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Summary

This thesis presents new results and solutions for prioritized control of robotic
systems and hybrid feedback control of marine and aerial vehicles. We introduce
a novel task-priority framework for redundant robotic systems based on a hierar-
chy of control Lyapunov function (CLF) and control barrier function (CBF) based
quadratic programs. The proposed method guarantees strict priority among dif-
ferent groups of tasks such as safety-related, operational and optimization tasks.
Subsequently, we present a prioritized control scheme for safety-critical control of
autonomous surface vehicles in the presence of unknown ocean currents. The sta-
bilization objective is formulated as a maneuvering problem and integral action
is introduced in the CLFs to counteract the effect of unknown irrotational ocean
currents. Moreover, ocean current estimates are constructed for robust control bar-
rier function design, and analytic conditions under which the estimates guarantee
safety are derived.

The use of hybrid feedback is motivated by its ability to employ logic variables
together with a properly defined switching mechanism to overcome inherent topo-
logical obstructions to global asymptotic stability. These topological obstructions
are associated with the rotational degrees of freedom of marine and aerial vehicles.
We introduce a hybrid proportional-derivative (PD) control law with a hysteretic
switching mechanism for left-invariant systems whose configuration space can be
identified with a matrix Lie group. This baseline hybrid PD control law has global
asymptotic stability properties when the model parameters are known. Although
full state measurements are usually assumed throughout the thesis, we develop an
output-feedback variant of the baseline PD control law which only requires mea-
surements of the configuration. Moreover, we augment the PD control law with in-
tegral action to obtain two slightly different hybrid proportional-integral-derivative
(PID) control laws that both achieve global asymptotic tracking in the presence of
unknown and constant disturbances.

The aforementioned hybrid control laws are designed using the notion of a syn-
ergistic function, also known as a synergistic potential function. Synergistic Lya-
punov function and feedback (SLFF) pairs generalize the notion of a synergistic
function. We propose a generalization of SLFF pairs, which allows the logic variable
in traditional synergistic control, denoted the synergy variable, to change during
flows. Moreover, we introduce synergy gaps relative to components of product sets,
enabling us to define jump conditions in the form of synergy gaps for different com-
ponents of the synergy variable. We demonstrate how the proposed generalization
can be employed for synergistic maneuvering control of a marine surface vehicle
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with discrete path dynamics.
In the subsequent chapter, we introduce hysteretic control Lyapunov functions

(HCLFs). A family of HCLFs consists of local control Lyapunov functions defined on
open domains, and include finite collections of open and closed sets that cover the
state-space, implicitly defining a hysteresis-based switching mechanism. We have
highlighted the connection between HCLFs and synergistic Lyapunov functions and
feedbacks. Specifically, we have shown that HCLFs generalize the concept of syner-
gistic control Lyapunov functions (SCLFs), and that an SCLF family together with
a collection of continuous control laws synthesized from the SCLF family constitute
an SLFF pair. Furthermore, given an HCLF family, we derive sufficient conditions
for the existence of globally asymptotically stabilizing control laws. Moreover, we
provide a constructive design procedure for synthesis of optimization-based feed-
back laws under mild conditions on the objective functions.

Then, we design a sliding-surface type adaptive hybrid control law for marine
vehicles for global asymptotic tracking in the presence of parametric modeling er-
rors. This control law is derived from a set of potential functions and a hysteretic
switching mechanism. The assumptions on the potential functions and the hys-
teretic switching mechanism are less restrictive than the conditions for synergistic
control. In contrast to e.g. backstepping-based control approaches, the switching
mechanism remains independent of the vehicle velocities in this approach, which
enables estimation of the inertial parameters. Moreover, we experimentally validate
the proposed control scheme for surface and underwater vehicles.

Finally, we synthesize a tuning function-based adaptive hybrid control law
which achieves global asymptotic position and heading tracking for multirotors in
the presence of unknown and constant disturbances in both the translational and
rotational dynamics. The use of tuning functions results in a minimal number of
parameter estimates, and ensures global convergence of the disturbance estimates
to their true values.
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Sammendrag

Denne avhandlingen presenterer nye resultater og løsninger for prioritert bevegel-
sesstyring av robotsystemer samt bevegelsesstyring av marine og flyvende farkos-
ter ved hjelp av hybrid reguleringsteknikk. Vi introduserer et nytt rammeverk for
oppgavebasert regulering av redundante robotsystemer. Dette rammeverket er ba-
sert på et hierarki av kontroll-Ljapunov-funksjon- (CLF) og kontrollbarrierefunk-
sjonbaserte kvadratiske programmer. Metoden garanterer streng prioritet mellom
forskjellige grupper av reguleringsoppgaver, som for eksempel sikkerhetsrelaterte,
operasjonelle og optimaliseringsoppgaver. Deretter presenteres en metode for sik-
kerhetskritisk bevegelsesstyring av marine overflatefartøy som opererer i farvann
med ukjente havstrømmer. Stabiliseringsoppgaven er formulert som et manøvre-
ringsproblem og integralvirkning er introdusert i CLF-ene for å motvirke effekten
av de ukjente havstrømmene. Videre genererer vi havstrømsestimater for design
av robuste kontrollbarrierefunksjoner, og vi utleder analytiske betingelser som ga-
ranterer at de sikkerhetsrelaterte oppgavene er oppfylt når havstrømestimatene
benyttes.

Bruken av hybrid reguleringsteknikk er motivert av dens evne til å benytte logis-
ke variable sammen med en veldefinert svitsjemekanisme for å overkomme iboende
topologiske obstruksjoner til global asymptotisk stabilitet. Disse topologiske ob-
struksjonene er assosiert med rotasjonsfrihetsgradene til marine og flyvende far-
koster. Vi utvikler en hybrid proposjonal-derivat-regulator (PD-regulator) med en
hysteretisk svitsjemekanisme for venstreinvariante systemer beskrevet på matrise
Lie-grupper. Denne regulatoren har globale og asymptotiske stabilitetsegenskaper
og er utgangspunktet for resten av regulatordesignene i dette kapittelet. Selv om
vi som regel antar at hele tilstanden er målbar i denne avhandlingen, så utvikler vi
en utgangstilbakekoblet variant av den hybride PD-regulatoren som bare benytter
konfigurasjonsmålinger. Videre utvider vi PD-regulatoren med integralvirkning på
to forskjellige måter, noe som resulterer i to litt forskjellige proposjonal-integral-
derivat-regulatorer (PID-regulator) som begge oppnår global asymptotisk stabilitet
selv når systemdynamikken er utvidet med en konstant og ukjent forstyrrelse.

De tidligere nevnte hybride regulatorene er designet ved å benytte såkalte syner-
gistiske funksjoner, også kjent som synergistiske potensialfunksjoner. Synergistiske
Ljapunov-funksjon og tilbakekoblings (SLFF) par generaliserer synergistiske po-
tensialfunksjoner. Vi forslår en generalisering av SLFF par som tillater den logiske
variabelen i tradisjonell synergistisk regulering, som vi betegner synergivariabelen,
å være vektorevaluert og ha kontinuerlig dynamikk definert av en gitt differensial-
ligning, i tillegg til diskret dynamikk. Videre introduserer vi synergigap relativt
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til komponenter av produktmengder, som følge av dette kan vi definere hoppbe-
tingelser i form av synergigap for forskjellige komponenter av synergivariabelen.
Vi demonstrerer hvordan den foreslåtte generaliseringen kan benyttes til å forene
synergistisk regulering med manøvreringsproblemet gjennom en casestudie av et
marint overflatefartøy. Her augmenterer vi i tillegg banedynamikken med diskret
hoppdynamikk, noe som ikke er mulig i den originale manøvreringsteorien som be-
grenser seg til kontinuerlige dynamiske systemer beskrevet av differensialligninger.

Deretter introduserer vi hysteretiske kontroll-Ljapunov-funksjoner (HCLF-er).
En samling av HCLF-er består av lokale CLF-er definert på åpne definisjonsmeng-
der, og inkluderer endelige samlinger av åpne og lukkede mengder som overdek-
ker tilstandsrommet. Disse overdekningene definerer implisitt en hysteresebasert
svitsjemekanisme. Vi har fremhevet sammenhengen mellom HCLF-er og SLFF-er
ved å vise at HCLF-er generaliserer konseptet av synergistiske kontroll-Ljapunov-
funksjoner (SCLF-er). Spesifikt, så har vi vist at en samling av SCLF-er sammen
med en samling av kontinuerlige regulatorer avledet av en samling av SCLF-er
utgjør et SLFF par. Dessuten utleder vi tilstrekkelige betingelser for eksistensen
av en samling kontinuerlige regulatorer som garanterer global asymptotisk stabi-
litet av systemet i lukket-sløyfe, gitt en samling av HCLF-er. Vi presenterer også
en konstruktiv prosedyre for konstruere optimaliseringsbaserte regulatorer under
milde antagelser på objektfunksjonene.

Senere foreslår vi en adaptiv hybrid regulator for marine farkoster som sørger
for global asymptotisk følging av et hybrid referansesystem for marine farkoster
hvor modellstrukturen er kjent, men modellparameterne er ukjente. Regulatoren
er utledet fra en mengde av potensialfunksjoner og en hysteretisk svitsjemeka-
nisme. Bemerk at antagelsene på potensialfunksjonene og svitsjemekanismen er
svakere enn ved bruk av synergistiske regulatorer. I motsetning til f.eks. backstep-
pingbaserte regulatorer, så forblir svitsjemekanismen uavhengig av hastighetene til
farkosten ved bruk av denne metoden, noe som muliggjør estimering av treghetspa-
rametrene. Videre utleder vi potensialfunksjoner og svitsjemekanismer for marine
overflatefartøy og undervannsfarkoster, og validerer regulatorene eksperimentelt for
en skalamodell av et slepefartøy og en fjernstyrt undervannsfarkost.

Avslutningsvis betrakter vi problemet med global asymptotisk posisjon- og kurs-
følging for multirotorer. Vi antar her at modelleringsfeil og eksterne forstyrrelser
kan slås sammen og modelleres som konstante og ukjente forstyrrelser i translasjons-
og rotasjonsdynamikken. For å løse dette problemet utvikler vi en adaptiv hybrid
regulator basert på tuningfunksjoner som garanterer global asymptotisk posisjon-
og kursfølging av en begrenset referansetrajektorie, selv med ukjente forstyrrelser
i translasjons- og rotasjonsdynamikken. Bruken av tuningfunksjoner resulterer i et
minimalt antall parameterestimater, og gir global konvergens av parameterne til
deres sanne verdier.
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Chapter 1

Introduction

The intent of this thesis is to present new results and solutions for prioritized control
of robotic systems and hybrid feedback control of marine and aerial vehicles. Since
these two topics are somewhat disjoint, this thesis is divided into two parts. The first
part considers task-priority control of redundant robotic systems and task-priority
control for safety-critical control of fully actuated marine surface vehicles. A robotic
system is kinematically redundant when it has more degrees of freedom (DOFs)
than those strictly required to execute a given task. Tasks are often divided into
groups according to their priority, such as safety-related tasks, operational tasks
and optimization tasks. Safety-related tasks are typically set-based, that is, control
objectives with a range of valid values. Since a robotic system is typically initialized
in such a way that the safety-related tasks are satisfied, safety can often be recast as
a forward invariance property of the so-called safe set, that is, the set in which the
safety-related task is satisfied. Operational tasks are usually equality-based, which
is to say that they should be controlled to some desired value, while optimization
tasks could be either set-based or equality-based. For instance, a manipulability
index task is inherently set-based, while a desired robot pose as determined by a
set of desired joint angles, is equality-based.

Kinematic redundancy enables additional tasks to be executed simultaneously
by utilizing the redundant DOFs of the system. However, care must be taken when
resolving kinematic redundancy. In particular, if compatibility between two or more
tasks cannot be guaranteed at all time, then lower-priority tasks may prevent con-
vergence of higher-priority tasks. Since tasks at the lowest-priority level are often
added to ensure joint-space stability of a robotic system, they are inherently in-
compatible with mission-related tasks such as end-effector control. Moreover, high-
priority safety-related tasks such as collision avoidance are always incompatible
with positioning tasks when the position reference is not collision free. Conse-
quently, redundancy should be resolved by ensuring strict-priority between tasks,
i.e. that lower-priority tasks have no effect on the execution of higher-priority tasks.

The second part of this thesis marks the departure from the world of classical
control theory where the closed-loop system is of a continuous-time nature. Instead,
by designing feedback control laws for continuous-time systems which combine both
continuous- and discrete-time behavior, the closed-loop system becomes a hybrid
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dynamical system. In contrast to continuous-time feedback control laws, hybrid
feedback control laws enable the use of logic variables, timers and memory states
in the control law [1]. Logic variables can be employed to overcome topological
obstructions preventing any continuous-time control law from robustly and globally
asymptotically stabilizing a continuous-time nonlinear system to an equilibrium
point or to a set of equilibrium points. Logic variables can also be used to synthesize
hybrid control laws that switch between different locally stabilizing control laws.
This may in turn, improve transient performance.

1.1 Task-Priority Control

Kinematic task-priority control is a redundancy resolution method introduced in
[2], developed in [3] and generalized to any number of priority levels in [4]. This
control approach decouples the controller into a kinematic and dynamic controller,
and has been successfully implemented on a number of robotic systems. The frame-
work was extended to support tasks described by sets or inequalities in [5], [6] and
[7]. These kinematic control approaches all resolve redundancy at the velocity level
by generating velocity references for some dynamic controller to follow. An im-
mediate drawback is that acceleration references cannot be included, resulting in
worse tracking performance.

Operational space control [8] is a holistic approach that assigns joint torques
directly by transforming the equations of motion from joint space into the oper-
ational space (also known as task space). Although it was mainly introduced for
non-redundant systems, a dynamically consistent null space operator was defined
in [8], that allowed two operational space tasks to be defined and controlled simul-
taneously. In [9], the scheme was extended to a task-priority framework with an
arbitrary number of tasks by generalizing the dynamically consistent null space op-
erator from [8] to an arbitrary number of priority levels. These null space operators
ensure that torques generated by lower-priority tasks do not generate accelerations
that affect the task dynamics of higher-priority tasks. The operational space frame-
work was extended to include set-based tasks, i.e. control objectives with a range
of valid values in [10]; however, this approach does not scale well for systems with
a high number of DOFs.

Control Lyapunov functions (CLFs) extend Lyapunov theory to systems with
inputs and have become an essential part of nonlinear control design after the pi-
oneering work in [11–13]. The CLF concept was extended to rapidly exponentially
stabilizing control Lyapunov functions (RES-CLFs) in [14], which achieve exponen-
tial convergence at a controllable rate. Through CLFs or RES-CLFs, the control
designer is free to chose among an infinite number of controllers. An important
example is the point-wise minimum norm controller [15, 16], which selects the con-
trol value of minimum norm from all control values rendering the time derivative of
the CLF negative definite. The point-wise minimum norm controller has a closed-
form solution since it is the solution to a quadratic program (QP) with only one
inequality constraint. This QP can be augmented with control input saturation
limits and other control input constraints, at the expense of a closed-form solution
[17]. For redundant robotic systems, two control tasks can be satisfied simultane-
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ously by defining CLFs for each task and finding a control input that minimizes
some quadratic objective function while ensuring that the time derivatives of the
CLFs are negative definite [18]. However, strict priority between tasks cannot be
ensured.

Barrier functions have been used extensively in constrained optimization [19,
20], and have motivated the concept of barrier certificates for safety-critical control.
Barrier certificates were introduced as a tool for proving forward invariance of sets
[21, 22]. Since these sets often encode safety-related objectives, proving invariance
of a safe set implies that the system will remain safe, as long as you start safe.
These barrier certificates tend to infinity as the state tends to the boundary of
the safe set, and in order to obtain safety guarantees beyond the boundary of the
safe set, various Lyapunov-like approaches have been proposed such as [23], where
a positive definite barrier certificate is employed as a barrier Lyapunov function.
However, these conditions are overly conservative since the positive definiteness
property enforces the invariance of every level set, and not just the safe set of the
set-based task in question. The notion of barrier functions in [24] do not require
the barrier functions to tend to infinity as the state tends to the boundary of the
safe set. Moreover, the sufficient conditions ensuring forward invariance of the safe
set must only be verified in a neighborhood of the boundary of the safe set.

Barrier certificates were extended to systems with inputs by introducing the first
notion of a control barrier function (CBF) in [25]. These control barrier functions
were combined with control Lyapunov functions in [26], and further improved in
[27] to establish conditions for so-called control Lyapunov-barrier functions, which
jointly guarantee safety and stability. However, these conditions were shown to be
too restrictive, and subsequently relaxed in [28, 29], which extended control barrier
functions to the entire safe set, and thus enabling controller synthesis through
optimization-based methods [30]. In particular, the CLF-based QPs in [18] and
[17] could be augmented with CBFs to ensure stability and safety [28, 29]. CBFs
were generalized to exponential control barrier functions (ECBFs) in [31], which
enforce forward invariance of set-based tasks with a higher relative degree.

It is clear that velocity level kinematic task-priority control has been exten-
sively studied in the literature, and successfully extended to account for set-based
tasks. However, as highlighted by the previous paragraphs, there only exists one
framework for set-based task-priority control at the dynamic level [10], which does
not scale well for systems with a high number of DOFs. Furthermore, kinematic
task-priority control may be undesirable for a number of reasons. In particular, the
mathematical stability proofs for velocity-level kinematic control schemes assume
that the velocity references are perfectly tracked by some dynamic controller, which
typically requires significant bandwidth separation between the kinematic and dy-
namic controllers. Moreover, task-space acceleration references cannot be included
by velocity-level kinematic task-priority control frameworks. Finally, the inherent
redundancy of the system cannot be used to optimize the desired velocity references
calculated by the kinematic task-priority control law with respect to physically re-
alizable actuator control inputs.
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1.2 Hybrid Feedback Control

It is well known that continuous-time systems whose state-space can be identified
with a vector bundle on a compact manifold have no point that can be globally
asymptotically stabilized by continuous-time state feedback [32]. This is referred
to as a topological obstruction to global asymptotic stability and follows from the
fact that no compact manifold is contractible.

Topological obstructions to global asymptotic stability can be overcome by
employing hybrid feedback with a properly defined switching logic [33]. Examples
include hybrid feedback derived from patchy CLFs [34] and synergistic control.
Synergistic control is a hybrid feedback control methodology that selects the state-
feedback control action based on the value of multiple Lyapunov-like functions [1,
35, 36]. A hybrid synergistic control law solves the tracking problem robustly and
globally on noncontractible manifolds, which is unattainable using conventional
continuous or discontinuous control laws [32, 37].

The synergistic control paradigm is applied to orientation tracking control for
rigid bodies utilizing quaternions in [37], where a globally asymptotically stabiliz-
ing PD-controller is derived. The paper also introduces an output-feedback version
of this control law. The aforementioned approach is utilized for trajectory tracking
of translation-underactuated rigid vehicles in [38]. Synergistic potential functions
are utilized to derive PD-controllers for global asymptotic tracking control for rigid
body orientation on SO(3) in [39]. A smoothing approach for the devised controller
is presented, which ensures continuity of the control signal provided that desired
acceleration is continuous. The work also presents a procedure to construct syner-
gistic functions from modified trace functions, which were first employed for control
of orientation in [40]. A synergistic approach that does not utilize velocity measure-
ments is presented in [41]. Moreover, [41] also provides a systematic procedure to
construct synergistic functions by angular warping, an idea first introduced in [42].
Synergistic potential functions are generalized to synergistic Lyapunov functions
and feedback pairs in [36], while an extension of the synergistic functions in [39] to
a case where the logic variable is allowed to flow, is introduced in [43]. Synergistic
control of rigid body planar and spherical orientation is presented in [44] and [45],
respectively, while synergistic control barrier functions are introduced in [46].

While employing hybrid feedback to overcome topological obstructions on com-
pact manifolds has been extensively studied through simulations in the idealized
case where the model structure and the model parameters are assumed to be known,
little attention has been paid to the more practical case involving parametric mod-
eling uncertainties. In [47], a global exponential tracking controller with integral
action is derived for the orientation control of a spatial rigid body subject to a
matched and constant disturbance. However, the switching mechanism depends
explicitly on the value of the integral state. Hybrid feedback using synergistic po-
tential functions was extended to the case where the original control system is
subject to matched uncertainties in [48]. However, when applying this approach
to mechanical systems, the switching mechanism is not independent of the system
velocities. Moreover, the approach does not permit estimation of the inertia matrix
parameters.
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1.3 Outline and Contributions

This thesis is organized into two parts and nine chapters. Chapter 2 introduces the
mathematical notation and background theory relevant to the rest of this thesis.
In the following, we summarize the topic and contributions of each chapter in this
thesis.

1.3.1 Part I: Task-Priority Control

Task-Priority Control of Redundant Robotic Systems (Chapter 3)

Chapter 3 presents a novel task-priority control framework for redundant robotic
systems based on a hierarchy of control Lyapunov function (CLF) and control
barrier function (CBF) based quadratic programs (QPs). The proposed method
guarantees strict priority among different groups of tasks such as safety-related,
operational and optimization tasks. Moreover, a soft priority measure in the form
of penalty parameters can be employed to prioritize tasks at the same priority level.
As opposed to kinematic control schemes, the proposed framework is a holistic ap-
proach for control of redundant robotic systems, which solves the redundancy reso-
lution, dynamic control and control allocation problems simultaneously. Numerical
simulations of a hyper-redundant articulated intervention autonomous underwater
vehicle (AIAUV) is presented to validate the proposed framework.

The main contribution of this chapter is a novel dynamic task-priority frame-
work for an arbitrary number of equality- and set-based control tasks encoded by
CLFs and CBFs, where equality and set-based tasks are control objectives that
should be driven to a desired value and kept within a desired set, respectively.
The framework builds on the CLF-based QP proposed for two equality tasks in
[18] by extending it to an arbitrary number of equality tasks, unifying CLFs with
CBFs via QPs to support set-based tasks as done in [28, 29], and establishing any
number of priority levels through a hierarchy of QPs. An important feature of this
approach is that it yields strict priority between tasks at different priority levels, in
the sense that tasks at lower-priority levels have no effect on the execution of tasks
at higher-priority levels. The inclusion of set-based tasks at the dynamic level is
a key novelty within task-priority control, which has to the best of our knowledge
only been accounted for in [10].

This chapter is based on the following publication:

[49] E. A. Basso and K. Y. Pettersen, “Task-priority control of redundant robotic
systems using control Lyapunov and control barrier function based quadratic
programs,” Proc. 21st IFAC World Congress, Online/Berlin, Germany, July
12-17 2020.

Safety-Critical Control of Autonomous Surface Vehicles (Chapter 4)

Autonomous surface vehicles (ASVs) are safety-critical systems that must provide
strict safety guarantees such as collision avoidance to enable fully autonomous op-
erations. Chapter 4 is motivated by Chapter 3 and presents a unified framework
for safety-critical control of ASVs for maneuvering, dynamic positioning, and con-
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trol allocation with safety guarantees in the presence of unknown ocean currents.
The framework utilizes control Lyapunov function (CLF)- and control barrier func-
tion (CBF)-based quadratic programs (QPs), and is applicable to a general class
of nonlinear affine control systems. The stabilization objective is formulated as a
maneuvering problem and integral action is introduced in the CLFs to counter-
act the effect of unknown irrotational ocean currents. Furthermore, ocean current
estimates are constructed for robust CBF design, and analytic conditions under
which the estimates guarantee safety are derived. Subsequently, robust CBFs are
designed to achieve collision avoidance of static obstacles. The chapter concludes
by verifying the framework through simulations of a double-ended passenger ferry.

The contributions of this chapter are threefold. Firstly, we provide conditions
under which an arbitrary number of nonlinear mappings estimating some unknown
system nonlinearity and a CBF guarantee safety. Moreover, we show how this result
can be employed to synthesize safe optimization-based control laws. Secondly, we
employ this result in combination with CLFs endowed with integral action to syn-
thesize an optimization-based and collision-free maneuvering control law for ASVs
in the presence of unknown ocean currents. Finally, by utilizing an optimization-
based control law,the control problem is formulated in terms of the actuator con-
trol inputs, and thereby unifying the control problem with the control allocation
problem. This unification handles control input saturations more effectively than a
decoupled approach and is less likely to lead to instability [17], which is especially
relevant during emergency collision avoidance maneuvers.

This chapter is based on the following publication:

[50] E. A. Basso, E. H. Thyri, K. Y. Pettersen, M. Breivik and R. Skjetne, “Safety-
critical control of autonomous surface vehicles in the presence of ocean cur-
rents”, Proc. 4th IEEE Conference on Control Technology and Applications
(CCTA), Online/Montréal, Canada, August 24-26, 2020.

1.3.2 Part II: Hybrid Feedback Control of Marine and Aerial
Vehicles

Synergistic PID and Output Feedback Control on Matrix Lie Groups
(Chapter 5)

In this chapter, we develop multiple synergistic hybrid feedback control laws for
mechanical systems on matrix Lie groups with left-invariant metrics. With the goal
of globally asymptotically tracking a desired reference trajectory, we propose a hy-
brid proportional-derivative (PD) type control law and an output feedback version
which only utilizes configuration measurements. Moreover, to ensure global asymp-
totic tracking in the presence of a constant and unknown disturbance in the system
dynamics, we introduce two novel proportional-integral-derivative (PID) type con-
trol laws with slightly different properties in terms of gain selection and integral
action. The theoretical developments are validated through numerical simulation
of an underwater vehicle.

The contributions of this chapter are threefold. First, we propose a baseline
synergistic PD control law ensuring global asymptotic tracking for mechanical sys-
tems on matrix Lie groups with a left-invariant Riemannian metric. The second
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contribution is a generalization of the synergistic output-feedback control law pro-
posed for orientation control in [37] to any system whose configuration space can
be identified with a matrix Lie group. Finally, we present two novel synergistic PID
type control laws, both of which ensure global asymptotic tracking in the presence
of unknown constant disturbances.

This chapter is based on the following publication:

[51] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and J. T. Grav-
dahl, “Synergistic PID and Output Feedback Control on Matrix Lie Groups ”,
Proc. 12th IFAC Symposium on Nonlinear Control Systems, Canberra, Aus-
tralia, Jan. 4-6, 2023.

Synergistic Lyapunov Functions and Feedback Triples (Chapter 6)

Chapter 6 generalizes results on synergistic hybrid feedback control. Specifically,
we propose a generalized definition of synergistic Lyapunov functions and feed-
backs which allows the logic variable in traditional synergistic control, denoted the
synergy variable, to be vector-valued and change during flows. Moreover, we in-
troduce synergy gaps relative to components of product sets, which enables us to
define jump conditions in the form of synergy gaps for different components of the
synergy variable. In particular, this enables us to formulate existing hybrid output
feedback control schemes within the synergistic control framework. Furthermore,
we show that our generalized definition is amenable to backstepping. Finally, we
give an example of how traditional synergistic control can be combined with ship
maneuvering control with discrete path dynamics.

The main contribution of this chapter is the extension of the SLFF definition
from [36]. The proposed generalization allows the logic variable, now referred to
as the synergy variable, to be vector-valued and possess flow dynamics. Moreover,
since the synergy variable is vector-valued, we define synergy gaps relative to com-
ponents of product sets. These synergy gaps enable us to define flow and jump sets
and jump conditions in the form of synergy gaps for different components of the
synergy variable. As a result, we can show that the output feedback control method
for rigid-body scheme outlined in [37] is synergistic. The proposed generalization
encompasses the results for SO(3) and SE(3) in [43], in which the scalar logic vari-
able is also allowed to change during flows. However, our proposed framework also
includes path-following control scenarios in which the path variable exhibits jump
dynamics, such as instantaneously moving the desired state closer to the actual
state. As a result, ship maneuvering control as outlined in [52] and [53] can be
augmented with discrete path dynamics and combined with a traditional synergis-
tic control approach such as [44] to ensure global asymptotic stability within the
proposed framework.

This chapter is based on the following publication:

[54] H. M. Schmidt-Didlaukies#, E. A. Basso#, A. J. Sørensen and K. Y. Pet-
tersen, “A Generalization of Synergistic Hybrid Feedback Control with Appli-
cation to Maneuvering Control of Ships”, Proc. 61st Conference on Decision
and Control (CDC), Cancún, Mexico, Dec. 6-9, 2022.

7



1. Introduction

Hysteretic Control Lyapunov Functions (Chapter 7)

This chapter introduces hysteretic control Lyapunov functions (HCLFs) for hybrid
feedback control of a class of continuous-time systems. A family of HCLFs consists
of local control Lyapunov functions defined on open domains, and include finite
collections of open and closed sets that cover the state-space, implicitly defining a
hysteresis-based switching mechanism.

The main contribution of this chapter is the concept of a hysteretic control
Lyapunov function and its application to hybrid feedback control with global
asymptotic stability properties for nonlinear continuous-time systems. Specifically,
we show that the existence of a family of HCLFs satisfying the small control
property implies global stabilizability of a compact set. Moreover, we prove that
optimization-based hybrid feedback laws can be constructed under minor assump-
tions on the objective functions. The collection of optimization-based feedback laws
are continuous along flows, implying that the hybrid basic conditions hold such that
the stability is robust in the sense of [55].

As a case study, we construct an HCLF family for tracking control of an under-
water vehicle through a backstepping approach. The HCLF family is subsequently
employed to synthesize a hybrid control law ensuring global asymptotic trajec-
tory tracking. In contrast to traditional backstepping, we find the control input
that pointwise minimizes a strictly convex objective function from the set-valued
map of stabilizing control inputs defined by the HCLFs. The HCLF construction is
reminiscent of the backstepping-based synergistic Lyapunov functions constructed
for set-point regulation in [56]. However, we extend the work in [56] to the track-
ing problem in terms of HCLFs, and exploit inherent stabilizing nonlinear terms
through online optimization.

This chapter is based on the following publication:

[57] E. A. Basso#, H. M. Schmidt-Didlaukies# and K. Y. Pettersen, “Hysteretic
Control Lyapunov Functions with Application to Global Asymptotic Tracking
for Underwater Vehicles,” Proc. 59th Conference on Decision and Control
(CDC), Online/Jeju island, Republic of Korea, Dec. 8-11, 2020.

Global Asymptotic Tracking for Marine Vehicles (Chapter 8)

Chapter 8 presents an adaptive hybrid feedback control law for global asymptotic
tracking of a hybrid reference system for marine vehicles in the presence of para-
metric modeling errors. The reference system is constructed from a parametrized
loop and a speed assignment specifying the motion along the path, which decou-
ples the geometry of the path from the motion along the path. During flows, the
hybrid feedback consists of a proportional-derivative action and an adaptive feed-
forward term, while a hysteretic switching mechanism that is independent of the
vehicle velocities determines jumps. The effectiveness of the proposed control law
is demonstrated through experiments.

The main contribution of this chapter is the development of an adaptive hybrid
feedback controller for global asymptotic tracking of a hybrid reference system for
marine vehicles subject to parametric uncertainties. In contrast to backstepping-
based hybrid adaptive control [48], the proposed approach permits estimation of
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the inertia matrix, and the switching mechanism is independent of the system ve-
locities. As our approach is based on traditional Euler-Lagrange system models,
the adaptive hybrid control law is applicable to other mechanical systems as well.
In particular, it can easily be extended to robot manipulators or, more generally,
vehicle-manipulator systems. The hybrid reference system is constructed from a
parametrized loop and a speed assignment for the motion along the loop. The
main benefit of this formulation is that it decouples the design of the path from
the motion along the path, allowing us to globally asymptotically track a given
parametrized loop at a desired and time-varying speed. The proposed reference
system can be considered an adaptation of the maneuvering problem [52, 53] to a
hybrid dynamical systems setting. Preliminary results were presented in [58], and
in this chapter we extend the hybrid feedback control law from surface vehicles
to a more general class of Euler-Lagrange systems on SE(2) or SE(3) satisfying a
set of general conditions on the switching mechanism and the potential functions.
Moreover, we show that the potential functions and switching mechanisms intro-
duced in [58] and [37] satisfy these conditions, and these potential functions and
switching mechanisms are subsequently employed to design hybrid adaptive con-
trol laws for surface and underwater vehicles, respectively. Finally, we validate the
theoretical developments for surface and underwater vehicle applications through
experiments.

This chapter is based on the following publications:

[59] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and A. J. Sørensen,
“Global Asymptotic Tracking for Marine Vehicles using Adaptive Hybrid
Feedback”, IEEE Transactions on Automatic Control, 2022.

[58] E. A. Basso#, H. M. Schmidt-Didlaukies#, K. Y. Pettersen and A. J. Sørensen,
“Global Asymptotic Tracking for Marine Surface Vehicles using Hybrid Feed-
back in the Presence of Parametric Uncertainties,” Proc. 2021 American Con-
trol Conference (ACC), Online/New Orleans, LA, USA, May 25-28, 2021.

Global Asymptotic Position and Heading Tracking for Multirotors
(Chapter 9)

Chapter 9 considers the problem of global asymptotic position and heading tracking
for multirotors. We propose a hybrid adaptive feedback control law that globally
asymptotically tracks a position and heading reference in the presence of unknown
constant disturbances in both the translational and rotational dynamics. By em-
ploying a tuning function-based backstepping approach, the number of parameter
estimates are minimized. Moreover, using ideas from Chapter 8, we propose a novel
bounded control law for the translational subsystem, which leads to a simpler vir-
tual control law when backstepping. Global asymptotic heading tracking is achieved
through a novel construction of the desired rotation matrix. The theory is verified
through experiments on a quadrotor.

The goal of this chapter is to achieve uniform global asymptotic tracking of both
the position and heading of a multirotor in the presence of unknown constant dis-
turbances in both the translational and rotational dynamics. To this end, we build
on the work in [38], which we extend as follows. First, we propose a novel bounded
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adaptive control law for the translational subsystem, which leads to a simpler vir-
tual control law when backstepping. Second, we propose a novel construction for
the desired rotation matrix, which avoids the use of intermediary Euler angles, and
is crucial in ensuring global asymptotic tracking of the desired heading reference.
Third, we augment the rotational dynamics with a constant disturbance, and by
employing tuning functions [60], the number of parameter estimates becomes equal
to the number of unknown parameters. As a consequence, we can show that the
disturbance estimates in both the translational and rotational dynamics converge
to their true values.

This chapter is based on the following publication:

[61] E. A. Basso#, H. M. Schmidt-Didlaukies# and K. Y. Pettersen, “Global
Asymptotic Position and Heading Tracking for Multirotors using Tuning
Function-based Adaptive Hybrid Feedback”, IEEE Control Systems Letters,
2022.
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Chapter 2

Mathematical Preliminaries

This chapter introduces mathematical preliminaries and notation relevant to the
rest of this thesis.

2.1 Regularity

Definition 2.1 (Proper function). Let X ⊂ Rn. A continuous function V : X →
R≥0 is proper if the sublevel set {x ∈ X : V (x) ≤ c} is compact for every c ∈ R≥0.

Definition 2.2 (Passive functions). A function φ : Rn → Rn is passive if it is
continuous and satisfies φ(x)Tx ≥ 0 for all x ∈ Rn.

Definition 2.3 (Strongly passive functions). A function φ : Rn → Rn is strongly
passive if it is continuous and satisfies φ(x)Tx > 0 for all x ∈ Rn \ {0}.

Definition 2.4 (Class-K functions). A function α : R≥0 → R≥0 is a class-K
function, also written α ∈ K, if α is zero at zero, continuous, and strictly increasing.

Definition 2.5 (Class-K∞ functions). A function α : R≥0 → R≥0 is a class-K∞
function, also written α ∈ K∞, if α is zero at zero, continuous, strictly increasing,
and unbounded; i.e., α ∈ K and unbounded.

Definition 2.6 (Extended class-K∞ functions). A function α : R → R is an
extended class-K∞ function, if α is zero at zero, continuous, strictly increasing,
and unbounded.

Definition 2.7 (Class-KL functions). A function β : R≥0 × R≥0 → R≥0 is a
class-KL function, also written β ∈ KL, if it is nondecreasing in its first argument,
nonincreasing in its second argument, limr↘0 β(r, s) = 0 for each s ∈ R≥0, and
lims→∞ β(r, s) = 0 for each r ∈ R≥0.

Definition 2.8 (Monotonicity). Let f : Rm → Rm and A ∈ Rm×m. The mapping
f is A-monotone if

⟨f(x)− f(y), x− y⟩ ≥ ⟨A(x− y), x− y⟩, (2.1)

for all (x, y) ∈ Rm × Rm. Moreover, f is monotone if it is 0-monotone.
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Lemma 2.1. Let A ∈ Rm×m and f : Rm → Rm be continuously differentiable.
Then f is A-monotone if and only if the matrix ∇f(x)−A is positive semidefinite
for all x ∈ Rm.

Proof. Apply [62, Prop. 12.3] to f(x)−Ax.

2.2 Set-Valued Analysis

This section provides a brief introduction to certain basic aspects from set-valued
analysis. See the excellent book [62] by Rockafellar and Wets for more details.

A set-valued mapping is denoted as M : Rn ⇒ Rm. We define the domain,
range and graph of a set-valued mapping M by

domM := {x ∈ Rn :M(x) ̸= ∅}, (2.2)
rgeM := {y ∈ Rm : ∃x ∈ Rn such that y ∈M(x)}, (2.3)
gphM := {(x, y) ∈ Rn × Rm : y ∈M(x)}. (2.4)

The inverse mapping of M , M−1 : Rm ⇒ Rn, is defined by

M−1(y) := {x ∈ Rn : y ∈M(x)}. (2.5)

Moreover, we define the image of a set S under M and the inverse image of a set
R under M , respectively, by

M(S) :=
{
y ∈ Rm :M−1(y) ∩ S ̸= ∅

}
, (2.6)

M−1(R) :=
{
x ∈ Rn :M(x) ∩R ̸= ∅

}
. (2.7)

Definition 2.9. Let M : Rn ⇒ Rm be a set-valued mapping.

1. M is inner semicontinuous (isc) relative to S at x ∈ Rn if for every y ∈M(x)
and every neighborhood Y of y there exists a neighborhood X of x such that
S ∩X ⊂M−1(Y ).

2. M is outer semicontinuous (osc) relative to S at x ∈ Rn if for every y /∈M(x)
there are neighborhoods X of x and Y of y such that S ∩X ∩M−1(Y ) = ∅.

M is isc relative to S if it is isc relative to S at every x ∈ Rn. Similar terminology
is used for the osc case. Finally, M is continuous relative to S if it is both isc
relative to S and osc relative to S.

Lemma 2.2 (Osc and closed graph). A set-valued mapping M : Rn ⇒ Rm is outer
semicontinuous if and only if gphM is closed. More generally, given a set S ⊂ Rn,
a set-valued mapping M : Rn ⇒ Rm is outer semicontinuous relative to S if and
only if the set {(x, y) ∈ Rn×Rm : x ∈ S, y ∈M(x)} is relatively closed in S×Rm.

We also require a notion of local boundedness for set-valued mappings.

Definition 2.10. Let M : Rn ⇒ Rm be a set-valued mapping. M is locally bounded
at x ∈ Rn if there exists a neighborhood X of x such that M(X) is bounded. M is
locally bounded if it is locally bounded at every x ∈ Rn, and M is locally bounded
relative to a set S ⊂ Rn if the restriction of M to S is locally bounded at every
x ∈ S.
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Note that every continuous single-valued mapping is locally bounded.
Inner semicontinuity is also known as lower semicontinuity in the literature, e.g.

in the seminal work [63]. Another widely used notion in the literature of set-valued
mappings is upper semicontinuity of a set-valued mapping. Outer semicontinuity
and upper semicontinuity are related through the following result [1, Lemma A.35]

Lemma 2.3 (Osc vs upper semicontinuous set-valued mappings). Let M : Rn ⇒
Rm be a set-valued mapping. Let x ∈ Rn be such that M(x) is closed. If M is
upper semicontinuous at x, then M is is outer semicontinuous at x. If M is locally
bounded at x, then the reverse implication is true.

Definition 2.11 (Tangent cone). The tangent cone to a set S ⊂ Rn at a point
x ∈ Rn, denoted TS(x), is the set of all vectors w ∈ Rn for which there exist
xi ∈ S, τi > 0 with xi → x, τi ↘ 0, and

w = lim
i→∞

xi − x

τi
. (2.8)

2.3 Hybrid Systems

In this section, we introduce the notion of a hybrid dynamical system. This intro-
duction is by no means complete, and the reader is referred to [55] and [1] for more
details.

A hybrid dynamical system, or simply a hybrid system, allows for both continuous-
time and discrete-time evolution of the state. In this thesis, we employ the hybrid
systems framework of [1, 55]. In those works, a hybrid system H is defined by four
objects (C,F,D,G) known as the data of the hybrid system and represented by

H :

{
ẋ ∈ F (x), x ∈ C

x+ ∈ G(x), x ∈ D
(2.9)

where x ∈ Rn is the state of the system, the set-valued mapping F : Rn ⇒ Rn is
called the flow map, G : Rn ⇒ Rn is called the jump map and C ⊂ Rn and D ⊂ Rn
are called the flow and jump sets, respectively.

A solution ϕ to (2.9) is called a hybrid arc and is parametrized by the elapsed
time t ∈ R≥0 and the number of jumps j ∈ Z≥0 that have occurred. To formally
define a hybrid arc, we require the notion of a hybrid time domain [55, Definition
2.3]

Definition 2.12 (Hybrid time domains). A subset E ⊂ R≥0 × Z≥0 is a compact
hybrid time domain if

E =

J−1⋃
j=0

([tj , tj+1], j) (2.10)

for some finite sequence of times 0 = t0 ≤ t1 ≤ · · · ≤ tJ . It is a hybrid time domain
if for all (T, J) ∈ E,E ∩ ([0, T ]× {0, 1, . . . , J}) is a compact hybrid domain.

13
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The notion of a hybrid arc is introduced in the following definition [55, Definition
2.4].

Definition 2.13 (Hybrid arc). A function ϕ : E → Rn is a hybrid arc if E is
a hybrid time domain and if for each j ∈ Z≥0, the function t 7→ ϕ(t, j) is locally
absolutely continuous on the interval Ij = {t : (t, j) ∈ E}.

The notation domϕ represents the domain of a hybrid arc, which is a hybrid
time domain.

Definition 2.14 (Solution to a hybrid system). A hybrid arc ϕ is a solution to
the hybrid system H if ϕ(0, 0) ∈ C ∪D, and

(S1) for all j ∈ Z≥0 such that Ij := {t : (t, j) ∈ domϕ} has nonempty interior

ϕ(t, j) ∈ C for all t ∈ intIj ,

d

dt
ϕ(t, j) ∈ F (ϕ(t, j)) for almost all t ∈ Ij ;

(2.11)

(S2) for all (t, j) ∈ domϕ such that (t, j + 1) ∈ domϕ,

ϕ(t, j) ∈ D,ϕ(t, j + 1) ∈ G(ϕ(t, j)). (2.12)

A solution ϕ to H is said to be complete if domϕ is unbounded and maximal if
ϕ is not the truncation of another solution. The set of all maximal solutions ϕ to
H is denoted SH. Similarly, SH(S) denotes the set of all maximal solutions ϕ to H
with ϕ(0, 0) ∈ S.

Definition 2.15 (Uniform global pre-asymptotic stability (UGpAS)). A closed set
A ⊂ Rn is said to be

• uniformly globally stable for H if there exists a class K∞ function α such that
any solution ϕ to H satisfies |ϕ(t, j)|A ≤ α(ϕ(0, 0)) for all (t, j) ∈ domϕ;

• uniformly globally pre-attractive for H if for each ϵ > 0 and r > 0 there exists
T > 0 such that, for any solution ϕ to H with ϕ(0, 0) ≤ r, (t, j) ∈ domϕ and
t+ j ≥ T implies |ϕ(t, j)|A ≤ ϵ;

• uniformly globally pre-asymptotically stable for H if it is both uniformly glob-
ally stable and uniformly globally pre-attractive.

The prefix pre is employed to emphasize the fact that maximal solutions are
not required to be complete. An equivalent characterization of uniform global pre-
asymptotic stability which utilizes class-KL functions is now introduced.

Theorem 2.16. A closed set A ⊂ Rn is uniformly globally pre-asymptotically
stable for H if and only if there exists a KL function β such that any solution ϕ to
H satisfies

|ϕ(t, j)|A ≤ β(|ϕ(0, 0)|A, t+ j), (2.13)

for all (t, j) ∈ domϕ.
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We typically assume that the data (C,F,D,G) of the hybrid system H satisfies
the following three basic assumptions [55, Assumption 6.5]

Assumption 2.17 (Hybrid basic conditions).

(A1) C and D are closed subsets of Rn;
(A2) F : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to C,

C ⊂ domF , and F (x) is convex for every x ∈ C;
(A3) G : Rn ⇒ Rn is outer semicontinuous and locally bounded relative to D, and

D ⊂ domG.

It should be emphasized that when F is a single-valued and continuous mapping,
the differential equation ż = F (z) corresponds to a hybrid system satisfying the
hybrid basic conditions.

When the set to be stabilized is compact and our system satisfies the hybrid
basic conditions, global pre-asymptotic stability is equivalent to uniform global
pre-asymptotic stability, and we typically write GpAS instead of UGpAS.

Definition 2.18 (Stability of compact sets). A compact set A ⊂ Rn is said to be

• stable for H if for every ϵ > 0 there exists δ > 0 such that every solution ϕ
to H with |ϕ(0, 0)|A ≤ δ satisfies |ϕ(t, j)|A ≤ ϵ for all (t, j) ∈ domϕ;

• globally pre-attractive for H if every solution ϕ to H is bounded and, if ϕ is
complete, then also limt+j→∞|ϕ(t, j)|A = 0;

• globally pre-asymptotically stable for H if it is both stable and globally pre-
attractive.

Proposition 2.19 (Basic existence of solutions). Let the hybrid system H satisfy
Assumption 2.17. Take an arbitrary ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exists a neighborhood U of ξ such that for every x ∈ U ∩ C,

F (x) ∩ TC(x) ̸= ∅, (2.14)

then there exists a nontrivial solution ϕ to H with ϕ(0, 0) = ξ. If (VC) holds
for every ξ ∈ C\D, then there exists a nontrivial solution to H from every
initial point in C ∪D, and every ϕ ∈ SH satisfies exactly one of the following
conditions:

(a) ϕ is complete;
(b) domϕ is bounded and the interval IJ , where J = supj domϕ, has nonempty

interior and t 7→ ϕ(t, J) is a maximal solution to ż ∈ F (z), in fact
limt→T |ϕ(t, J)| = ∞, where T = supt domϕ;

(c) ϕ(t, J) /∈ C ∪D, where (T, J) = sup domϕ.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.

Definition 2.20 (Forward invariance). A nonempty set K ⊂ Rn is said to be

1. forward pre-invariant for H if each ϕ ∈ SH(K) satisfies ϕ(t, j) ∈ K for all
(t, j) ∈ domϕ;

2. forward invariant for H if it is forward pre-invariant and each ϕ ∈ SH(K) is
complete.
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2.4 Control Lyapunov and Control Barrier Functions

Consider the nonlinear control affine system

ẋ = f(x) + g(x)u, (x, u) ∈ Rn × U (2.15)

where the mappings f : Rn → Rd and g : Rn → Rn×p are continuous and the input
space U ⊂ Rp is nonempty, closed and convex.

CLFs are continuously differentiable and positive definite functions whose time
derivatives can be made negative definite by appropriate selection of the control
input. Exponentially stabilizing CLFs achieve convergence rates within explicitly
given bounds, and provides an inherent robustness property to disturbances, in
terms of input-to-state stability.

Definition 2.21 (Definition 1. [14]). For the system (2.15), a continuously dif-
ferentiable function V : Rn → R is an exponentially stabilizing control Lyapunov
function (ES-CLF) if there exists positive constants c1, c2, c3 > 0 such that

c1∥x∥2 ≤ V (x) ≤ c2∥x∥2, (2.16)

inf
u∈U

[
∇V (x)Tf(x, t) +∇V (x)Tg(x)u+ c3V (x)

]
≤ 0, (2.17)

for all x ∈ Rn.

Safety-related objectives are often described by inequalities or sets. Control
barrier functions are continuously differentiable functions h : Rn → R for which
the superzero level set

K := {x ∈ Rn : h(x) ≥ 0} , (2.18)

can be rendered forward invariant (or forward pre-invariant) by appropriate selec-
tion of the control input. The following definition is given in [46]

Definition 2.22. Let h : Rn → R be a continuously differentiable function that
defines the set (2.18). Then, h is a CBF for (2.15) if there exists an extended class
K∞ function σ and an open set X with K ⊂ X such that

sup
u∈U

[
∇h(x)T(f(x) + g(x)u)

]
≥ −σ(h(x)), ∀x ∈ X. (2.19)

The following theorem can be found in [46] and provides conditions guaranteeing
safety of (2.15) with the input constrained to the admissible set-valued input set
Uh : Rn ⇒ Rp defined by

Uh(x) := {u ∈ U : ∇h(x)T(f(x) + g(x)u) ≥ −σ(h(x))}. (2.20)

Theorem 2.23. If h is a CBF on Rn defining K, then K is forward pre-invariant
for the system

ẋ ∈ {f(x) + g(x)u : u ∈ Uh(x)} , x ∈ Rn. (2.21)
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A direct consequence of Equation (2.20) is that a continuous selection from Uh
guarantees safety of (2.15).

Corollary 2.24. If h is a CBF on Rn defining K and κ : Rn → U is continuous
and satisfies κ(x) ∈ Uh(x) for all x ∈ X, then K is forward pre-invariant for the
system

ẋ = f(x) + g(x)κ(x), x ∈ Rn. (2.22)

2.5 Manifolds in Euclidean Space

Definition 2.25. A set M ⊂ Rn is a k-manifold, where 0 ≤ k ≤ n, if the following
equivalent conditions hold:

1. For each x ∈ M, there exists an open set U ⊂ Rn containing x, an open
set W ⊂ Rk, and a smooth injective immersion χ : W → Rn such that
χ(W ) = M∩ U .

2. For each x ∈ M, there exists an open set U ⊂ Rn containing x and a smooth
submersion ϑ : U → Rn−k such that {x ∈ U : ϑ(x) = 0} = M∩ U .

Definition 2.25 presents two equivalent characterizations of a k-manifold in Rn.
In particular, item 1 characterizes the manifold in terms of local parametrizations,
and item 2 in terms of local defining mappings.

Definition 2.26. Let M ⊂ Rn be a k-manifold. The tangent cone to M at x
is a linear subspace of Rn, and referred to as the tangent space to M at x. The
following characterizations are equivalent:

1. For x ∈ M and (U, χ) as in item 1 in Definition 2.25,

TM(x) = {v ∈ Rn : w ∈ Rk, v = ∇χ ◦ χ−1(x)w}

for all x ∈ M∩ U .
2. For x ∈ M and (U, ϑ) as in item 2 in Definition 2.25,

TM(x) = {v ∈ Rn : ∇ϑ(x)v = 0}.

for all x ∈ M∩ U .

With an abuse of notation, we write TM ⊂ M× Rn. This set is defined such that
(x, v) ∈ TM if x ∈ M and v ∈ TM(x).

2.6 Matrix Lie Groups

Matrix Lie groups are manifolds that are also matrix groups.

Definition 2.27. A matrix Lie group G is a k-manifold in Rn×n satisfying

1. if g ∈ G, then g−1 ∈ G;
2. if g, h ∈ G, then gh ∈ G.
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A matrix Lie group G is a closed subgroup of the general linear group GL(n) ={
g ∈ Rn×n : det g ̸= 0

}
. The identity element is denoted e ∈ G. In what follows,

we define the matrix commutator [[ · , · ]] : Rn×n × Rn×n → Rn×n by [[A,B]] :=
AB − BA. With every matrix Lie group, one can associate a particular algebra,
known as the Lie algebra of the matrix Lie group.

Definition 2.28. Let G ⊂ Rn×n be a matrix Lie group. The Lie algebra g of
G is the tangent space to G at the identity equipped with the matrix commuator,
g := (TG(e), [[ · , · ]]).

The Lie algebra g is a real vector space with dimension equal to the dimension
of G as a manifold. In the robotics literature, it has become commonplace to work
in Rk instead of g. This is accomplished by choosing a basis (Xi)i∈{1,...,k} for g and
defining the vector space isomorphism ( · )∧ : Rk → g and the commutator on Rk,
[ · , · ] : Rk × Rk → Rk as

ξ∧ :=

k∑
i=1

Xiξ
i

[ξ, ζ] := [[ξ∧, ζ∧]]∨

(2.23)

where ( · )∨ : g → Rk is the inverse mapping of ( · )∧. Hence, g ≃ (Rk, [ · , · ]). For
each g ∈ G and y ∈ R6, we define the adjoint mappings Adg : Rk → Rk and
adξ : Rk → Rk,

Adg ζ := (gζ∧g−1)∨,

adξ ζ := [ξ, ζ].
(2.24)

It can be shown that for each g ∈ G, there exists an open set W ⊂ Rk such that the
mapping χg : W → Rn×n defined by χg(ξ) := g exp(ξ∧) is a local parametrization
of a neighborhood of g, as utilized in item 1 of Definition 2.25.

For each ξ ∈ Rk, we define a left-invariant vector field Xξ(g) = gξ∧ on G with
g ∈ G. The Lie derivative of a continuously differentiable function V : G → R along
the vector field Xξ can be written as ⟨⟨DV (g), Xξ(g)⟩⟩, where ⟨⟨a, b⟩⟩ := tr

(
aTb
)

is
the Frobenius inner product and

DV (g) =


∂V
∂g11

· · · ∂V
∂g1j

...
. . .

...
∂V
∂gi1

· · · ∂V
∂gij

 (g).

The Lie derivative can be rewritten using the Euclidean inner product by defining
the mapping dV : G → Rk by

⟨dV (g), ξ⟩ := ⟨⟨DV (g), Xξ(g)⟩⟩. (2.25)

Finally, the bilinear map ∇M : Rk × Rk → Rk induced by the inertia matrix M is
defined by [64]

∇M
ν η := 1

2 adν η −
1
2M

−1[adTν Mη + adTη Mν]. (2.26)

Observe that M∇M
ν ν = − adTν Mν.
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Lemma 2.4. For every ξ ∈ Rm, it holds that

⟨ξ,M∇M
ζ ξ⟩ = 0, (2.27)

for all ζ ∈ Rm.

Proof. From the identities ⟨η, adξ ζ⟩ = ⟨adTξ η, ζ⟩ and adξ ξ = 0, it holds that

2⟨ξ,M∇M
ζ ξ⟩ = ⟨ξ,M adζ ξ − adTξ Mζ − adTζ Mξ⟩

= ⟨ξ,M adζ ξ − adTζ Mξ⟩. (2.28)

By rewriting the last term in (2.28) as

⟨ξ,− adTζ Mξ⟩ = −⟨adζ ξ,Mξ⟩, (2.29)

symmetry of M implies that ⟨ξ,M adζ ξ⟩ = ⟨Mξ, adζ ξ⟩ and the result follows from
linearity of the inner product.
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Task-Priority Control
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Chapter 3

Task-Priority Control of Redundant
Robotic Systems using Control
Lyapunov and Control Barrier
Function based Quadratic Programs

This chapter presents a novel dynamic task-priority framework for an arbitrary
number of equality- and set-based control tasks encoded by CLFs and CBFs, where
equality and set-based tasks are control objectives that should be driven to a desired
value and kept within a desired set, respectively. The framework builds on the CLF-
based QP proposed for two equality tasks in [18] by extending it to an arbitrary
number of equality tasks, unifying CLFs with CBFs via QPs to support set-based
tasks as done in [28, 29], and establishing any number of priority levels through
a hierarchy of QPs. An important feature of this approach is that it yields strict
priority between tasks at different priority levels, in the sense that tasks at lower-
priority levels have no effect on the execution of tasks at higher-priority levels.
The inclusion of set-based tasks at the dynamic level is a key novelty within task-
priority control, which has to the best of our knowledge only been accounted for
in [10].

The proposed scheme represents a holistic control approach since the QPs can
be formulated in terms of the actuator inputs, instead of the commanded forces
and torques. Consequently, the proposed framework also solves the control alloca-
tion problem. For task-priority control of robotic systems where computation of
the actuator inputs from the commanded forces and torques is non-trivial, the uni-
fication of redundancy resolution and control allocation is a key advantage because
strict priority between tasks can be ensured at all times. In contrast, redundancy
resolution schemes that decouple dynamic control and control allocation, such as
kinematic or operational space control, provide no a priori guarantee that the com-
manded forces and torques computed by the dynamic controller can be exactly
allocated, since the commanded forces and torques are typically computed with no
regard to physical actuator limits, rate constraints, or singularities of the actuator
configuration matrix. If the commanded forces and torques cannot be exactly allo-
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cated, the forces and torques are usually allocated to actuator inputs by minimizing
the allocation error [65], which is performed independently of the redundancy res-
olution algorithm. As a result, strict priority is lost and tasks become coupled
whenever exact allocation is infeasible.

The material in this chapter is based on [49].

3.1 Introduction

This section presents the necessary background material for this particular chapter.
For compactness, we will slightly abuse notation and denote

Lgh(x) =
∂ϑ(x)

∂x
g(x), (3.1)

whenever ϑ is a scalar or vector-valued function, and g is a vector field or a ma-
trix. Note that (3.1) is only equal to the Lie derivative of ϑ along g when ϑ is a
multivariable scalar function and g a vector field.

3.1.1 Model

Consider the nonlinear affine control system

ẋ = f(x) + g(x)u, (3.2)

where f and g are locally Lipschitz, x ∈ Rl and u ∈ U ⊂ Rp is the set admissible
control inputs. Let y = ϑ(x) = σ(x) − σd describe the error coordinates of some
locally Lipschitz equality task σ : Rl → Rm with desired value σd ∈ Rm. Under
the assumption that

LgL
k
fϑ(x) = 0, 0 ≤ k ≤ ρ− 2 (3.3)

LgL
ρ−1
f ϑ(x) ̸= 0, (3.4)

for all x ∈ Rl, the input-output dynamics becomes

y(ρ) = Lρfϑ(x)︸ ︷︷ ︸
b(x)

+LgL
ρ−1
f ϑ(x)︸ ︷︷ ︸
A(x)

u. (3.5)

The system (3.2) can be decomposed into transverse dynamics states

η =
(
y, ẏ, . . . , y(ρ−1)

)
∈ X ⊂ Rρm

and internal dynamics states z ∈ Z ⊂ Rl−ρm as follows

η̇ = f̄(η, z) + ḡ(η, z)u, (3.6a)
ż = fz(η, z), (3.6b)
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with f̄(η, z) = Λη + Γb(x) and ḡ(η, z) = ΓA(x) where

Λ =


0 I 0 · · · 0
0 0 I · · · 0
...

. . . . . . . . .
...

0 0 0 · · · I
0 0 0 0 0

 , Γ =


0
0
0
...
I

 , (3.7)

where 0 is the m×m matrix of zeros and I is the m×m identity matrix.

3.1.2 Control Lyapunov Functions

A control Lyapunov function is a candidate Lyapunov function whose derivative
can be made pointwise negative by appropriate selection of the control input [15].
In order to explicitly control the rate of exponential convergence, a specific type of
CLF is defined in [14] as follows:

Definition 3.1. A continuously differentiable and positive definite function Vϵ :
X → R is said to be a rapidly exponentially stabilizing control Lyapunov function
(RES-CLF) for the system (3.6) if there exists constants c1, c2, c3 > 0 such that
for all 0 < ϵ < 1 and for all states (η, z) ∈ X × Z it holds that

c1∥η∥2 ≤ Vϵ(η) ≤
c2
ϵ2
∥η∥2, (3.8)

inf
u∈U

[
Lf̄Vϵ(η, z) + LḡVϵ(η, z)u+

c3
ϵ
Vϵ(η)

]
≤ 0. (3.9)

Such a function can be constructed by solving the continuous time algebraic
Riccati equation

ΛTP + PΛ− PΓΓTP +Q = 0, (3.10)

for P = PT > 0, where Q is any positive definite matrix. In order to stabilize the
transverse dynamics at a rate ϵ define

Vϵ(η) = ηT
(

1
ϵ I 0
0 I

)
P

(
1
ϵ I 0
0 I

)
η := ηTPϵη. (3.11)

When A(x) has linearly independent rows for all x ∈ Rl, it can be shown that the
time derivative of (3.11) satisfies [14]

inf
u∈U

[
Lf̄Vϵ(η, z) + LḡVϵ(η, z)u

]
≤ −γ

ϵ
Vϵ(η), (3.12)

where γ := λmin(Q)
λmax(P ) > 0 and

Lf̄Vϵ(η, z) = ηT
(
ΛTPϵ + PϵΛ

)
η + 2ηTPΓb(x), (3.13)

LḡVϵ(η, z) = 2ηTPϵΓA(x). (3.14)
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3.1.3 Exponential Control Barrier Functions

Control objectives described by inequalities or sets can be enforced by rendering
the superzero level set

K =
{
x ∈ Rl : h(x) ≥ 0

}
, (3.15)

of some continuously differentiable function h : D → R forward pre-invariant [30].
Definition 2.22 assumes that the relative degree of h is equal to one. However,

safety-related tasks for robotic systems are often a function of the configuration
variables only, meaning that they have a higher relative degree. Introduced in
[31] and refined in [30], exponential control barrier functions generalizes CBFs to
functions h with arbitrary relative degree r ≥ 1. To this end, we define ηb(x) :=(
h(x), Lfh(x), L

2
fh(x), . . . , L

r−1
f h(x)

)
and consider the following definition.

Definition 3.2. Given a set K ⊂ D ⊂ Rl defined as the superzero level set of an
r-times continuously differentiable function h : D → R, then h is an exponential
control barrier function (ECBF) for the control system (3.2) if there exists a row
vector Kα ∈ Rr and an open set X with K ⊂ X such that

sup
u∈U

[
Lrfh(x) + LgL

r−1
f h(x)u

]
≥ −Kαηb(x), ∀x ∈ X. (3.16)

3.1.4 Combining CLFs and ECBFs

The RES-CLF and ECBF conditions in (3.9) and (3.16) are both affine in the con-
trol input u, which means that the control problem can be formulated as a convex
optimization problem, enabling the incorporation of control input saturation limits
and rate constraints [17]. By employing RES-CLFs, the CLF-ECBF-based QP from
[29, 30] becomes:

minimize
u∈Rm,δ∈R

1

2
uTH(x)u+ c(x)Tu+ wδ2

subject to

Lf̄Vϵ(η, z) + LḡVϵ(η, z)u ≤ −γ
ϵ
Vϵ(η) + δ,

Lrfh(x) + LgL
r−1
f h(x)u ≥ −Kαηb(x),

(3.17)

where H(x) is positive semi-definite for all x ∈ Rl, c : D → Rm, and δ ∈ R is
a slack variable penalized by w > 0, ensuring the feasibility of the QP in case of
conflicting set-based and equality-based control objectives.

The remainder of this chapter is organized as follows. Section 3.2 introduces the
main contribution of this chapter, namely, a task-priority framework for equality-
and set-based tasks. Section 3.3 presents simulation results of the framework imple-
mented on an articulated intervention autonomous underwater vehicle (AIAUV),
while conclusions and future work can be found in Section 3.4.
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3.2 Quadratic Programs for N Equality- and M Set-Based
Control Tasks

This section extends the CLF-ECBF QP controller in (3.17) to an arbitrary num-
ber of equality- and set-based control tasks distributed to an arbitrary number of
priority levels.

3.2.1 CLF Penalty Parameters as a Priority Measure

Inspired by [18], the QP in (3.17) can be extended to N equality-based control
objectives by deriving the input-output dynamics for each control objective, i.e.

y
(ρi)
i = Lρif ϑi(x)︸ ︷︷ ︸

bi(x)

+LgL
ρi−1
f ϑi(x)︸ ︷︷ ︸
Ai(x)

u, (3.18)

for each i = 1, . . . , N . Transverse dynamics states ηi =
(
yi, ẏi, . . . , y

(ρi−1)
i

)
and

RES-CLFs Vϵ,i can then be defined analogously to (3.6a), (3.7) and (3.11). More-
over, M set-based tasks described by the superzero level set Kj of some rj times
continuously differentiable function hj can be included at the highest priority level
(which is implied by no slack variables). The control input can then be obtained
from the QP:

minimize
(u,δ)∈Rm+N

uTH(x)u+ cT(x)u+ δTWδ

subject to

Lf̄iVϵ,i + LḡiVϵ,iu ≤ −γi
ϵ
Vϵ,i + δi, i = 1, . . . , N,

Lrkf hk + LgL
rk−1
f hku ≥ −Kα,kηb,k, k = 1, . . . ,M,

(3.19)

where ηb,k=
(
hk(x), Lfhk(x), . . . , L

r−1
f hk(x)

)
, W ∈ RN×N is a diagonal matrix of

penalty parameters and

Lf̄iVϵ,i = ηTi
(
ΛT
i Pϵ,i + Pϵ,iΛi

)
ηi + 2ηTi PiΓibi, (3.20)

LḡiVϵ,i = 2ηTi Pϵ,iΓiAi. (3.21)

The equality tasks encoded by RES-CLFs are prioritized by adjusting the ele-
ments of the diagonal penalty matrix W . The satisfaction of all equality tasks are
therefore described by a single objective function through the value of the slack
variables δ and the penalty parameters in W . Whenever equality tasks are incom-
patible, this fact invariably leads to trade-off configurations that do not satisfy any
of the tasks. Hence, strict priority between tasks cannot be achieved in the sense
that lower-priority tasks have no effect on the execution of higher-priority tasks. As
a result, it is challenging to include lower-priority optimization-based tasks since
they will interfere with more critical higher-priority tasks such as end-effector con-
trol whenever the tasks are incompatible.

27



3. Task-Priority Control of Redundant Robotic Systems

3.2.2 Main Result: Enforcing Strict Priority Between a
Selection of Tasks

In order to establish more than two strict priority levels, we propose to solve a
quadratic program for every priority level as suggested for kinematic control in
[7]. The idea is to begin by computing a control input according to (3.19) that
only accounts for safety-related set-based tasks and equality tasks at the highest
priority level. Subsequently, a new quadratic program is solved for each priority
level, refining the previous solution in an attempt to satisfy lower-priority tasks
without affecting the execution of higher-priority tasks.

ConsiderN equality tasks andM set-based tasks distributed to k priority levels,
with N = N1 + . . . +Nk and M = M1 + . . . +Mk, where Ni and Mi denotes the
number of equality and set-based tasks at priority level i, respectively. A control
input u∗1 that disregards all lower-priority tasks is obtained by solving (3.19) with
i = 1, . . . , N1 and k = 1, . . . ,M1. If the system is redundant with respect to these
N1 +M1 tasks, the control input u∗1 can be refined without affecting how the N1

higher-priority equality tasks are executed by enforcing

Lf̄iVϵ,i + LḡiVϵ,iu ≤ Lf̄iVϵ,i + LḡiVϵ,iu
∗
1 (3.22)

which implies that LḡiVϵ,iu ≤ LḡiVϵ,iu
∗
1 for all i = 1, . . . , N1. Similarly, the higher-

priority set-based tasks are unaffected by enforcing

LgL
rk−1
f hku ≥ LgL

rk−1
f hku

∗
1, (3.23)

for all k = 1, . . . ,M1. Consider N̄1 additional equality-based tasks and M̄1 addi-
tional set-based tasks. The control input u∗1 can be modified to account for lower-
priority tasks without affecting how the N1 and M1 equality- and set-based tasks
are executed by solving:

minimize
(u,δ,s)∈Rm+N2+M2

uTH(x)u+ cT(x)u+ δTW2δ + sTK2s

subject to

LḡiVϵ,iu ≤ LḡiVϵ,iu
∗
1, i=1,...,N1,

Lf̄jVϵ,j + LḡjVϵ,ju ≤ −γj
ϵ
Vϵ,j + δj , j=N1+1,...,N1+N̄1,

LgL
rk−1
f hku ≥ LgL

rk−1
f hku

∗
1, k=1,...,M1,

Lrlf hl + LgL
rl−1
f hlu ≥ −Kα,lηb,l − sl, l=M1+1,...,M1+M̄1,

(3.24)

where slack variables s penalized by the elements in the diagonal matrix K > 0
have been added to the lower-priority set-based tasks enforced through ECBFs to
ensure feasibility of the optimization problem.

By observing that the solution u∗2 to (3.24) enforces the constraints LḡiVϵ,iu∗2 ≤
LḡiVϵ,iu

∗
1 and LgLrk−1

f hku
∗
2 ≥ LgL

rk−1
f hku

∗
1 for all i and k, it is straightforward to
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generalize (3.24) to an arbitrary priority level n:

minimize
(u,δ,s)∈Rm+Nn+Mn

uTHu+ cTu+ δTWnδ + sTKns

subject to

LḡiVϵ,iu ≤ LḡiVϵ,iu
∗
n−1, i=N̂n−1+1,...,N̂n−1+Nn,

Lf̄jVϵ,j + LḡjVϵ,ju ≤ −γj
ϵ
Vϵ,j + δj , j=N̂n−1+Nn+1,...,N̂n,

LgL
rk−1
f hku ≥ LgL

rk−1
f hku

∗
n−1, k=M̂n−1+1,...,M̂n−1+M̄n,

Lrlf hl + LgL
rl−1
f hlu ≥ −Kα,lηb,l − sl, l=M̂n−1+M̄n+1,...,M̂n,

(3.25)

where N̂n =
∑n
i=1

(
Ni + N̄i

)
and M̂n =

∑n
i=1

(
Mi + M̄i

)
. Note that the objective

function is slightly different at every priority level, since the slack variables δ and
s always correspond to tasks at the current priority level. This prevents trade-off
configurations where none of the tasks are satisfied from occurring. The procedure
is summarized in Algorithm 1.

Algorithm 1 Task priority CLF-ECBF QP controller
Input: H(x), c(x), Vϵ,i(ηi), i = 1, . . . , N , hj(x), j = 1, . . . ,M .
Output: u
1: Solve (3.19) to obtain u∗

1 with i = 1, . . . , N1, k = 1, . . . ,M1.
2: for p = 2 to k do
3: Solve (3.25) to obtain u∗

p.
4: end for
5: return u = u∗

k.

3.3 Simulations

In this section, the proposed hierarchical control scheme is validated in simulation
on an AIAUV based on the Eelume robot [66, 67] depicted in Figure 3.1. The
AIAUV is a floating base manipulator, with n+1 links interconnected by n joints,
where link 1 is the tail, or base link and link n + 1 is the head. The simulation
model has n = 8 single DOF and revolute joints and p = 7 thrusters. The system
configuration is described by ξ =

(
piib, q, θ

)
∈ R7+n, where piib ∈ R3 is the position

of the base of the AIAUV in an inertial frame, q = (η, ε) ∈ R4 is a unit quaternion
describing the orientation of the base and θ = (θ1, . . . , θn) ∈ Rn are the joint angles.
The joint velocities are given by θ̇ and the linear and angular velocities of the base
frame with respect to an inertial frame are denoted vbib and ωbib, respectively. These
velocities are collected in the velocity vector ζ =

(
vbib, ω

b
ib, θ̇

)
∈ R6+n. The equations

of motion are given by [66]

ξ̇ = Jξ(q)ζ, (3.26)

M(θ)ζ̇ + C(θ, ζ)ζ +D(θ, ζ)ζ + g(ξ) = B(θ)u, (3.27)

where M(θ) is the inertia matrix including hydrodynamic added mass, C(θ, ζ)
is the Coriolis-centripetal matrix including hydrodynamic added mass, D(θ, ζ) is
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Figure 3.1: The Eelume AIAUV (Courtesy of Eelume)

the damping matrix, g(ξ) is the vector of gravitational and buoyancy forces and
moments, B(θ) is the actuator configuration matrix and u = (ut, uj) ∈ Rp+n
consists of the thruster inputs ut ∈ Rp and joint torque inputs uj ∈ Rn. Moreover,
the kinematic transformation matrix is given by

Jξ(q) =

Rib(q) 03×3 03×n
04×3 Tq(q) 04×n
0n×3 0n×3 In

, Tq(q) = 1

2

(
−εT

ηI3 + [ε]×

)
, (3.28)

where Rib(q) ∈ SO(3) is a rotation matrix describing the rotation between the base
and inertial frame and [·]× : R3 → so(3) denotes the skew symmetric map.

By defining x = (x1, x2) = (ξ, ζ), the equations of motion can be rewritten in
state space form

ẋ = f(x) + g(x)u, (3.29)

where

f(x) =

(
Jξ(x1)x2

−M(x1)
−1 (C(x)x2 +D(x)x2 + g(x1))

)
, (3.30)

g(x) =

(
0

M(x1)
−1B(x1)

)
. (3.31)

With 6 + n = 14 DOFs and p+ n = 15 control inputs, the system is overactuated,
since the number of actuators is greater than the number of DOFs. Moreover, 14
DOFs imply that the system is redundant with respect to typical tasks such as
end-effector configuration control.

We consider four equality-based tasks and three set-based tasks, at three dif-
ferent priority levels. The set-based tasks are safety-related and are thus placed
at the highest priority level. The safety-related tasks consist of end-effector colli-
sion avoidance, actuator configuration matrix singularity avoidance and joint limit
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avoidance. The purpose of the end-effector collision avoidance task is to avoid a
spherical obstacle with radius robs ∈ R. To this end, the scalar distance measure
between the center of the obstacle and the end-effector is employed as a set-based
task σa ∈ R. In order to ensure that the distance from the end-effector to the center
of the spherical obstacle is always greater than some lower limit, we enforce the
positivity of the following ECBF

h1(x) =

√(
piobs − piie

)T (
piobs − piie

)︸ ︷︷ ︸
σa

−(robs + ϵ), (3.32)

where ϵ ∈ R defines an inaccessible safety region around the spherical obstacle and
piie and piobs are the positions of the end-effector and the center of the spherical
obstacle in an inertial frame, respectively.

Rank deficiency of the actuator configuration matrix B(θ) was pointed out in
[68], and implies that no force or moment can be generated in certain directions
in the vector space R6+n belonging to τ . Inspired by the manipulability measure
[69], the actuation measure σb = det

(
B(θ)BT(θ)

)
is introduced as a high-priority

set-based task to prevent singular configurations. The actuation measure is kept
above a minimum value σb,min through the following ECBF

h2(x) = det
(
B(θ)BT(θ)

)
− σb,min. (3.33)

The third safety-related task is the joint limit avoidance task σc = θ ∈ Rn, which
has both lower and upper limits. Hence, 2n ECBFs are needed of the form

hj+2(x) = θj − θj,min, (3.34)
hj+2+n(x) = θj,max − θj . (3.35)

for j = 1, . . . , n.
The second priority level contains the equality-based end-effector positioning

and orientation tasks

y1 = ϑ1(x) = piie − pid,e, (3.36)

y2 = ϑ2(x) = ε̃, (3.37)

where pid,e is the desired end-effector position and ε̃ is the imaginary part of the
quaternion error vector q̃ = qd ⊗ q∗, which is given by

ε̃ = ηεd − ηdε+ [ε]× εd, (3.38)

where qd and q are the quaternion representations of the desired and measured
orientation of the end-effector, respectively.

In order to minimize movement of the base while repositioning the end-effector,
a base positioning task is defined at the third priority level

y3 = ϑ3(x) = piib − pid,b, (3.39)

where piib ∈ R3 and pid,b ∈ R3 are the measured and desired positions of the AIAUV
base in the inertial frame, respectively. Note that the end-effector positioning and
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orientation and base positioning tasks only consume 9 DOFs, which entails that
there are still 5 uncontrolled DOFs if all set-based tasks are inactive. Stability of
the entire system can therefore only be guaranteed if the resulting zero dynamics
is asymptotically stable. Instead of performing a complicated analysis of the zero
dynamics, a joint velocity regulation task is designed to eliminate the residual
DOFs of the system y4 = θ̇, where θ̇ ∈ Rn is the vector of joint velocities.

The input-output dynamics of the equality tasks are then obtained from (3.18)
such that transverse dynamics states ηi and RES-CLFs Vϵ,i can be defined anal-
ogously to (3.6a), (3.7) and (3.11), with ρ1 = ρ2 = ρ3 = 2 and ρ4 = 1, where ρi
denotes the amount of times yi has to be differentiated for the input to appear.
Furthermore, the set-based tasks in (3.32)-(3.35) all have to be differentiated twice
with respect to time for the input to show up, hence r1 = · · · = r18 = 2.

The design matrix H(x) and design vector c(x) in the objective functions are
selected by minimizing the virtual control input µ = Au+ b quadratically as done
in [17, 18], where

A(x) =


A1(x)
A2(x)
A3(x)
A4(x)

 , b(x) =


b1(x)
b2(x)
b3(x)
b4(x)

 . (3.40)

In terms of u, this yields

µTµ = uTATAu+ 2bTAu+ bTb, (3.41)

which implies that H(x) = AT(x)A(x) and cT(x) = 2bT(x)A(x).
According to Algorithm 1, we solve the following QP:

minimize
u∈R15,(δ1,δ2)∈R2

uTATAu+ 2bTAu+ w1δ
2
1 + w2δ

2
2

subject to

Lf̄iVϵ,i + LḡiVϵ,iu ≤ −γ1
ϵi
Vϵ,i + δi, i = 1, 2,

L2
fhk + LgLfhku ≥ −Kα,kηb,k, k = 1, . . . , 18,

− umax ≤ u ≤ umax,

−∆umax ≤ ∆u ≤ ∆umax,

(3.42)

where ∆u = u− uprev is the change in control input, uprev is the control input at
the last sample, and umax = (50, . . . , 50) and ∆umax = (0.1, . . . , 0.1) are thruster
and joint torque limits and rate constraints, respectively. The QP in (3.42) yields
a control input u = u∗1 that only accounts for the safety-related tasks and the end-
effector positioning and orientation tasks. The solution u∗1 is refined by utilizing the
excess DOFs of the system in an attempt to keep the base stationary and minimize

32



3.3. Simulations

Table 3.1: Equality task convergence rates ϵ and penalty parameters w

y1 y2 y3 y4
ϵ 1.2 0.2 1.2 0.5
w 60 60 10 10

the joint velocities through the QP:

minimize
u∈R15,(δ3,δ4)∈R2

uTATAu+ 2bTAu+ w3δ
2
3 + w4δ

2
4

subject to

LḡiVϵ,iu ≤ LḡiVϵ,iu
∗
i , i = 1, 2,

Lf̄jVϵ,j + LḡjVϵ,ju ≤ −γj
ϵj
Vϵ,j + δj , j = 3, 4,

LgLfhku ≥ LgLfhku
∗
1, k = 1, . . . , 18,

− umax ≤ u ≤ umax,

−∆umax ≤ ∆u ≤ ∆umax,

(3.43)

which yields the final control input u = u∗2 that is applied to the AIAUV. The
equality task control parameters are listed in Table 3.1, while Kα,k = (3, 4) for all
k = 1, . . . , 18.

We remark that the optimization problems are formulated in terms of the
thruster and joint torque control inputs u, and not the commanded forces and
torques τ = Bu. Consequently, the proposed framework also solves the control
allocation problem, which had to be solved separately in previous works [68, 70].
By unifying redundancy resolution, dynamic control and control allocation, strict
priority among tasks can always be ensured. The same guarantee does not hold
for redundancy resolution schemes that decouple dynamic control and control al-
location, since the commanded forces and torques may not be exactly allocable,
leading to a loss of priority among tasks.

Simulations were performed in Matlab/Simulink using the ode3 solver with a
fixed step-size of 0.01. Simulation results are presented in Figures 3.2 to 3.5. From
Figures 3.4 and 3.5 we observe that the high-priority set-based tasks are satisfied
at all times. In general, the redundancy of the system is exploited such that the
lower-priority equality tasks are satisfied even when higher-priority set-based tasks
are at their limits and consuming DOFs. For instance, the actuation measure is kept
above a minimum value of 0.1, which avoids singular configurations of the actuation
configuration matrix from occurring and thereby reducing the magnitude and/or
rates of change of the control inputs, at the cost of maneuverability [71]. However,
the high-priority collision avoidance task results in a small deviation in the lower-
priority end-effector positioning task. Specifically, we observe from Figure 3.2 and
Figure 3.4 that the x-coordinate of the end-effector position deviates slightly from
its reference and that the distance to the center of the spherical obstacle is at its
minimum value between t ≃ 268 s and t ≃ 281 s.

After t ≥ 350 s, the end-effector position is commanded outside of the manipu-
lator workspace (when the base is kept at its current position), which implies that
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Figure 3.2: The position of the end-effector piie and base piib.

the lower-priority base positioning task is no longer compatible with the higher-
priority end-effector positioning task. As desired, the strict priority between tasks
is kept at all time, such that the end-effector position converges to its desired value
at the expense of a greater error in the base position.

Finally, we note from Figure 3.3 that the thruster and joint torque control
inputs are smooth and well within the physical limitations of the Eelume robot.

3.4 Conclusions and Future Work

This chapter has presented a novel task-priority framework for redundancy resolu-
tion, dynamic control and control allocation of redundant robotic systems based on
a hierarchy of CLF- and CBF-based QPs. The framework provides strict priority,
ensuring that lower-priority tasks have no effect on higher-priority tasks, by solv-
ing additional QPs to establish distinct priority levels. As a result, lower-priority
control objectives can be safely included, without affecting the execution of higher-
priority mission-related or safety-related tasks. Additionally, a soft priority measure
in the form of slack variables can be utilized in order to prioritize tasks at the same
priority level, resulting in considerable design freedom.

The proposed framework has been verified in simulations for an AIAUV, which
is an overactuated and redundant robotic system. For these types of systems, the
proposed task-priority framework also solves the control allocation problem, which
is highly advantageous since control input bounds and rate constraints can be
accounted for when resolving redundancy, effectively avoiding a situation in which
commanded generalized forces and torques cannot be allocated explicitly, leading
to a loss of priority among tasks.
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Figure 3.3: The thruster and joint torque control inputs.
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Figure 3.4: The distance to the center of the spherical obstacle σa and its mini-
mum value robs + ϵ, and the actuation measure σb and its minimum value σb,min.

35



3. Task-Priority Control of Redundant Robotic Systems

0 50 100 150 200 250 300 350 400

-50

0

50

0 50 100 150 200 250 300 350 400

0

20

40

60

80

100

120

Figure 3.5: The joint angles θ, their maximum and minimum limits θmax = 60◦

and θmin = −60◦, and the orientation of the end-effector, represented by the roll-
pitch-yaw Euler angles ϕ, θ and ψ.

Future work is aimed at investigating the robustness of the proposed framework
with respect to modeling inaccuracies. This is especially relevant for an underwater
vehicle application such as an AIAUV, where accurate identification of the dynamic
model parameters is difficult [72]. An experimental implementation of the proposed
control system on an AIAUV will further validate the framework.
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Chapter 4

Safety-Critical Control of
Autonomous Surface Vehicles in the
Presence of Ocean Currents

In this chapter, we propose a CLF- and CBF-based convex quadratic optimization
problem for robust safety-critical control of ASVs. The framework is motivated by
Chapter 3, builds on [18, 28, 29, 73], and is applicable to a larger class of nonlinear
affine control systems. Safety-related objectives are enforced through CBFs, while
stabilization objectives are enforced through relaxed CLFs. Relaxation of the CLFs
implies that the stabilization and safety-related objectives do not need to be si-
multaneously satisfiable. We propose CLFs endowed with integral action in order
to mitigate the effects of unknown and slowly varying nonlinearities such as the
effect of ocean currents. Moreover, we modify the results on robust CBFs in [73] for
uncertain systems modeled by differential equations in order to provide analytical
conditions guaranteeing safety in the presence of unknown nonlinearities. These
conditions are subsequently utilized to obtain robust CBFs ensuring reactive col-
lision avoidance for ASVs. Employing an optimization-based control law enables
formulating the control problem in terms of the actuator control inputs and thereby
unifying the control problem with the control allocation problem. This unification
handles control input saturations more effectively than a decoupled approach and
is less likely to lead to instability [17], which is especially relevant during emer-
gency collision avoidance maneuvers. We consider ASVs with nonlinear actuator
models and derive a partially linearized control design model by linearizing the ac-
tuator configuration matrix at every time step to avoid a non-convex optimization
problem.

The material in this chapter is based on [50].

4.1 Introduction

In recent years, a significant research effort has been devoted to autonomous surface
vehicles (ASVs). Fully autonomous surface vehicles will have a significant impact in
a wide variety of areas such as commercial shipping [74], passenger transport [75],
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scientific research [76], and military applications. ASVs are safety-critical systems
with a tight coupling between the potentially conflicting maneuvering objectives
(e.g. following a geometric path at a desired speed), and safety-related objectives
such as collision avoidance. The control problem is further complicated by magni-
tude and rate constraints on the actuators, and nonlinear actuator models in the
case of azimuth thrusters.

Control algorithms for marine vessels often decouple the control problem into
two parts. First, a high-level motion control algorithm is developed for position and
heading control by considering the forces and moments generated by the actuators
as a virtual control input. After determining the virtual control input from the
motion control algorithm, a control allocation problem must be solved in order to
distribute the virtual control input into the physical control inputs of the actuators
such that the total forces and moments generated by the actuators correspond to
the virtual input. This decoupling is not very restrictive for systems where the ac-
tuator configuration is constant. However, for actuators such as azimuth thrusters,
the azimuth angles are also control inputs, and a nonlinear control allocation prob-
lem must be solved, requiring sophisticated real-time optimization techniques [71,
77].

Decoupling the control problem makes it difficult to account for magnitude and
rate constraints within the motion control algorithm, which can lead to virtual
control inputs from the motion control algorithm that cannot be realized by the
actuator control inputs. The actuator control inputs must then be found by min-
imizing the difference between the virtual control input and the total forces and
moments generated by the actuators in some sense. A drawback of this approach is
the fact that this minimization does not necessarily lead to minimizing the tracking
error.

Control allocation algorithms for systems with linear and nonlinear actuator
models were surveyed in [65]. In [78], a model predictive control algorithm combined
position and heading control with control allocation for a dynamic positioning
application. This approach requires a linear model and is less feasible for marine
vessels operating at higher speeds, where centripetal forces and nonlinear damping
effects dominate.

Control Lyapunov function (CLF)-based quadratic programs (QP) have been
applied to a variety of systems including biped robots [14, 17, 18, 79], automotive
systems [28], and hyper-redundant underwater manipulators as demonstrated in
Chapter 3. CLF-based QP controllers are attractive due to their real-time feasibil-
ity on standard hardware [80] and natural inclusion of actuator magnitude and rate
constraints. Gradual performance degradation of a CLF-based QP controller under
strict input constraints was experimentally shown in [17]. While CLFs thus are at-
tractive for achieving the maneuvering objectives of ASVs, control barrier functions
(CBFs) are a powerful tool for ensuring forward invariance of sets in order to pro-
vide safety guarantees. CBFs were introduced in [25] and unified with CLFs in [26]
and [28] using different formulations. This chapter builds on the approach taken
in [28], which mediated safety and stabilization objectives by guaranteeing safety
and achieving stabilization when the objectives are not in conflict. CBFs have been
utilized for collision avoidance of miniature differential drive robots in [73, 81],
underwater manipulators [49], and recently for ASVs in [82]. A method for robust
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CLF-CBF-QP control was proposed in [79], which achieves robustness through con-
stant scalar-valued upper bounds on the model uncertainty appearing in the CLF
and CBF derivatives, often leading to overly conservative estimates. Robust CBFs
for uncertain systems were also considered in [83] and [73]. The method in [83]
results in a nonlinear optimization problem, making it less feasible for real-time
applications, while [73] extended CBFs to a particular class of disturbed systems
modeled by differential inclusions.

This rest of this chapter is organized as follows, Section 4.2 presents background
theory on robust CBFs, specifically, conditions guaranteeing safety in the presence
of unknown nonlinearities. These conditions are subsequently employed for safe
CLF-CBF-QP controller synthesis for a general nonlinear affine control system. In
Section 4.3, ASV models for simulation, and CLF and CBF design in the presence
of unknown ocean currents are presented. For CBF design, an arbitrary number of
ocean current approximations are generated and conditions guaranteeing safety are
derived. Section 4.4 introduces the stabilization objective before we construct CLFs
with integral action and robust CBFs for reactive collision avoidance. Moreover, a
general CLF-CBF-QP controller for safety-critical control is presented. A simula-
tion study for a double-ended passenger ferry implements the proposed framework
in Section 4.5, before Section 4.6 concludes the chapter.

4.2 Safety-Critical Control of Nonlinear Affine Control
Systems

This section presents the main theoretical result of this chapter. Specifically, The-
orem 4.1 provides conditions for which an arbitrary number of nonlinear maps
estimating some unknown system nonlinearity guarantees safety. Section 4.2.2 ex-
tends the CLF-CBF-QP controller from [28] by using Theorem 4.1 to guarantee
safety in the presence of unknown nonlinearities and by incorporating CLFs with
integral action to remove steady-state tracking errors.

4.2.1 Robust CBFs for a Class of Uncertain Nonlinear Systems

Assume that f(χ) = f̃(χ) + ϑ(χ) and rewrite (2.15) as

χ̇ = f̃(χ) + ϑ(χ) + g(χ)u, (4.1)

where the unknown mapping ϑ : Rn → Rn is continuous. We modify the robust-
ness results for disturbed nonlinear affine control systems described by set-valued
mappings in [73] to the system (4.1) as follows:

Theorem 4.1. Consider P > 0 continuous mappings φi : Rn → Rn, i ∈ P =
{1, . . . , P}, and let h : Rn → R be a continuously differentiable function defining
K. Then, h is a CBF for (4.1) if there exists an open set X ⊂ Rn with K ⊂ X
such that for all χ ∈ X

1. the mappings φi satisfy

min
i∈P

∇h(χ)Tφi(χ) ≤ ∇h(χ)Tϑ(χ); (4.2)
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2. there exists a continuous control law κ : Rn → Rp and an extended class-K∞
function σ : R → R such that

∇h(χ)Tf̃(χ) +∇h(χ)Tg(χ)κ(χ) ≥ −σ(h(χ))−min
i∈P

∇h(χ)Tφi(χ), (4.3)

then h is a CBF for (4.1) and the control input u = κ(χ) renders the superzero
level set K forward pre-invariant for (4.1).

Proof. The proof follows from the fact that f̃ and g are continuous, the minimum
of continuous mappings is in itself continuous, and by combining (4.2) with (4.3)
to obtain

∇h(χ)Tf̃(χ) +∇h(χ)Tg(χ)κ(χ) ≥ −σ(h(χ))−∇h(χ)Tϑ(χ), ∀χ ∈ X, (4.4)

which is equivalent to

∇h(χ)Tf(χ) +∇h(χ)Tg(χ)κ(χ) ≥ −σ(h(χ)), (4.5)

for all χ ∈ X. By Definition 2.22, h is a valid CBF for (4.1), which combined with
the fact that κ is continuous and and κ(χ) ∈ Uh(χ) for all χ ∈ X, guarantees
forward pre-invariance of the superzero level set K from Corollary 2.24.

Theorem 4.1 can be used to synthesize safe controllers by generating P con-
tinuous mappings capturing the unknown nonlinearity with sufficient accuracy.
By enforcing (4.3) as a constraint on the control input, the effect of the most
conservative function estimate φi on the positivity of the function h can be ac-
counted for. Moreover, by constructing state-dependent function estimates we can
avoid excessively conservative scalar estimates on the norm of the uncertain term
χ 7→ ∇h(χ)Tϑ(χ) as in [79].

4.2.2 Controller Synthesis via Quadratic Programming

If the unknown mapping ϑ is slowly varying, it is reasonable to assume that an
ES-CLF V (·) with integral action for the system (4.1) with ϑ = 0 will stabilize
(2.15). Moreover, consider a safety-related objective encoded by h(·). By relaxing
the stabilization objective, a safe controller can be synthesized for the system (2.15)
by solving the following QP

minimize
(u,δ)∈Rp+1

1

2
uTHu+ cTu+ wδ2 (4.6a)

subject to

⟨∇V (χ), f̃(χ) + g(χ)u⟩ ≤ −γV (χ) + δ, (4.6b)

⟨∇h(χ), f̃(χ) + g(χ)u⟩ ≥ −σ(h(χ))−min
i∈P

⟨∇h(χ), φi(χ)⟩, (4.6c)

where H ∈ Rp×p is any positive definite matrix, c ∈ Rp, and δ ∈ R is a slack
variable penalized by the weighting parameter w > 0. The slack variable is added
to ensure feasibility of the optimization problem in case the stabilization objective
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conflicts with the safety-related objective. Moreover, the addition of the slack vari-
able ensures that the safety-related objective can always be satisfied. By choosing
the weighting parameter appropriately, the solution to the QP will result in δ ≈ 0
when the stabilization and safety-related objectives are not conflicting.

4.3 Vessel Modeling for Safety and Stabilization

This section presents ASV models for stabilization and safety design. Specifically,
in Sections 4.3.1 and 4.3.2 we describe the simulation model and the control al-
location problem. The control design model, which does not include the effect of
the unknown ocean currents, is presented in Section 4.3.3. Moreover, we formulate
the model in terms of the azimuth angle and force magnitude control inputs of the
actuators, and not the generalized forces produced by the actuators. This allows
us to subsequently linearize the mapping from control inputs to generalized forces,
avoiding a non-convex dynamic optimization problem. In Section 4.3.4 we consider
the validity of the control design model and modify it accordingly for CBF de-
sign. Furthermore, we modify Theorem 4.1 to the case where the unknown map
ϑ is known, but depends on an unknown vector of parameters, which enables safe
controller synthesis in the presence of unknown ocean currents.

4.3.1 Vessel Model

The system configuration of a surface vessel can be described by η = (pn, ψ), where
pn = (xn, yn) ∈ R2 is the North and East coordinates of the body frame of the ship
in the assumed inertial North-East-Down (NED) frame, and ψ ∈ R is the heading
angle. Define the mapping R : R → SO(3) by

R(ϱ) :=

cos ϱ − sin ϱ 0
sin ϱ cos ϱ 0
0 0 1

 . (4.7)

Then, R(ψ) denotes the rotation matrix around the z-axis describing the rotation
between the body frame and NED frame. The velocity vector expressed in the body
frame is defined by ν := (u, v, r) ∈ R3.

Assumption 4.2. The unknown ocean current Vc is defined in the NED frame,
and is assumed to be constant and irrotational. Hence, Vc = Uc (cos(βc), sin(βc), 0),
where βc ∈ (−π, π] is the current direction and Uc ≥ 0 is the current speed.

Assumption 4.2 implies that the ocean current in the body frame is given by
νc = (uc, vc, 0) = R(ψ)TVc, with ν̇c = (rvc,−ruc, 0) = Ṙ(ψ, r)TVc. Defining the
relative velocity by νr := ν − νc, the equations of motion are given by [84]

η̇ = R(ψ)ν, (4.8a)

ν̇ = Ṙ(ψ, r)TVc +M−1 (τ − C(νr)νr −D(νr)νr) , (4.8b)

where M is the inertia matrix including hydrodynamic added mass, C(νr) is
the Coriolis-centripetal matrix including hydrodynamic added mass, D(νr) is the
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damping matrix, and τ ∈ R3 are the generalized forces produced by the actua-
tors. Moreover, the Coriolis and centripetal matrix can be expressed as C(νr) =
C(ν) + C̄(νc), while the damping matrix can be decomposed into a linear and
nonlinear part D(νr) = Dl +Dn(νr), where

Dn(νr) = −

d1|ur| 0 0
0 d2|vr|+ d3|r| d4|vr|+ d5|r|
0 d6|vr|+ d7|r| d8|vr|+ d9|r|

, (4.9)

where dj ∈ R, j ∈ {1, . . . , 9}. See [84] for further details.

4.3.2 Control Allocation

Consider a marine vessel equipped with m actuators, the mapping between the
generalized forces τ and the control inputs u = (µ, α) ∈ R2m is given by

τ = B(α)µ, (4.10)

where B : Rm → R3×m is the actuator configuration matrix, α are the azimuth
angles of the actuators and µ is the vector of force magnitudes produced by the
actuators. The ith column of the actuator configuration matrix is given by

Bi(αi) =

 cosαi
sinαi

−lyi cosαi + lxi sinαi

 , (4.11)

where the location of the ith actuator in a body-fixed coordinate system with origin
at the center of rotation is at (lxi

, lyi). Solving (4.10) for the actuator control inputs
µ, α, given a desired generalized force τ , is known as the control allocation problem
[71].

4.3.3 Vessel Model for CLF-based Control Design

For low-speed maneuvering up to 2m/s, linear damping is the dominating dissipa-
tive force [84]. Moreover, from (4.9) it is apparent that approximating Dn(νr) by
Dn(ν) is ill-advised when the vessel and current velocity are similar in magnitude
and the current direction is unknown. Therefore, we simplify the model (4.8) for
control design by by neglecting the effects of nonlinear damping and by assuming
that Vc = 0

η̇ = R(ψ)ν, (4.12a)
Mν̇ + C(ν)ν +Dlν = B(α)µ, (4.12b)

where u = (µ, α) ∈ R2m is the control input. Since the system (4.12) is not affine
in the control input u, the design procedure in Section 4.2 will yield a non-convex
dynamic optimization problem due to the resulting non-convexity of (4.6b) and
(4.6c). Following [71], a control affine system is obtained by linearizing (4.10) about
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the azimuth angles α0 and force magnitudes µ0 from the previous sample

B(α)µ ≈ B(α0)∆µ+
∂

∂α
(B(α)µ)

∣∣∣∣α=α0
µ=µ0

∆α+B(α0)µ0

=
(
B(α0)

∂
∂α (B(α)µ)

∣∣α=α0
µ=µ0

)
︸ ︷︷ ︸

B̄(α0,µ0)

∆u+B(α0)µ0, (4.13)

where ∆µ = µ−µ0, ∆α = α−α0 and ∆u = u−u0 = (∆µ,∆α). Combining (4.13)
and (4.12) yields the partially linearized control affine system

η̇ = R(ψ)ν, (4.14a)
Mν̇ + C(ν)ν +Dlν = B̄(u0)∆u+B(α0)µ0. (4.14b)

which admits the following state-space representation

ẋ = f(x) + g∆u, (4.15)

where x = (η, ν) and

f(x) =

(
R(ψ)ν

M−1 (B(α0)µ0 − C(ν)ν −Dlν)

)
, (4.16)

g =

(
03×2m

M−1B̄(α0, µ0)

)
. (4.17)

4.3.4 Vessel Model for CBF Design

For CBF design, we assume low-speed maneuvering and modify the full model (4.8)
by neglecting nonlinear damping

η̇ = R(ψ)ν, (4.18a)

ν̇ =M−1 (τ − C(ν)ν −Dlν) + ϑ(η, ν, νc), (4.18b)

where

ϑ(η, ν, νc) = Ṙ(ψ, r)TVc +M−1
(
C(ν)νc − C̄(νc)νr +Dlνc

)
. (4.19)

The system (4.18) admits the following state-space representation

ẋ = f̆(x, νc) + ğτ, (4.20)

where x = (η, ν) ∈ R3 × R3 and

f̆(x, νc) = f(x) +

(
03×1

ϑ(η, ν, νc)

)
, ğ =

(
03×3

M−1

)
, (4.21)

where f̆ : (R3×R3)×R3 → R6 and ğ ∈ R6×3 are continuous. We want to generate
P > 0 continuous mappings approximating the dynamic effect of the ocean current.
To this end, Theorem 4.1 is specialized for the case where the mapping ϑ is known,
but instead depends on the unknown parameters νc.
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Proposition 4.3. Given P > 0 ocean current estimates V̂c,i, i ∈ P = {1, . . . , P},
define P continuous mappings φi : R× R× R3 × R3 → R3 by

φi(ψ, r, ν, ν̂c,i) := Ṙ(ψ, r)TV̂c,i +M−1
(
C(ν)ν̂c,i − C̄(ν̂c,i)ν̂r,i +Dlν̂c,i

)
, (4.22)

where ν̂c,i = R(ψ)TV̂c,i and ν̂r,i = ν − ν̂c,i. Let h : R3 × R3 → R be a continuously
differentiable function defining K. If there exists an open set X ⊂ R3 × R3 with
K ⊂ X such that for all (η, ν, νc) ∈ X × R3

• the ocean current estimates ν̂c,i satisfy

min
i∈P

∇2h(η, ν)
Tφi(ψ, r, ν, ν̂c,i) ≤ ∇2h(η, ν)

Tϑ(η, ν, νc); (4.23)

• there exists a continuous control law κ : R3 × R3 → R3 and an extended
class-K∞ function σ : R → R such that

∇1h(η, ν)
TR(ψ)ν +∇2h(η, ν)

TM−1 (κ(η, ν)− C(ν)ν −Dlν)

≥ −σ(h)−min
i∈P

∇2h(η, ν)
Tφi(ψ, r, ν, ν̂c,i),

(4.24)

then h is a CBF for (4.18) and the control law τ = κ(η, ν) renders the superzero
level set K defined by h forward pre-invariant for (4.18).

Proof. The proof follows from noting that f̆ and ğ are continuous, the minimum of
continuous mappings is in itself continuous, and by combining (4.23) with (4.24)

∇1h(η, ν)
TR(ψ)ν +∇2h(η, ν)

TM−1 (κ(η, ν)− C(ν)ν −Dlν)

≥ −σ(h)−∇2h(η, ν)
Tϑ(η, ν, νc),

(4.25)

which is equivalent to

∇h(x)Tf̆(x, νc) +∇h(x)Tğκ(η, ν) ≥ −σ(h(x)), (4.26)

for all (x, νc) ∈ X × R3. By Definition 2.22, h is a valid CBF for (4.20), which
combined with the fact that κ is continuous guarantees forward invariance of the
superzero level set K from Corollary 2.24.

To account for the unknown ocean current direction, Proposition 4.3 will be used
to obtain safe controllers by specifying an upper limit on the current speed Ûc ≥ 0
and constructing P ocean current approximations V̂c,i = Ûc

(
cos
(
β̂c,i
)
, sin

(
β̂c,i
))

,
i ∈ P = {1, 2, . . . , P}, with evenly spaced directions β̂c,i ∈ R. Given an upper limit
for the current speed Ûc, and a current direction β̂c in the NED frame, we construct
P ocean current approximations from

V̂c,i = ÛcR

(
(i− 1)

2π

P

)
cos
(
β̂c

)
sin
(
β̂c

)
0

 , i ∈ P, (4.27)

ν̂c,i = R(ψ)TV̂c,i, i ∈ P, (4.28)

for any number of directions P divisible by 360.
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Remark 4.4. By specifying an upper bound on the current speed and constructing
P evenly-spaced ocean current approximations, we are able to account for the dy-
namic effect that the worst possible ocean current approximation may have on some
continuously differentiable function h encoding a safety-related objective. As long
as the actual ocean current does not contribute to making h more negative than any
of our estimates, i.e. as long as (4.23) holds, (4.24) can be enforced as a constraint
on the control input and safety can be guaranteed from Proposition 4.3 when the
linearization error from (4.13) is negligible and the control input is continuous.

4.4 Safety-Critical Control of ASVs

In this section we apply the results from the previous sections for safety-critical
control of ASVs in the presence of ocean currents. Section 4.4.1 defines the stabi-
lization objectives, while Section 4.4.2 derives ES-CLFs for position and heading
control. Section 4.4.3 describes CBF design for collision avoidance before the robust
CLF-CBF-QP controller is presented in Section 4.4.4.

4.4.1 Stabilization Objectives

The stabilization objective is stated as a special case of the maneuvering problem
[52]:

1. Geometric Task: For a given continuous path variable θ(t), force the con-
figuration η(t) to converge to the desired configuration ηd(θ(t)), that is,

lim
t→∞

[η(t)− ηd(θ(t))] = 0. (4.29)

2. Dynamic Task: For a given continuous path speed θ̇(t), force the configu-
ration velocity η̇(t) to converge to a desired configuration velocity η̇d(θ(t), t),
that is,

lim
t→∞

[η̇(t)− η̇d (θ(t), t)] = 0. (4.30)

The primary benefit of this formulation is that design of the path and the desired
motion along the path can be decoupled and approached individually in design.
The desired path through K waypoints is denoted by pd(θ) = (xd(θ), yd(θ)). This is
generated using a cubic spline interpolation method as outlined in [53]. Assigning
the desired heading as the angle of the tangent vector along the path ψd(θ) =
atan2

(
y′d(θ), x

′
d(θ)

)
results in the desired configuration

ηd(θ) = (xd(θ), yd(θ), ψd(θ)) . (4.31)

We transform the desired path into a time-varying trajectory by defining a desired
path speed according to

θ̇ = vd(θ, t) :=
ud(t)√(

x′d(θ)
)2

+
(
y′d(θ)

)2 , (4.32)
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where ud : R≥0 → R is a commanded input speed. Given a piecewise constant refer-
ence speed assignment Ur(t), continuous desired speed and acceleration references
ud(t) and u̇d(t) are obtained from the following second-order low-pass filter

üd + 2ζωnu̇d + ω2
nud = ω2

nUr, (4.33)

where ζ > 0 is the damping ratio and ωn > 0 is the natural frequency of the filter.
The desired configuration velocity and acceleration is found by differentiating (4.31)
with respect to time

η̇d = η′d(θ)θ̇ = η′d(θ)vd(θ, t), (4.34)

η̈d = η′′d (θ)vd(θ, t)
2 + η′d(θ)

(
∂vd
∂θ

(θ, t)vd(θ, t) +
∂vd
∂t

(θ, t)

)
. (4.35)

4.4.2 Error Dynamics and Integral ES-CLFs for Stabilization

Consider the configuration error

y(η, θ) = η − ηd(θ). (4.36)

The error dynamics is found by differentiating (4.36) with respect to time and
substituting (4.8)

ẏ = R(ψ)Tν − η̇d(θ, t), (4.37)

ÿ = R(ψ)Tν̇ + Ṙ(ψ, r)Tν − η̈d(θ, t)

= R(ψ)TM−1
(
B̄(u0)∆u+B(α0)µ0

)
−R(ψ)TM−1 (C(ν)ν +D(ν)ν) + Ṙ(ψ, r)Tν − η̈d

= A(ψ, u0)∆u+ b(ψ, ν, u0, θ, t). (4.38)

In order to independently control the rate of convergence of the position and the
heading angle, we let y1 ∈ R2 and y2 ∈ R denote the position and heading compo-
nents of the configuration error y, respectively. As discussed in Section 4.3.4, the
control model is sufficiently precise for control design provided that integral action
is used in the controller to counteract the effect of the ocean currents. To this end,
we define the integral states żi := yi ∈ Rki , where ki = dim (yi). The state-space
representation of the error dynamics is found by defining ξi := (zi, żi, z̈i) ∈ R3ki

and differentiating ξi with respect to time

ξ̇i = Λiξi + Γi (Ai(ψ, u0)µ+ bi(ψ, ν, u0, θ, t)) (4.39)
= f̄i(ξi, ψ, ν, u0, θ, t) + ḡi(ψ, u0)∆u, (4.40)

for i ∈ {1, 2}, where Ai and bi are the rows and elements of A and b corresponding
to yi, respectively, and

Λ1 =

0 I 0
0 0 I
0 0 0

 , Λ2 =

0 1 0
0 0 1
0 0 0

 , (4.41)

Γ1 =
(
0 0 I

)T
, Γ2 =

(
0 0 1

)T
. (4.42)
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As alluded to in Section 4.2, ES-CLFs will be used as they achieve fast conver-
gence. Consider the following ES-CLF candidates for (4.40)

Vi(ξi) = ξTi Piξi, i ∈ {1, 2} , (4.43)

where Pi = PT
i is positive-definite and solves the continuous-time algebraic Riccati

equation

ΛT
i Pi + PiΛi − PiΓiΓ

T
i Pi +Qi = 0, (4.44)

where Qi is any positive definite matrix. Note that the symmetric and positive def-
inite solution to (4.44) is guaranteed to exist since (Λi, Γi), i ∈ {1, 2} is controllable
[85]. The time derivative of (4.43) is given by

V̇i = ⟨∇Vi(ξi), f̄i(ξi, ψ, ν, u0, θ, t) + ḡi(ψ, u0)∆u⟩, (4.45)

where

∇Vi(ξi)Tf̄i = ξTi
(
ΛT
i Pi + PiΛi

)
ξi + 2ξTi PiΓibi, (4.46)

∇Vi(ξi)Tḡi = 2ξTi PiΓiAi. (4.47)

Inserting (4.44) results in

V̇i = ξTi
(
PiΓiΓ

T
i Pi −Qi

)
ξi + 2ξTi PiΓi (Ai∆u+ bi) . (4.48)

Define γi :=
λmin(Qi)
λmax(Pi)

> 0, where λmin(·) and λmax(·) are the minimum and maxi-
mum eigenvalues of the input matrix, respectively. It follows that γiPi ≤ Qi, which
yields

V̇i ≤ ξTi
(
PiΓiΓ

T
i Pi − γiPi

)
ξi + 2ξTi PiΓi (Ai∆u+ bi)

= ξTi PiΓi
(
ΓT
i Piξi + 2 (Ai∆u+ bi)

)
− γiξ

T
i Piξi. (4.49)

Assumption 4.5. The rows of the decoupling matrix A(ψ, u0) = R(ψ)TM−1B̄(u0)
are linearly independent for all (ψ, u0) ∈ R × R2m, which implies that the system
is input-output feedback linearizable [86].

Assumption 4.5 together with (4.49) implies that

inf
∆u∈R2m

[
⟨∇Vi(ξi), f̄i + ḡi∆u⟩+ γiVi(ξi)

]
≤ 0, (4.50)

for all (ξi, ψ, ν, u0, θ, t) ∈ R3ki ×Dψ×R3×R2m×R≥0×R≥0. Consequently, Vi is an
ES-CLF for (4.40) with c1 = λmin(Pi), c2 = λmax(Pi) and c3 = γi. Note that the
rate of exponential convergence γi can be controlled through the positive-definite
matrix Qi.
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4.4.3 CBFs for Collision Avoidance with Static Obstacles

To achieve collision avoidance, we will employ Proposition 4.3, and the ocean cur-
rent estimation procedure in Section 4.3.4 to obtain CBFs for the ASV model (4.8)
without knowledge of the true ocean current. We only consider static obstacles, and
refer to [82] for collision avoidance of dynamic obstacles using CBFs. The model
(4.18) combined with (4.10) and (4.13) in state-space form is given by

ẋ = f(x) + g∆u+

(
0

ϑ(η, ν, νc)

)
, (4.51)

where x = (η, ν) and the expressions for f and g are given in Section 4.3.3. Consider
a spherical obstacle with radius robs > 0. A scalar distance measure between the
obstacle and the body-fixed vessel frame is defined by

d(η) :=

√
(pnobs − pn)

T
(pnobs − pn)− robs. (4.52)

where pnobs ∈ R2 is the position of the center of the obstacle in the NED frame.
Enforcing the positivity of the following continuously differentiable function will
avoid collisions [81]

h(η, ν) = d(η) + kJ(η)ν, (4.53)

where k > 0 and J(η) := ∇d(η)TR(ψ). Differentiating h with respect to time yields

ḣ = ∇h(η, ν)Tf(x) +∇h(η, ν)Tg∆u+∇2h(η, ν)
Tϑ(η, ν, νc) (4.54)

= J(η) (ν + kϑ(η, ν, νc)) + kJ̇(η, ν)ν

+ kJ(η)M−1
(
B̄(u0)∆u+B(α0)µ0 − C(ν)ν −Dlν

)
. (4.55)

4.4.4 Safety-Critical Control via Quadratic Programming

In summary, the stabilization objectives consist of position and heading control
encoded by the integral ES-CLFs V1 and V2, while the safety-related collision
avoidance objective is encoded by the continuously differentiable function h. The
CLF-CBF-QP from Section 4.2.2 is modified for an ASV with a nonlinear actuator
model as follows

minimize
(∆u,δ)∈R2m+2

∆uT (H +Ω)∆u+ 2uT0H∆u+ δTWδ (4.56a)

subject to

⟨∇V1(ξ1), f̄1 + ḡ1∆u⟩ ≤ −γ1V1(ξ1) + δ1, (4.56b)
⟨∇V2(ξ2), f̄2 + ḡ2∆u⟩ ≤ −γ2V2(ξ2) + δ2, (4.56c)
⟨∇h(x), f(x) + g∆u⟩ ≥ −σ(h(x))−min

i∈P
kJ(η)φi(x), (4.56d)

µmin − µ0 ≤ ∆µ ≤ µmax − µ0, (4.56e)
T∆umin ≤ ∆u ≤ T∆umax, (4.56f)
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Table 4.1: Control Parameters

Param. Value Param. Value Param. Value
P 12 robs 13m H1 0.5I2
βc −60◦ σ(h) ϕh Ω1 0.0001I2
β̂c 15◦ ϕ 0.1 Ω2 2500I2
Uc 1m/s k 20

3 W 1.5 · 104I2
Ûc 1.1m/s µmin −293N µmax 500N
T 0.01 s ∆µmax 160N/s ∆µmin −∆µmax

∆αmax 30 deg/s ∆αmin −∆αmax

where H = diag(H1, 0) ∈ R2m×2m penalizes the force magnitudes squared, while
Ω ∈ R2m×2m is a diagonal matrix penalizing the squared rate of change of the force
magnitude and azimuth angle control inputs, and (δ1, δ2) ∈ R2 are slack variables
penalized by the diagonal weighting matrix W ∈ R2×2. Moreover, µmin and µmax
are the negative and positive force magnitude constraints, T is the sampling time,
and ∆umin and ∆umax are the negative and positive rate constraints, respectively.

4.5 Numerical Simulation

In this section we verify the theoretical developments from the previous sections
through simulation of a double-ended autonomous passenger ferry [87]. In terms
of actuators, the ferry is equipped with two azimuth thrusters and the simu-
lation model consists of (4.8) with a realistic thruster model for (4.10) taking
thruster force deadband, magnitude and rate constraints, and azimuth angle mag-
nitude and rate constraints into account. Note that the simulation model in-
cludes nonlinear damping, which is not accounted for in the CLF or CBF de-
sign. The ES-CLF parameters are given by Q1 = diag (0.01I2, 200I2, 400I2) and
Q2 = diag (0.1, 400, 800) , where I2 is the 2 × 2 identity matrix. The remaining
parameters are summarized in Table 4.1. Following the procedure outlined in Sec-
tion 4.3.4, P evenly spaced ocean current approximations are constructed from
(4.27)–(4.28). The dynamic effect of the worst-case ocean current is therefore ap-
proximated by the P continuous maps given by (4.22). Note that our choice of β̂c
is the worst possible guess, since each direction is separated by 30◦, resulting in a
15◦ offset between the actual current direction and the best estimate(s).

Simulation results are shown in Figures 4.1 to 4.3 and 4.5, where simulations
with and without the robustifying term in (4.56d), (i.e. assuming φ = 0, i ∈ P)
are depicted in Figures 4.1 and 4.5. From Figures 4.1 and 4.5, it is clear that the
non-robust CBF candidate fails to achieve forward invariance of the superzero level
set of (4.53), resulting in a collision. Observe from Figure 4.4 that both thrusters
are in maximum positive saturation from t ≈ 170 s to t ≈ 182 s due to the strict
penalty on non-zero slack variables and by using a linear K∞ function in (4.56d).
Moreover, the system exhibits excessively large tracking errors at t ≈ 190 s because
of the incompatibility between the collision avoidance and stabilization tasks, com-
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Figure 4.1: North-East plot showing the path p, the desired path pd, the head-
ing and the spherical obstacle. The black dash-dotted line p̄ represents the path
followed by the ASV when omitting the robustifying last term in (4.56d).
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Figure 4.2: The actual and desired North and East positions xn, yn and xnd , y
n
d ,

and the actual and desired surge u, ud and sway v, vd velocities.

bined with the significant size of the spherical obstacle. Nevertheless, the system
remains stable and successfully catches up with the reference trajectory. The over-
shoot in Figures 4.1 and 4.2 occurs due to the ocean current pushing the ship
westward while the integral action saturates from attempting to recover from a
significant tracking error. Improved transient behavior after avoiding a collision
can be achieved by employing anti-wind up techniques and/or trajectory replan-
ning if the positional tracking error exceeds some threshold. With the exception of
poor transient performance due to successfully avoiding a collision, the integral ES-
CLFs contribute to successful tracking of the configuration and velocity references
as seen in Figures 4.2 and 4.3.
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Figure 4.3: The actual and desired heading angle ψ and ψd and the actual and
desired yaw rate r and rd.
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Figure 4.4: The thruster and azimuth angle control inputs, µ and α, respectively.
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Figure 4.5: Actual and desired speed U and Ud, and the function h when the
last term in (4.56d) is included, h, and omitted, h̄, respectively.

4.6 Conclusions and Future Work

This chapter has presented an optimization-based framework for safety-critical
control of ASVs with robustness guarantees in the presence of unknown ocean
currents. The framework is holistic in the sense that it solves the problems of sta-
bilization, reactive collision avoidance and control allocation in a unified manner.
Conditions ensuring forward invariance of the superzero level set of continuously
differentiable functions have been derived for a class of uncertain nonlinear sys-
tems. These conditions can be employed to ensure safety in the presence of un-
known system nonlinearities. Moreover, we have specialized these conditions for an
ASV subject to unknown ocean currents to obtain robust CBFs providing collision
avoidance guarantees. Furthermore, the control allocation problem has been uni-
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4. Safety-Critical Control of Autonomous Surface Vehicles

fied with the control problem by linearizing the actuator configuration matrix at
every sampling instant to avoid a non-convex optimization problem, enabling con-
straints on the control input to be explicitly accounted for in the motion controller.
This unification helps avoid instability due to actuator saturation. Additionally, we
have incorporated integral action into CLFs encoding stabilization objectives. The
framework has been verified in simulation for a double-ended passenger ferry, where
successful tracking of a time-varying trajectory and reactive collision avoidance has
been demonstrated. Future work is aimed at full-scale experiments of the proposed
framework for a double-ended passenger ferry.
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Hybrid Feedback Control of Marine
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Chapter 5

Synergistic PID and Output
Feedback Control on Matrix Lie
Groups

In this chapter, we develop several synergistic hybrid feedback control laws for
mechanical systems on matrix Lie groups with left-invariant Riemannian metrics.
In particular, we propose hybrid PD and output feedback control laws ensuring
global asymptotic tracking. To account for unknown and constant disturbances, we
augment the hybrid PD control law with an integral state and derive two different
hybrid PID-type control laws ensuring global asymptotic tracking in the presence
of unknown disturbances in the system dynamics.

The material in this chapter is based on [51].

5.1 Introduction

A continuous intrinsic controller with integral action on compact Lie groups is pre-
sented in [88]. The integral action stems from integration of the P-action in the
controller. The controller ensures bounded tracking error in the presence of uncer-
tainty, and almost global asymptotic stability in the absence of uncertainty. Several
similar controllers with integral action are presented in [89]. Here, the integral ac-
tion stems from integrating the PD-action in the controller. This controller achieves
almost global asymptotic stability in the presence of a constant disturbance.

This chapter is organized as follows. Section 5.2 introduces the equations of mo-
tion and the assumptions on the desired trajectories. In Section 5.3, we derive the
error system and give the problem statement, before Section 5.4 defines the concept
of a synergistic function. Then, we present a synergistic hybrid PD control law in
Section 5.5 and an output feedback version which only utilizes configuration mea-
surements in Section 5.6. Section 5.7 introduces two novel synergistic control laws
with integral action, both of which globally asymptotically track a given bounded
reference trajectory in the presence of a constant and unknown disturbance. Fi-
nally, Section 5.8 presents a case study with simulation results of both PID control
laws, before Section 5.9 concludes the chapter.
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5.2 Modeling

Consider a fully actuated control-affine mechanical system whose configuration
space can be identified with a matrix Lie group G ⊂ Rn×n with dimension m. Let
g ∈ G denote the configuration and ν ∈ Rm the body velocity. The equations of
motion are given by

ġ = gν∧

Mν̇ − adTν Mν = f(g, ν) + τ

}
(g, ν, τ) ∈ G × Rm × Rm (5.1)

where M ∈ Rm×m is the inertia tensor and adTν Mν describes inertial forces arising
from curvature effects. Moreover, the continuous mapping f : G × Rm → Rm
describes other external forces, and τ ∈ Rm is an idealized control force.

Assumption 5.1. The desired configuration t 7→ gd(t) and its derivatives up to
the second order are bounded and continuous, and t 7→ det gd(t) is bounded away
from zero.

For every desired configuration satisfying Assumption 5.1, there exist scalars
a ≥ 0 and c ≥ 0 and a compact set Ω ⊂ G such that the desired configuration and
body velocity t 7→ (gd(t), νd(t)) is a complete solution to the constrained differential
inclusion

ġd = gdν
∧
d

ν̇d ∈ cBm

}
(gd, νd) ∈ Ω × aBm (5.2)

5.3 Error System and Problem Statement

Define the left-invariant configuration and velocity errors by

ge := g−1
d g, (5.3)

νe := ν − νr = ν −Ad−1
ge νd, (5.4)

which results in the error system

ġe = geν
∧
e

ν̇e =M−1(adTν Mν + f(g, ν) + τ)− ν̇r

ġd = gdν
∧
d

ν̇d ∈ cBm

 x ∈ X (5.5)

where ν̇r = Ad−1
ge ν̇d − adνe νr, x := (ge, νe, gd, νd) ∈ X and

X := G × Rm ×Ω × aBm. (5.6)
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Problem statement:

For a given compact set A ⊂ G, design a hybrid feedback control law with state
ξ ∈ Ξ, input x ∈ X and output τ ∈ Rm such that the compact set

T := A× {0} ×Ω × aBm ×Ac, (5.7)

is globally pre-asymptotically stable for the resulting hybrid closed-loop system,
where Ac ⊂ Ξ is the controller state attractor.

5.4 Synergistic Functions

The following definition of a synergistic function is similar to the ones found in [35]
and [39].

Definition 5.2. Let Q ⊂ R be a finite set and A ⊂ G be a compact set. A contin-
uously differentiable function V : G × Q → R is synergistic with respect to the set
A if

• V is proper and positive definite with respect to a set B ⊂ A×Q defined such
that for every g ∈ A, there exists q ∈ Q such that (g, q) ∈ B.

• there exists δ > 0 such that the synergy gap

µV (g, q) := V (g, q)−min
p∈Q

V (g, p), (5.8)

satisfies µV (g, q) > δ for each (g, q) ∈ (E ∪ (A×Q))\B, where

E := {(g, q) ∈ G ×Q : dV (g, q) = 0}. (5.9)

The function V from Definition 5.2 can also be thought of as a family of potential
functions indexed by Q, {Vq}q∈Q, such that V (g, q) = Vq(g) for all (g, q) ∈ G ×Q.
Furthermore, there exists a family of compact sets indexed by Q, {Bq}q∈Q, such
that A = ∪q∈QBq and B = ∪q∈Q(Bq × {q}). For each q ∈ Q, Vq is a proper and
positive definite function with respect to Bq. It must be remarked that there may
exist q ∈ Q such that Bq = ∅, in which case the corresponding function Vq is proper
and everywhere positive.

Definition 5.2 also requires that if g ∈ (Eq ∪ A) \ Bq, where Eq denotes the set
of critical points of Vq, then there exists δ > 0 such that Vq(g)−minp∈Q Vp(g) > δ.
Hence, if g is a critical point of Vq that is not in Bq, or g lies in Bp with p ∈ Q\{q},
then the minimal value of s 7→ Vs(g) is at least δ lower than Vq(g). A consequence
of this fact, continuity of the potential functions, and positive definiteness of the
potential functions is that, for (p, q) ∈ Q×Q, either Bp ∩ Bq = ∅ or Bp = Bq.

A synergistic function induces the following kinematic hybrid control law [35]
q̇ = 0 (g, q) ∈ CV

q+ ∈ GV (g) (g, q) ∈ DV

y = −dV (g, q)

(5.10)
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with state q ∈ Q, input g ∈ G and output y. Moreover, the flow set CV ⊂ G ×Q,
jump set DV ⊂ G ×Q and jump map GV : G ⇒ Q are defined according to

CV := {(g, q) ∈ G ×Q : µV (g, q) ≤ δ} , (5.11)
DV := {(g, q) ∈ G ×Q : µV (g, q) ≥ δ} , (5.12)

GV (g) := {q ∈ Q : µV (g, q) = 0} . (5.13)

Note that the sets CV and DV are closed in G ×Q due to the continuity of µV . It
follows that CV and DV are closed in GL(n) × R, but not necessarily in Rn×n ×
R. Furthermore, observe that GV is outer semicontinuous relative to DV since
continuity of µV implies that gphGV = {(g, q) ∈ G ×Q : µV (g, q) = 0} is closed in
G ×Q.

5.5 Synergistic PD Control

In this section, we employ a synergistic function to design a hybrid PD controller
with state q ∈ Q which renders the closed-loop system globally pre-asymptotically
stable. Moreover, we employ a novel feedforward control which is independent of
the system velocities.

Defining the following velocity independent feedforward control

κff (ge, gd, νd, ν̇d) =M Ad−1
ge ν̇d − adTνr Mνr − f(g, νr), (5.14)

we propose the following synergistic PD control law
q̇ = 0 (ge, q) ∈ CV

q+ ∈ GV (ge) (ge, q) ∈ DV

τ = κff (ge, gd, νd, ν̇d)− dV (ge, q)−Kdνe

(5.15)

where V is synergistic with respect to a compact set A and Kd ∈ Rm×m. Observe
that the feedback control law (5.15) comprises a proportional action dV and a
derivative action Kdνe.

Lemma 5.1. The feedforward control (5.14) results in the error dynamics

ν̇e = −∇M
ν+νrνe +M−1(f(g, ν)− f(g, νr)). (5.16)

Proof. With τ = κff (ge, gd, νd, ν̇d), it follows from (5.5) that

Mν̇e =M adνe νr + adTν Mν − adTνr Mνr + f(g, ν)− f(g, νr).

Let ϖ(νe, νr) = M adνe νr + adTν Mν − adTνr Mνr. Using the identities adζ ν =
∇M
ζ ν −∇M

ν ζ, adζ ν = − adν ζ and adν ν = 0, it holds that

ϖ(νe, νr) = adTν Mν − adTνr Mνr +M adνe νr

=M∇M
νr νr −M∇M

ν ν +M adνe νr

=M(∇M
νr νr −∇M

ν ν +∇M
νe νr −∇M

νr νe)

=M(−∇M
ν νe −∇M

νr νe)

= −M∇M
ν+νrνe.

58



5.5. Synergistic PD Control

Using Lemma 5.1, the interconnection between the control law (5.15) and the
error system (5.5) leads to the following closed-loop system

H1 :



ġe = geν
∧
e

ν̇e = −∇M
ν+νrνe

+M−1(f(g, ν)− f(g, νr))

−M−1(dV (ge, q) +Kdνe)

ġd = gdν
∧
d

ν̇d ∈ cBm


x1 ∈ C1

q+∈ GV (ge) x1 ∈ D1

where x1 := (ge, νe, gd, νd, q) ∈ X1 and

X1 := G × Rm ×Ω × aBm ×Q,

C1 := {x1 ∈ X1 : (ge, q) ∈ CV },
D1 := {x1 ∈ X1 : (ge, q) ∈ DV }.

(5.17)

Theorem 5.3. Let V be synergistic with synergy gap exceeding δ > 0. If there
exist ε > 0 and Kd ∈ Rm×m such that ν 7→ −f(g, ν) is (εI − Kd)-monotone for
each g ∈ G, then the hybrid control law (5.15) renders the compact set

T1 := A× {0} ×Ω × aBm ×Q, (5.18)

globally pre-asymptotically stable for H1.

Proof. Define the flow and jump maps

F1(x1) :=


geν

∧
e

−∇M
ν+νrνe +M−1 (f(g, ν)− f(g, νr)− dV (ge, q)−Kdνe)

gdν
∧
d

cBm
0

 , (5.19)

G1(x1) :=


ge
νe
gd
νd

GV (ge))

 . (5.20)

The hybrid closed-loop system is then defined by the data H1 = (C1, F1, D1, G1).
Consider the continuously differentiable function W1 : X1 → R defined by

W1(x1) := V (ge, q) +
1

2
⟨νe,Mνe⟩. (5.21)

Differentiating W1 along the flows of H1 satisfies

⟨∇W1(x1), f1⟩ = ⟨dV (ge, q), νe⟩+ ⟨νe,−M∇M
ν+νrνe⟩

+ ⟨νe, f(g, ν)− f(g, νr)⟩
+ ⟨νe,−dV (ge, q)−Kdνe⟩,

(5.22)
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for all x1 ∈ C1 and f1 ∈ F1(x1). Using Lemma 2.4 and the fact that ν 7→ −f(g, ν)
is (εI −Kd)-monotone for each g ∈ G, equation (5.22) can be rewritten as

⟨∇W1(x1), f1⟩ ≤ −ε|νe|2, ∀x1 ∈ C1, f1 ∈ F1(x1). (5.23)

The change of W1 across jumps is

W1(s1)−W1(x1) ≤ −δ

for all x1 ∈ D1 and s1 ∈ G1(x1). Because W1 is proper and positive definite with
respect to the compact set

T ′
1 := {x1 ∈ X1 : (ge, q) ∈ B, νe = 0}, (5.24)

and non-increasing along flows and strictly decreasing across jumps, it follows that
T ′
1 is stable and every solution to H1 is bounded. In fact, every sublevel set of W1

is compact (since W1 is proper) and forward pre-invariant, that is, given r ≥ 0,
every solution starting in the set W−1

1 ([0, r]) remains in it. Consider the hybrid
system H1,r, defined such that it is equal to H1 with the flow and jump sets
replaced by C1,r := C1 ∩W−1

1 ([0, r]) and D1,r := D1 ∩W−1
1 ([0, r]), respectively.

Then, for each r ≥ 0, the hybrid system H1,r satisfies the hybrid basic conditions
(Assumption 2.17), because C1,r and D1,r are closed. Furthermore, every complete
solution to H1 that starts in the setW−1

1 ([0, r]) is a complete solution to H1,r. Since
the time between jumps is lower bounded by a positive constant, it follows from
Corollary 8.7 b) in [55] that, for each r ≥ 0, complete solutions to H1,r converge
to the largest weakly invariant subset W1 contained in

W−1
1 (γ) ∩ {x1 ∈ C1 : νe = 0},

for some γ ∈ [0, r]. Each complete solution ϕ ∈ SH1,r (W1) satisfies νe(t, j) ≡ 0,
which implies that for each j ∈ Z≥0 such that Ij = {t : (t, j) ∈ domϕ} has
nonempty interior, it holds that

d

dt
νe(t, j) = 0,

for almost all t ∈ Ij , and the closed-loop system implies that dV (ge(t, j), q(t, j)) ≡
0. By construction, the only points in C1 where dV (ge, q) = 0 are those for which
(ge, q) ∈ B. It follows that W1 ⊂ T ′

1 and hence that every complete solution to
H1,r converges to T ′

1 . Since every complete solution to H1 is a complete solution to
H1,r for some r ≥ 0, every complete solution to H1 converges to T ′

1 . Consequently,
T ′
1 is globally pre-asymptotically stable for H1 since it is stable, all solutions are

bounded and every complete solution converges to T ′
1 . Since T ′

1 ⊂ T1, it follows
that T1 is globally pre-attractive. Moreover, T1 is forward pre-invariant because T ′

1

is forward pre-invariant and

T1 \ T ′
1 = {x1 ∈ X1 : (ge, q) ∈ (A×Q) \ B} ⊂ D1 \ C1

is such that any maximal solution reaching T1\T ′
1 is immediately mapped to T ′

1 via
a single jump. It then follows from Proposition 7.5 of [55] that T1 is stable. Since
T1 is stable and globally pre-attractive, it is globally pre-asymptotically stable.
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5.6 Synergistic Output Feedback Control

Due to the fact that the feedforward control in (5.14) is independent of the vehicle
velocities, we can utilize it in the design of a Lyapunov-based output feedback
tracking control law. To this end, let U : G ×H → R≥0 be synergistic with respect
to A, let h ∈ H ⊂ R be a logic variable, and consider the output feedback control
law 

ġf = gf (Adgo Kf dU(go, h))
∧

(ge, q, go, h) ∈ C̃2

q+ ∈ GV (ge)

h+ ∈ GU (go)

}
(ge, q, go, h) ∈ D̃2

τ = κff (ge, gd, νd, ν̇d)− dV (ge, q)− dU(go, h).

(5.25)

where go := g−1
f ge is the filter error and

C̃2 := {(ge, q, go, h) : (ge, q) ∈ CV and (go, h) ∈ CU}, (5.26)

D̃2 := {(ge, q, go, h) : (ge, q) ∈ DV or (go, h) ∈ DU}. (5.27)

Defining x2 := (ge, νe, gd, νd, q, go, h) ∈ X2 and

X2 := G × Rm ×Ω × aBm ×Q× G ×H, (5.28)

we arrive at the closed-loop system

H2 :



ġe = geν
∧
e

ν̇e = −∇M
ν+νrνe

+M−1(f(g, ν)− f(g, νr))

−M−1(dV (ge, q) + dU(go, h))

ġd = gdν
∧
d

ν̇d ∈ cBm

ġo = go (νe −Kf dU(go, h))
∧


x2 ∈ C2

q+ ∈ GV (ge)

h+ ∈ GU (go)

}
x2 ∈ D2

where

C2 := {x2 ∈ X2 : (ge, q) ∈ CV and (go, h) ∈ CU},
D2 := {x2 ∈ X2 : (ge, q) ∈ DV or (go, h) ∈ DU}.

(5.29)

Theorem 5.4. Let V and U be synergistic with synergy gaps exceeding δ > 0 and
ρ > 0, respectively. If A is a finite set, Kf is positive definite and ν 7→ −f(g, ν) is
monotone for every g ∈ G, then the hybrid control law (5.25) renders the compact
set

T2 := A× {0} ×Ω × aBm ×Q×A×H, (5.30)

globally pre-asymptotically stable for H2.
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Proof. Define the flow and jump maps

F2(x2) :=



geν
∧
e

−∇M
ν+νrνe +M−1(f(g, ν)− f(g, νr)− dV (ge, q)− dU(go, h))

gdν
∧
d

cBm
0

go (νe −Kf dU(go, h))
∧

0


,

(5.31)

G2(x2) :=



ge
νe
gd
νd

GV (ge))
go

GU (go)


. (5.32)

The hybrid closed-loop system is then defined by the data H2 = (C2, F2, D2, G2).
Consider the continuously differentiable function W2 : X2 → R defined by

W2(x2) := V (ge, q) + U(go, h) +
1

2
⟨νe,Mνe⟩. (5.33)

W2 is proper and positive definite with respect to the compact set

T ′
2 := {x2 ∈ X2 : (ge, q) ∈ B, (go, h) ∈ B, νe = 0}. (5.34)

The derivative of W2 along flows of the closed-loop system is

⟨W2(x2), f2⟩ = ⟨dV (ge, q), νe⟩+ ⟨dU(go, h), νe −Kf dU(go, h)⟩
− ⟨νe,M∇M

ν+νrνe⟩+ ⟨νe, f(g, ν)− f(g, νr)⟩
+ ⟨νe,−dV (ge, q)− dU(go, h)⟩

≤ −⟨Kf dU(go, h),dU(go, h)⟩

for all x2 ∈ C2 and f2 ∈ F2(x2). The change of W2 across jumps is given by

W2(s2)−W2(x2) ≤ −min{δ, ρ}, (5.35)

for all x2 ∈ D2 and s2 ∈ G2(x2). By a similar argument as in the proof of Theo-
rem 5.3, it can be shown that T ′

2 is stable and that all solutions to H2 are bounded.
Moreover, every complete solution to H2,r converges to the largest weakly invari-
ant subset W2 of W−1

2 (γ) ∩ {x2 ∈ C2 : dU(go, h) = 0} for some γ ∈ [0, r]. Every
complete solution ϕ ∈ SH2,r

(W2) satisfies go(t, j) ∈ A for all (t, j) ∈ domϕ. Since
A is finite, for each j ∈ Z≥0 such that Ij = {t : (t, j) ∈ domϕ} has nonempty
interior, it holds that

d

dt
go(t, j) = 0,
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for almost all t ∈ Ij , and (5.31) implies that νe(t, j) ≡ 0. Thus, for each j ∈ Z≥0

such that Ij has nonempty interior, it holds that

d

dt
νe(t, j) = 0,

for almost all t ∈ Ij , and (5.31) implies that dV (ge(t, j), q(t, j)) ≡ 0. Hence,
(ge(t, j), q(t, j)) ∈ B for all (t, j) ∈ domϕ. It follows that W2 ⊂ T ′

2 and hence
that every complete solution to H2,r converges to T ′

2 . Since every complete solu-
tion to H2 is a complete solution to H2,r for some r ≥ 0, every complete solution
to H2 converges to T ′

2 . The remainder of the proof is similar to Theorem 5.3.

5.7 Synergistic Control with Integral Action

We now assume that f(g, ν) = f̄(g, ν) + b, where f̄ : G × Rm → Rm describes a
known external force and b ∈ Rm is an unknown constant disturbance. Consider
the following synergistic PID control law

φ̇ = dV (ge, q) (ge, q, φ) ∈ C̃3

q+∈ GV (ge) (ge, q, φ) ∈ D̃3

τ =Mν̇r − f̄(g, ν)

− (I +MK−1
d Ki) dV (ge, q)−Kdνe −Kiφ

(5.36)

where Kd and Ki are diagonal matrices with positive entries and

C̃3 := {(ge, q, φ) ∈ G ×Q× Rm : (ge, q) ∈ CV } (5.37)

D̃3 := {(ge, q, φ) ∈ G ×Q× Rm : (ge, q) ∈ DV } (5.38)

Observe that the feedback control law comprises a proportional term (I+MK−1
d Ki) dV ,

an integral term Kib and a derivative term Kdνe.
Let φe := φ−K−1

i b denote the estimation error and define

x3 := (ge, νe, gd, νd, q, φe) ∈ X3 (5.39)
X3 := G × Rm ×Ω × aBm ×Q× Rm. (5.40)

The closed-loop system is then given by

H3 :



ġe = geν
∧
e

ν̇e = −M−1(I +MK−1
d Ki) dV (ge, q)

−M−1Kdνe −M−1Kiφe)

ġd = gdν
∧
d

ν̇d ∈ cBm

φ̇e = dV (ge, q)


x3 ∈ C3

q+∈ GV (ge) x3 ∈ D3

where C3 := {x3 ∈ X3 : (ge, q) ∈ CV } and D3 := {x3 ∈ X3 : (ge, q) ∈ DV }.
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Theorem 5.5. Let V be synergistic with synergy gap exceeding δ > 0. If A is finite,
Kd is diagonal and positive definite, and Ki is diagonal and positive definite, then
the hybrid control law (5.36) renders the compact set

T3 := A× {0} ×Ω × aBm ×Q× {0}, (5.41)

globally pre-asymptotically stable for the closed-loop system H3.

Proof. Define the flow and jump maps of H3 by

F3(x3) :=


geν

∧
e

−M−1
(
(I +MK−1

d Ki) dV (ge, q)−Kdνe −Kiφe
)

gdν
∧
d

cBm
0

dV (ge, q)

 , (5.42)

G3(x3) :=


ge
νe
gd
νd

GV (ge))
φe

 . (5.43)

The hybrid closed-loop system is then defined by the data H3 = (C3, F3, D3, G3).
Consider the continuously differentiable function W3 : X3 → R defined by

W3(x3) := V (ge, q) +
1

2
⟨M(νe +K−1

d Kiφe), νe +K−1
d Kiφe⟩+

1

2
⟨φe,K−1

d Kiφe⟩.

W3 is proper and positive definite relative to the compact set

T ′
3 := {x3 ∈ X3 : (ge, q) ∈ B, νe = 0, φe = 0}. (5.44)

Differentiating W3 along the flows of the closed-loop system yields

⟨W3(x3), f3⟩ = ⟨dV (ge, q), νe⟩ − |K1/2
d (νe +K−1

d Kiφe)|2

− ⟨νe +K−1
d Kiφe,dV (ge, q)⟩+ ⟨φe,K−1

d Ki dV (ge, q)⟩

= −|K1/2
d (νe +K−1

d Kiφe)|2,

for all x3 ∈ C3 and f3 ∈ F3(x3). The analysis concerning the change in W3 across
the jumps of the closed-loop system is similar to the proof of Theorem 5.3 and
leads to a strict decrease in W3 upper bounded by −δ across jumps. By a similar
argument as in the proof of Theorem 5.3, it can be shown that T ′

3 is stable and
that all solutions to H3 are bounded. Moreover, every complete solution to H3,r

converges to the largest weakly invariant subset W3 of

W−1
3 (γ) ∩ {x3 ∈ C3 : νe +K−1

d Kiφe = 0},
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5.7. Synergistic Control with Integral Action

for some γ ∈ [0, r]. Every complete solution ϕ ∈ SH3,r
(W3) satisfies νe(t, j) +

K−1
d Kiφe(t, j) ≡ 0, which implies that for each j ∈ Z≥0 such that Ij = {t : (t, j) ∈

domϕ} has nonempty interior, it holds that

d

dt
νe(t, j) +K−1

d Ki
d

dt
φe(t, j) = 0,

for almost all t ∈ Ij , and (5.42) implies that dV (ge(t, j), q(t, j)) ≡ 0. Since the only
points in C2 where dV (ge, q) = 0 are those for which (ge, q) ∈ B, it follows that

W3 ⊂W−1
3 (γ) ∩

{
x3 ∈ C3 : νe +K−1

d Kiφe = 0, (ge, q) ∈ B
}
.

Therefore, from Definition 5.2 and the fact that A and hence B is finite, it follows
that for each j ∈ Z≥0 such that Ij has nonempty interior

d

dt
ge(t, j) = 0,

for almost all t ∈ Ij , which implies that νe(t, j) ≡ 0. Thus,

d

dt
νe(t, j) = 0,

for almost all t ∈ Ij . Hence (5.42) implies that φe(t, j) ≡ 0. It follows that W3 ⊂
T ′
3 and hence that every complete solution to H3,r converges to T ′

3 . Since every
complete solution to H3 is a complete solution to H3,r for some r ≥ 0, every
complete solution to H3 converges to T ′

3 . The remainder of the proof is similar to
Theorem 5.3.

Although the cancellation term MK−1
d Ki dV acts as a rescaling of the propor-

tional action, it may often end up very small in practice because Kd is typically
chosen considerably larger than Ki.

The cancellation term can be removed and the assumptions on A and Kd can
be relaxed by modifying the dynamics of the integral state and only allowing the
integral gain to be scalar-valued. To this end, consider the following synergistic
controller with integral action

φ̇ = dV (ge, q) +Kdνe (ge, q, φ) ∈ C̃3

q+ ∈ GV (ge) (ge, q, φ) ∈ D̃3

τ =Mν̇r − adTν Mν − f̄(g, ν)− dV (ge, q)−Kdνe − kiφ

(5.45)

which leads to the closed-loop system

H4 :



ġe = geν
∧
e

ν̇e = −M−1(dV (ge, q) +Kdνe + kiφe)

ġd = gdν
∧
d

ν̇d ∈ cBm

φ̇e = dV (ge, q) +Kdνe


x3 ∈ C3

q+ ∈ GV (ge) x3 ∈ D3
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Theorem 5.6. Let V be synergistic with synergy gap exceeding δ > 0. If ki > 0
and Kd − kiM is positive definite, then the hybrid control law (5.45) renders the
compact set

T4 := A× {0} ×Ω × aBm ×Q× {0}, (5.46)

globally pre-asymptotically stable for the closed-loop system H4.

Proof. Define the flow map of H4 by

F4(x3) :=


geν

∧
e

−M−1(dV (ge, q) +Kdνe + kiφe)
gdν

∧
d

cBm
0

dV (ge, q) +Kdνe

 , (5.47)

The hybrid closed-loop system is then defined by the data H4 = (C3, F4, D3, G3).
Consider the continuously differentiable function W4 : X3 → R defined by

W4(x3) := V (g, q) + 1
2 ⟨νe,Mνe⟩+ 1

2 ⟨M(νe +M−1φe), νe +M−1φe⟩ (5.48)

W4 is proper and positive definite with respect to the compact set T ′
3 defined in

(5.44). Differentiating W4 along the flows of the closed-loop system yields

⟨W4(x3), f4⟩=⟨dV (ge, q), νe⟩+⟨νe,−Kdνe−dV (ge, q)−kiφe⟩−⟨νe+M−1φe, kiφe⟩
= −⟨Kdνe, νe⟩ − 2ki⟨νe, φe⟩ − ki⟨M−1φe, φe⟩.
= −⟨(Kd − kiM)νe, νe⟩ − ki⟨M−1(φe +Mνe), φe +Mνe⟩
≤ −ε1|νe|2 − ε2|φe|2

for all x3 ∈ C3 and f4 ∈ F4(x3), and where ε1 > 0 and ε2 > 0. The remainder of
the proof is similar to the proof of Theorem 5.3.

5.8 Case Study

This section presents simulation results of a small fully actuated underwater vehicle.
The configuration of an underwater vehicle can be identified with the matrix Lie
group SE(3) = R3 ⋊ SO(3). An element g = (p,R) ∈ SE(3) contains the position
p ∈ R3 and orientation R ∈ SO(3) of a vehicle-fixed frame with respect to an
inertial frame. The equations of motion for an underwater vehicle are given by (5.1)
with the inertia tensor M = Mrb +Ma comprising rigid body and hydrodynamic
inertia. Moreover, f(g, ν) = d(ν) + γ(g) + b where d : R6 → R6 is the damping
wrench comprising linear and nonlinear contributions d(ν) := −Dlν−Dn(ν)ν, and
γ : SE(3) → R6 denotes the net hydrostatic wrench including weight and buoyancy.
More details are found in [84]. The center of gravity is rg = (0, 0, 0.02)m, the center
of buoyancy is rb = 0m, the dry mass is m = 13.69 kg, and the buoyancy is 1%
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larger than the weight. The hydrodynamic modeling is described by

Ma := diag(5.5, 12.7, 14.6, 0.1, 0.1, 0.1)

Dl := diag(4.0, 6.2, 5.2, 0.1, 0.1, 0.1)

Dn(ν) := diag(18.2|ν1|, 21.7|ν2|, 37.0|ν3|, 1.6|ν4|, 1.6|ν5|, 1.6|ν6|)
b := (2, 1,−1,−1,−1, 1)

The control law (5.45) is developed by utilizing the universal covering group of
SE(3), denoted S̃E(3) := R3⋊SU(2), where SU(2) is the special unitary group of di-
mension two, which is isomorphic to the group of unit quaternions. See Section 8.4.2
for more details. A unit quaternion is given by z = (η, ϵ) ∈ S3 := {x ∈ R4 : |x| = 1},
where η ∈ R and ϵ ∈ R3 describe its real and imaginary components, respectively.
Let ge = (pe, ze) := (R(zd)(p − pd), z

−1
d ⊗ z), where ⊗ denotes the quaternion

product and R : S3 → SO(3) is defined by R(z) := I + 2ηϵ∧ + 2(ϵ∧)2, where
(·)∧ : R3 → so(3) is defined by α∧β := α × β with α, β ∈ R3. It is easily veri-
fied that V (ge, q) = 2k(1 − qηe) +

1
2 ⟨Kppe, pe⟩ satisfies Definition 5.2 with k = 1

and Kp = 5I3. The other controller gains are set to Kd = blkdiag(10I3, 2I3)
and ki = 0.1. The controller has been implemented without the feedforward term
that would cancel the acting hydrodynamic and hydrostatic wrenches to achieve a
slightly more realistic picture of its performance. Simulation results are presented
in Figures 5.1 to 5.3, from which we conclude that acceptable tracking performance
is achieved despite this simplification of the control law.

5.9 Conclusion

In this chapter, we have introduced multiple synergistic control designs for me-
chanical systems described on matrix Lie groups. Specifically, we have proposed
synergistic PD, output feedback, and PID type control laws ensuring global asymp-
totic tracking of a desired bounded reference trajectory. Additionally, the PID type
control laws achieve global asymptotic tracking when the system dynamics are aug-
mented with a constant and unknown disturbance.
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Figure 5.1: The position p, desired position pd, roll-pitch-yaw angles ϕ and de-
sired roll-pitch-yaw angles ϕd.
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Figure 5.2: The velocity ν and the desired velocity νr.
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Figure 5.3: The control inputs τ and logic variable q.

69





Chapter 6

Synergistic Lyapunov Function and
Feedback Triples

In this chapter, we extend the SLFF definition from [36]. The proposed general-
ization allows the logic variable, now referred to as the synergy variable, to be
vector-valued and possess flow dynamics. Moreover, since the synergy variable is
vector-valued, we define synergy gaps relative to components of product sets. These
synergy gaps enable us to define flow and jump sets and jump conditions in the
form of synergy gaps for different components of the synergy variable. As a result,
we can show that the output feedback control method for rigid-body scheme out-
lined in [37] is synergistic. The proposed generalization encompasses the results
for SO(3) and SE(3) in [43], in which the scalar logic variable is also allowed to
change during flows. However, our proposed framework also includes path-following
control scenarios in which the path variable exhibits jump dynamics, such as in-
stantaneously moving the desired state closer to the actual state. As a result, ship
maneuvering control as outlined in [52] and [53] can be augmented with discrete
path dynamics and combined with a traditional synergistic control approach such
as [44] to ensure global asymptotic stability within the proposed framework.

The material in this chapter is based on [54].

6.1 Introduction

Consider a continuous-time system

ẋ = f(x, u) (x, v) ∈ X × Rk, (6.1)

where x ∈ X ⊂ Rn is the state, v ∈ Rk is the input and f : X × Rk → Rn is
continuous. The following definition of an SLFF pair is the starting point of this
chapter and is a slight modification of [1, Definition 7.3].

Definition 6.1 (Synergistic Lyapunov function and feedback pair). Given a system
(6.1), a compact set A ⊂ X×Q, a continuously differentiable function V : X×Q→
R≥0 and a continuous function κ : X → Rk define

µV (x, q) := V (x, q)−min
p∈Q

V (x, p). (6.2)
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The pair (V, κ) is a synergistic Lyapunov function and feedback pair relative to A
with synergy gap exceeding ρ > 0 for (6.1) if

1. V is proper and positive definite with respect to A;
2. for all (x, q) ∈ X ×Q, it holds that

⟨∇1V (x, q), f(x, κ(x, q))⟩ ≤ 0; (6.3)

3. µV (x, q) > ρ for each (x, q) ∈ I \ A, where I is the largest weakly invariant
subset for the system

ẋ = f(x, κ(x, q))

q̇ = 0
(x, q) ∈ E (6.4)

and

E := {(x, q) ∈ X ×Q : ⟨∇1V (x, q), f(x, κ(x, q))⟩ = 0} . (6.5)

The remainder of this chapter is organized as follows. In Section 6.2, we extend
the definition of SLFF pairs to SLFF triples, for which the synergy variables are
allowed to have flow dynamics and be vector-valued. Moreover, we show how the
hybrid feedback controller induced by an SLFF triple renders a given compact set
globally pre-asymptotically stable. Section 6.3 introduces the notion of synergy
gaps relative to components of product sets, which is a distinct feature of vector-
valued synergy variables. Then, Section 6.4 introduces a weaker notion of SLFF
triples, and we show that if an affine control system admits a weak SLFF triple,
then the same system augmented with an integrator at the input admits a (non-
weak) SLFF triple. Section 6.5 presents a case study which combines the classical
synergistic control approach of [42] using the synergistic Lyapunov functions in
[44] with the ship maneuvering control of [52]. Finally, Section 6.6 concludes the
chapter.

6.2 Synergistic Lyapunov Function and Feedback

This section extends the definition of an SLFF pair in Definition 6.1 by augmenting
the SLFF definition with a feedback representing the flow dynamics of the synergy
variables. Moreover, we show that the hybrid feedback control law induced by an
SLFF triple renders a given compact set globally pre-asymptotically stable.

Our goal is to design generalized synergistic controllers with state θ ∈ Θ ⊂ Rm
of the form

θ̇ = ν(x, θ) (x, θ) ∈ C

θ+ ∈ G(x, θ) (x, θ) ∈ D

v = κ(x, θ)

(6.6)

where C ⊂ X × Θ, D ⊂ X × Θ, ν : X × Θ → Rm, and G : X × Θ ⇒ Θ are
the flow set, jump set, flow map and jump map of the controller, respectively.
The controller state θ is also referred to as the synergy variable. We assume the
following throughout the paper.
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Assumptions.

1. X ⊂ Rn is closed;
2. f : X × Rk → Rn is continuous;
3. Θ ⊂ Rm is closed.

In the following, we generalize the notion of a synergy gap of a nonnegative and
proper function V introduced in [36]. In particular, we evaluate the minimum of V
over a set Ψ ⊂ Θ which need not be finite (or even compact).

Definition 6.2. Let V : X × Θ → R≥0 be continuous and proper, and let Ψ ⊂ Θ
be closed and nonempty. The synergy gap of V with respect to Ψ is the function
µV,Ψ : X ×Θ → R defined by

µV,Ψ (x, θ) := V (x, θ)−min
ψ∈Ψ

V (x, ψ). (6.7)

The set-valued solution mapping associated with µV,Ψ is GV,Ψ : X×Θ ⇒ Θ, defined
as

GV,Ψ (x, θ) := {ψ ∈ Ψ : µV,Ψ (x, ψ) = 0}. (6.8)

The fact that V is nonnegative, continuous, and proper is sufficient for its
synergy gap relative to any nonempty and closed set Ψ ⊂ Θ to be continuous.
Moreover, the associated solution mapping has the key properties it has in tra-
ditional synergistic control. Specifically, nonemptiness, outer semicontinuity, and
local boundedness. Consequently, even when Ψ is not compact, the set of points
where θ 7→ V (x, θ) attains its minimum on Ψ is compact for each x ∈ X.

Proposition 6.3. The synergy gap µV,Ψ is continuous. The associated set-valued
solution mapping GV,Ψ is nonempty-valued, outer semicontinuous, and locally bounded.

Proof. The claims follow from [62, Corollary 7.42].

The following definition extends the notion of SLFF pairs from [36]. In addition
to utilizing the generalized notion of synergy gap from Definition 6.2, we allow the
synergy variable θ to flow.

Definition 6.4. Let A ⊂ X×Θ be compact. A continuously differentiable function
V : X ×Θ 7→ R≥0 and continuous functions κ : X ×Θ → Rk and ν : X ×Θ → Rm
define a synergistic Lyapunov function and feedback triple (V, κ, ν) relative to A
with synergy gap relative to Ψ exceeding ρ > 0 for the system (6.1) if

1. V is proper and positive definite with respect to A;
2. The closed loop system(

ẋ

θ̇

)
=

(
f(x, κ(x, θ))
ν(x, θ)

)
︸ ︷︷ ︸

Fc(x,θ)

(x, θ) ∈ X ×Θ (6.9)

satisfies

⟨∇V (x, θ), Fc(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (6.10)
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3. µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \A, where I is the largest weakly invariant
subset for the system

ẋ = f(x, θ, κ(x, θ))

θ̇ = ν(x, θ)
(x, θ) ∈ E (6.11)

and

E := {(x, θ) ∈ X ×Θ : ⟨∇V (x, θ), Fc(x, θ)⟩ = 0}. (6.12)

We remark that if ν(x, θ) = 0 for all (x, θ) ∈ X × Θ and Θ = Ψ is finite, then
Definition 6.4 reduces to the definition of an SLFF pair given in [36]. If Θ = R, and
Ψ ⊂ R is finite, then Definition 6.4 encompasses the class of potential functions
recently introduced in [43].

Analogous to SLFF pairs [36, Theorem 7], the existence of an SLFF triple
relative to A with synergy gap relative to Ψ exceeding ρ > 0 guarantees global
pre-asymptotic stability of A for a synergistic closed loop system resulting from
(6.1).

Proposition 6.5. Let (V, κ, ν) be an SLFF triple relative to A with synergy gap
relative to Ψ exceeding ρ > 0. Then A is globally pre-asymptotically stable for the
system

ẋ = f(x, κ(x, θ))

θ̇ = ν(x, θ)

}
(x, θ) ∈ C

θ+∈ G(x, θ) (x, θ) ∈ D

(6.13)

where

C := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≤ ρ},
D := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ},

G(x, θ) := GV,Ψ (x, θ).

(6.14)

Proof. The sets C and D are closed since µV,Ψ is continuous by Proposition 6.3.
Moreover, the closed-loop flow map Fc is continuous, and G is nonempty-valued,
outer semicontinuous, and locally bounded by Proposition 6.3. Consequently, the
system (6.13) satisfies the hybrid basic conditions [55, Assumption 6.5] and is
therefore well posed. From the definition of the jump set and jump map in (6.14),
V decreases strictly across jumps by at least ρ. Since V is proper and positive
definite with respect to A by 1) of Definition 6.4 and V does not grow along
solutions to the system (6.13) by 2) of Definition 6.4 and the nonincrease of V
across jumps, it follows that A is stable and that all solutions are bounded. Since
V must vanish in A by 1) of Definition 6.4, it holds that µV,Ψ vanishes in A as well.
Consequently, A ⊂ C. From 3) of Definition 6.4, it then follows that I ∩ C ⊂ A.
The invariance principle [55, Corollary 8.4] then guarantees that complete solutions
converge to A. It follows that A is globally pre-asymptotically stable.
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Completeness of maximal solutions (and global asymptotic stability of A for
(6.13) ) is guaranteed if, in addition to the conditions of Proposition 6.5, it also
holds that

Fc(x, θ) ∈ TX×Θ(x, θ) (6.15)

for all (x, θ) such that µV,Ψ (x, θ) < ρ, where TX×Θ(x, θ) is the tangent cone toX×Θ
at (x, θ). Indeed, TX×Θ(x, θ) = TC(x, θ) at these points, and the claim follows from
[55, Proposition 6.10]. It should also be remarked that TX×Θ ̸= TX×TΘ in general.
See [62, Chapter 6], and in particular Proposition 6.41, for further results on this
matter.

6.3 Synergy Gaps Relative to Components of Product Sets

The control approach covered in Proposition 6.5 updates the whole synergy variable
θ when the instantaneous synergy gap is equal to or exceeds the threshold ρ. This
approach offers relatively little flexibility in shaping the jump sets. When Θ is a
product set, one can formulate the synergy gap and associated solution mapping
relative to the components of Θ. For simplicity, it is assumed that Θ comprises
two components, although the approach outlined in this section can be further
generalized.

Assumptions (continued).

4) Θ = Θa ×Θb, where Θa and Θb are closed.

We now adapt Definition 6.2 to exploit the additional structure of Θ induced
by this assumption.

Definition 6.6. Let V : X × Θ → R≥0 be continuous and proper, and let Ψ =
Ψa×Ψb such that Ψa ⊂ Θa and Ψb ⊂ Θb are nonempty and closed. The synergy gap
of V with respect to Ψa is defined as

µV,Ψa
(x, θ) := V (x, θ)− min

ψa∈Ψa

V (x, (ψa, θb)). (6.16)

The synergy gap of V with respect to Ψb is defined as

µV,Ψb
(x, θ) := V (x, θ)− min

ψb∈Ψb

V (x, (θa, ψb)). (6.17)

The set-valued solution mapping associated with µV,Ψa
, GV,Ψa

: X ×Θ ⇒ Θ is

GV,Ψa
(x, θ) :={ψa ∈ Ψa :µV,Ψa

(x, (ψa, θb))=0}×{θb}. (6.18)

The objects introduced in Definition 6.6 have similar properties as the ones
introduced in Definition 6.2.

Proposition 6.7. The synergy gaps µV,Ψa and µV,Ψb
are continuous. The set-

valued solution mapping GV,Ψa
is nonempty-valued, outer semicontinuous, and lo-

cally bounded.
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Proof. Apply [62, Corollary 7.42] with (x, θb) as parameters and θa as optimization
variable to show the claims for µV,Ψa and GV,Ψa . Continuity of µV,Ψb

is shown
similarly.

Consequently, we may specialize the notion of an SLFF triple to the case where
Θ is product set.

Definition 6.8. Let A ⊂ X × Θ be compact, and (V, κ, ν) satisfy 1) and 2) in
Definition 6.4 for the system (6.1). We say that (V, κ, ν) is a synergistic Lyapunov
function and feedback triple relative to A with synergy gap relative to Ψa exceeding
ρa > 0 if

3a) µV,Ψa
(x, θ) > ρa for each (x, θ) ∈ I \ A.

We say that (V, κ, ν) is a synergistic Lyapunov function and feedback triple relative
to A with synergy gap relative to (Ψa, Ψb) exceeding (ρa, ρb) with ρa, ρb > 0 if

3b) µV,Ψa(x, θ) > ρa or µV,Ψb
(x, θ) > ρb for each (x, θ) ∈ I \ A. Moreover, there

exist (x, θ) ∈ I \ A such that µV,Ψa(x, θ) ≤ ρa and (x, θ) ∈ I \ A such that
µV,Ψb

(x, θ) ≤ ρb.

In both cases, I is defined as in Definition 6.4.

It is clear that if (V, κ, ν) has synergy gap relative to Ψa exceeding ρa > 0, then
it has synergy gap relative to Ψ exceeding ρa. If instead (V, κ, ν) has a synergy
gap relative to to (Ψa, Ψb) exceeding (ρa, ρb), with ρa, ρb > 0, then it has a synergy
gap relative to Ψ exceeding min(ρa, ρb) > 0. The last part of item 3b) ensures that
(V, κ, ν) is not an SLFF triple relative to A with synergy gap relative to Ψa or Ψb,
and hence that ρa and ρb are well-defined.

6.3.1 Optional Jumps

When (V, κ, ν) is an SLFF triple relative to A with synergy gap relative to Ψa
exceeding ρa > 0, it is not necessary to update θb to avoid the invariant sets where
solutions may get stuck. Jumping θb may nonetheless increase the performance of
the closed-loop system. We therefore define a closed-loop system in which jumps
of θb are optional.

Proposition 6.9. Let (V, κ, ν) be a synergistic Lyapunov function and feedback
triple relative to A with synergy gap relative to Ψa exceeding ρa > 0. Then A is
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globally pre-asymptotically stable for the system (6.13) with

C := {(x, θ) ∈ X ×Θ : µV,Ψa
(x, θ) ≤ ρa},

D :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa(x, θ) ≥ ρa

or µV,Ψ (x, θ) ≥ ρ

}
,

G(x, θ) :=



GV,Ψa
(x, θ),

µV,Ψa(x, θ) ≥ ρa

and µV,Ψ (x, θ) < ρ,

(GV,Ψa
∪GV,Ψ )(x, θ),

µV,Ψa(x, θ) ≥ ρa

and µV,Ψ (x, θ) ≥ ρ,

GV,Ψ (x, θ),
µV,Ψa

(x, θ) < ρa

and µV,Ψ (x, θ) ≥ ρ,

∅ otherwise,

(6.19)

where ρ ≥ ρa.

Proof. It is clear that C and the sets

DΨa
:= {(x, θ) ∈ X ×Θ : µV,Ψa(x, θ) ≥ ρa} (6.20)

DΨ := {(x, θ) ∈ X ×Θ : µV,Ψ (x, θ) ≥ ρ} (6.21)

are closed since µV,Ψa and µV,Ψ are continuous. Therefore, D = DΨa ∪DΨ is closed.
The closed-loop flow map is continuous on X ×Θ. We know that GV,Ψa

and GV,Ψ
are nonempty-valued, outer semicontinuous, and locally bounded. Denote then by
G̃V,Ψa

and G̃V,Ψ the restrictions of GV,Ψa
and GV,Ψ to DΨa

and DΨ , respectively.
These restrictions are also outer semicontinuous and locally bounded. Now, G is
defined such that gphG = gph G̃V,Ψa ∪ gph G̃V,Ψ . Thus, G is nonempty-valued on
D. Since outer semicontinuity of a set-valued mapping is equivalent to its graph
being closed, it also follows that G is outer semicontinuous. Moreover, the union
of two locally bounded set-valued mappings is locally bounded. Consequently, G is
locally bounded. Hence, the closed loop system (6.13) with data defined by (6.19)
satisfies the hybrid basic conditions. The rest of the proof proceeds as the proof
of Proposition 6.5, with the strict decrease of V across jumps now being at least
ρa.

Completeness of maximal solutions to the closed-loop system with data (6.19)
is guaranteed if the tangent cone condition (6.15) holds for all (x, θ) such that
µV,Ψa

(x, θ) < ρa. In this case, the system always admits complete solutions over
the course of which θb does not jump.

6.3.2 Independently Triggered Jumps

The following proposition introduces the concept of independentely triggered jumps,
where both components of θ jump when either of their jump conditions are met.
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Proposition 6.10. Let (V, κ, ν) be a synergistic Lyapunov function and feedback
triple relative to A with synergy gap relative to (Ψa, Ψb) exceeding (ρa, ρb), with
ρa, ρb > 0. Then A is globally pre-asymptotically stable for the system (6.13) with

C :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa
(x, θ) ≤ ρa

and µV,Ψb
(x, θ) ≤ ρb

}
,

D :=

{
(x, θ) ∈ X ×Θ :

µV,Ψa
(x, θ) ≥ ρa

or µV,Ψb
(x, θ) ≥ ρb

}
,

G(x, θ) := GV,Ψ (x, θ).

(6.22)

The proof of Proposition 6.10 is very similar to the proofs of Proposition 6.5
and Proposition 6.9 and is therefore omitted. An example where independently
triggered switching is used is furnished by the quaternion output feedback control
scheme for rigid-body orientation in [37, Section V-B]. In this work, θa corresponds
to a traditional synergy variable for a feedback controller, and θb corresponds to a
traditional synergy variable for an observer, while ν(x, θ) = 0 for all (x, θ) ∈ X×Θ.

6.4 Backstepping

This section begins by introducing a weaker notion of SLFF triples for affine control
systems. Then, given a system that admits a weak SLFF triple, we construct a
(non-weak) SLFF triple for the same system augmented with an integrator at the
input.

By assuming that (6.1) is affine in the control input v, we obtain the system

ẋ = f0(x) + g0(x)v (x, v) ∈ X × Rk (6.23)

Definition 6.11. Let A ⊂ X×Θ be compact. A continuously differentiable function
V : X ×Θ 7→ R≥0 and continuous functions κ : X ×Θ → Rk and ν : X ×Θ → Rm
define a weak synergistic Lyapunov function and feedback triple (V, κ, ν) relative to
A with a weak synergy gap relative to Ψ exceeding ρ > 0 for (6.23) if

1. V is proper and positive definite with respect to A;
2. The closed loop system(

ẋ

θ̇

)
=

(
f0(x) + g0(x)κ(x, θ)

ν(x, θ)

)
︸ ︷︷ ︸

F0(x,θ)

(x, θ) ∈ X ×Θ (6.24)

satisfies

⟨∇V (x, θ), F0(x, θ)⟩ ≤ 0, ∀(x, θ) ∈ X ×Θ; (6.25)

3. µV,Ψ (x, θ) > ρ for each (x, θ) ∈ I \A, where I is the largest weakly invariant
subset for the system

ẋ = f0(x) + g0(x)κ(x, θ)

θ̇ = ν(x, θ)

}
(x, θ) ∈ E ∩W (6.26)
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where E is given in Definition 6.4, and

W :={(x, q) ∈ X×Θ : g0(x)
T∇1V (x, θ) = 0}. (6.27)

Augmenting the system (6.23) with an integrator at the input results in the
control system

ż = f1(z) + g1(z)u (z, u) ∈ Z × Rk (6.28)

where z = (x, v) ∈ Z := X × Rk, u ∈ Rk is the control input and

f1(z) =

(
f0(x) + g0(x)v

0

)
, g1(z) =

(
0
I

)
. (6.29)

Now, let (V0, κ0, ν0) be a weak SLFF triple relative to the compact set A0 ⊂ X×Θ,
define the set

A1 = {(z, θ) ∈ Z ×Θ : (x, θ) ∈ A0, v = κ(x, θ)} , (6.30)

and consider the following SLFF triple

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2Γ , (6.31a)

κ1(z, θ) = ∇1κ0(x, θ) (f0(x) + g0(x)v)

+∇2κ0(x, θ)ν0(x, θ)− γ1(v − κ0(x, θ))

− Γ−1g0(x)
T∇1V0(x, θ),

(6.31b)

ν1(z, θ) = ν0(x, θ)− ϑ1(∇2V1(z, θ)), (6.31c)

where Γ ∈ Rk×k is positive definite, and γ1 : Rk → Rk and ϑ1 : Rm → Rm
are strongly passive and passive functions, respectively. The following proposition
establishes that (V1, κ1, ν1) is an SLFF triple for the system (6.28) with synergy
gap exceeding ρ > 0 relative to Ψ .

Proposition 6.12. If (V0, κ0, ν0) is a weak synergistic Lyapunov function and
feedback triple for the system (6.23) relative to A0, with a weak synergy gap rela-
tive to Ψ exceeding ρ > 0, then (V1, κ1, ν1) is a (non-weak) synergistic Lyapunov
function and feedback triple for the system (6.28) relative to A1 with a (non-weak)
synergy gap relative to Ψ exceeding ρ > 0.
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Proof. The derivative of V1 along the solutions of (6.23) is

V̇1(z, θ) = ⟨∇1V1(z, θ), f1(z) + g1(z)κ1(z, θ)⟩
+ ⟨∇2V1(z, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γ∇2κ0(x, θ)(ν1(z, θ)− ν0(x, θ))⟩
+ ⟨∇2V0(x, θ), ν1(z, θ)⟩

= ⟨∇1V0(x, θ), f0(x) + g0(x)κ0(x, θ)⟩
− ⟨v − κ0(x, θ), Γγ1(v − κ0(x, θ)⟩
+ ⟨∇2V0(x, θ), ν0(x, θ)⟩
− ⟨∇2V1(z, θ), ϑ1(∇2V1(z, θ))⟩

≤ 0.

(6.32)

Define E0,W0 and E1,W1 according to (6.12) and (6.27) for the systems (6.23) and
(6.28), respectively. It follows from (6.32) that

E1 = {(z, θ) ∈ X ×Θ : (x, θ) ∈ E0, v = κ0(x, θ), ϑ1(∇2V1(z, θ)) = 0}
⊂ W1.

(6.33)

Let I1 ⊂ E1 denote the largest weakly invariant subset for the system

ż = f1(z) + g1(z)κ1(z, θ)

θ̇ = ν1(z, θ)

}
(z, θ) ∈ E1 (6.34)

It follows that

I1 =
{
(z, θ) ∈ Z ×Θ : (x, θ) ∈ Ω0, v = κ0(x, θ), ϑ1(∇2V1(z, θ)) = 0

}
. (6.35)

From Definition 6.2 and 3) in Definition 6.11 it holds that

µV1,Ψ ≥ µV0,Ψ (x, θ) +
1

2
|v − κ0(x, θ)|2Γ −min

ψ∈Ψ

1

2
|v−κ0(x, ψ)|2Γ

≥ µV0,Ψ (x, θ) (6.36)
> ρ. (6.37)

Consequently, (V1, κ1, ν1) is an SLFF triple with synergy gap relative to Ψ exceed-
ing ρ > 0.

6.5 Synergistic Maneuvering for Ships

In this section, the proposed theory is exemplified by combining the traditional
synergistic control approach of [42], [44] with the ship maneuvering control of [52],
[53], where we augment the path variable with jump dynamics. The configuration
space of a ship can be reasonably described by SE(2) = R2⋊SO(2). Configurations
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of the ship are then represented as x = (p,R), where p ∈ R2 represents the ship
position and R ∈ SO(2) represents the ship heading.

The desired position of the ship is described in terms of a sufficiently smooth
planar path.

Definition 6.13. A planar Cr-path is a Cr-mapping η : [0, 1] → R2. If r ≥ 1, we
say that a planar Cr-path is regular if η′(s) ̸= 0 for all s ∈ [0, 1].

Given a regular C3-path η in R2, we synthesize a C2-path in SE(2) by requiring
that the heading of the ship is tangential to the path. Such a path has the form
s 7→ (pd(s), Rd(s)), where

pd(s) := η(s)

Rd(s) :=
1

|η′(s)|
(
η′(s) Sη′(s)

)
.

(6.38)

A desired speed assignment for ṡ along the path, ud : [0, 1] → R, is chosen as

ud(s) :=
Ud(s)

|p′d(s)|
, (6.39)

where Ud : [0, 1] → R is a continuously differentiable signed desired ship speed
along the path. In particular, ud is defined such that if ṡ = ud(s), then ṗd(s) =
p′d(s)
|p′d(s)|

Ud(s). A two times continuously differentiable path in the configuration space
xd : [0, 1] → SE(2) can now be defined as xd(s) := (pd(s), Rd(s)).

We denote by v = (ζ, ω) ∈ R3 the velocity of the ship, where ζ ∈ R2 is its linear
velocity and ω ∈ R is its angular velocity. A model for the ship kinematics and
dynamics is [84, Chapter 6.5]

ẋ = xv∧

v̇ = −γ(v) +M−1(d(v) + u)

}
(x, v)∈SE(2)×R3, (6.40)

where M = MT > 0 is the ship inertia tensor (including hydrodynamic inertia),
γ : R3 → R3 describes the Coriolis and centripetal accelerations associated with
M , d : R3 → R3 describes the hydrodynamic drag forces acting on the ship, and u
are idealized input forces produced by the actuators.

The general ship maneuvering problem is then split into a geometric task that
represents convergence to this path, and a dynamic task that represents the at-
tainment of the speed assignment ud on this path.

Problem Statement (Maneuvering Problem [53]).

• Geometric Task: Force the position and heading of the ship to converge to
the desired path,

lim
(t+j)→∞

∥xd(s(t, j))−1x(t, j)− I∥ = 0. (6.41)

• Dynamic Task: Force the path speed to converge to the desired speed as-
signment:

lim
(t+j)→∞

|ṡ(t, j)− ud(s(t, j))| = 0. (6.42)
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6.5.1 Backstepping Controller

We set X = SE(2) and Θ = Θa × Θb, where Θa = {−1, 1}, Θb = [0, 1] and
θ = (θa, θb) = (q, s). In particular, q is a classical synergistic logic variable and
s is a path variable utilized in the ship maneuvering control problem. Then, the
kinematics of the ship and the flow of q and s may be cast as a system of the form
(6.23),

ẋ = xv∧ (x, v) ∈ SE(2)× R3. (6.43)

The set A0 ⊂ X ×Θ is now chosen as

A0 = {(x, θ) ∈ X ×Θ : x = xd(s)}. (6.44)

Compactness of A0 holds because the mapping (q, s) 7→ xd(s) is continuous and Θ
is compact.

We now introduce a synergistic potential function which is similar to [44] for
the heading control of the ship. In particular, let P : SO(2)× [0, 1] → R and, with
ρa > 0, the mapping T : SO(2)×Θ → SO(2)

P (R, s) := (1− ⟨e1, Rd(s)TRe1⟩), (6.45)

T (R, θ) := exp(ρaqP (R, s)S)Rd(s)
TR. (6.46)

Let k0 > 0 and let K0 = KT
0 be a positive definite matrix. Then, (V0, κ0, ν0) defined

as

V0(x, θ) =
1

2
|RT
d (p− pd(s))|2K0

+ k0P (T (R, θ), s) (6.47a)

κ0(x, θ) = Ad−1
xd(s)−1x(xd(s)

−1x′d(s))
∨ud(s)

−K d1V0(x, θ) (6.47b)

ν0(x, θ) =

(
0

ud(s)

)
, (6.47c)

where K = KT is a positive definite matrix, is an SLFF triple for (6.43) with
synergy gap relative to {−1, 1} exceeding 1

2 .
We now augment (6.43) with the ship dynamics

ẋ = xv∧

v̇ = −γ(v) +M−1(d(v) + u)

}
(z, u)∈(SE(2)×R3)×R3, (6.48)

and define

A1 = {(x, v, θ) : (x, θ) ∈ A0, v = κ0(x, θ)}. (6.49)
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It then follows directly from Proposition 6.12 that

V1(z, θ) = V0(x, θ) +
1

2
|v − κ0(x, θ)|2M , (6.50a)

κ1(z, θ) =M d1κ0(x, θ)v +M∇2κ0(x, θ)ν0(x, θ)

+Mγ(v)− d(v)

− γ1(v − κ0(x, θ))

− d1V0(x, θ),

(6.50b)

ν1(z, θ) = ν0(x, θ), (6.50c)

is an SLFF triple for the system (6.48) relative to A1 with synergy gap relative to
{−1, 1} exceeding 1

2 . Consequently, the synergistic controller

θ̇ = ν1(z, θ) (z, θ) ∈ C, (6.51)

θ+ ∈ G(z, θ) (z, θ) ∈ D, (6.52)
u = κ1(z, θ), (6.53)

where (C,D,G) are given by (6.19), renders A1 globally pre-asymptotically stable
for the resulting closed-loop system by Proposition 6.9. Moreover, if ud(s) ∈ TΘb

(s)
for all s ∈ Θb, then all maximal solutions are complete and A1 is globally asymp-
totically stable for the resulting closed-loop system, which implies that the problem
statement is solved.

6.5.2 Simulations

Simulation results are presented in Figures 6.1 to 6.5. The model parameters can
be found in [58]. In the simulations, we have chosen δ = 0.1, ρa = δk0, ρ = 1.2ρa,
k0 = 5, K0 = 5I2, K = 0.05I3 and γ1 = diag(10, 10, 7). The chosen path is
given by pd(s) := 5(cos(πs), sin(πs)). The ship is initialized at p = (5, 2) with an
initial heading of ψ = −85◦, an initial velocity of v = 0 and a desired speed of
Ud = 0.3m/s.

0 10 20 30
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2

4

0 10 20 30

0

2

4

6

Figure 6.1: The position p = (x, y) and desired position pd = (xd, yd).

From Figure 6.1 we observe that the position references are successfully tracked
after an initial transient phase. An optional jump is immediately triggered such that
q is mapped to −1 and s is mapped to approximately 0.08. An optional jump is

83



6. Synergistic Lyapunov Function and Feedback Triples

0 10 20 30

-0.2

0

0.2

0.4

0 10 20 30

-0.4

-0.2

0

0.2

Figure 6.2: The body linear velocity ζ1 and ζ2 and the first and second component
of κ0.
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Figure 6.3: The heading angle ψ=atan2(R21, R11), desired heading angle ψd =
atan2(Rd,21, Rd,11), angular velocity ω and the third component of κ0.
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Figure 6.4: The speed U = (ζ21 +ζ
2
2 )

1
2 , desired speed Ud and synergistic variables

q and s.
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Figure 6.5: The control forces and moment u.
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triggered around t ≈ 2 s as seen in Figure 6.1. The error in the x-direction is slightly
decreased while the error in the y-direction is slightly increased. Moreover, from
Figure 6.2 we note that the difference between ζ1 and κ0,1 decreases over the jump
in s. In Figure 6.4, we observe that s is decreased over the jump, while q remains
the same. Moreover, from Figure 6.5, we observe a discontinuity in u2 at the time
of the jump.

6.6 Conclusions

In this chapter, we have generalized the definition of synergistic Lyapunov func-
tions and feedbacks to allow the traditional logic variable of synergistic control to
be vector-valued and change during flows. Since the logic variable is allowed to be
vector-valued, we have introduced the notion of synergy gaps relative to compo-
nents of product sets, which enables existing hybrid output feedback control laws
to be reformulated within the synergistic framework. Furthermore, we have shown
that the properties of an SLFF triple are preserved through integrator backstep-
ping. Finally, we have given an example in which a classical synergistic control
approach is combined with a ship maneuvering control approach to enable discrete
path dynamics and global asymptotic stability properties.
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Chapter 7

Hysteretic Control Lyapunov
Functions

In this chapter, we present a new class of control Lyapunov functions for hybrid
feedback control of continuous-time systems, referred to as hysteretic control Lya-
punov functions (HCLFs). HCLFs include a hysteresis-based switching mechanism
and result in a hybrid control law, transforming the continuous-time system into a
hybrid control system. We show that the existence of a family of HCLFs satisfying
the small control property implies global stabilizability of a compact set. The hybrid
feedback consists of a collection of continuous feedback laws and a hysteresis-based
switching mechanism. Moreover, we prove that optimization-based hybrid feedback
laws can be constructed under minor assumptions on the objective functions. The
collection of optimization-based feedback laws are continuous along flows, implying
that the hybrid basic conditions hold such that the stability is robust in the sense
of [55].

The material in this chapter is based on [57].

7.1 Introduction

Control Lyapunov functions (CLFs) constitute a powerful tool for constructive non-
linear control design, since they can be utilized to determine a stabilizing control
law from Lyapunov inequalities [11, 12]. General control laws for stabilization of
nonlinear systems using CLFs were first introduced in [13] through Sontag’s uni-
versal formula, and later in [15]. The control law in [15] is notable in the sense
that it pointwise minimizes the norm of the control input with respect to the CLF.
More recently, CLFs have been extended to hybrid systems with and without dis-
turbances in [90] and [91], respectively. However, for global asymptotic stabilization
of dynamical systems defined on non-contractible state-spaces, there does not exist
a continuously differentiable CLF [92].

The remainder of this chapter is organized as follows. Section 7.2 defines a fam-
ily of hysteretic CLFs, and proves that a family of continuous feedback laws derived
from the feasible set-valued map of control inputs defined by the HCLFs results
in global asymptotic stability of any compact set. Then, Section 7.3 presents suffi-
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cient conditions for the existence of a family of continuous control selections from
the feasible set-valued map. Given a collection of radially unbounded and strictly
convex objective functions, we present an optimization-based hybrid feedback law
that pointwise minimizes the objective functions subject to the stability constraints
imposed by the HCLFs. Section 7.4 derives the quaternion tracking error dynamics
for an underwater vehicle, before a family of HCLFs are constructed in Section 7.5.
The HCLF family is subsequently employed for synthesis of a hybrid control law
for global asymptotic configuration and velocity tracking. Then, Section 7.6 verifies
the theoretical developments through simulations, before Section 7.7 presents our
concluding remarks.

7.2 Hysteretic Control Lyapunov Functions

In this section, we define hysteretic control Lyapunov functions for the following
class of continuous-time systems

N :

{
ẋ = f(x, r, u)

ṙ ∈ cB
(x, r, u) ∈ X ×R× U , (7.1)

where c > 0, u ∈ U describes the input, and r ∈ R describes a known exogenous
reference signal. It is assumed that N satisfies

Assumptions.

(N1) the state space X ⊂ Rn is closed;
(N2) the input space U ⊂ Rm is closed and convex;
(N3) the exogenous reference space R ⊂ Rk is compact;
(N4) the mapping f : X ×R× U → Rn is continuous.

Systems of this form adequately describe a wide range of tracking problems for
mechanical systems.

Definition 7.1 (HCLF Family). Let A ⊂ X be compact and Q ⊂ Z be finite. A
collection of functions {Vq}q∈Q is a family of hysteretic control Lyapunov func-
tions for (N ,A) with negativity margins {γq}q∈Q, if there exists collections of sets
{Iq}q∈Q, {Oq}q∈Q, and {Mq}q∈Q, class-K∞ functions α and α, and a class-PD
function ρ, such that

(H1) {Iq}q∈Q covers X , and for each q ∈ Q, Iq is closed in X , Oq is open in X ,
Mq is closed in X , and Iq ⊂ Oq ⊂ Mq;

(H2) for each q ∈ Q, Vq is continuously differentiable on an open set containing
Mq, and for all x ∈ Mq,

α(|x|A) ≤ Vq(x) ≤ α(|x|A); (7.2)

(H3) for all (q, s) ∈ Q×Q and all x ∈ (Mq \ Oq) ∩ Is,

Vs(x) ≤ Vq(x); (7.3)
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(H4) for all (r, q) ∈ R × Q and all x ∈ Mq, γq : Mq × R → R≥0 is continuous,
γq(x, r) ≥ ρ(|x|A), and

inf
u∈U

∇Vq(x)Tf(x, r, u) + γq(x, r) ≤ −ρ(|x|A). (7.4)

A family of HCLFs for (N ,A) is a tool for the design of a hybrid controller of
the form

C :

{
u = κq(x, r) (x, r) ∈ Cq

q+ ∈ Gq(x) (x, r) ∈ Dq,
(7.5)

where {κq}q∈Q is a collection of feedback control laws, and the flow set, jump set,
and jump map are defined as

Cq := Mq ×R, (7.6)
Dq := X \ Oq ×R, (7.7)

Gq(x) :=
{
s ∈ Q : x ∈ Is \ Oq

}
, (7.8)

respectively. Additionally, for a given q ∈ Q, we also write

Bq := (A×R) ∩ Cq. (7.9)

We remark that Mq can always be chosen as the closure of Oq.
Applying the hybrid controller C to the system N , results in the hybrid closed-

loop system of the form

H :


ẋ = f(x, κq(x, r), r)

ṙ ∈ cB

}
(x, r) ∈ Cq

q+ ∈ Gq(x) (x, r) ∈ Dq.

(7.10)

For convenience of notation, the flow map (jump map) of a state in a hybrid
system is omitted if it remains unchanged along flows (across jumps). When the
the compact set A×R×Q is globally pre-asymptotically stable for the system H,
we shall say that C globally pre-asymptotically stabilizes A for N .

The definition of an HCLF family naturally leads to a collection of feasible set-
valued mappings for the input. These mappings can, for each q ∈ Q, be defined as
Fq : Cq ⇒ U ,

Fq(x, r) :=
{
u ∈ U :∇Vq(x)Tf(x, r, u)+γq(x, r) ≤ 0

}
. (7.11)

The fact that the domain of Fq is Cq follows readily from (H4). Moreover, for each
q ∈ Q and all (x, r) ∈ Cq, any input u ∈ Fq(x, r) results in a rate of change of
Vq at (x, r) less than or equal to −γq(x, r) while flowing. The negativity margins
should therefore be viewed as design parameters.

The following theorem proves that a selection of continuous feedback laws from
the feasible set-valued mapping Fq renders A globally pre-asymptotically stable
for the system N . This stability is robust to perturbations in the sense of [55,
Definition 7.15], as seen from [55, Proposition 7.21].
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Theorem 7.2. Let {Vq}q∈Q be an HCLF family for (N ,A) with negativity margins
{γq}q∈Q. If there exists a collection of feedback control laws {κq}q∈Q such that, for
each q ∈ Q, κq : Cq → U is continuous, and for all (x, r) ∈ Cq, κq(x, r) ∈ Fq(x, r),
then the controller C renders A globally pre-asymptotically stable for N .

Proof. Let H̃ denote the hybrid system H with each jump set Dq replaced by
D̃q = Cq ∩Dq. Since Q is finite and each κq is continuous, it is straightforward to
verify that H and H̃ satisfy the hybrid basic conditions [55, Assumption 6.5]. For
each q ∈ Q and all (x, r) ∈ D̃q, we find that s ∈ Gq(x) implies (x, r) ∈ Cs \ D̃s.
It now follows from [93, Lemma 2.7] that, for each bounded solution to H̃, there
exists a positive scalar that bounds the time of flow after each jump from below. We
now define a Lyapunov function candidate V : (x, q) 7→ Vq(x). From (H2), (H3),
and the non-increase along flows by definition of the feasible set-valued mapping
(7.11), uniform global stability of A × R × Q for H̃, and hence boundedness of
solutions, can be concluded. One may now apply [55, Proposition 3.27] to conclude
global asymptotic stability of A × R × Q for H̃. Solutions to H that are not
solutions to H̃ are those with initial values (x∗, r∗, q∗) such that q∗ ∈ Q and
(x∗, r∗) ∈ Dr∗ \Cr∗ . Such solutions immediately jump from q∗ to some s ∈ Gr∗(x

∗),
after which they coincide with a solution to H̃ initiated in (x∗, r∗, s). It is therefore
clear that A×R×Q is globally pre-asymptotically stable for H.

7.2.1 Connection with SLFF Pairs

HCLFs are closely related to the notions of synergistic functions and synergistic
Lyapunov function and feeback pairs (SLFFs) from Chapters 5 and 6. Indeed, given
a collection of continuously differentiable functions Vq : X → R≥0, we define

µV (x, q) := Vq(x)−min
p∈Q

Vp(x), (7.12)

the sets

Mq = {x ∈ X : µV (x, q) ≤ δ}, (7.13a)
Oq = {x ∈ X : µV (x, q) < δ}, (7.13b)
Iq = {x ∈ X : µV (x, q) = 0}, (7.13c)

and propose the following definition.

Definition 7.3 (SCLF Family). Let A ⊂ X be compact and Q ⊂ Z be finite. A
collection of functions {Vq}q∈Q is a family of synergistic control Lyapunov functions
for (N ,A) with negativity margins {γq}q∈Q, if there exists class-K∞ functions α
and α, and a class-PD function ρ, such that

(S1) for each q ∈ Q, Vq : X → R≥0 is continuously differentiable on an open set
containing X , and for all x ∈ Mq,

α(|x|A) ≤ Vq(x) ≤ α(|x|A); (7.14)
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(S2) for all (r, q) ∈ R × Q and all x ∈ Mq, γq : Mq × R → R≥0 is continuous,
γq(x, r) ≥ ρ(|x|A), and

inf
u∈U

⟨∇Vq(x), f(x, r, u)⟩+ γq(x, r) ≤ −ρ(|x|A). (7.15)

From (7.13) and the fact that each Vq is defined globally, it is clear that an
SCLF family is also an HCLF family. Furthermore, it is straightforward to show
that (V, κ) is an SLFF pair according to [1, Definition 7.3] if for each q ∈ Q,
κq : X ×R → U is continuous and satisfies

∇Vq(x)Tf(x, r, κq(x, r)) + γq(x, r) ≤ −ρ(|x|A), ∀(x, r) ∈ Mq ×R. (7.16)

7.3 Hysteretic Feedback Control Design

Let {Vq}q∈Q be an HCLF family for (N ,A) with negativity margins {γq}q∈Q. The
following theorem provides sufficient conditions for the existence of a hybrid control
law for N with inherent robustness properties.

Theorem 7.4 (Continuous Selection). Let {Vq}q∈Q be an HCLF family for (N ,A)
with negativity margins {γq}q∈Q. If it holds that,

(C1) for each q ∈ Q and all (x, r) ∈ Cq, the mapping

u 7→ ∇Vq(x)Tf(x, r, u), (7.17)

is convex on U ;
(C2) there exists a collection of control laws {θq}q∈Q, where for each q ∈ Q,

θq : Cq → U is continuous and the set-valued mapping F̃q : Cq ⇒ U defined
by

F̃q(x, r) :=

{{
θq(x, r)

}
, if (x, r) ∈ Bq

Fq(x, r), if (x, r) ∈ Cq\Bq,
(7.18)

is lower semicontinuous for all (x, r) ∈ Bq,
then there exists a collection of feedback control laws {κq}q∈Q such that, for each
q ∈ Q, κq : Cq → U is continuous, and the hybrid controller C renders the set A
globally pre-asymptotically stable for the system N .

Proof. Since f is continuous, each ∇Vq and ρq are continuous, and each Cq is
closed, it follows from [15, Corollary 2.13] that each F◦

q : Cq\Bq ⇒ U defined as

F◦
q (x, r) =

{
u ∈ U : ∇Vq(x)Tf(x, r, u) + γq(x, r) < 0

}
,

is lower semicontinuous. From (C1), [94, Theorem 7.6], and the fact that taking
closures preserves lower semicontinuity, it follows that for each q ∈ Q and all
(x, r) ∈ Cq\Bq

F◦
q (x, r) =

{
u ∈ U : ∇Vq(x)Tf(x, r, u) + γq(x, r) ≤ 0

}
= Fq(x, r),
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is closed-convex-valued and lower semicontinuous. Now, it follows from (C2) that
each F̃q is lower semicontinuous. Then, the Michael selection theorem [15, Theorem
2.18] implies the existence of a collection of functions {κq}q∈Q such that κq : Cq →
U is continuous and κq(x, r) ∈ F̃q(x, r) for each q ∈ Q and all (x, r) ∈ Cq. The rest
of the proof follows from Theorem 7.2 because F̃q(x, r) ⊂ Fq(x, r) for each q ∈ Q
and all (x, r) ∈ Cq.

Condition (C1) always holds when the mapping u 7→ f(x, r, u) is affine for all
(x, r) ∈ X ×R. Additionally, (C2) is recognized as the the small control property
[15].

Theorem 7.4 implies the existence of a collection of continuous control laws
rendering the compact set A globally pre-asymptotically stable for the system N .
However, it is neither constructive nor optimal. The following theorem enables us to
take continuous selections from F̃q(x, r) minimizing a specified objective function.

Theorem 7.5 (Optimal Selection). Let {Vq}q∈Q be an HCLF family for (N ,A)
with negativity margins {γq}q∈Q satisfying the assumptions of Theorem 7.4. If
{hq}q∈Q is a collection of functions satisfying,

(O1) for each q ∈ Q, hq : X × R × U → R≥0 is continuous and strictly convex in
its third argument;

(O2) there exist class-K∞ functions β and β such that, for each q ∈ Q and for all
(x, r) ∈ Cq,

β(|u− θq(x, r)|) ≤ hq(x, r, u) ≤ β(|u− θq(x, r)|), (7.19)

where {θq}q∈Q is defined in (C2) in Theorem 7.4,

then there exists a family of feedback control laws {κq}q∈Q, such that for each
q ∈ Q, κq : Cq → U is continuous and defined by

κq(x, r) = argmin
u∈F̃q(x,r)

hq(x, r, u), (x, r) ∈ Cq, (7.20)

such that the hybrid control law C , renders the set A globally pre-asymptotically
stable for the system N .

Proof. Theorem 7.4 establishes that each Fq is nonempty, closed-convex-valued
and lower semicontinuous for all (x, r) ∈ Cq\Bq. Additionally, Fq is upper semi-
continuous for all (x, r) ∈ Cq\Bq as it is closed-valued for all (x, r) ∈ Cq\Bq and
U is closed [62, Example 5.8]. Hence, by [55, Lemma 5.15] and [55, Lemma 5.10],
for each q ∈ Q, gphFq is closed relative to Cq\Bq. Then, (7.19) and continuity of
each hq on gphFq, implies that for every compact set K ⊂ Cq\Bq and all λ ∈ R,
the sets

{(x, r, u) : (x, r) ∈ K, u ∈ Fq(x, r), hq(x, r, u) ≤ λ} ,

are compact. By [95, Theorem 1.4], each function

cq(x, r) = min
u∈Fq(x,r)

hq(x, r, u), (x, r) ∈ Cq\Bq,
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is continuous, and each set-valued mapping Pq : Cq\Bq ⇒ U of minimal solutions,
defined as

Pq(x, r) := argmin
u∈Fq(x,r)

hq(x, r, u),

is upper semicontinuous and compact-valued for each q ∈ Q. Now, Fq is nonempty
and closed-convex-valued for each q ∈ Q, for every (x, r) ∈ Cq\Bq, and each func-
tion hq is strictly convex in u for all u ∈ Fq(x, r). It follows from [62, Theorem
2.6] that Pq is single-valued, such that it is possible to set κq(x, r) := Pq(x, r) for
each q ∈ Q and for all (x, r) ∈ Cq\Bq. Consequently, by [62, Corollary 5.20], κq is
continuous for all (x, r) ∈ Cq\Bq as it is upper semicontinuous in the sense of a
set-valued mapping.

To show continuity of each κq in Bq, rewrite (7.20) as

κq(x, r) :=

θq(x, r) if (x, r) ∈ Bq
argmin
u∈Fq(x,r)

hq(x, r, u) if (x, r) ∈ Cq\Bq,

which follows from (7.19) and the fact that Fq(x, r) = U when (x, r) ∈ Bq. Now,
F̃q(x, r) is lower semicontinuous for all (x, r) ∈ Cq by (C2). Therefore, there exists
a family of continuous selections µq(x, r) ∈ F̃q(x, r) with µq(x, r) = θq(x, r), for all
(x, r) ∈ Bq. It follows from (7.19) that for each q ∈ Q, and for all (x, r) ∈ Cq,

0 ≤ |κq(x, r)− θq(x, r)| ≤ β−1 ◦ β(|µq(x, r)− θq(x, r)|). (7.21)

From continuity of each θq and µq it follows that each κq is continuous. The rest
of the proof follows from Theorem 7.2.

The main difficulty in applying Theorem 7.5 appears to be how to verify that
the HCLF family satisfies the small control property (C2) defined in Theorem 7.4.
It turns out that if (C1) holds, then the existence of a family of continuous feasible
control laws for the HCLF family implies that the small control property holds, as
shown in the following result.

Lemma 7.1. Let {Vq}q∈Q be an HCLF family for (N ,A) with negativity margins
{γq}q∈Q satisfying (C1) in Theorem 7.4. If there exists a collection of continuous
mapping {µq}q∈Q such that for each q ∈ Q, µq : Cq → U satisfies µq(x, r) ∈ F̃q(x, r)
for all (x, r) ∈ Cq, then F̃q is lower semicontinuous for all (x, r) ∈ Cq.

Proof. We have already shown in the proof of Theorem 7.4 that F̃q is lower semi-
continuous for all (x, r) ∈ Cq\Bq. Let (x̄, r̄) ∈ Bq. For every neighborhood W of
p = µq(x̄, r̄), define V := µ−1

q (W ). Then, V is a neighborhood of (x̄, r̄) (relative to
Cq) by continuity of µq. Moreover, since µ(x, r) ∈ F̃q(x, r) for all (x, r) ∈ Cq,
it holds that V ⊂ F̃−1

q (W ). Consequently, F̃q is lower semicontinuous for all
(x, r) ∈ Cq by [62, Exercise 5.6].
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7.4 Trajectory Tracking for Underwater Vehicles

In the remaining part of this chapter we will illustrate how the results of the
previous sections can be applied. Specifically, we will construct a family of HCLFs
and synthesize a hybrid control law ensuring global asymptotic tracking for an
underwater vehicle. This section provides kinematic and dynamic models of an
underwater vehicle, before the tracking error dynamics are derived.

7.4.1 Kinematics

The position and attitude of a rigid underwater vehicle are uniquely described by a
vector p ∈ R3 specifying the position of the body frame origin with respect to the
inertial frame origin, and a rotation matrix R ∈ SO(3) specifying the body frame
axes projected onto the inertial frame axes. The rate of change of these quantities is
related to the linear and angular body velocities, v ∈ R3 and ω ∈ R3 , respectively,
by

ṗ = Rv

Ṙ = Rω∧.
(7.22)

It is well-known that no three-parameter parametrization of SO(3) is globally non-
singular [96], which is why a four-parameter unit quaternion representation is often
preferred for control design. A unit quaternion is written as a vector z = (η, ϵ) ∈ S3,
where η ∈ R and ϵ ∈ R3, respectively describe the real and imaginary component
of the quaternion. Any unit quaternion maps to a rotation matrix through the
surjective map R : S3 → SO(3) defined by

R(z) := I3 + 2ηϵ∧ + 2 (ϵ∧)
2
. (7.23)

The quaternion kinematic equation is given by

ż = T̆ (z)ω, (7.24)

where T̆ : S3 → R4×3 is defined by

T̆ (z) :=
1

2

(
−ϵT

ηI3 + ϵ∧

)
. (7.25)

Let z̄ = (η̄, ϵ̄) ∈ S3 represent the desired quaternion. The error quaternion corre-
sponding to R(z̃) = R̃ = R̄TR is

z̃ = z̄−1 ⊗ z = (η̃, ϵ̃) , (7.26)

where ⊗ denotes the quaternion product. Note that the map defined in (7.23) is
not injective, since it maps unit quaternions representing antipodal points in S3
to the same element in SO(3). Hence, the set of unit quaternions corresponding to
R(z̃) = I3 is z̃ = ±e1 = ± (1, 0, 0, 0).

Defining φ := (p, z) ∈ R3 × S3, and collecting the linear and angular velocities
in the vector ν = (v, ω) ∈ R6 results in the kinematic equation

φ̇ =

(
R(z) 03×3

04×3 T̆ (z)

)
ν := T (z)ν. (7.27)

94



7.4. Trajectory Tracking for Underwater Vehicles

7.4.2 Dynamics

The dynamics of an underwater vehicle is modeled as [84]

Mν̇ + F (ν)ν + g(R) = Bu, (7.28)

where M ∈ R6×6 is the inertia matrix, including hydrodynamic mass, F : R6 →
R6×6 describes velocity dependent inertia and damping terms, g : SO(3) → R6

comprises the acting weight and buoyancy forces, B ∈ R6×m is the actuator con-
figuration matrix and u ∈ U = Rm is the vector of actuator control inputs. We
make the following assumptions on these quantities

(A1) M =MT =

(
M1 M2

MT
2 M3

)
> 0;

(A2) F and g are continuous;
(A3) the actuator configuration matrix B has full rank;

7.4.3 Tracking Error Dynamics using Quaternions

A bounded reference trajectory for the vehicle configuration, velocity and acceler-
ation is generated from the exogenous system

˙̄p = R̄v̄

˙̄R = R̄ω̄∧

˙̄ν = r

ṙ ∈ cB


(
p̄, R̄, ν̄, r

)
∈ Ω1 × SO(3)× Ω2 ×R, (7.29)

where c > 0, and Ω1 ⊂ R3, Ω2 ⊂ R6 and R ⊂ R6 are compact. Let φ̄ = (p̄, z̄) ∈
Ω1 × S3 := Φ̄ represent the desired position vector and unit quaternion, and define
the configuration error by φ̃ := (p̃, z̃) ∈ R3 × S3 := Φ̃, where p̃ = R(z̄)T (p− p̄) is
the natural position error. The error kinematics are given by

˙̃φ =

(
R(z̃) 03×3

04×3 T̆ (z̃)

)
ν̃ := T (z̃)ν̃, (7.30)

where ν̃ = ν −H(φ̃)ν̄ is the body velocity error, and H : Φ̃ → R6×6 is defined by

H(φ̃) :=

(
R(z̃)T −R(z̃)Tp̃∧

03×3 R(z̃)T

)
. (7.31)

The error dynamics are then given by

˙̃ν =M−1 (Bu− F (ν)ν − g(z))−H(φ̃)r −Ḣ(φ̃, ν̃)ν̄

=M−1Bu+ f̆(φ̃, ν̃, r).
(7.32)

Defining the extended state-space

X := Φ̃× R6 × Φ̄× Ω2, (7.33)

95



7. Hysteretic Control Lyapunov Functions

with state vector x = (φ̃, ν̃, φ̄, ν̄) ∈ X , results in the following quaternion represen-
tation of the kinematic and dynamic tracking error equations

N :

{
ẋ = f(x, r, u)

ṙ ∈ cB
(x, r, u) ∈ X ×R× U , (7.34)

where the continuous map f : X ×R× U → R26 is given by

f(x, r, u) =


T (z̃)ν̃

f̆(φ̃, ν̃, r) +M−1Bu
T (z̄)ν̄
r

 . (7.35)

The tracking control objective is global asymptotic stabilization of the compact set

A◦ = {x ∈ X : p̃ = 0, R(z̃) = I3, ν̃ = 0} (7.36)
= {x ∈ X : p̃ = 0, z̃ = ±e1, ν̃ = 0} . (7.37)

7.5 HCLF-based Hybrid Control Design

This section constructs HCLFs for trajectory tracking of an underwater vehicle.
The HCLFs are subsequently employed to synthesize an optimization-based hybrid
feedback control law.

Consider the candidate family of kinematic HCLFs

Vq,1(φ̃) = 2kϵ (1− qη̃)︸ ︷︷ ︸
V̆q(z̃)

+
1

2
p̃TKpp̃, (7.38)

Differentiating (7.38) along the error kinematics yields

⟨∇Vq,1(φ̃), T (z̃)ν̃⟩ = kϵqϵ̃
Tω̃ + p̃TKp (R(z̃)v − v̄ − ω̄∧p̃)

= ϑ̃TKϑ̃Υq(z̃)
Tν̃, (7.39)

where ϑ̃ = (p̃, ϵ̃) and

Kϑ̃ =

(
Kp 03×3

03×3 kϵI3

)
, Υq(z̃)

T =

(
R(z̃) 03×3

03×3 qI3

)
. (7.40)

Define the backstepping variable

ξ := ν̃ − αq(ϑ̃), (7.41)

and rewrite (7.39) as

⟨∇Vq,1(φ̃), T (z̃)ν̃⟩ = ϑ̃TKϑ̃Υq(z̃)
Tαq(ϑ̃) + ϑ̃TKϑ̃Υq(z̃)

Tξ.

The stabilizing function αq(ϑ̃) for ν̃ is chosen as

αq(ϑ̃) = −Υq(z̃)ϑ̃. (7.42)
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Since q2 = 1 for all q ∈ Q, it holds that Υq(z̃)
TΥq(z̃) = I, which results in

⟨∇Vq,1(φ̃), T (z̃)ν̃⟩ = −ϑ̃TKϑ̃ϑ̃+ ϑ̃TKϑ̃Υq(z̃)
Tξ. (7.43)

Augmenting Vq,1 with a positive definite term in ξ yields

Vq(x) = Vq,1(φ̃) +
1

2
ξTMξ, (7.44)

which has compact sublevel sets and is positive definite with respect to the compact
set

A = {(x, q) ∈ X ×Q : p̃ = 0, z̃ = qe1, ξ = 0} . (7.45)

Differentiating Vq along flows yields

⟨∇Vq(x), f(x, r, u)⟩ = −ϑ̃TKϑ̃ϑ̃

+ ξT
(
Υq(z̃)Kϑ̃ϑ̃+MĠ(z̃, ω̃)ϑ̃ +MΥq(z̃)ST (z̃)ν̃

+Bu− F (ν)ν − g(z)−M
[
H(φ̃)r + Ḣ(φ̃, ν̃)ν̄

] )
,

(7.46)

where

Ġ(z̃, ω̃) =

(
−ω̃∧R(z̃)T 03×3

03×3 03×3

)
, (7.47)

˙̃
ϑ =

(
I3×3 03×4

03×4 I3×3

)
T (z̃)ν̃ := ST (z̃)ν̃. (7.48)

Note that the set Q only consists of two elements. Thus, the only possible switching
strategy for the logic variable is q+ = −q. In order to derive the sets {Iq}q∈Q, {Oq}q∈Q
and {Mq}q∈Q, defining the flow and jump sets, we calculate the change in Vq along
jumps as

(Vq+−Vq)(x) = 4kϵrη̃ + ν̃TM
(
Gq+(z̃)−Υq(z̃)

)
Kϑ̃ϑ̃

+
1

2
ϑ̃TKϑ̃

(
Gq+(z̃)

TMGq+(z̃)−ΥT
q (z̃)MΥq(z̃)

)
Kϑ̃ϑ̃,

where

Gq+(z̃)−Υq(z̃) = −2qĪ (7.49)

Gq+(z̃)
TMGq+(z̃)−Υq(z̃)

TMΥq(z̃) = −2qΛ(z̃), (7.50)

and

Ī =

(
03×3 03×3

03×3 I3

)
, Λ(z̃) =

(
03×3 R(z̃)M2

MT
2 R(z̃)

T 03×3

)
. (7.51)

Let

Ψ(x) := η̃ − 1

2kϵ
ν̃TMĪKϑ̃ϑ̃− 1

4kϵ
ϑ̃TKϑ̃Λ(z̃)Kϑ̃ϑ̃, (7.52)
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such that Vq+(x)− Vq(x) = 4kϵqΨ(x). Define the sets

Iq := {x ∈ X : qΨ(x) ≤ 0} ,
Oq := {x ∈ X : qΨ(x) < δ} ,
Mq := {x ∈ X : qΨ(x) ≤ δ} ,

(7.53)

where δ ∈ (0, 1) is the hysteresis half-width. The flow and jump sets can now be
constructed according to (7.6) and (7.7), respectively. Then, (H3) holds (strictly)
by construction of Oq and Iq since Vq+(x) − Vq(x) = 4kϵqΨ(x) < 0 for all q ∈ Q
and all x ∈ (Mq\Oq)∩Iq+ . From (7.46), it is straightforward to verify that each Vq
satisfies (H4) with γq(x) = ϑ̃TKϑ̃ϑ̃+ ξTKξ for all x ∈ Mq and some K = KT > 0.
Hence, by Definition 7.1, {Vq}q∈Q is a family of HCLFs for (N ,A).

In order to use Theorem 7.5 to synthesize an optimization-based hybrid control
law, consider the set-valued map F̃q, defined in (7.18). We choose θq such that it
renders A forward invariant, i.e. that ˙̃ν = 0 when (x, r) ∈ A. Inspection of (7.32)
yields

θq(x, r) = B† (F (ν̄)ν̄ + g(z̄) +Mr) , (7.54)

where B† ∈ Rm×6 is the Moore-Penrose inverse of B. In order to show lower
semicontinuity of F̃q, consider the continuous feedback control law

µq(x, r)=B
†
(
F (ν)ν+g(z)+M

(
H(φ̃)r+Ḣ(φ̃, ν̃)ν̄

)
−MΥq(z̃)ST (z̃)ν̃ −MĠ(z̃, ω̃)ϑ̃−Υq(z̃)Kϑ̃ϑ̃−Kz

)
, (7.55)

which results in

∇Vq(x)Tf(x, r, µq(x, r)) + γq(x) = 0, (7.56)

for all (x, r) ∈ Cq. Hence, µq(x, r) ∈ Fq(x, r) for all (x, r) ∈ Cq\Bq. Moreover, for
(x, r) ∈ Bq it holds that

µq(x, r) = B† (F (ν̄)ν̄ + g(z̄) +Me) = θq(x, r). (7.57)

Consequently, µq is a continuous single-valued selection of F̃q since µq(x, r) ∈
F̃q(x, r) for all (x, r) ∈ Cq. By Lemma 7.1, F̃q is lower semicontinuous for all
(x, r) ∈ Cq. Hence, by defining the objective function

hq(x, r, u) := |u− θq(x, r)|2, (7.58)

all of the conditions in Theorem 7.5 are satisfied. Consequently, the set A can be
rendered globally pre-asymptotically stable for the system N by the hybrid control
law

C :

{
u = κq(x, r) (x, r) ∈ Cq

q+ = −q (x, r) ∈ Dq,
(7.59)
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where κq : Cq → U is obtained from the quadratic program

κq(x, r) = argmin
u∈Rm

uTu− 2uTθq(x, r)

subject to (7.60)

ξT
(
Bu+Mf̂q(x)+Υq(z̃)Kϑ̃ϑ̃+Kξ

)
≤ 0,

and where

f̂q(x) = f̆(φ̃, ν̃, r) + Ġ(z̃, ω̃)ϑ̃+Υq(z̃)ST (z̃)ν̃. (7.61)

Proposition 7.6. The hybrid control law (7.59) renders the compact set A◦ defined
in (7.37) globally pre-asymptotically stable for the system (7.34).

Proof. We have shown that the HCLF family {Vq}q∈Q defined in (7.44) together
with the collection of objective functions {hq}q∈Q satisfy the conditions of Theo-
rem 7.5. It follows that the hybrid control law (7.59)-(7.60) renders the compact
set A defined in (7.45) globally pre-asymptotically stable. Observe from (7.41) and
(7.42) that A is equivalent to A◦, defined in (7.37), which implies that the control
law (7.59) results in global asymptotic stability of A◦.

7.6 Numerical Simulation

In this section, we verify the theoretical results in simulation for the 6-DOF un-
derwater vehicle ODIN, we refer to [72] for the model parameters. The system is
initialized at the configuration φ0 = (03×1, ϵ0), ϵ0 = 1√

50
(3, 4, 5), with the initial

velocity ν0 = (03×1, 1.2ϵ0). The desired position and orientation is obtained from
the exogenous system in (7.29), initialized at p̄ = 0, R̄ = I. The desired acceleration
r is generated from the low-pass filter

T ṙ + r = Ξ, (7.62)

with time constant T = 15 s and the reference acceleration

Ξ :=


(0.1, 0.06,−0.07, 0, 0, 0), 0 ≤ t ≤ 5

06×1, 5 < t ≤ 10

(03×1, 0.05,−0.1, 0.02) 10 < t ≤ 15

(04×1,−0.1, 0.02) t > 15.

(7.63)

The control gains are chosen as kϵ = 1,Kp = I3 and K = 1
2I6. The system is

simulated with Simulink, using the ode15 solver with a maximum step-size of 0.01.
Simulation results are presented in Figures 7.1 to 7.3. Observe that the only jump
occurs at t = 0, which is due to the initial angular velocity. Moreover, note that the
control input is continuous for all t > 0. To emphasize the necessity of (7.19) for
continuity of the control law along flows, Figure 7.4 depicts the control inputs for
the same control scenario with hq = |u|2, which clearly does not satisfy (7.19). From
Figure 7.4, it is apparent that the control input exhibits significant discontinuities
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Figure 7.1: The position p, the desired position p̄ and the unit quaternion orien-
tation error z̃ = (η̃, ϵ̃).

for t > 20 s, despite the fact that no jumps occur as observed from the logic variable
q.

In order to highlight the benefits of the optimization-based control law obtained
from (7.60), Figures 7.5 to 7.7 depict simulation results for the same control scenario
using u = µq(x, r) given by (7.55). From Figures 7.1, 7.2, 7.5 and 7.6, it is clear
that the optimization-based control law achieves faster convergence to the desired
orientation with less control effort.

In Figure 7.8, we compare our HCLF approach with the local CLF V̆ (z) =
2(1 − η̃), corresponding to q ≡ 1. The system configuration is initialized at φ0 =
(03×1, z0), z0 = (−0.95, 0,

√
1− 0.952, 0) and the desired configuration is initialized

at p̄ = 0, R̄ = I. Since V̆ (z) = 0 if and only if η̃ = 1, the control law synthesized
from V̆ stabilizes z = +e1 and leaves z = −e1 unstable, despite the fact that
both points correspond to the same physical rotation [97]. This can be observed
in Figure 7.8, where the control law (unnecessarily) performs a full rotation of the
rigid body. A naïve solution to this problem is to employ the CLF V̆ (z) = 2(1−|η̃|)
with the goal of rendering z = ±e1 asymptotically stable. However, this leads to
a discontinuous control law with no robustness to measurement noise. In fact, it
can be shown that arbitrarily small measurement noise can destroy any global
attractivity property [37].

Another well-known CLF, albeit local, is V̆ (z) = 2(1 − η̃2), which achieves
almost global asymptotic stability of the set {z ∈ S3 : z = ±e1}. However, since the
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Figure 7.2: The thruster control inputs u, and the logic variable q.
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Figure 7.3: The linear and angular velocities v and ω, and their desired values v̄
and ω̄, respectively.

gradient of V̆ vanishes at η̃ = 0, control laws synthesized from this CLF exhibit poor
convergence properties around η̃ = 0. This is demonstrated through simulation in
Figure 7.9.
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Figure 7.4: The thruster control inputs u with hq = |u|2.

7.7 Conclusions

This chapter has presented a new class of control Lyapunov functions, referred
to as hysteretic control Lyapunov functions (HCLFs). We have stated sufficient
conditions for the existence of a collection of continuous feedback laws, which to-
gether with the hysteresis-based switching mechanism defined by the HCLFs lead
to a hybrid feedback law. This hybrid feedback law globally asymptotically stabi-
lizes compact sets for a class of continuous-time systems defined on state-spaces
that are not necessarily contractible. Moreover, we have shown how a collection
of optimization-based feedback laws can be derived from a family of HCLFs un-
der mild assumptions on the objective function. As a result, HCLFs can serve as
a tool for synthesis of optimal feedback laws ensuring global asymptotic tracking
of spatial rigid-bodies such as underwater vehicles and satellites. Finally, we have
derived a family of HCLFs for configuration and velocity control of an underwater
vehicle through backstepping, and synthesized a globally asymptotically stabilizing
optimization-based control law from the derived HCLFs.
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Figure 7.5: The position p, the desired position p̄ and the unit quaternion orien-
tation error z̃ = (η̃, ϵ̃) using (7.55).
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Figure 7.6: The thruster control inputs u, and the logic variable q using (7.55).
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Figure 7.7: The linear and angular velocities v and ω, and their desired values v̄
and ω̄, respectively, using (7.55).
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Figure 7.8: The unit quaternion orientation error z̃ = (η̃, ϵ̃) and the angular
velocities ω and their desired values ω̄.
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Figure 7.9: The unit quaternion orientation error z̃ = (η̃, ϵ̃) and the angular
velocities ω and their desired values ω̄.
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Chapter 8

Adaptive Hybrid Feedback Control
for Marine Vehicles

This chapter develops an adaptive hybrid feedback controller for global asymptotic
tracking of a hybrid reference system for marine vehicles subject to parametric
uncertainties. In contrast to backstepping-based hybrid adaptive control [48], the
proposed approach permits estimation of the inertia matrix, and the switching
mechanism is independent of the system velocities. As our approach is based on
traditional Euler-Lagrange system models, the adaptive hybrid control law is appli-
cable to other mechanical systems as well. In particular, it can easily be extended
to robot manipulators or, more generally, vehicle-manipulator systems. The hybrid
reference system is constructed from a parametrized loop and a speed assignment
for the motion along the loop. The main benefit of this formulation is that it de-
couples the design of the path from the motion along the path, allowing us to
globally asymptotically track a given parametrized loop at a desired and time-
varying speed. The proposed reference system can be considered an adaptation
of the maneuvering problem [52, 53] to a hybrid dynamical systems setting. The
theoretical developments are validated experimentally for surface and underwater
vehicle applications.

The material in this chapter is based on [58, 59].

8.1 Introduction

Some of the first adaptive control laws proposed for underwater vehicles can be
found in [98] and [99], where Euler angle representations were utilized for the
vehicle orientation. The first quaternion-based control laws for underwater vehicles
were introduced in [100], while adaptive and quaternion-based control approaches
for underwater vehicles can be found in [101] and [102]. None of the aforementioned
quaternion-based approaches achieve global asymptotic stability results, since they
only stabilize one of the equilibrium points corresponding to the desired orientation.
Adaptive backstepping designs for tracking control of ships were introduced in [103],
[104], and [105]. However, none of these methods permit estimation of the inertia
matrix parameters, and all of them lift the vehicle orientation from the circle to
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the field of real numbers, which leads to unwinding problems.
To the best of our knowledge, experimental validations of globally stabilizing

hybrid control laws for surface and underwater vehicles are virtually nonexistent
in the existing literature. A combined hybrid observer/controller for dynamic posi-
tioning of a marine surface vehicle with global exponential stability properties was
proposed in [106]. However, this result was achieved by a priori assuming that the
angular velocity is bounded and by lifting the vehicle orientation from the circle to
the field of real numbers, which leads to unwinding problems.

This rest of this chapter is organized as follows. Section 8.2 presents kinematic
and dynamic models of marine vehicles, a hybrid reference system based on a
parametrized loop and the problem statement. The hybrid control law developed
in Section 8.3 is based on a set of potential functions and a hysteretic switching
mechanism. In Section 8.4, we construct potential functions and switching mech-
anisms to overcome the topological obstructions of SE(2) and SE(3). Moreover,
we show that the aforementioned potential functions and switching mechanisms
satisfy the assumptions in Section 8.3. In Section 8.5, we present the results of
three experiments conducted on marine surface and underwater vehicles, and then,
Section 8.6 concludes the chapter.

8.2 Modeling and Problem Statement

This section begins by presenting kinematic and dynamic models of marine vehi-
cles. Then, we derive a hybrid reference system generating continuous and bounded
configuration, velocity and acceleration references from a parametrized loop. More-
over, the motion along the path can be independently controlled by specifying a
desired speed, which takes values within a compact interval. Finally, we derive the
error system and formulate the problem statement.

8.2.1 Models for Surface and Underwater Marine Vehicles

The configuration of a marine vehicle can be identified with a matrix Lie group
G ⊂ Rn×n of dimension k ≤ 6, which is typically either SE(2),SE(3) or S̃E(3).
Let g ∈ G denote the configuration and ν = (v, ω) ∈ Rk denote the body velocity,
where v and ω denote the linear and angular velocities of the vehicle. Using the
Lie group structure of the configuration space, the equations of motion for fully
actuated marine vehicles are given by

ġ = gν∧, (8.1a)

Mν̇ − adTν Mν = d(ν) + f(g) + τ, (8.1b)

where M ∈ Rk×k is the inertia matrix, including hydrodynamic added mass,
adTν Mν describes Coriolis and centrifugal forces, the function d : Rk → Rk de-
scribes dissipative forces, f : G → Rk contains potential forces and disturbances,
and τ ∈ Rk is the control force. Observe that the dynamic equation (8.1b) coin-
cides with the dynamic equations of motion in [84, Ch. 7, 8] and [72, Ch. 2] by
identifying C(ν)ν̄ := − adTν̄ Mν.
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8.2.2 Hybrid Reference System

We construct a hybrid reference trajectory gd : R≥0×Z≥0 → G by composing a path
γ : [0, 1] → G with a time scaling s : R≥0 ×Z≥0 → [0, 1], i.e. gd(t, j) = γ(s(t, j)). A
key advantage of this formulation is that it decouples the geometric path from the
desired motion along the path.

Definition 8.1. Let I = [0, 1], H2 = SO(2), H3 = SU(2) and m ∈ {2, 3}. The
parametric Cr-path γ : I → G := Rm ⋊Hm defined by

γ(s) := (γ1(s), γ2(s)), γ1(s) ∈ Rm, γ2(s) ∈ Hm, (8.2)

is a Cr-loop if it satisfies

γ(j)(0) = γ(j)(1), (8.3)

for all 0 ≤ j ≤ r.

Given a loop γ, the motion along the loop can be controlled through a speed
assignment for ṡ. In particular, by assuming that |γ′1(s)| ̸= 0 for all s ∈ I, the de-
sired speed of the vehicle can be controlled through the following speed assignment
[52]

ṡ = ϱ(s, ud) :=
ud

|γ′1(s)|
, (8.4)

where ud ∈ R is a desired input speed. To ensure continuity of the velocity and
acceleration references, the desired speed can be obtained from the following set-
valued second-order low-pass filter with natural frequency ωn > 0 and damping
factor ζf > 0

üd ∈ U(ud, u̇d) := ω2
n[0, c]− 2ζfωnu̇d − ω2

nud, (8.5)

where the interval [0, c], with c > 0, contains the values of the commanded input
speed µ.

Let Ω1,Ω2 ⊂ R be compact. The Lie group structure of the desired path γ leads
to the following hybrid reference system:

R :



ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)

 (s, ud, ad) ∈ I × Ω1 × Ω2

s+ = 0 (s, ud, ad) ∈ {1} × Ω1 × Ω2

gd = γ(s)

νd = κ(s)ϱ(s, ud)

αd = fd(s, ud, ad)

where κ(s) = (γ(s)−1γ′(s))∨ is the desired tangent vector expressed in the desired
frame and the mapping fd : I × Ω1 × Ω2 → Rk is given by

fd(·) = κ(s)

(
∂ϱ

∂s
ϱ(s, ud) +

∂ϱ

∂ud
ad

)
+ κ′(s)ϱ(s, ud)

2. (8.6)
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Conceptually, R can be considered as a hybrid system with the commanded speed
µ ∈ [0, c] as the input, and

y :=(gd, νd, αd) = (γ(s), κ(s)ϱ(s, ud), fd(s, ud, ad)), (8.7)

as the output, where gd ∈ rge γ, νd ∈ Rk and αd ∈ Rk are the desired configura-
tion, velocity and acceleration references, respectively. We remark that the speed
assignment for ṡ in (8.4) ensures that the norm of the desired linear velocity vd is
equal to the desired speed ud. Note that if γ is a C2-loop, then it follows from
γ(j)(0) = γ(j)(1) for all 0 ≤ j ≤ 2 and continuity of ud, ad that the output
map y = (gd, νd, αd) is continuous. We remark that for practical purposes, only
a compact path is required. This, in turn, removes the switching component of the
reference system. However, the loop assumption helps ensure that every maximal
solution is complete.

8.2.3 Error System and Problem Statement

The error dynamics are obtained by considering the continuous and invertible trans-
formation (g, ν, r) 7→ (ge, νe, r), using the natural (and left-invariant) error defined
by [64]

ge := g−1
d g, (8.8)

νe := ν −Adg−1
e
νd. (8.9)

We observe that ge expresses the configuration of the vehicle-fixed frame with
respect to the desired vehicle-fixed frame, while the term νr := Adg−1

e
νd can be

interpreted as νd expressed in the vehicle-fixed frame. Moreover, the derivative of
νr satisfies

ν̇r = Adg−1
e
αd − adνe Adg−1

e
νd. (8.10)

The error dynamics can now be stated as

N :



ġe = geν
∧
e

ν̇e = fe(ge, νe, s, ud, ad, τ)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)


(ge, νe, s, ud, ad) ∈ Ĉ

s+ = 0 (ge, νe, s, ud, ad) ∈ D̂

where Ĉ = G × Rk × I × Ω1 × Ω2, D̂ = G ×Rk × {1} ×Ω1 × Ω2 and the mapping
fe : G × Rk × I × Ω1 × Ω2 × Rk → Rk is given by

fe(·) :=M−1(τ −M∇M
ν ν + d(ν) + f(g))

−Adg−1
e
fd(s, ud, ad) + adνe Adg−1

e
κ(s)ϱ(s, ud).

(8.11)

We remark that the matrix representation of the adjoint maps Ad and ad are
provided in Section 8.5 for the Lie groups SE(2) and SE(3) and their Lie algebras
se(2) and se(3).
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Lemma 8.1. The hybrid system N satisfies the hybrid basic conditions [55, As-
sumption 6.5].

Proof. The flow and jump sets Ĉ and D̂ are closed since Ω1 and Ω2 are closed.
Moreover, the jump map is single-valued and continuous. The flow map is single-
valued and continuous for every state except ad. However, since the set-valued
mapping U is outer semicontinuous, convex and locally bounded, the flow map is
outer semicontinuous, convex-valued and locally bounded.

Problem Statement

For a given C2-loop γ, the speed assignment ϱ defined in (8.4) for ṡ and a compact
set A◦ ⊂ G, design a hybrid feedback control law with output τ ∈ Rk such that
every solution to N is bounded and converges to the compact set

B = {(ge, νe, s, ud, ad) : ge ∈ A◦, νe = 0}, (8.12)

for the system N under parametric uncertainties.

8.3 Hybrid Control Design

In this section, we propose an adaptive hybrid feedback control law for the system
N . The control law is derived from a set of potential functions and a hysteretic
switching mechanism encoded by the flow and jump sets and the jump map. The
hybrid controller is based on the following assumption.

Assumption 8.2. Given a 5-tuple (A, C,D,G, V ), where V : O → R is defined
by (g, q) 7→ V (g, q) = Vq(g), where q ∈ Q is a logic variable, Q ⊂ R is a finite set
and O is an open set containing C ⊂ G ×Q.

(A1) A ⊂ C is a compact set and π1(A) = A◦;
(A2) C and D are closed subsets of G×Q such that C∪D = G×Q and π1(C) = G;
(A3) The set-valued mapping G : D ⇒ Q is nonempty for all (g, q) ∈ D and outer

semicontinuous and locally bounded relative to D;
(A4) for every (g, q) ∈ C ∩D, it holds that (g, w) ∈ C \D for each w ∈ G(g, q);
(A5) there exists N ∈ Z≥1 such that for every (g, q) ∈ D, it holds that (g, w) ∈ C\D

for each (g, w) ∈ G
K
(g, q), where 1 ≤ K ≤ N , G(g, q) = {g} × G(g, q) and

G
K

:= G ◦G ◦ · · · ◦G︸ ︷︷ ︸
Ktimes

;

(A6) V is continuously differentiable on O and is proper and positive definite on
C with respect to A;

(A7) for all (g, q) ∈ C ∩D and each w ∈ G(g, q)

Vw(g)− Vq(g) ≤ 0; (8.13)

(A8) for all (g, q) ∈ C, dVq(g) = 0 if and only if (g, q) ∈ A.
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Assumption 8.2 guarantees that the switching is hysteretic, the hybrid control
law satisfies the hybrid basic conditions and is required to ensure that every solution
to N converges to B.

We remark that the conditions of Assumption 8.2 are different from the condi-
tions for synergistic control [1, Definition 7.3]. First, they do not enforce a strict
decrease in V across jumps. Second, they are not restricted to a switching mech-
anism based on the value of the potential functions Vq. Finally, they permit each
potential function Vq to be defined locally, i.e., having a domain that is a strict
subset of G.

To establish convergence to the set B when the model parameters are unknown,
we define the modified reference velocity νm ∈ Rk and the corresponding reference
velocity error ζ := νm − νr through the differential equation

Λ[ζ̇ +∇Λ
ν ζ] = −dVq(ge)− ϑq(ζ), (8.14)

where ϑq : Rk → Rk is strongly passive for each q ∈ Q. We remark that ϑ can be
chosen independent of q and that the term Λ∇Λ

ν ζ is optional. The latter is because
⟨ζ, Λ∇Λ

ξ ζ⟩ = 0 for any ξ ∈ Rk, which entails that any velocity can be used in place
of ν in the bilinear map ∇Λ. The velocity error is now redefined as

ξ := ν − νm = νe − ζ. (8.15)

Since ζ = 0 implies ξ = νe, the velocity tracking control objective νe = 0 is accom-
plished when (ξ, ζ) = 0. In practice, this type of velocity error may be advantageous
when the configuration error encoded by dV is significant while the velocity error
νe is zero.

Before delving into the proposed adaptive controller, we begin by presenting
the non-adaptive version. Given a 5-tuple (A, C,D,G, V ) satisfying Assumption
8.2 and if the model parameters in (8.1) are known, we propose the following
hybrid control law

ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)
, (ge, q) ∈ C

q+ ∈ G(ge, q), (ge, q) ∈ D

τ =M [ν̇m +∇M
ν νm]− d(ν)

− f(g)− dVq(ge)− φq(ξ).

(8.16)

Observe that the feedback control law (8.16) comprises a proportional action dV
and a derivative action φ, where φq : Rk → Rk is strongly passive for each q ∈ Q.
In other words, the control law (8.16) is essentially a PD+ control law [107] with
desired velocity νm and hysteretic switching. We note that the derivative action
can be chosen independently of the logic variable q. However, the proportional
action can only be chosen independently of q provided that the configuration space
is globally diffeomorphic to Euclidean space.

To make the control law (8.16) adaptive, we make the following assumption on
the unknown model parameters.
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Assumption 8.3. There exists a known matrix-valued function of available data
Φ: G ×Rk ×Rk ×I ×Ω1 ×Ω2 → Rk×l and a vector of unknown model parameters
θ ∈ Rl with known lower and upper bounds θ and θ such that

M [ν̇m+∇M
ν νm]−d(ν)−f(g)=Φ(ge, ζ, ξ, s, ud, ad)θ, (8.17)

for all (ge, ζ, ξ, s, ud, ad) ∈ G × Rk × Rk × I × Ω1 × Ω2.

The boundedness assumption on the parameters is justified by the fact that the
parameters represent real physical quantities that we often have rough estimates
of in practice. Assumption 8.3 implies that the parameters are contained in the
convex set

P := {θ ∈ Rl : θ ≤ θ ≤ θ}. (8.18)

Define the extended tangent cone to P by

TR,P(θ) := TR,[θ1,θ1]
(θ1)× TR,[θ2,θ2]

(θ2)× · · · × TR,[θl,θl]
(θl), (8.19)

where the extended tangent cone to each interval is given by

TR,[θi,θi]
(θi) :=


[0,∞) if θi ≤ θi
(−∞,∞) if θi ∈ (θi, θi)

(−∞, 0] if θi ≥ θi

(8.20)

Let θa ∈ Rl denote the estimate of θ and define the convex set

Pϵ := {θa ∈ Rl : θ − ϵ ≤ θa ≤ θ + ϵ}, (8.21)

where ϵ = (ϵ1, . . . , ϵl) ∈ Rl, defines boundary layers of length ϵi > 0 around each
interval in (8.18). The goal is to enforce θa ∈ Pϵ through the adaptive update law.
To this end, we define the projection operator Proj : Rl × Pϵ → Rl by [60]

Proj(χ, θa) :=

{
χ, if χ ∈ TR,Ω(θa)

(1− h(θa))χ if χ /∈ TR,Ω(θa)
(8.22)

where the components of h(θa) are given by

hi(θa,i) =


0, if θa,i ∈ (θi, θi)

min{1, θi−θa,i

ϵi
}, if θa,i ≤ θi

min{1, θa,i−θi
ϵi

}, if θa,i ≥ θi

(8.23)

The following lemma can be found in [60, Lemma E.1].

Lemma 8.2. The projection operator (8.22) satisfies

(P1) The mapping Proj : Rl × Pϵ → Rl is Lipschitz continuous in χ and θa.
(P2) The differential equation

θ̇a = Proj(χ, θa), θa(t0) ∈ Pϵ, (8.24)

satisfies θa ∈ Pϵ for all t ≥ t0.

113



8. Adaptive Hybrid Feedback Control for Marine Vehicles

(P3) Let θe = θ − θa denote the estimation error, then

−⟨θe, Γ−1Proj(χ, θa)⟩ ≤ −⟨θe, Γ−1χ⟩, (8.25)

for all θa ∈ Pϵ and θ ∈ P.

Using (8.17) and the projection operator defined in (8.22), we define an adaptive
version of (8.16) by

ζ̇ = −∇Λ
ν ζ − Λ−1

(
dVq(ge) + ϑq(ζ)

)
θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)

}
(ge, q)∈C

q+∈ G(ge, q) (ge, q)∈D
τ = Φ(ge, ζ, ξ, s, ud, ad)θa−dVq(ge)−φq(ξ).

(8.26)

By defining x :=(ge, ξ, s, ud, ad, ζ, θa, q)∈ X and the extended state space

X := G × Rk × I × Ω1 × Ω2 × Rk × Pϵ ×Q, (8.27)

the adaptive hybrid control law (8.26) applied to the hybrid system N leads to the
hybrid closed-loop system

H :



ġe = ge(ξ + ζ)∧

ξ̇ = f̃(x)

ṡ = ϱ(s, ud)

u̇d = ad

ȧd ∈ U(ud, ad)
ζ̇ = −∇Λ

ν ζ − Λ−1
(
dVq(ge) + ϑq(ζ)

)
θ̇a = Proj(−ΓΦ(ge, ζ, ξ, s, ud, ad)Tξ, θa)


x ∈ C̃

(q+, s+) ∈ G̃(ge, q, s) x ∈ D̃,

(8.28)

where

f̃(x) :=−M−1Φ(ge, ζ, ξ, s, ud, ad)θe−∇M
ν ξ −M−1(dVq(ge) + φq(ξ)). (8.29)

Moreover, the jump map G̃ : G ×Q× I ⇒ Q× I is defined as

G̃(ge, q, s) :=


(G(ge, q), s) , (ge, q, s)∈D × (I\{1})
{(G(ge, q), s) , (q, 0)} (ge, q, s)∈D × {1}
(q, 0), (ge, q, s)∈(C\D)×{1}

(8.30)

while the flow set C̃ and jump set D̃ are defined by

C̃ := {x ∈ X : (ge, q) ∈ C}, (8.31)

D̃ := {x ∈ X : (ge, q) ∈ D} ∪ {x ∈ X : s = 1}. (8.32)

Lemma 8.3. The closed-loop system H satisfies the hybrid basic conditions.
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Proof. From Lemma 8.1, Assumption 8.2 and the definitions of the jump map,
flow set and jump set, it follows that all of the assumptions in [1, Lemma 2.21] are
satisfied.

Theorem 8.4. Let Assumption 8.3 hold. Given a 5-tuple (A, C,D,G, V ) satisfying
Assumption 8.2, the compact set

A1 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0, θa = θ}, (8.33)

is uniformly globally stable for the system H and every solution to H converges to

A2 = {x ∈ X : (ge, q) ∈ A, ξ = 0, ζ = 0,Φ(ge, 0, 0, s, ud, ad)θe = 0}. (8.34)

Proof. Let H̆ denote the hybrid system H with each jump set D̃ replaced by D̆ =
{x ∈ X : (ge, q) ∈ C ∩ D} ∪ {x ∈ X : s = 1} and consider the continuously
differentiable function

W (ge, q, ξ, ζ, θa) = Vq(ge) +
1

2
⟨ξ,Mξ⟩+ 1

2
⟨ζ, Λζ⟩+ 1

2
⟨θe, Γ−1θe⟩. (8.35)

For all x ∈ C̃, the change in W along the solutions of H̆ is

⟨dVq(ge), νe⟩+ ⟨ζ,−dVq(ge)− ϑq(ζ)⟩
+ ⟨ξ,−Φθe −M∇M

ν ξ − dVq(ge)− φq(ξ)⟩
− ⟨θe, Γ−1Proj(−ΓΦTξ, θa)⟩,

(8.36)

which simplifies to

− ⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩ − ⟨θe, Γ−1Proj(−ΓΦTξ, θa) + ΦTξ⟩
≤ −⟨ξ, φq(ξ)⟩ − ⟨ζ, ϑq(ζ)⟩
≤ 0,

(8.37)

where the first inequality follows from (P3) in Lemma 8.2. For any x ∈ D̆ and
(w,m) ∈ G̃(ge, q, s), the change in W across jumps is

W (ge, w, ξ, ζ, θa)−W (ge, q, ξ, ζ, θa) = Vw(ge)− Vq(ge),

which is clearly equal to zero when (ge, q, s) ∈ (C\D) × {1}, i.e. when w = q.
Otherwise, it follows from Assumption 8.2 that Vw(ge)−Vq(ge) ≤ 0 for all (q, w) ∈
Q×π1(G̃(ge, q, s)). Consequently, the growth of W along solutions to H̆ is bounded
by

uc(x)=

{
−⟨ξ, φq(ξ)⟩−⟨ζ, ϑq(ζ)⟩, if x ∈ C̃

−∞, otherwise
(8.38)

ud(x)=

{
0, if x ∈ D̆

−∞, otherwise
(8.39)
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along flows and across jumps, respectively. It follows from Assumption 8.2 and
(8.35) that W is proper and positive definite on C̃ ∪ D̆ with respect to the com-
pact set A1. Hence, the proof of [55, Theorem 3.18] implies that A1 is uniformly
globally stable for the hybrid system H̆. Observe that the system H̆ permits at
most two consecutive jumps before a nonzero time of flow follows. Thus, since W
is continuous, H̆ satisfies the hybrid basic conditions, and every maximal solution
to H̆ is complete, it follows from [55, Corollary 8.7 (b)] that each solution to H̆
converges to the largest weakly invariant subset Ψ contained in

W−1(r) ∩ u−1
c (0), (8.40)

for some r ∈ R, where

u−1
c (0) = {x ∈ X : ξ = 0, ζ = 0, (ge, q) ∈ C}. (8.41)

Moreover, the closed-loop system (8.28) is such that ζ ≡ 0 implies dVq(ge) ≡ 0,
and it follows from Assumption 8.2 that dVq(ge) = 0 implies (ge, q) ∈ A. Thus,
(ξ, ζ) ≡ 0 implies that Φ(ge, 0, 0, s, ud, ad)θe ≡ 0, which results in

Ψ ⊂W−1(r) ∩ u−1
c (0) ⊂W−1(r) ∩ A2 ⊂ A2.

Consequently, since every solution is complete and bounded, every solution to H̆
converges to A2. Solutions to H that are not solutions to H̆ are those with ini-
tial values x∗ such that (g∗e , q

∗) ∈ D\C. However, it follows from (A5) that such
solutions exhibit 1 ≤ K ≤ N immediate and consecutive jumps from q∗ to some
w ∈ G

K
(g∗e , q

∗) satisfying (g∗e , w) ∈ C\D, after which the solutions coincide with a
solution to H̆. Consequently, we conclude that A1 is uniformly globally stable for
the hybrid system H and that every solution to the hybrid system H converges to
A2.

We remark that Theorem 8.4 implies that the problem statement is solved.
Furthermore, note that uniform global asymptotic stability of the compact set

B̃ = {x ∈ X : (ge, q) ∈ A, ζ = 0, ξ = 0}, (8.42)

for the closed-loop system H implies that B is uniformly globally asymptotically
stable for the error system N . However, without further assumptions on the nature
of the parametrized loop and commanded input speed, it is not possible to show
that (8.26) uniformly globally asymptotically stabilizes the compact set B̃ for the
closed-loop system H. However, a trivial modification of the proof of Theorem 8.4
clearly shows that the non-adaptive hybrid control law (8.16) uniformly globally
asymptotically stabilizes the compact set B̃ for the closed-loop system H with
θ̇a = 0 and θe = 0, implying that B is uniformly globally asymptotically stable for
the error system N .

We remark that a trivial modification of the proof of Theorem 8.4 shows that the
non-adaptive hybrid control law (8.16) uniformly globally asymptotically stabilizes
the compact set B̃ for the closed loop system H with θ̇a = 0 and θe = 0, implying
that B is uniformly globally asymptotically stable for the error system N .

116



8.4. Potential Functions for Marine Vehicles

8.4 Potential Functions for Marine Vehicles

In this section we construct potential functions and derive 5-tuples (A, C,D,G, V )
satisfying Assumption 8.2 for a surface vehicle and an underwater vehicle. This
5-tuple determines the proportional control action and the switching mechanism
through the potential functions V and the flow set, jump set and jump map C, D,
G, respectively.

8.4.1 Potential functions on SE(2)

The configuration of a surface vehicle can be identified with the matrix Lie group
SE(2) = R2 ⋊ SO(2). An element g = (p,R) ∈ SE(2) contains the position p =
(x, y) ∈ R2 and orientation R ∈ SO(2) of a vehicle-fixed frame with respect to an
inertial frame.

Using the linear action of SO(2) on R2 defined by (p,R) 7→ Rp, the semidirect
product SE(2) = R2 ⋊ SO(2) yields the natural error on SE(2)

ge = g−1
d g = (pe, Re) = (RT

d (p− pd), R
T
dR). (8.43)

The goal is to construct potential functions and a switching mechanism for
stabilization of the configuration corresponding to the compact set

A◦ = {ge ∈ SE(2) : pe = 0, Re = e}. (8.44)

To this end, we let δ > 0 and define the functions ρ1 : D1 → R, ρ2 : D2 → R and
ρ3 : D3 → R, where D1 = D2 := {R ∈ SO(2) : (logR)∨ ∈ [δ, π] ∪ (−π,−δ]} and
D3 := SO(2) by

ρ1(R) :=

{
(logR)∨, if (logR)∨ ∈ [δ, π]

(logR)∨ + 2π, if (logR)∨ ∈ (−π,−δ]
(8.45a)

ρ2(R) :=

{
(logR)∨, if (logR)∨ ∈ (−π,−δ]
(logR)∨ − 2π, if (logR)∨ ∈ [δ, π]

(8.45b)

ρ3(R) := (logR)∨, (8.45c)

where (logR)∨ = atan2(R21, R11) is the principal logarithm of R ∈ SO(2), which
corresponds to the heading angle ψ ∈ (−π, π] in practice. Now, for each q ∈ Q =
{1, 2, 3}, we define the potential functions Vq : Dq × R2 → R≥0 by

Vq(ge) :=
1
2kqρq(Re)

2 + 1
2p

T
eKpe + oq, (8.46)

where K = KT > 0, k1 = k2 = k > 0, k3 > 0, o1 = o2 = o and o3 = 0.
Due to the topology of SO(2), at least two potential functions are required to
design a globally asymptotically stable hybrid control law. However, by using three
potential functions we obtain improved transient performance by encoding smaller
proportional gains into the global controllers (q ∈ {1, 2}) relative to the local
controller (q = 3). To this end, the role of the offsets is to enable k3 > k, i.e., a
larger proportional gain locally around Re = e. A visualization of the rotational
part of the potential functions is shown in Figure 8.1.
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Figure 8.1: The rotational part of the potential functions {Vq}q∈Q with k = 1
(2π)2

,
k3 = 4

(2π)2
, δ = π

4
, ε = π

12
, and o = 1

2
(δ + ε)2(k3 − k).

The switching mechanism is defined by the flow and jump sets C,D ⊂ SE(2)×Q
and the jump map G : D ⇒ Q associated with the potential functions {Vq}q∈Q.
We define the flow and jump sets by

C :=
⋃
q∈Q

Cq × {q}, (8.47a)

D :=
⋃
q∈Q

Dq × {q}, (8.47b)

where

C1 := {ge ∈ SE(2) : δ ≤ ρ1(Re) ≤ π + ε}, (8.48a)
C2 := {ge ∈ SE(2) : δ ≤ −ρ2(Re) ≤ π + ε}, (8.48b)
C3 := {ge ∈ SE(2) : |ρ3(Re)| ≤ δ + ε}. (8.48c)

and

D1 :={ge ∈ SE(2) : π + ε ≤ ρ1(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (8.49a)

D2 :={ge ∈ SE(2) : π + ε ≤ −ρ2(Re) ≤ 2π − δ}
∪ {ge ∈ SE(2) : |ρ3(Re)| ≤ δ} (8.49b)

D3 :={ge ∈ SE(2) : |ρ3(Re)| ≥ δ + ε}. (8.49c)

In (8.48) and (8.49), δ > 0 determines the switching point between the local and
global controllers while ε > 0 denotes the hysteresis half-width between the global
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controllers. Finally, we define the set-valued jump map for all (ge, q) ∈ D by

G(ge, q) := {w ∈ Q \ {q} : ge ∈ Cw ∩Dq} . (8.50)

The following lemma provides conditions on the gains and offsets in (8.46), ensuring
that V is nonincreasing across jumps.

Lemma 8.4. Let A = A◦ × {3}. If k3 ≥ k, δ + 2ε < π and

1
2δ

2(k3 − k) ≤ o ≤ 1
2 (δ + ε)2(k3 − k), (8.51)

then the 5-tuple (A, C,D,G, V ) satisfies Assumption 8.2.

Proof. (A1-A2) A is compact since it is finite, while C and D are closed subsets
of SE(2) × Q since each ρq is continuous and the sublevel sets of a continuous
function are closed. Moreover,

⋃
q∈Q Cq = SE(2) and Cq ∪ Dq = SE(2) for each

q ∈ Q. Hence, (A1)-(A2) hold.
(A3) Observe that G is locally bounded since rgeG = Q is compact. More-

over, it follows from (A2) that G nonempty for all (ge, q) ∈ D. Since G−1(w) =⋃
q ̸=w (Cw ∩Dq)×{q} is closed, gphG−1 =

⋃
w∈QG

−1(w)×{w} and the intersec-
tion of closed sets are closed, it follows from [62, Theorem 5.7 (a)] that G−1 is outer
semicontinuous everywhere, and hence that G is outer semicontinuous everywhere.

(A4) Let ge ∈ Cq ∩Dq and w ∈ G(ge, q). Consider the case where q ∈ {1, 2}. If
w = 3, then it follows that |ρ3(Re)| = δ, and hence that ge ∈ C3\D3. Otherwise,
w = 3− q and it follows that |ρq(Re)| = π+ ε, which implies that |ρw(Re)| = π− ε
and hence that ge ∈ C3−q\D3−q. Finally, consider that q = 3. Then, ge ∈ Cq ∩Dq

implies that |ρ3(Re)| = δ + ε, which further implies that ge ∈ Cw\Dw.
(A5) Let (ge, q) ∈ D\C. Then, ge ∈ Cw for some w ∈ G(ge, q). Consequently,

ge ∈ Cw\Dw or ge ∈ Cw ∩Dw. It follows from (A4) that (A5) holds with N = 2.
(A6) V is clearly continuously differentiable on O and positive definite with

respect to A. Moreover, since the function Ṽ : D → R, where D =
⋃
q∈QDq ×

{q} defined by (R, q) 7→ 1
2kqρq(R)

2 is continuous, π1(D) = SO(2), and SO(2) is
compact, it follows that Ṽq is proper. Additionally, the function V̌q : R2 → R defined
by p 7→ 1

2p
TKp is radially unbounded. Consequently, Vq(ge) = Ṽq(Re) + V̌q(pe) is

a proper map.
To prove (A7), consider ge ∈ Cq ∩Dq, q ∈ {1, 2}, w = 3− q, and 0 < ε < π. It

follows immediately from the definitions of ρ1 and ρ2 that V3−q(ge) − Vq(ge) < 0.
When ge ∈ Cq ∩ Dq, q ∈ {1, 2}, w = 3, 0 < ε < π and 0 < δ < π, it holds that
ρ3(Re)

2 ≤ ρq(Re)
2, which implies that

V3(ge)− Vq(ge) ≤
1

2
(k3 − k)ρ3(Re)

2 − o.

Since k3 − k ≥ 0 and ρ3(Re)
2 ≤ δ2, the lower bound o ≥ 1

2 (k3 − k)δ2 follows. Let
ge ∈ C3 ∩D3 and w ∈ G(ge, 3). Then δ + 2ε < π implies that ρw(Re)2 = ρ3(Re)

2,
and hence

Vw(ge)− V3(ge) ≤
1

2
(k − k3)ρ3(Re)

2 + o.
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Using k − k3 ≤ 0 and ρ3(Re)2 ≥ δ + ε > 0, it holds that o ≤ 1
2 (k3 − k)(δ + ε)2.

(A8) For all (ge, q) ∈ C, it is clear that dVq(ge) = (RT
eKpe, kqρq(Re)) = 0 if

and only if (ge, q) ∈ A.

8.4.2 Potential functions on S̃E(3)

Analogous to the surface vehicle case, we can identify the configuration of an un-
derwater vehicle with the matrix Lie group SE(3) = R3 ⋊ SO(3). An element
g = (p,R) ∈ SE(3) contains the position p ∈ R3 and orientation R ∈ SO(3) of a
vehicle-fixed frame with respect to an inertial frame.

The goal is to construct potential functions and a switching mechanism for
stabilization of the configuration corresponding to the compact set

A0 = {ge ∈ SE(3) : pe = 0, Re = I}, (8.52)

However, working with 3 × 3 rotation matrices can be cumbersome in practice.
Unfortunately, there does not exist any globally nonsingular three-parameter rep-
resentation of SO(3). As a result, practical state estimation and control applications
normally utilize a globally nonsingular four-parameter unit quaternion representa-
tion of the vehicle orientation.

Unit quaternions z = (η, ϵ) ∈ S3, where η ∈ R and ϵ ∈ R3, map to the Lie group
SU(2) through the isomorphism z 7→ Z defined by

Z :=

(
η + iϵ3 −ϵ2 + iϵ1
ϵ2 + iϵ1 η − iϵ3

)
∈ C2×2, (8.53)

and an element ω = (ω1, ω2, ω3) ∈ R3 maps to su(2) through the isomorphism
(·)∧su(2) : R

3 → su(2) defined by

ω∧
su(2) :=

1

2

(
iω3 −ω2 + iω1

ω2 + iω1 −iω3

)
. (8.54)

The Lie algebras of su(2) and so(3) are isomorphic. Hence, the surjective homo-
morphism Ad: SU(2) → SO(3) given by

AdZ := I3 + 2ηϵ∧ + 2(ϵ∧)2, (8.55)

is a covering map, where (·)∧ : R3 → so(3) is defined by

ϵ∧ :=

 0 −ϵ3 ϵ2
ϵ3 0 −ϵ1
−ϵ2 ϵ1 0

 . (8.56)

Note that Ad : SU(2) → SO(3) is globally two-to-one and satisfies AdZ = Ad−Z
because SU(2) is the double cover of SO(3). In practice, this implies that ±Z
corresponds to the same physical orientation.

Using the adjoint action of SU(2) on R3 given by (p, Z) 7→ AdZ p, the semidirect
product R3 ⋊ SU(2) implies that the natural error on S̃E(3) := R3 ⋊ SU(2) is [108]

ge = g−1
d g = (pe, Ze) = (AdZ−1

d
(p− pd), Z

−1
d Z). (8.57)
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We remark that S̃E(3) is the universal covering group of SE(3). Due to the double
cover property of SU(2), stabilizing the set {ge ∈ S̃E(3) : pe = 0, Ze = e} using
the gradient of a potential function either leads to unwinding, where the control
law unnecessarily performs a full rotation of the rigid body, or it may lead to very
poor convergence properties around tr(Ze) = 2ηe = 0 [37, 57, 109]. Consequently,
to prevent unwinding and obtain global convergence properties, we must stabilize
the compact set of disconnected points

A◦ = {ge ∈ S̃E(3) : Ze = ±e}. (8.58)

To this end, we define the set Q := {−1, 1} and the potential functions Vq : S̃E(3) →
R≥0 as in [37] by

Vq(ge) := k tr(e− qZe) +
1
2p

T
eKpe

= 2k(1− qηe) +
1
2p

T
eKpe,

(8.59)

where k > 0 and K = KT > 0. Let ε ∈ (0, 1) denote the hysteresis half-width and
define the flow and jump sets by

C := {(ge, q) ∈ S̃E(3)×Q : qηe ≥ −ε} (8.60a)

D := {(ge, q) ∈ S̃E(3)×Q : qηe ≤ −ε}. (8.60b)

Finally, the jump map is defined as

G(q) := −q. (8.61)

Observe that the preceding definitions ensure that the switching is hysteretic since
qηe ≤ −ε implies that G(q)ηe ≥ ε.

Lemma 8.5. Let A :=
{
(ge, q) ∈ S̃E(3)×Q : ηe = q

}
. The 5-tuple (A, C,D,G, V )

satisfies Assumption 8.2.

Proof. The proof is a straightforward extension of the results of [37, Lemma 5.1,
Theorem 5.2]. It is clear that the function V̌q : R3 → R defined by p 7→ 1

2p
TKp is

continuously differentiable, radially unbounded and positive definite with respect
to π2(A), where A is regarded as a subset of SU(2)×R3 ×Q. Moreover, C and D
are clearly closed subsets of S̃E(3) × Q, A is compact, and for all (ge, q) ∈ C, it
holds that dVq(ge) = (RT

eKpe, kqϵe) = 0 if and only if pe = 0, ϵe = 0 which implies
that η = ±1, i.e., (ge, q) ∈ A.

8.5 Experimental results

In this section we report the results of three experiments conducted in the Marine
Cybernetics Laboratory (MC Lab) [110] at the Norwegian University of Science
and Technology (NTNU) in Trondheim. The main purpose of the experiments is
to demonstrate the applicability of the devised controllers in realistic scenarios for
surface and submerged marine vehicles. The first two experiments were conducted
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using a scale model tug boat and the third experiment was conducted with a
remotely operated underwater vehicle.

In the MC Lab, a local positioning system comprises sets of cameras mounted
above and below the water surface and the Qualisys Track Manager (QTM) soft-
ware. Light emitted by the cameras is reflected by a set of optical markers mounted
on the vehicle to be tracked. These measurements are then processed with QTM,
which outputs the position and orientation estimates at a rate of 100Hz. A mul-
tiplicative extended Kalman filter (MEKF) [84, Section 14.4.3] is employed to
reconstruct the velocities and filter the position and orientation. The MEKF is
augmented with linear acceleration and angular velocity measurements for the un-
derwater vehicle experiments.

Figure 8.2: The Marine Cybernetics Lab at NTNU

8.5.1 Cybership Enterprise

Cybership Enterprise (CSE) is a 1:50 scale model tug boat with a length of 1.105m
and beam of 0.248m. CSE is equipped with two Voith Schneider propellers (VSPs)
and one bow thruster. The configuration of CSE is described by g = (p,R) ∈ SE(2),
where elements in SE(2) admit a homogeneous matrix representation through the
injective homomorphism SE(2) → GL(3) defined by [108]

g :=

(
R p
0 1

)
∈ R3×3. (8.62)

Denoting the vehicle-fixed linear and angular velocities by v ∈ R2 and ω ∈ R,
respectively, define the vehicle-fixed velocity as ν := (v, ω) ∈ R3. An element
ν ∈ R3 maps to se(2) through the isomorphism (·)∧ : R3 → se(2) defined by

ν∧ :=

(
Sω v
0 0

)
∈ R3×3, S :=

(
0 −1
1 0

)
. (8.63)
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Figure 8.3: Cybership Enterprise in the MC-Lab

Let θ ∈ R15 denote the model parameters. The equations of motion for a surface
vehicle can be formulated by (8.1) with

M =

θ1 0 0
0 θ2 θ3
0 θ3 θ4

 , f(g) = b, (8.64)

d(ν) =

 −θ5ν1
−θ6ν2 − θ8ω
−θ9ν2 − θ7ω

+

−θ10|ν1|ν1
−θ11|ν2|ν2
−θ12|ω|ω

 (8.65)

where b = (θ13, θ14, θ15) ∈ R3 is a constant bias. We remark that the expression for
the regressor Φ follows from (8.17) together with (8.64) and (8.65).

The generalized forces are calculated using (8.26), where the adjoint actions of
SE(2) and se(2) on R3 for g = (p,R) ∈ SE(2) and ν = (v, ω) ∈ R3 are given by

Adg =

(
R −Sp
0 1

)
, adν =

(
Sω −Sv
0 0

)
. (8.66)

The generalized forces τ ∈ R3 map to the actuator inputs (α, u) ∈ R2×R3 through

τ = B(α)Ku, (8.67)

where α = (α1, α2) are the VSP angles and u = (u1, u2, u3) are the thruster inputs.
Specifically, (u1, u2) corresponds to the VSPs, and u3 is the bow thruster.

123



8. Adaptive Hybrid Feedback Control for Marine Vehicles

Table 8.1: Control Parameters

Circle Lemniscate
δ π/6 δ π/18
ε π/18 ε π/18
Kp diag(1.7, 1.7) Kp diag(1.45, 1.45)
k 0.5 k 0.5
k3 1.2 k3 1.5
Kd diag(.7, .6, .6) Kd diag(1.25, 1.25, 1)
Λ I3 Λ I3

Using the transformation (α, u) 7→ (ǔ1, ǔ2, ǔ3), where

ǔ1 =

(
cos(α1)u1
sin(α1)u1

)
, ǔ2 =

(
cos(α2)u2
sin(α2)u2

)
, ǔ3 = u3. (8.68)

we can rewrite (8.67) as τ = B̌Ǩǔ, which is solved using the Moore-Penrose pseu-
doinverse

ǔ∗ = (B̌Ǩ)†τ, (8.69)

for a given τ ∈ R3. The actuator control inputs (α, u) are then obtained by inverting
the transformation (8.68). Note that the BT input is constrained to the interval
[−1, 1], while the VSP inputs are constrained to [0, 1]. The desired path is given
by γ(s) = (γ1(s), γ2(s)) ∈ SE(2) where

γ1(s) =

(
xd(s)
yd(s)

)
, γ2(s) = exp(Sψd(s)), (8.70)

where ψd(s) = atan2(y′d(s), x
′
d(s)).

The hysteresis width and control gains are chosen according to Table 8.1 with
ϑq(ζ) = Kdζ and φq(ξ) = Kdξ. Moreover, the adaptation gain and bounds on
θ ∈ R15 are given by

Γ = blkdiag(50, 40, 5, 20, 5I4×4, 10I9×9, 0.025, 0.1, 0.01),

θ = (10, 15, 1,−3, 07×1,−1,−4,−4,−4),

θ = (20, 30, 5, 3, 107×1, 10, 4, 4, 4),

and the parameters are initialized as

θ0 = (10, 15, 1, 012×1). (8.71)

Two two experiments are performed using different parametrized loops; the first
loop is a circle, and the second is a lemniscate.
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Circle

The circle is centered at O = (1m, 0) with a radius of R = 1.2m and is represented
by the parametric equation

γ1(s) =

(
R cos(s)
R sin(s)

)
+O. (8.72)

Experimental results are presented in Figures 8.4 to 8.10. The ship was ini-
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Figure 8.4: North-East plot showing the North-East position p = (x, y) and the
desired position pd = (xd, yd).

tialized at p(0) = (0.35m,−1.46m) with ψ = −42◦. At this point in time, the
orientation error was ρ3(Re(t))|t=0 = −π 106

180 ≥ δ + ε, and it follows from (8.46)
that ρ22(Re(t))|t=0 < ρ21(Re(t))|t=0. In other words, the orientation error was in
the jump set corresponding to q = 3 and the jump map (8.50) implies that the
global controller corresponding to q+ = 2 was activated, which is what we observe
in the lower plot in Figure 8.7. Then, at t ≈ 33 s, the commanded input speed
µ was set to 0.08m/s as seen in Figure 8.7. Figures 8.4 and 8.5 shows that CSE
accurately tracked the path after an initial transient due to the significant initial
configuration error, even though the actuator inputs saturate until t ≈ 25 s as seen
in Figure 8.8. Figure 8.6 depicts the system velocities and desired velocities, while
Figure 8.7 shows the commanded input speed µ(t), the desired speed ud(t) and the
estimated speed U(t) = ∥v(t)∥. Therefore, it is clear that the speed and velocities
are tracked with sufficient accuracy.
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Figure 8.5: The configuration p = (x, y), R = exp(Sψ) and the desired configu-
ration pd = (xd, yd), Rd = exp(Sψd).
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Figure 8.6: The velocity estimates (ṗ, ω) and the desired velocity references
(γ̇1, ωd).
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Figure 8.7: The speed U , desired speed ud, commanded input speed µ and logic
variable q.
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Figure 8.8: The VSP control inputs u1, u2 ∈ [0, 1], the BT control input u3 ∈
[−1, 1] and VSP angle inputs α1, α2.
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Figure 8.9: The inertia and bias parameters.
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Figure 8.10: The damping parameters associated with the linear and nonlinear
damping.
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Lemniscate

The lemniscate is centered at O = (2m, 0) and is represented by the parametric
equation

γ1(s) =

R1
cos s

1 + sin2s

R2

√
2 sin 2s

1 + sin2s

+O, (8.73)

where R1 = 2m, R2 = 2.4m.
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Figure 8.11: North-East plot showing the position p and the desired position pd.

Experimental results are presented in Figures 8.11 to 8.17. The ship was ini-
tialized at p(0) = (4.2m, 0.3m) with a heading of ψ = 130◦. Since the lemniscate
loop given by (8.73) does not result in a constant acceleration with respect to the
body-fixed frame for nonzero commanded input speeds, the control gains must be
increased to compensate for the inaccuracies in the dynamic model and obtain
similar performance to the circular trajectory.

By comparing Figures 8.9 and 8.10 with Figures 8.16 and 8.17, it is clear that the
parameters do not converge to any ‘true’ value. This cannot be expected because we
have not provided any persistency of excitation condition; that is, we have not given
any conditions under which (8.26) uniformly globally asymptotically stabilizes the
compact set B̃ for the closed-loop system H. However, even if such conditions
were provided, a constant bias in the vehicle-fixed frame will not fully capture the
inaccuracies in the mapping between the forces produced by the actuators and
their inputs. As a consequence, the desired forces and torque computed by the
control law are significantly different from the actual forces and torque produced
by the actuators. In turn, this leads to a tracking error, which induces parameter
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Figure 8.12: The configuration p = (x, y), R = exp(Sψ) and the desired config-
uration pd = (xd, yd), Rd = exp(Sψd).
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Figure 8.13: The velocity estimates (ṗ, ω) and the desired velocity references
(γ̇1, ωd).
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Figure 8.14: The speed U , desired speed ud, commanded input speed µ and logic
variable q.
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Figure 8.15: The VSP control inputs u1, u2 ∈ [0, 1], the BT control input u3 ∈
[−1, 1] and VSP angle inputs α1, α2.
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Figure 8.16: The inertia and bias parameters.
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Figure 8.17: The damping parameters associated with the linear and nonlinear
damping.

132



8.5. Experimental results

adaptation. Since this adaptation occurs due to unmodeled effects that are not
correctly captured by our assumed model structure, we cannot expect to accurately
identify the mass and damping model parameters for this system. Instead, due to
the presence of a constant bias in our dynamic model, our control law is more
reminiscent of a PID controller with adaptive feedforward. To see this, note that
the bias feedforward term can be written as −

∫ t
0
(νe(τ)−ζ(τ))dτ , and that (8.14)

can be interpreted as a multiple-input multiple-output low-pass filter with input
−dVq and output ζ. Thus, when the velocity error νe is zero, the bias feedforward
term can be interpreted as the integral of the output of a low-pass filter whose
input is the configuration error.

Finally, we observe that the parameters converge for the circular trajectory.
This is a consequence of the steady-state nature of the circular trajectory, that
is, constant desired velocities with respect to the desired frame when ud has con-
verged to the commanded input speed µ. For the lemniscate trajectory, however,
the desired velocities are not constant even if the desired speed has converged to
the commanded input speed. Hence, considering the inaccuracies in the mappings
between the desired forces and torque and the produced forces and torque, it is not
surprising that the parameters do not converge to any specific values and that the
damping and bias parameters change more rapidly when the ship is in a turning
maneuver, as seen in Figures 8.12, 8.16 and 8.17. Despite these structural modeling
inaccuracies, the ship’s position remains within 4 cm of the desired position after
converging to the path, as seen in Figures 8.11 and 8.12. Moreover, from Figure 8.13
and Figure 8.14, we observe that the desired velocities and the desired speed are
tracked with sufficient accuracies.

8.5.2 BlueROV2

The BlueROV2 is a remotely operated underwater vehicle developed by Blue
Robotics. The experiments were conducted using the heavy configuration BlueROV2

Figure 8.18: The BlueROV2 in the MC-Lab.
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with eight thrusters, depicted in Fig. 8.18.
Elements g = (p, Z) ∈ S̃E(3) admit a matrix representation using the injective

homomorphism S̃E(3) → GL(6,C) given by

g =

AdZ p 0
0 1 0
0 0 Z

 ∈ C6×6 (8.74)

Denoting the vehicle-fixed linear and angular velocities by v ∈ R3 and ω ∈ R3,
respectively, define the vehicle-fixed velocity as ν := (v, ω) ∈ R6. An element
ν ∈ R6 maps to s̃e(3) through the isomorphism (·)∧ : R6 → s̃e(3) defined by

ν∧ =

ω∧ v 0
0 0 0
0 0 ω∧

su

 ∈ C6×6. (8.75)

The equations of motion for an underwater vehicle can then be formulated by (8.1)
with

f(g) = β(Z) + b, (8.76)

where β(Z) = (θ7 AdTZ e3, e
∧
3 AdTZ θ8:10) contains gravitational and buoyancy forces

and b = (θ1, . . . , θ6) ∈ R6 is a constant bias. Moreover, by assuming port/starboard
and fore/aft symmetry, the inertia matrix is parametrized by

M =


θ11 0 0 0 θ17 0
0 θ12 0 θ18 0 0
0 0 θ13 0 0 0
0 θ18 0 θ14 0 0
θ17 0 0 0 θ15 0
0 0 0 0 0 θ16

 (8.77)

while the hydrodynamic drag forces are assumed to satisfy

di(ν) = θ18+i + θ24+i|νi|νi, (8.78)

for i ∈ {1, . . . , 6}. We remark that the expression for the regressor Φ follows from
(8.17) together with (8.76), (8.77) and (8.78). The generalized forces are calculated
using the control law (8.26), where the adjoint actions of S̃E(3) and s̃e(3) on R6

for g = (p, Z) ∈ S̃E(3) and ν = (v, ω) ∈ R6 are given by

Adg =

(
AdZ p∧ AdZ
0 AdZ

)
, adν =

(
ω∧ v∧

0 ω∧

)
. (8.79)

The generalized forces τ ∈ R6 map to the desired thrust u ∈ R8 through
τ = Ku, where each column of K is

Ki =

(
ri

Li × ri

)
, (8.80)
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where ri ∈ R3 is a unit vector pointing in the direction of thrust and Li ∈ R3 is
the position of the thruster relative to the body frame. Using (8.26), the actuator
control inputs are then found from the expression u = K†τ .

The desired path is given by γ(s) = (pd(s), Zd(s)) ∈ S̃E(3), with

pd(s)=

L1
cos s

1+sin2s

L2

√
2 sin 2s

1+sin2s

L3
2 sin s

1+sin2s

+O, zd(s)=

(
cos(ψ(s)/2)

0
0

sin(ψ(s)/2)

)

where zd is a unit quaternion that maps to SU(2) through the isomorphism zd 7→ Zd
defined in (8.53). Moreover, O = (0.2m,−0.3m,−0.55m), L1 = 1m, L2 = 0.6m,
L3 = 0.25m and ψ(s) = atan2(y′d(s), x

′
d(s)).

The desired speed reference is given by

µ =

{
0.1m/s, 5 ≤ t < 125

0.2m/s, t ≥ 125
, (8.81)

while the hysteresis half-width is ε = 0.1. The control gains are chosen as Kp =
diag(50, 50, 70), k = 16, φq(ξ) = Kdξ, ϑq(ζ) = Kdζ and Λ = I6 with Kd =
diag(40, 40, 30, 7, 7, 7). Moreover, the adaptation gain and bounds on θ ∈ R30 are
given by

Γ = blkdiag(Γ1, Γ2, Γ3),

Γ1 = diag(1.5, 1.5, 1.5, 1.2, 1.2, 1.2),

Γ2 = diag(2.5, 2, 2, 2),

Γ3 = diag(7, 7, 7, 4, 4, 4, 5, 5, 20, 20, 20, 5, 5, 5, 20, 20, 20, 5, 5, 5),

θ = (−40,−109×1, 07×1,−2, 012×1),

θ = (1010×1, 506×1, 2, 0, 5012×1),

and the parameters are initialized as

θ0 = (010×1, 19.17, 26.37, 28.24, 0.28, 0.28,

0.28, 0.23,−0.23, 4.03, 6.22, 5.1,

0.07, 0.07, 0.07, 18.18, 21.66, 36.99,

1.55, 1.55, 1.55)

. (8.82)

Experimental results are presented in Figures 8.19 to 8.27. Due to limitations in
the hardware implementation, the controller activates a few seconds before the data
logger and actuator driver do. As a result, the bias and gravitational parameters
have already adapted for several seconds by the time the control signals are sent
to the actuators. This can be observed in the upper plot in Figure 8.27, where θ1
and θ3, i.e., the x and z components of the bias, are already saturated at t ≈ 4 s
when the actuator driver is activated and the control inputs are converted to pulse
width modulated actuator signals. Remarkably, this has little effect on the transient
performance, as observed in Figure 8.21. This occurs despite the fact that the
BlueROV2 was initialized at the bottom of the pool at a distance ∥pe∥ ≈ 1.36m
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Figure 8.19: North-East-Down plot showing the position p, the desired position
pd and the projection of pd onto the North-East plane.
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Figure 8.21: The position p = (p1, p2, p3) and desired position pd = (p1d, p
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d, p
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quaternions z and zd, respectively.
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Figure 8.23: The linear velocities v and the desired linear velocities vr, decom-
posed in the body frame.
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Figure 8.24: The angular velocities ω and the desired angular velocities ωr de-
composed in the body frame.
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Figure 8.26: The control inputs u corresponding to the eight thrusters.
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Figure 8.27: The bias and gravitational/buoyancy related parameters, the inertia
matrix parameters and the damping parameters.

away from the desired position with no initial knowledge of the gravitational- and
buoyancy-related parameters.

The initial quaternion error satisfies ηe ≤ −ε, which entails that a switch from
the initial value of q = 1 to q = −1 occurs at the first time step of the controller.
Since the logger was initialized after the controller, although no control inputs were
sent to the actuators, we have changed first logged value of the logic variable to
q = 1 to highlight the fact that a switch has in fact occurred.

From Figures 8.19, 8.21 and 8.22, we observe that the ROV successfully tracks
the position and orientation references with satisfactory accuracy. Moreover, from
Figures 8.23 and 8.24, we see that the desired velocities νr = Adg−1

e
νd are tracked

with satisfactory accuracy. However, we remark that v3 contains significantly more
noise compared to the other linear velocities. Moreover, the x-component of the
linear velocity, v1, exhibits spikes that coincide with the minima of p3, i.e. the z-
component of the position vector. This is due to poor tracking of the ROV from
the camera-based underwater positioning system, which either loses track of the
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8.6. Conclusion

ROV and/or outputs noisy and inaccurate position measurements (especially in
the z-direction). This can be mitigated by further restricting the operating region
of the ROV and/or lowering the weight of the camera-based position measurements
relative to the accelerometer measurements in the Kalman filter.

8.6 Conclusion

In this chapter, we have proposed an adaptive hybrid feedback control law for
marine vehicles. The control law tracks a hybrid reference system constructed from
a parametrized loop and a speed assignment for the motion along the path and
achieves global asymptotic tracking of the loop at a time-varying desired speed.
The proposed hybrid feedback control law was implemented on a scale model tug
boat and a remotely operated underwater vehicle, and laboratory experiments have
demonstrated the effectiveness of the proposed control law.
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Chapter 9

Adaptive Synergistic Feedback
Control for Multirotors

In this chapter, we consider the problem of global asymptotic position and heading
tracking for multirotors. To this end, we design an adaptive hybrid feedback control
law by employing a tuning function-based backstepping procedure. In our proposed
approach, we utilize some of the ideas from Chapter 8 in the design of the control
law for the translational subsystem. Finally, we demonstrate the effectiveness of
the hybrid control law in experiments on a quadrotor.

The material in this chapter is based on [61].

9.1 Introduction

Multirotor unmanned aerial vehicles (UAVs) have become increasingly popular in
recent years. Their low-cost, vertical take-off and landing, and hovering abilities
make them well suited to perform a wide variety of tasks, such as inspection [111],
parcel delivery [112], surveillance, mapping and even autonomous recovery of fixed-
wing UAVs [113].

Multirotors are typically designed with co-planar propellers. Although such sys-
tems have full torque actuation, forces can only be produced along a single vehicle-
fixed axis, known as the thrust axis. Since the propulsion system cannot produce an
arbitrary three-dimensional force vector, these systems are underactuated mechan-
ical systems. Due to the underactuation of the system, position and orientation
tasks cannot be fully decoupled. Instead, control algorithms for quadrotors often
employ a cascaded structure consisting of an inner- and outer-loop control law for
orientation and position control, respectively [114]. For such schemes, the outer
position control loop often computes a desired three-dimensional force. The norm
of this vector then serves as the thrust input, while the vehicle orientation is con-
trolled such that the thrust direction of the vehicle is aligned with the desired force
direction in the inertial frame. This is the approach we will take in this chapter.

There is an extensive amount of literature on the subject of trajectory tracking
for multirotor UAVs, and the reader is referred to the surveys [115, 116] and the
references therein. The following review is limited to earlier works on geometric
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9. Adaptive Synergistic Feedback Control for Multirotors

control of multirotors, that is, the development of control laws based on quater-
nion or rotation matrix feedback. The control law proposed in [117] guarantees
local exponential tracking for multirotors that can produce both negative and pos-
itive thrust along the thrust axis. An adaptive position tracking control scheme
for underactuated multirotors is proposed in [118]. However, the control law does
not enable a desired heading to be tracked. Moreover, the adaptive control law is
overparametrized.

The aforementioned approaches rely on continuous state-feedback. However,
the non-contractibility of the configuration space of a rigid body implies that these
control laws are at most almost globally stabilizing [32]. This is referred to as a
topological obstruction to global asymptotic stability, and can be overcome by em-
ploying hybrid feedback with a properly defined switching logic[33]. The hybrid
feedback approach in [119] achieves global asymptotic position tracking using the
thrust and angular velocity as inputs. However, by using a reduced orientation
control approach, the rotation angle around the thrust axis is left uncontrolled. A
saturated tracking control law for a quadrotor in the presence of unknown con-
stant disturbances is developed in [120]. The control law ensures that the position
error is contained in an arbitrarily small neighborhood of the origin, but leaves the
heading uncontrolled and does not ensure convergence of the position and linear
velocity errors to zero. In [38], the hybrid quaternion feedback strategy from [37] is
employed together with the results on backstepping of hybrid feedback laws from
[42] to synthesize a hybrid feedback control law that achieves global asymptotic
tracking of a smooth position reference trajectory while minimizing the rotation
angle to a given orientation configuration. Moreover, the controller includes an in-
tegral/adaptive term and is shown to work in the presence of additive disturbances
in the translational dynamics. However, stability of the translational subsystem
is shown using a Lyapunov function with a cross term which results in a compli-
cated expression for the gradient, and hence, the virtual backstepping control law.
Moreover, due to the construction of the desired rotation matrix, a desired head-
ing (specified by a basic rotation matrix around the z-axis) can only be tracked
provided that the roll and pitch angles are zero. Furthermore, the control law is
overparametrized, as the number of parameter estimates is three times larger than
the number of unknown parameters. Consequently, if the control law in [38] were
to be extended to the case of a constant disturbance in the rotational dynamics,
parameter convergence would be impossible. Another hybrid feedback approach is
introduced in [121]. This approach achieves robust global trajectory tracking for
multirotors. However, due to a lack of integral action, the tracking errors do not
converge to zero in the presence of disturbances.

The goal of this chapter is to achieve uniform global asymptotic tracking of both
the position and heading of a multirotor in the presence of unknown constant dis-
turbances in both the translational and rotational dynamics. To this end, we build
on the work in [38], which we extend as follows. First, we propose a novel bounded
adaptive control law for the translational subsystem, which leads to a simpler vir-
tual control law when backstepping. Second, we propose a novel construction for
the desired rotation matrix, which avoids the use of intermediary Euler angles, and
is crucial in ensuring global asymptotic tracking of the desired heading reference.
Third, we augment the rotational dynamics with a constant disturbance, and by
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9.2. Modeling and Problem Statement

employing tuning functions [60], the number of parameter estimates becomes equal
to the number of unknown parameters. As a consequence, we can show that the
disturbance estimates in both the translational and rotational dynamics converge
to their true values.

This chapter is organized as follows. In Section 9.2, we introduce the equa-
tions of motion and give the problem statement. Section 9.3 introduces a bounded
adaptive control law for the translational subsystem, before extending this control
law using a backstepping approach to account for the rotational dynamics. Finally,
Section 9.4 presents experimental results verifying the theoretical developments,
before Section 9.5 concludes the chapter.

9.2 Modeling and Problem Statement

Let p ∈ R3 denote the position of the vehicle in the inertial frame and let R ∈
SO(3) denote the orientation of the vehicle-fixed frame with respect to the inertial
frame. Additionally, we define the heading relative to the inertial frame as ν :=

1
|(R11,R21)| (R11, R21) ∈ S for |(R11, R21)| ≠ 0. Furthermore, let v ∈ R3 and ω ∈ R3

denote the linear and angular velocites of the vehicle in the inertial and vehicle-
fixed frames, respectively. The equations of motion for a multirotor are given by
[114]

ṗ = v (9.1a)

Ṙ = Rω× (9.1b)
mv̇ = −Re3f +mge3 + b (9.1c)
Iω̇ = −ω×Iω + µ+ θ, (9.1d)

where b, θ ∈ R3 are constant disturbances, m > 0 is the mass of the vehicle, g > 0
is the gravitational acceleration, I ∈ R3×3 is the vehicle inertia matrix, f ∈ R is
the total thrust generated by the rotors and µ ∈ R3 is the total torque generated
by the rotors in the vehicle-fixed frame.

Assumption 9.1. The disturbances b, θ are upper and lower bounded by known
constants b, θ ∈ R3 and b, θ ∈ R3, respectively.

Clearly, Assumption 9.1 implies that the disturbances are contained in the
convex sets

P := [b1, b1]× [b2, b2]× [b3, b3], (9.2)

Θ := [θ1, θ1]× [θ2, θ2]× [θ3, θ3]. (9.3)

Let Proj : R3 × S ⇒ R3 be the outer semicontinuous, convex-valued and locally
bounded set-valued mapping defined by

Proj(σ,s) := (proj(σ1, s1),proj(σ2, s2),proj(σ3, s3)), (9.4)

where s, s ∈ R3 and S:=[s1, s1]× [s2, s2]× [s3, s3] ⊂ R3 and

proj(σi, si) :=

{
σi, if σi ∈ T[si,si]

(si)

[0, 1]σi, if σi /∈ T[si,si]
(si)

(9.5)
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where the tangent cone T[a,a] : [a, a] ⇒ R is defined by

T[a,a](φ) :=


[0,∞), if φ = a

(−∞,∞), if φ ∈ (a, a)

(−∞, 0], if φ = a

(9.6)

for a, a ∈ R. Observe that the solutions to the constrained differential inclusion

ṡ ∈ Proj(σ, s), s ∈ S, (9.7)

where σ is a hybrid input [122], include solutions arrived at if the discontinuous
projection

proj(σi, si) :=

{
σi, if σi ∈ T[si,si]

(si)

0, if σi /∈ T[si,si]
(si)

(9.8)

would have been used instead. As a result, there always exists a flow direction
contained in Proj(σ, s) that steers s within S, i.e. Proj(σ, s) ∩ TS(s) ̸= ∅ for all
s ∈ S, where TS(s) = T[s1,s1]

(s1)×T[s2,s2]
(s2)×T[s3,s3]

(s3). Therefore, since S is
compact, every maximal solution to (9.7) is complete [55, Proposition 6.10].

Lemma 9.1. Let s, ŝ ∈ S, s̃ = s− ŝ denote the estimation error and Γ ∈ R3×3 be
a positive definite and diagonal matrix. Then

−⟨s̃, Γ−1Proj(σ, ŝ)⟩ ≤ −⟨s̃, Γ−1σ⟩. (9.9)

Proof. If s < ŝ < s, or if ŝ ∈ S and σ ∈ TS(s), it follows that Proj(σ, ŝ) = σ and
(9.9) is satisfied with equality. Since Γ is diagonal with positive entries, we only
have to verify (9.9) componentwise for the case ŝi ∈ {si, si} and σi /∈ T[si,si]

(si).
Observe that ŝi = si and σi /∈ T[si,si]

(si) implies that σi > 0 and s̃ ≤ 0. Similarly,
ŝi = si and σi /∈ T[si,si]

(si) implies that σi < 0 and s̃i ≥ 0. In both cases it follows
that

−⟨s̃i, Γ−1
i σi⟩ ≥ −⟨s̃i, Γ−1

i [0, 1]σi⟩
= −⟨s̃i, Γ−1

i proj(σi, si)⟩ ≥ 0.
(9.10)

A desired trajectory for the multirotor consists of a desired position pd : R≥0 →
R3 of the multirotor relative to the inertial frame, and a desired heading νd : R≥0 →
S of the multirotor relative to the inertial frame. Given a continuously differentiable
desired heading νd, the quantity ν̇d can always be expressed in terms of the scalar
desired heading rate ϖd(t) := ⟨Sνd(t), ν̇d(t)⟩. Then, ν̇d(t) = Sνd(t)ϖd(t).

Assumption 9.2. The desired position pd and its derivatives up to the fourth
order are bounded and continuous. The desired heading νd and its derivatives up
to the second order are bounded and continuous. The bias b is lower and upper
bounded by the constants b and b, respectively. Finally, it holds that

m(g − sup
t≥0

p̈d,3(t)) + b3 := c > 0. (9.11)
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Let χ = (pd, ṗd, p̈d, p
(3)
d , νd, ϖd). For every desired trajectory satisfying Assump-

tion 9.2, there exist scalars c1 ≥ 0, c2 ≥ 0 and a compact set Ω ⊂ R3 × R3 × R3 ×
R3×S×R such that the desired trajectory is a solution to the differential inclusion

χ̇ ∈ F (χ) := (ṗd, p̈d, p
(3)
d , c1B3, Sνdϖd, c2B1), χ ∈ Ω. (9.12)

Assumption 9.2 is relatively mild, seeing as the supremum of the desired acceler-
ation in the z-direction is often small compared to the gravitational acceleration.
When the z-component of the desired acceleration is zero and b3 is negative, we
require that the absolute value of the lower bound of the z-component of the dis-
turbance force is smaller than the gravitational force.

Let Rd ∈ SO(3) denote the desired orientation, which will be defined in Sec-
tion 9.3. The desired angular velocity is given by (ωd)

∧ := R−1
d Ṙd, and by intro-

ducing the error coordinates p̃ := p− pd, ṽ := v − ṗd, R̃ := RRT
d and ω̃ := ω − ωd,

we obtain the error system

˙̃p = ṽ

˙̃R = R̃(Rdω̃)
∧

m ˙̃v = mge3 −Re3f −mp̈d + b

I ˙̃ω = µ− ω∧Iω + θ − Iω̇d
χ̇ ∈ F (χ)


χ ∈ Ω (9.13)

Problem statement

Design a hybrid feedback control law with output (f, µ) ∈ R × R3 such that the
compact set

A0=
{
(p̃, R̃, ṽ, ω̃, χ) : p̃ = 0, R̃ = I, ṽ = 0, ω̃ = 0

}
, (9.14)

is globally pre-asymptotically stable for the system (9.13).

9.3 Control Design

As introduced in Chapter 8 for fully actuated marine vehicles, we define a modified
velocity error ξ := ṽ − ζ, where ζ is generated by the dynamical system

Λζ̇ = −k1ϑ(p̃)−Ξϑ(ζ), (9.15)

where Ξ,Λ ∈ R3×3 are positive definite and diagonal, k1 > 0 and ϑ : Rn → Rn
denotes the following saturation mapping

ϑ(x) :=
tanh|x|
|x|

x. (9.16)

It is clear that ζ = 0 implies ξ = ṽ, which entails that the velocity tracking control
objective ṽ = 0 can be restated as (ξ, ζ) = 0. We propose the following adaptive
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control law for the translational subsystem

Λζ̇ = −k1ϑ(p̃)−Ξϑ(ζ)

˙̂
b ∈ Proj(Γξ, b̂)

u = b̂+mge3 −m(ζ̇ + p̈d) + k1ϑ(p̃) +Kϑ(ξ)

f = |u|

 b̂ ∈ P

where b̂ denotes the estimate of the disturbance b and K ∈ R3×3 is positive definite
and diagonal.

Given a desired heading νd and a desired thrust direction ρ := u
|u| ∈ S2, we

define the desired vehicle orientation by

Rd :=
(
r ρ×r ρ

)
(9.17)

r :=
sgn ρ3√

ρ23 + (ρ1νd,1 + ρ2νd,2)2

(
ρ3νd

−ρ1νd,1 − ρ2νd,2

)
. (9.18)

Moreover, by defining w := (ρ, r), the desired angular velocity can be computed
according to

ωd=

 rTρ∧ρ̇
rTρ̇

−rTρ∧ṙ

=
rTρ∧ 0

rT 0
0 −rTρ∧

(ρ̇
ṙ

)
=:A(w)ẇ. (9.19)

Observe that Rd is well-defined for any νd ∈ S and ρ ∈ S2 provided ρ3 ̸= 0. The
desired orientation aligns the thrust axis of the multirotor with the desired thrust
direction ρ. The vector r ∈ S2 should be interpreted as the desired configuration
of the vehicle-fixed x-axis of the multirotor expressed in the inertial frame. It
is chosen such that its projection onto the horizontal plane is aligned with the
desired heading. Note that Rd as defined in (9.17) can also be constructed using the
approach in [123]. However, [123] employs an intermediary step in which the desired
roll and pitch angles are computed as a function of ρ and the desired yaw angle.
Although a direct computation of the desired roll-pitch-yaw angles are required
for any control algorithm based on a three-parameter representation of SO(3),
it is unnecessary for any control scheme based on rotation matrix or quaternion
feedback. Also, note that the approach in [117] does not yield the same Rd as (9.17)
and only guarantees that the vehicle-fixed x-axis converges to the projection of the
desired body-fixed x-axis onto the plane orthogonal to ρ.

Let z = (η, ϵ) ∈ S3 be a unit quaternion satisfying R(z) = R̃. Since z is not
measured, we employ the path-lifting mechanism proposed in [109] in order to lift
the solution t 7→ R̃(t) of ˙̃R = R̃(Rdω̃)

∧ to a continuous path t 7→ z(t) that satisfies
the kinematic equation

ż =
1

2

(
ϵT

ηI3 + ϵ∧

)
Rdω̃ =: T (z)Rdω̃. (9.20)

If ωd were entirely known, it would be straightforward to design a backstepping
control law using the angular velocity error as the virtual control input. However,
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due to the presence of the constant disturbance b in the translational dynamics,
the following part of ωd is problematic

A(w)
(∂w
∂u

˙̂
b+

1

m

∂w

∂u

∂u

∂ξ
b̃
)
. (9.21)

Although the first term is known, it cannot be canceled without increasing the
dynamic order of the system. In other words, we would need two additional esti-
mators for the same bias due to its appearance in ωd and ω̇d. Note that this is
the approach taken in [38]. To circumvent this, we will follow a tuning function
based design procedure. For i ∈ {2, 3}, we define βi as the known part of ωd with
˙̂
b replaced by Γτi

βi := ωd −A(w)

(
∂w

∂u
˙̂
b+

1

m

∂w

∂u

∂u

∂ξ
b̃

)
+A(w)

∂w

∂u
Γτi, (9.22)

which can be rewritten as

βi = A(w)
∂w

∂u

(
Γτi −m(ζ̈ + p

(3)
d ) + k1J(p̃)ṽ

+KJ(ξ)
(
ge3 − p̈d − ζ̇ +

1

m
(b̂−R(z)u)

))
+A(w)

∂w

∂νd
ν̇d

(9.23)

where τi is the ith tuning function and J(ε) := ∂ϑ(ε)
∂ε . Let q ∈ Q := {−1, 1} be a

logic variable, let k2, kz > 0 and define the virtual control input α by

αq := β2 + qRT
dh, (9.24)

h = −k2kzϵ+
2

kz
((ηI + ϵ∧)u)∧ξ. (9.25)

Furthermore, following the tuning function-based backstepping approach in [60],
we define the tuning functions

τ1 := ξ (9.26)

τ2 := τ1 −
kzq

m

(
∂u

∂ξ

)T(
∂w

∂u

)T

A(w)TRT
d ϵ (9.27)

τ3 := τ2 −W (x)I(ω − αq), (9.28)

W (x) :=
1

m

((
∂u

∂ξ

)T(
∂w

∂u

)T(
∂β2
∂w

)T
+

(
∂u

∂ξ

)T(
∂β2
∂u

)T
+

(
∂β2
∂ṽ

)T
+

(
∂β2
∂ξ

)T
−
(
∂u

∂ξ

)T(
∂w

∂u

)T
A(w)TRT

dT (z)
T

(
∂β2
∂z

)T
+
kzq

m

(
∂u

∂ξ

)T(
∂w

∂u

)T
A(w)T(RT

d ϵ)
∧A(w)

∂w

∂u

∂u

∂ξ
Γ

(
∂w

∂u

)T
A(w)T

+ q

(
∂u

∂ξ

)T(
∂h

∂u

)T
Rd − q

(
∂u

∂ξ

)T(
∂w

∂u

)T
A(w)T(RT

dh)
∧

+ q

(
∂h

∂ξ

)T
Rd − q

(
∂u

∂ξ

)T(
∂w

∂u

)T
A(w)TRT

dT (z)
T

(
∂h

∂z

)T
Rd

)
.
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Define the state space X := R3 × S3 ×R3 ×R3 ×R3 ×P ×Θ×Ω, the state vector
x := (p̃, z, ξ, ζ, ω̃, b̂, θ̂, χ), where θ̂ denotes the estimate of θ, and the flow and jump
sets

C := {(x, q) ∈ X ×Q : qΨ(x) ≥ −δ}, (9.29)
D := {(x, q) ∈ X ×Q : qΨ(x) ≤ −δ}, (9.30)

where δ ∈ (0, 1) is the hysteresis half-width, and

Ψ(x) := η +
1

2kz
(ω − β2 +A(w)

∂w

∂u
Γ (τ2 − τ1))

TIo(x) (9.31)

o(x) := RT
dh− kz

m
A(w)

∂w

∂u
Γ

(
∂u

∂ξ

)T(
∂w

∂u

)T
A(w)TRT

d ϵ. (9.32)

Consider the following hybrid control law



ζ̇ = −Λ−1 (k1ϑ(p̃) +Ξϑ(ζ))

˙̂
b ∈ Proj(Γτ3, b̂)

˙̂
θ ∈ Proj(Γ2(ω − αq), θ̂)

 (x, q)∈C

q+= −q (x, q)∈D

u = b̂+mge3 −m(ζ̇ + p̈d) + k1ϑ(p̃) +Kϑ(ξ)

f = |u|

µ = −θ̂ + ω∧Iω −K2(ω − αq)− qkzR
T
d ϵ

+ Iγq − qkzIW (x)TΓ

(
∂w

∂u

)T
A(w)TRT

d ϵ

(9.33)

where K2 = KT
2 ∈ R3×3 is positive definite and

γq :=

(
∂β2
∂w

∂w

∂u
+
∂β2
∂u

)
(u̇− 1

m
KJ(ξ)b̃) +

∂β2
∂z

T (z)Rd(ω − β3)

+
∂β2
∂ṽ

( ˙̃v − 1

m
b̃) +

∂β2
∂ξ

(ξ̇ − 1

m
b̃) +

∂β2
∂y

ẏ +
∂β2

∂b̂

˙̂
b

− kzq

m
A(w)

∂w

∂u
Γ

(
∂u

∂ξ

)T(
∂w

∂u

)T

A(w)T(RT
d ϵ)

∧β3 + q(RT
dh)

∧β3

+ qRT
d

∂h

∂z
T (z)Rd(ω − β3) +

1

m
A(w)

∂w

∂u
KJ(ξ)R(z)u∧(ω − β3),

(9.34)

where y := (p̃, ζ, p
(3)
d , νd, ϖd). The hybrid control law (9.33) leads to the following
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hybrid closed-loop system

H :



˙̃p = R(z)ṽ

ż = T (z)ω̃

ξ̇ = ge3 − p̈d − ζ̇ +
1

m

(
b−R(z)u

)
ζ̇ = −Λ−1(k1ϑ(p̃) +Ξϑ(ζ))

˙̃ω = κ(x)

˙̂
b ∈ Proj(Γτ3, b̂)

˙̂
θ ∈ Proj(Γ2(ω − αq), θ̂)

χ̇ ∈ F (χ)



(x, q) ∈ C

q+= −q (x, q) ∈ D

(9.35)

where

κ(x) = θ̃ + γq − ω̇d − I−1K2(ω − αq)− qkzI−1
(
I + IWTΓ

(
∂w

∂u

)T
AT
)
RT
d ϵ.

(9.36)

Theorem 9.3. If Assumptions 9.1 and 9.2 hold and the gains satisfy

k1 +K33 +mk1
1

Λ33
+m

Ξ33

Λ33
< c, (9.37)

with c defined as in Assumption 9.2, then there exists ς > 0 such that ρ3 ≥ ς for
all solutions to H, and the compact set

A = {(x, q) ∈ X ×Q : p̃ = 0, z = qe1, ξ = 0, ζ = 0, b̂ = b, ω̃ = 0, θ̂ = θ}, (9.38)

is globally pre-asymptotically stable for H.

Proof. It follows from Assumption 9.2, equations (9.37) and (9.33) that u3(t, j) ≥
inf(t,j) u3(t, j) > 0. Therefore, there exists ς ′ > 0 such that u3(t, j) ≥ ς ′ for all (t, j)
in the hybrid time domain of the solution. Since u is bounded, it follows that there
exists ς > 0 such that ρ3(t, j) = u3(t,j)

|u(t,j)| ≥ ς. Let U be an open set containing X
and consider the continuously differentiable function V : U ×Q → R defined by

V (x, q) := k1 ln cosh|p̃|+
m

2
ξTξ +

1

2
ζTΛζ +

1

2
b̃TΓ−1b̃

+
1

2
θ̃TΓ−1

2 θ̃ + 2kz(1− qη) +
1

2
(ω − αq)

TI(ω − αq).

For all (x, q) ∈ C, the change in V along the solutions of H can be shown to be

V̇ (x, q) ≤ −ξTKϑ(ξ)− ζTΞϑ(ζ)− kzk2ϵ
Tϵ

− (ω − αq)
TK2(ω − αq) ≤ 0.
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Figure 9.1: ModalAI Qualcomm Flight RB5

Consequently, the growth of V along the flow solutions of H is bounded by

uc(x) =


− ξTKϑ(ξ)− ζTΞϑ(ζ)− kzk2ϵ

Tϵ

− (ω − αq)
TK2(ω − αq)

x ∈ C

−∞, otherwise

For all (x, q) ∈ D, the change in V across jumps is

V (x,−q)− V (x, q) = 2kzqΨ(x) < 0,

where the last inequality follows from the definition of the jump set D. Since the
continuously differentiable function V has compact sublevel sets and is positive
definite with respect to the compact set A, it follows that A is uniformly globally
stable. Furthermore, H satisfies the hybrid basic conditions, and the time between
jumps is lower bounded by a positive constant. Thus, it follows from [55, Corollary
8.7 (b)] that each solution to H converges to the largest weakly invariant subset Φ
contained in V −1(r̄) ∩ u−1

c (0), for some r̄ ∈ R, where

u−1
c (0) = {(x, q) ∈ C : ξ = 0, ζ = 0, ϵ = 0, ω = αq} .

Note that for every z ∈ S2, ϵ = 0, implies η = ±1. The closed-loop system H is
such that ζ ≡ 0 implies p̃ ≡ 0. Thus, ξ ≡ 0 implies that b̃ ≡ 0, since ϵ = 0 implies
R(z) = I. Finally, ϵ ≡ 0 and ξ ≡ 0 imply that αq = β2 and that τ2 ≡ 0, from which
we can conclude that ω = αq = ωd. It follows that ˙̃ω ≡ 0 and hence that θ̂ = θ.
Consequently, no solution ϕ makes V (ϕ(t, j)) equal to a non-zero constant, and it
follows from [55, Theorem 8.8] that A is globally pre-asymptotically stable.

We remark that Theorem 9.3 implies that the problem statement is solved.
Indeed, by employing the path-lifiting mechanism from [109], it follows from [109,
Thm. 9] and Theorem 9.3 that A0 is globally pre-asymptotically stable for the
interconnection between (9.13) and (9.33).

9.4 Experimental results

The experimental platform is the ModalAI Qualcomm Flight RB5 depicted in
Figure 9.1. The mass of the quadrotor is m = 1.4 kg, the inertia matrix is I =
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diag(0.029 kgm2, 0.029 kgm2, 0.052 kgm2), the lower and upper bounds for the pa-
rameters are given by θ = (−0.3,−0.12,−0.3), θ = (0.2, 0.2, 0.2), b = (−1,−1,−0.3),
and b = (1, 1, 3). Moreover, the reference trajectory is given by

pd(t) =


(0, 0,−0.75) t < 30 sin (0.5(t− 30)

1− cos(0.5(t− 30))

−0.8 + 0.5(cos(0.5(t− 30))− 1)

 t ≥ 30
(9.39)

νd(t) = (cosψd(t), sinψd(t)), (9.40)

ψd(t) =

{
π
2 t < 30
π
2 − 25π

180 sin(0.3(t− 30)) t ≥ 30
(9.41)

and the control parameters are chosen as k1 = 2.2, K = diag(2.9, 2.9, 3.3), Ξ = K,
K2 = diag(0.08, 0.08, 0.05), kz = 3.1, k2 = 1, Λ = I, Γ = diag(0.25, 0.25, 0.52) and
Γ2 = 0.05I. It is straightforward to verify that (9.37) is satisfied. In the imple-
mentation, we apply the approximation ϑ(x) ≈ x when |x| ≤ 10−6. Moreover, we
implement the maximal solution to (9.7), which employs the discontinuous projec-
tion (9.8), i.e. a componentwise saturation.

The experimental results are presented in Figures 9.2 to 9.5. From Figures 9.2
and 9.3 we observe that the quadrotor successfully tracks the position and velocity
references. Figure 9.4 shows that the estimate b̂3 approaches a value of approxi-
mately 1.7N. This suggests that there are minor modelling errors in the mass of the
quadrotor and the thrust produced by the propellers. Indeed, as b̂3 approaches its
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Figure 9.2: The position p ∈ R3 and the desired position pd ∈ R3.
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Figure 9.3: The linear velocity v and the desired linear velocity vd.
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Figure 9.4: The estimates b̂ and θ̂ and the yaw angle and desired yaw angle ψ
and ψd.
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Figure 9.5: The control torque µ, control thrust f and the logic variable q.

steady-state value, we see that p3 approaches p3,d. The estimates b̂1 and b̂2 remain
very close to zero. The orientation disturbance θ̂1 increases to a value of approxi-
mately 0.05Nm. This suggests that there are minor modeling errors in the roll-loop
of the quadrotor, most likely in the position of the center of mass and the moments
produced by the propellers. The two other orientation disturbances remain small.
Moreover, we observe that the yaw angle of the quadrotor ψ := atan2(ν2, ν1),
successfully tracks the desired yaw angle ψd. The desired propeller torque, total
propeller thrust, and logic variable q, are plotted in Figure 9.5. The two spikes
in the desired torque correspond to lift off and the abrupt change in the desired
trajectory at t = 30 s, respectively. The logic variable q does not change sign during
the motion.

9.5 Conclusions

This chapter has addressed the global position and heading tracking control prob-
lem for multirotor aerial vehicles. The proposed control law achieves uniform global
asymptotic position and heading tracking. Global asymptotic heading tracking is
achieved by utilizing a novel construction of the desired rotation matrix. More-
over, the use of tuning functions ensures that the number of parameter estimates
is equal to the number of unknown parameters. In turn, this guarantees that the
parameter estimates in both the translational and rotational dynamics converge
to their actual values. The effectiveness of the control law has been demonstrated
through experiments.
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Chapter 10

Conclusions and Future Work

In this thesis, we have proposed new methods for prioritized control of robotic
systems and hybrid feedback control of marine and aerial vehicles. A general set-
based task-priority framework for redundant robotic systems was introduced in
Chapter 3. The framework utilizes a hierarchy of CLF- and CBF-based quadratic
programs and provides strict priority between tasks, ensuring that lower-priority
tasks have no effect on the execution of higher-priority tasks.

CLF- and CBF-based quadratic programs were employed once more in Chap-
ter 3. By utilizing robustness results for CBFs we obtain safety guarantees for
affine nonlinear control systems in the presence of unknown system nonlinearities.
We apply this to an ASV to obtain a unified framework for stabilization, reactive
collision avoidance and control allocation. Simulation results have demonstrated
the effectiveness of the proposed framework.

In Chapter 5, we have proposed multiple synergistic control designs for fully
actuated mechanical systems described on matrix Lie groups with left-invariant
Riemannian metrics. Specifically, we have proposed synergistic PD, output feed-
back and PID type control laws ensuring global asymptotic tracking of some desired
bounded reference trajectory. Moreover, we have shown that the PID type control
laws achieve global asymptotic tracking when the system dynamics are augmented
with a constant and unknown disturbance.

The synergistic control laws in Chapter 5 were based on the notion of a syner-
gistic function, also known in the literature as a synergistic potential function. In
Chapter 6, our starting point was the notion of a synergistic Lyapunov function
and feedback pair, which we have generalized to a synergistic Lyapunov function
and feedback triple. This generalization allows the logic variable, which we refer
to as a synergy variable in this generalized setting, to possess flow dynamics. By
introducing synergy gaps relative to components of product sets, we have shown
that it is possible to define jump conditions in the form of synergy gaps for different
components of the synergy variable. Finally, we have shown that this generalized
definition is amenable to backstepping, and given an example for how traditional
synergistic control can be combined with ship maneuvering control with discrete
path dynamics.

Hysteretic control Lyapunov functions were introduced in Chapter 7 as a tool
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for synthesizing hybrid control laws for continuous-time nonlinear systems with
global stability properties. We have shown that HCLFs represent a generalization
of the natural concept of a synergistic control Lyapunov function. Moreover, we
have provided sufficient conditions for the existence of a collection of continuous
feedback laws, which together with the hysteresis-based switching mechanism de-
fined by the HCLFs lead to a hybrid feedback control law. We have shown that
this hybrid feedback control law globally asymptotically stabilizes compact sets for
a class of continuous-time systems defined on state-spaces that may be subject to
topological constraints. Moreover, we shown how a collection of optimization-based
feedback laws can be derived from a family of HCLFs under mild assumptions on
the objective function. Consequently, HCLFs may serve as a tool for synthesis of
optimal feedback laws ensuring global asymptotic tracking of spatial rigid-bodies
such as underwater vehicles and satellites. Indeed, the chapter ended with a case
study where we derived a HCLF family for configuration and velocity control of an
underwater vehicle.

Chapter 8 introduced an adaptive hybrid feedback control law for marine ve-
hicles. The proposed control law ensures global asymptotic tracking of a hybrid
reference system for marine vehicles subject to parametric modeling uncertainties.
The control law was derived from a set of potential functions and a hysteretic
switching mechanism, which are required to satisfy a set of assumptions. These
assumptions are less restrictive than the synergistic conditions presented in Chap-
ters 5 and 6. However, the switching mechanism is not directly encoded through the
potential functions, as is the case with synergistic functions. This chapter included
experimental validations of the proposed hybrid control law for both surface and
underwater vehicle applications.

In Chapter 9, we have addressed the problem of global asymptotic position
and heading tracking for multirotor aerial vehicles. We have proposed an adap-
tive hybrid feedback control law which globally asymptotically tracks a position
and heading reference in the presence of a unknown and constant disturbances in
both the translational and rotational dynamics. By employing a tuning function-
based backstepping approach, the number of parameter estimates, and hence the
dynamic order of the control law, is kept to a minimum. We have employed some
of the ideas from Chapter 8 to design a novel bounded adaptive control law for
the translational subsystem, which resulted in a simpler virtual control law when
backstepping. A crucial element to achieving global asymptotic tracking of a de-
sired heading reference is our proposed construction of the desired rotation matrix,
which also avoids the use of Euler angles as an intermediary step. Finally, we have
demonstrated the effectiveness of the proposed control scheme in experiments.

Future directions from this work includes merging Part I and II of this thesis by
employing tools from hybrid feedback control in the design of task-priority methods
for redundant robotic systems. In turn, this could lead to global asymptotic stabil-
ity guarantees for tasks whose configuration space is not necessarily contractible.
Another direction for future work is to prove the same stability properties for the
integral control laws in Chapter 5 using the velocity-independent feedforward con-
trol defined in (5.14), which would make the feedforward control less sensitive to
noisy velocity measurements. Another direction for future work is the development
of hybrid feedback control algorithms for interaction control of underwater vehi-

158



cles. Finally, it might be possible to simplify the control law for the rotational
subsystem in Chapter 9 considerably by employing interconnection results for hy-
brid systems. Either in the form of the reduction principle [55, Corollary 7.24], or
by developing new and specialized interconnection results for this particular sys-
tem. This would remove the need for a backstepping controller which cancels the
undesirable coupling terms from the translational control law that appear in the
Lyapunov analysis.
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