sonal month group 2 included April, May, September and October, and 
the seasonal month group 3 included June, July and August. Among the 
three seasonal groups, the heating load generally arose between 6 
o’clock and 16–17 o’clock with the peak load at around 9 o’clock, which 
could be noted on weekdays, weekends, and short holidays. This is in 
line with the survey that most of the nursing homes take their main daily 
activities such as medical treatment, health training, and reading, be-
tween 7 and 16 o’clock, when large SH demand is needed in common 
areas. Due to stable occupancy of patients and residents, the heating 
load profiles for nursing homes demonstrate a milder peak load during 
the working hours and relatively higher level during the non-working 

hours in nursing homes, comparing with the buildings featured with 
distinct night setback control operation and different attendance levels 
between the weekdays and the weekends, such as educational buildings, 
office buildings, and other administrative buildings [46,47]. 

Further, to see whether day types might affect SH use, the obtained 
SH use was segregated into four heating seasons by using the heating 
degree days (HDDs) [48,49]. HDD was calculated as the daily average 
difference between heating balance temperature tbal and hourly outdoor 
temperature: 1

24
∑24

τ=1(tbal − tτ), by assuming tbal at 15 ◦C and setting 
negative values to zero. Days with HDD lower than 5

24
◦C were considered 

as summer, between 5
24 and 100

24
◦C as the transition season, between 100

24 
and 510

24
◦C as the heating season, and with over 510

24
◦C as the very cold 

season. As shown in Fig. 3, it can be concluded that the daily SH oper-
ation generally follows the daily HDD closely, without influence of the 

Fig. 2. Average daily SH load profiles 2016–2018, considering three seasonal month groups.  

Fig. 3. Daily SH use vs. daily HDD, based on four different heating seasons, summer, transition season, heating season, and very cold season (high-heating season).  
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day type (weekday or weekend) nor manual false operation. Therefore, 
the ES curve models for SH prediction were established based on 
working hours and non-working hours, respectively, by following Eqs. 
(1) and (2). 

3.2. Energy signature curve model and annual district heating profile 

The ES curve models for the SH load are presented in Fig. 4, where 
the CPT was found at around 12 ◦C for providing a proper piece-wise 
approximation. The outdoor temperatures above the CPT covered 
22.4% of the entire heating periods, when the SH loads were less tem-
perature dependent as shown under the mild and constant slope. These 
small loads could be described by one regression line regardless of 
working hours and non-working hours. The remaining 77.6% of the 
time, the outdoor temperatures were below the CPT, falling into high- 
heating season. Along the regression lines below the CPT, there was a 
small region where non-working hours might need a slightly higher SH 
load than working hours under the same outdoor temperature (ca. 
10–12 ◦C). This might be explained by residents spending more time 
outdoor during working hours at higher outdoor temperatures, causing 
the ventilation heat demand to decrease slightly due to changes in oc-
cupancy. The quality of regression models was evaluated with the co-
efficients of determination R2, and the results are given in Table 2, 
together with the coefficients for the ES curves. 

In Table 2, for the outdoor temperatures lower than CPT, it might be 
noted that R2 were much higher than the required 0.75 for achieving a 
satisfying regression model [31,44]. However, for the part above the 
CPT, the SH needs had minor impacts on energy system requiring small 
load within short duration time. Comparing with those buildings with 
distinct time clock control operation, there were not pronounced SH 
differences between the working and the non-working hour periods in 
nursing homes, it is still worth analyzing them separately. 

By using Method 1 introduced in Section 2.2, the reversely predicted 
annual DH profile of 2016–2018 was compared with each year’s 

measured DH profile in Fig. 5. It can be observed that the DH load had 
large seasonal variation with the peak load during winter and early 
spring, and most of the predicted DH loads (green lines) were close to the 
measured DH loads (red lines). The annual DH demand of the three years 
were around 111–113 kWh/m2 with peak SH load 31–35 W/m2. By 
using the coefficients and knowledge obtained from the three years, the 
annual DH profile for 2019 was predicted, as shown in Fig. 6 giving a 
breakdown of the SH and DHW heat load profile. The peak SH load was 
29–31 W/m2 at outdoor temperature of − 11.6 to − 9.3 ◦C and the 
minimum load was close to 0.9 W/m2 for the network circulation, while 
the DHW use was considered process heat with seasonally stable usage 
patterns. The predicted annual total DH demand for 2019 was 114 kWh/ 
m2, 15% of which was for DHW heat use. The results follow the statis-
tical data of heat use in nursing home including the share for DHW heat 
use [40]. From this, a typical nursing home with an average area of 
7000 m2 may need around 800 MWh energy for heating purpose 
annually with a peak SH load of 203–245 kW under the similar climate. 
This also provides the boundary conditions that the day-ahead pre-
dictions shall be constrained by the operation scenarios, instead of 
allowing the network temperature drift freely with load variations. 

3.3. Results of short-term district heating load prediction 

The day-ahead prediction performance of the two models f72, g120 are 
compared in Fig. 7 and Fig. 8, and examples from different heating 
seasons were selected. To recall, model f72 did not consider the historical 
DH load as input, whereas g120 did consider the historical DH load, as 
stated in Section 2.3. In both models, the next 24-hour heating load 
prediction for the whole year of 2019 was made from 0 o’clock (τ) on 
January 1 to 0 o’clock (τ) on December 31 and gave 8737 prediction 
results in total, respectively.1 

In Figs. 7 and 8, the top row subplots show the prediction results for 
f72, and the bottom row subplots the results for g120. Each column sub-
plot shows the prediction for the next 24-hour period following the time 
instance indicated at the top, e.g., the prediction of the heating load 
Q̂τ =

(
Q̂τ,1,⋯, Q̂τ,24

)
is plotted for the τ on the given date. By looking at 

each column subplots, it is therefore easy to compare the performance of 

Fig. 4. Energy signature curve models of SH load. The black line below CPT represents working hours and red line non-working hours.  

Table 2 
Coefficients of Eqs. (1) and (2), and the corresponding R2.   

Outdoor temperature dependent ≤ 12 ◦C Outdoor temperature less 
dependent 

Working hour Non-working hour 13–20 ◦C >20 ◦C 

p1  − 1.1  − 0.94  − 0.3 / 
p2  16.7  15.9  8.0 0.9 
R2  0.89  0.90  0.37 (↓)  

1 Since weather of 2020 was not included, the prediction finished at 0 o’clock 
(τ) on December 31 with weather input by 23 o’clock on December 31. 
Therefore, each model ran 8737 times prediction (excluding 1–23o’clock (τ) on 
December 31) and produced 8737 prediction results, respectively. 
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model f72 and model g120 for the same time instance. In Figs. 7 and 8, the 
dashed black line represents the forecasted outdoor temperature for the 
corresponding 24-hour period, which are the actual outdoor tempera-
ture and used for evaluation in this case. To hold statistical reliability, 
three prediction results out of the 8737 instance τ were randomly 
selected from the 2019 testing data using a uniform probability distri-
bution. The sample results are presented in Fig. 7, in which there were 
two DH load spikes, one was measured at 9 o’clock on September 16 and 
the other one at 3 o’clock on October 27, see the green squares pointed 
by the gray arrows. Since the first random samples were not part of the 
(high-) heating season (cold period with high heating demand), further, 
the prediction results for three dates during January, February, and 
December were randomly selected, covering the outdoor temperature 
from − 11 to 2 ◦C, as shown in Fig. 8. In all the seasons, the load pre-
dicted by model g120 was apparently closer to the measured load than 

the one predicted by model f72, both to the curve patterns and load 
values. 

3.4. Results of the prediction performance evaluation 

Due to thermal and hydraulic inertia in DH systems, and energy 
source availability, daily operation is commonly planned and arranged 
based on energy demand prediction for satisfying end-users’ heating 
need in an economical way. By accumulating the daily prediction from 
Method 2 introduced in Section 2.3, a summed deviation between the 
predicted and the measured data throughout a year may be visualized. 
The deviation accumulated during (high-) heating season is especially 
important for evaluating peak loads prediction performance. Since the 
models, f72 and g120, respectively produced next 24-hour heating load 
prediction at (any) hour τ, it is possible to select the same hour τ of each 

Fig. 5. Measured vs. predicted DH load profile during 2016–2018 (subplot A–C), and predicted DH duration curves during 2016–2018 (subplot D).  

Fig. 6. Predicted DH load profile for 2019 with a breakdown of SH load profile (top row subplot) and DHW heating load profile (bottom row subplot).  
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day for planning the next-day’s production. Accordingly, the 24-hour 
ahead prediction results made at 0 o’clock every day from January 1 
to December 31 were accumulated for obtaining the annual predicted 
load profile for 2019. It shall be noted that these accumulated annual 
profiles were obtained differently than the one presented in Section 3.2, 
which was made by Method 1, the ES curve model – directly on a long- 
term basis. 

Fig. 9 compares the predicted load profiles for 2019 made by Method 
1- ES curve model (the green line), Method 2, model f72 (the dark red 
line), and model g120 (the yellow line), with the measured load profile 

(the blue line). The deviation between the measured load and the pre-
dicted load, Δ(τ) = measured Qτ − predicted Q̂τ , by the three models 
for 2019 are shown in Fig. 10, and the prediction accuracy evaluation of 
the three models is summarized in Table 3. In Fig. 9 all the three pre-
dicted load profiles followed seasonal variations, and the profiles by 
models f72 and g120 fell within the sizing boundary set by Method 1. g120 
demonstrated an advantage in predicting heating load in mild- and low- 
heating seasons, during which most of the heating needs were DHW use 
and therefore had a weak linear relationship with the outdoor 

Fig. 7. Predicted DH load for the 24-hour period following the date indicated above each column, showing the randomly selected prediction results by model f72 (top 
row subplots) and by model g120 (bottom row subplots). 

Fig. 8. Predicted DH load for the 24-hour period following the date indicated above each column, showing the selected three dates prediction results by model f72 

(top row subplots) and by model g120 (bottom row subplots). 
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temperatures, as indicated by the red circle. In Fig. 9, the horizontal 
dash-dotted line refers to the reference line of the outdoor temperature 
at − 9 ◦C, and only outdoor temperatures below − 5 ◦C are presented as 
shown in the black dashed line; the red arrows point to the four 

examples of the peak heating load periods, as presented in Fig. 11. As 
compared in Fig. 10, g120 held the prediction deviations within ±3 W/ 
m2 during most of the time, f72 had highest deviations during cold pe-
riods either over-predicting DH load or under-predicting DH load, and 
the ES curve kept the prediction deviation in between. The deviation 
high spikes on October 27 were mostly caused by measurement failure, 
see Fig. 7, when a sudden high DH load was measured. 

In Fig. 11, Model f72 was least sensitive to the outdoor temperature 
changes by underpredicting the peak load and overpredicting the load 
during other time, also seen in Fig. 10; the ES curve model and model 
g120 catch most of the peak load periods, whereas the ES curve model 
might have overpredicted the peak load and caused unnecessary costs 
comparing to g120. To recall Fig. 3, the regression line generally corre-
lated well between the daily HDDs and the daily SH demand, however it 
might have overpredicted the SH use in the short and very cold season. 

Fig. 9. Measured vs. predicted annual DH load profiles by the three models for 2019.  

Fig. 10. Deviation plot between measured and predicted DH load by the three models for 2019.  

Table 3 
Evaluation results of 2019 DH load forecast produced by the three models. The 
criteria, MAPE, sMAPE, NMBE, and CV(RMSE), are used for quality evaluation.  

Prediction method MAPE 
(%) 

sMAPE 
(%) 

NMBE 
(%) 

CV(RMSE) 
(%) 

Method 1-ES curve 
model  

13.94  12.81  − 3.91  13.79 

Method 2-model f72  16.77  14.75  − 8.13  15.51 
Method 2-model g120  7.23  7.28  − 0.36  7.90  
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Since the ES curve model below the CPT was determined by considering 
heating season and very cold season together, this might explain the 
possible overprediction of the peak SH load by Method 1. 

As listed in Table 3, the MAPE and sMAPE results of the three models 
were less than 20%, NMBE within ±10%, and CV less than 20%, 
meeting the criteria upper limits [31,44,45]. Despite using the same 
training set for f72 and g120, g120 had the best prediction performance on 
a yearly basis benefitting from using both the nearest historical two-day 
heating load and the outdoor temperatures as inputs, while f72 only 
considered the ambient condition as the inputs and its prediction ac-
curacy was reflected by the poorest results regarding all the criteria. 
However, it was still good to notice that the load predicted by f72 to some 
extent was able to catch the pattern from the measured load curves, even 
without historical DH load as inputs, as reflected by its criterion CV 
(RMSE) result, much lower than the limit, 30%. Besides setting load 
boundary, the heating load prediction quality of the ES curve model was 
in the middle of the three models. 

This means the models and their predicted DH load profiles provided 
high accuracy for use in the following work, regardless of the different 
input settings and algorithms of the three prediction models. 

4. Discussions and future study 

Selection of the analyzed building type data is reasoned in Section 
4.1. Section 4.2 discusses three points, rationality of the models, limi-
tation, and future work. The value of transferring this work is presented 
in Section 4.3. 

4.1. Rationale of building type data inventory 

A selection of nursing homes in the city of Trondheim was selected 
for the data analysis and modelling. A modern nursing home covers a 
large floor area and includes residents’ private rooms with round-the- 
clock occupancies, large common area, 24/7 nursing service, and 
administrative offices. In 2018, the Norwegian long-term care expen-
diture accounted for 3.5% of GDP, while the average expenditure in 

OECD countries was 1.5% [50]. The function and characteristics of this 
building type make it an important public residential building with 
respect to social welfare progress and residents’ care needs in the aging 
society. 

The energy use in special residential building types, such as nursing 
homes, has more true-needs for users during whole heating seasons, and 
has not yet been extensively studied compared to residential buildings, 
especially in the cold climate, as mentioned in [41]. Since most of them 
are supplied by DH, it is important to study their energy needs in the 
transition to LTDH and to improve building energy supply, and for this, 
it is important to develop reliable prediction methods. 

4.2. Discussions 

4.2.1. Rationality of the models 
By making good use of big data, data-driven models were selected 

over physical models. In Fig. 7, there were two DH load spikes, whereas 
the load profiles predicted by the two ANN models demonstrated a 
smoother trend. After checking the outdoor temperature during the two 
days, no “sudden” weather changes were recorded. Thus, these unusual 
data values might have been caused by metering failures or false oper-
ation. Nonetheless, the established models showed more reasonable 
heating load prediction. Besides the proper algorithms, the three-year’s 
large data for training/validation also contributed to the appropriate 
prediction. 

4.2.2. Limitation 
The models adopted the actual measured outdoor temperature (the 

predictor) as the forecasted outdoor temperature for prediction. Prac-
tically, this weather forecast would however be inaccurate to some 
extent and may consequently cause a weaker performance than the 
observed in this study. Therefore, it is important to build the base model 
as accurately as possible, to reduce the spread and impacts of such 
weather uncertainties and inaccuracies. Meanwhile, due to this study’s 
limited scope and length, only the hybrid of a linear regression model 
and an ANN model was considered. Although the prediction results were 

Fig. 11. Four examples of peak load periods in 2019, measured vs. predicted DH profiles by the three prediction models. Subplot A represents the load profiles 
comparison from 1 o’clock on January 22 to 24 o’clock on January 24. Subplot B represents the load profiles comparison from 1o’clock on February 4 to 24 o’clock 
on February 6. Subplot C represents the load profiles comparison from 1 o’clock on March 5 to 24o’clock on March 6. Subplot D represents the load profiles 
comparison from 1 o’clock to 24 o’clock on November 9. 
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satisfactory, a further study shall investigate whether there are other 
types of prediction methods, and newer types of ANN architectures may 
achieve better results, even with less training data available. 

4.2.3. Future work – integration of building sized heat pumps in low- 
temperature district heating 

In addition to improving DH load prediction quality, the above- 
described heating load profiles for DHW and SH may be utilized 
respectively in building energy supply operation when the building is 
connected into LTDH system. For example, it would be helpful to 
respond the different minimum allowable supply temperature re-
quirements of DHW and SH by integrating two building-sized boosting 
HPs in LTDH. This may be regarded as a promising solution towards one 
of the challenges in LTDH. One possible application may be proposed as 
shown in Fig. 12, where from left to right side are the emerging heat 
source from waste heat, the temperature upgrade process, and the 
building user. 

According to the Norwegian regulation, when a water storage tank is 
included, the DHW temperature should be maintained at not lower than 
65 ◦C to prevent Legionella’s growth [51]. One booster HP (HP1) may be 
accordingly employed for upgrading the heat source temperature e.g., 
from 55 to 65 ◦C for DHW heating, which connects to a water storage 
tank and a heat exchanger at substation. 

The second booster HP (HP2) may be employed for upgrading the 
heat source for satisfying the peak SH load, when the outdoor temper-
ature reaches a critical point that the source temperature is unable to 
maintain thermal comfort. For example, when using the conventional 
radiators in Nordic housings, the critical point may be determined as in 
[52] giving the equation as: 

tin = − 0.75 • tτ + 51 (13)  

where tτ is the outdoor temperature and tin is the minimum heating 
supply temperature. Additionally, selection of the critical point shall 
also consider the energy system’s flexibility and use of building thermal 
inertia as shown elsewhere [53,54]. 

When the HPs or other boosting units are electric-driven, the annual 
electricity bill for heat source upgrade process is calculated by sum-
marizing the monthly cost, which may follow Eq. (14): 

Cmon = (1 + 0.25) •
∑720or744

t=1
vτ•Ėτ + f •

∑720or744

t=1
Ėτ +

F
12

(14)  

where τ is the time instance, 0.25 is the tax rate on spot price, vτ is the 
variable power market price, considered with the NordPool spot price of 
Trondheim in 2019 [55], Ėτ is the hourly electricity use, f is the grid rent 
with a value of 0.023€/kWh, and F is the fixed annual fee with a value of 
190€/yr to ensure customers’ access to electricity covering the costs 
associated with power grid operation, retrieved from grid company 
Elvia [56]. Many European countries adopt a price charging model 
similar to the one shown in Eq. (14) [57], containing fixed grid rent, tax, 
and variable market price; in some cases, surcharge of high peak load in 
winter are also included. 

To analyze the impacts from different prediction models on the 
overall costs of the building heat supply system, a thorough study shall 
be carried out involving several key factors, e.g., types of HPs com-
pressors driving force, operation optimization strategy, and sizing of the 
boosting HPs and water storage tank to avoid high peak surcharge. In 
addition to focusing heating load prediction and supply on building side, 
it would be interesting to examine the interactive response between DH 
plant/network and building user side. For example, when integrating 
renewables and short-to-medium-term thermal storage into LTDH, 
which is likely to come more in the near future, pricing models for both 
heat source and boosting costs shall be considered in the overall network 
cost optimization. Due to the length of the paper, an in-depth analysis 
and scenario-based projection of system cost shall be the goal of future 
study. 

4.3. Value of transferring the developed models 

There is a noticeable difference in heating load prediction perfor-
mance between the model using historical heating loads and outdoor 
temperature as prediction inputs (g120) and the models only using the 
outdoor temperature as inputs (the ES curve model and f72), e.g. during 
the mild-low heating season. One reason could be the thermal inertia 
effects of the buildings and suboptimal control of the heating loads, 
which likely makes the historical heating loads be useful to model. 
Additionally, during this period, DHW heat use accounted for a higher 

Fig. 12. Schematic diagram of integrating building-sized HPs.  
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share of heat demand under the weaker relationship between the out-
door temperature and the heating load. This evidence presented a basis 
for future LTDH transitions under different climates, that more heating 
loads may fall into mild-heating season and only peak loads into high- 
heating seasons. 

Although it is important to include historical heating load for pre-
diction models as found in the results, historical heating load data are 
unfortunately either accessible with delays or low data quality, i.e., low 
time resolution, different from historical weather data, which are usu-
ally publicly accessible via meteorological institutions. Accordingly, 
another potential application of the results is to map load predictions in 
other relevant buildings, either existing ones without high quality data 
collection or newly built ones with limited data for training. One of the 
promising methods is transfer learning (TL), which is a state-of-the-art 
ML technique showing excellent performance in different fields. 
Lately, TL has shown advantages for building energy management with 
adjustment of buildings’ identities [58]. The gained knowledge is 
therefore beneficial for understanding such as newly built nursing 
homes or existing ones in need of renovation assessment, by transferring 
the developed energy prediction models of one typical building type to 
individual buildings. 

5. Conclusions 

This study proposed hybrid heating load prediction methods and 
examined the feasibility of integrating two building-sized HPs in an 
LTDH system. The work was established on the average heating load of 
20 nursing homes, involving different building ages, areas, and energy 
labelling levels in the Nordic climate. 

The main findings are as the following:  

• From Method 1, the ES curve model provided a long-term heating 
load prediction in hourly resolution, showing a strong linear rela-
tionship between the outdoor temperature and the heating load over 
half of the heating seasons.  

• Under the sizing boundary by Method 1, it was found to be important 
to include historical heating data as inputs when developing the two 
ANN models in Method 2, f72 and g120. Through the accumulation of 
every day’s day-ahead prediction, models f72 and g120 were compa-
rable with the ES curve model on a yearly basis.  

• The three models were evaluated on the actual measured data from 
real cases, demonstrating the feasibility of such prediction models. 
Among them, benefitting from considering both the historical heat-
ing load and the outdoor temperature as the inputs, the ANN model 
g120 showed the best results in the quality evaluation, especially in 
predicting the heating load in the mild-low heating season and peak 
periods.  

• As one of the challenges in LTDH system, the different minimum 
allowable temperature requirements of DHW and SH, may be 
handled by integrating two building-sized heat pumps, with the 
respective load profiles for DHW and SH as demand inputs. 

This study demonstrated hybrid building heating load prediction 
methods and present their possible application in building energy supply 
operation. The proposed methods and results were established and 
evaluated on a large amount of measured data and may give a better 
insight into building energy management and the LTDH system. 
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[43] Cai H, Ziras C, You S, Li R, Honoré K, Bindner HW. Demand side management in 
urban district heating networks. Appl Energy 2018;230:506–18. https://doi.org/ 
10.1016/j.apenergy.2018.08.105. 

[44] American Society of Heating Refrigerating and Air Conditioning Engineers. 2013 
ASHRAE handbook: fundamentals; 2013. <http://app.knovel.com/hotlink/toc/id: 
kpASHRAEC1/2013-ashrae-handbook> [accessed: Feb. 27, 2021]. 

[45] Meade N. Industrial and business forecasting methods, Lewis, C.D., Borough Green, 
Sevenoaks, Kent: Butterworth, 1982. Pages: 144. J Forecast 1983;2(2):194–6. 
https://doi.org/10.1002/for.3980020210. 

[46] Frederiksen S, Werner S. District heating and cooling. Studentlitteratur AB; 2013. 
[47] Ding Y, Brattebø H, Nord N. A systematic approach for data analysis and prediction 

methods for annual energy profiles: an example for school buildings in Norway. 
Energy Build 2021;247:111160. https://doi.org/10.1016/j.enbuild.2021.111160. 

[48] Lundström L, Wallin F. Heat demand profiles of energy conservation measures in 
buildings and their impact on a district heating system. Appl Energy 2016;161: 
290–9. https://doi.org/10.1016/j.apenergy.2015.10.024. 

[49] Carragher M, De Rosa M, Kathirgamanathan A, Finn DP. Investment analysis of 
gas-turbine combined heat and power systems for commercial buildings under 
different climatic and market scenarios. Energy Convers Manage 2019;183:35–49. 
https://doi.org/10.1016/j.enconman.2018.12.086. 

[50] OECD. Spending on long-term care Brief-November-2020.pdf. <https://www. 
oecd.org/health/health-systems. https://www.oecd.org/health/health-systems/ 
Spending-on-long-term-care-Brief-November-2020.pdf> [accessed Dec. 02, 2021]. 

[51] TEK. Inneklima og legionella-Temaveiledning. Building technical regulations. 
<https://dibk.no/globalassets/byggeregler/tidligere_regelverk/eldre_ 
temaveiledere_og_rundskriv/2003ho-1-legionella.pdf> [accessed Jan. 27, 2022]. 
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