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Abstract: The transfer of surface heat between a building and the outdoor environment is the
energy transfer channel and it is important for the energy efficiency of buildings. Early stage
building design is a critical stage and it can directly determine the energy consumption by a building.
Therefore, selecting appropriate surface heat transfer coefficients (SHTCs) is a key issue in building
energy consumption prediction. In this study, EnergyPlus was employed to investigate the building
load in Chinese cities with different SHTCs: (1) constant SHTCs based on national standards; and
(2) dynamically changing SHTCs based on the Thermal Analysis Research Program (TARP). Based
on investigations of the hourly load, daily cumulative load in a typical day, and annual cumulative
load with different SHTCs, corrections for the annual cumulative load were obtained according to
the relative deviations between the results produced with the TARP model and traditional SHTCs.
The greatest relative deviations were 67.5% and 25.3% for the building shape factor ϕ = 0.49 and 0.29
in Lhasa. The relative deviations were 13.3% and 12.0% for ϕ = 0.49 in Xi’an and Beijing, respectively.
Corrections were not essential for other conditions because the relative deviations were lower than
5.0%. Considering the current characteristics of engineering calculations and the need to obtain more
accurate design results, dynamically changing SHTCs should be applied. These correction factors can
obtain more accurate results for the current building energy efficiency system with traditional SHTCs.

Keywords: sustainable building design; building energy efficiency; building load; early-stage design;
EnergyPlus; surface heat transfer coefficient

1. Introduction

The building sector accounted for more than 35% of the total energy consumed in
China during 2020 [1]. Urban heat islands and high-density cities exacerbate this issue [2,3].
Corresponding standards have been developed to control the energy consumption and
guide actual engineering applications, and the following two methods are generally applied
in building energy efficiency design [4]. Method 1 involves setting limiting values for the
thermal performance of a building (such as the heat transfer coefficient, window–wall
ratio, and shape coefficient). Method 2 involves setting a limiting energy demand for a
building (known as the trade-off option). Many basic field tests, numerical simulations,
and theoretical analyses can be conducted to explore the relationships between the thermal
performance of specific building components and the energy demand of a whole building.

In Method 1, the related limiting values are investigated step by step to achieve high
energy efficiency. For instance, the heat transfer coefficient for walls in the related standard
for the UK was reduced from 0.45 W/m2K in 1995 to 0.35 W/m2K in 2000 [5]. Recent
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investigations have aimed to further promote building energy efficiency. In particular,
Delgarm et al. [6,7] studied a set of building energy efficiency and indoor thermal comfort
solutions using a multi-objective optimization approach, where the predicted percentage
dissatisfied decreased by 49.1–56.8% and the total energy consumption only increased by
2.9–11.3%. Liu et al. [4] also proposed a building energy efficiency evaluation index to
represent the energy-saving performance of buildings. Degree days obtained with the
average daily indoor and outdoor air temperatures were used to eliminate the effects of
envelopes on the building energy efficiency. However, it was difficult to represent the
relationship between the thermal performance of envelopes and the energy consumption
of the whole building based on degree days. Hence, the building energy consumption
and building energy efficiency evaluation index were no longer suitable for representing
the energy efficiency performance of building envelopes during the early stages of office
building design.

In Method 2, a building design satisfies the requirements of the related standards. The
American Society of Heating, Refrigerating and Air Conditioning Engineers (ASHRAE)
Standard 90.1 in the US and Design Standard for Energy Efficiency of Public Buildings (GB
50189-2015) in China) when the energy consumption is less than or equal to that of the
reference building, although one or several building thermal performance indexes might
not meet the corresponding limiting values. In recent years, these standards have been
improved continually and the building energy demand has decreased. The energy-saving
rates for residential buildings in China were set as 30%, 50%, and 65% for GB 50189-1996,
GB 50189-2005, and GB 50189-2010, respectively. Selecting appropriate surface heat transfer
coefficients (SHTCs) is the key issue for accurate building load prediction. Constant internal
and external SHTCs are usually employed in the current systems. Zhu et al. [8] determined
the differences using DOE-2-based SHTCs and constant SHTCs with EnergyPlus software.
The results indicated that the annual heating energy consumption with constant values
was 14.0% higher than that with DOE-2, and the annual cooling energy consumption was
10.5% lower than that with DOE-2. Liu et al. [9] determined the correlations between the
convective heat transfer coefficient (CHTC) based on the building density, wind speed,
surface temperature, and temperature difference between the external surface and ambient
temperature. The building cooling energy consumption increased by 4.0% and the heating
energy consumption decreased by 1.3% as the building density increased from 0.04 to 0.44.
Mirsadeghi et al. [10] investigated the uncertainties regarding using different CHTCs and
found that the differences in the annual cooling and heating energy consumption were
up to 30.0% and 6.0%, respectively. Thus, building energy consumption simulations were
conducted based on different SHTCs rather than the building loads.

Selecting appropriate SHTCs is a crucial issue for building load prediction, and thus the
determination of SHTCs has received much attention [11,12], where the methods used include
experimental research, computational fluid dynamics (CFD) simulations, field tests, and
theoretical analysis. The correlations obtained are compared in Figure 1 [10,11,13–16]. Yang
et al. [17] conducted an annual four-season experimental investigation and determined
the dynamic changes in the radiative heat, convective heat, total heat flow, and their
proportions in different seasons. Koca and Cetin [18] obtained heat transfer coefficients
for a heated radiant wall with average values of 8.57, 5.74, and 2.44 W·m−2·◦C−1 for
the SHTC, radiative heat transfer coefficient, and CHTC, respectively. For phase change
envelopes [19], the heat flux was assigned to different stages according to the phase change
process, thereby leading to segmented SHTCs. To obtain SHTC measurements, Anderson.
Ref. [20] illustrates the impact of building envelope on the optimal use of energy. Rui
et al. [21] constructed a validated dynamic model for a heated gradient sensor to solve
the problem caused by an unsteady-state convective airflow. Thus, experimental methods
were established in these previous studies, and constant and dynamically changing values
were obtained for building envelopes. In addition to experiments, numerical simulation
investigations have been conducted. In particular, Liu et al. [22] investigated CHTCs for
the external windward, leeward, lateral, and top surfaces of building arrays and found that
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large eddy simulation-based CHTCs were more accurate than those obtained by solving
Reynolds-averaged Navier–Stokes equations. Kahsay et al. [23] used rectangular floor-plan
building models with heights of 3, 10, 15, and 20–30 stories to derive the CHTC correlations
based on the Reynolds numbers and building height. Blocken et al. [24] obtained the
correlations between CHTCs with the wind speed and direction based on three-dimensional
CFD simulations of a low-rise cubic building. Other studies investigated CHTCs according
to the effects of the building geometry [25], by deriving new generalized expressions based
on analytical formulas [26], by utilizing non-conformal grids [27], and the influence of
oblique wind directions [28]. Costanzo et al. [29] found that the DOE-2 algorithm was
much less accurate than the adaptive model for cool roofs when the solar reflectivity of the
roof was low. Selçuk et al. [30] three building types are analyzed with a novel optimization
approach, optimal results are produced for different goals in terms of energy-saving
targets. These previous numerical and experimental investigations of SHTCs (CHTCs) have
contributed significantly to our understanding of the heat transfer mechanism. However,
these studies focused on the correlations with SHTCs under conventional or specific
conditions, whereas the effects of different methods or algorithms for selecting SHTCs
based on building loads have not been adequately assessed. Thus, the relationship between
fundamental research and building energy efficiency design can be improved, and this was
the focus of the present study.
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Figure 1. Comparisons between different surface heat transfer coefficients (SHTCs) (convective heat
transfer coefficients, CHTCs).

Constant SHTCs are usually employed in engineering applications during the build-
ing development design stage. However, the effects of different SHTCs on building load
predictions during early-stage office building design have rarely been studied. The cor-
rected values are essential for establishing building load-based trade-off options. In the
present study, the following options were investigated to determine the effects of different
SHTCs on load predictions during early-stage office building design.

1. The hourly load behavior on a typical day in winter and summer was studied with
different SHTCs.

2. The daily cumulative load behavior on a typical day in winter and summer was
investigated with different SHTCs.
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3. The annual cumulative heating and cooling load behavior were examined with
different SHTCs.

4. Finally, the annual cumulative loads were corrected based on the Thermal Analysis
Research Program (TARP) model and compared with those using constant SHTCs.

2. Methodology

For the trade-off option, the thermal performance of the building components was
only considered for the actual building model and reference building model in this study.
However, the annual energy consumption is based on the annual cumulative load of
heating, ventilation, and air conditioning (HVAC) systems, so the assessment results
determined according to the annual energy consumption and building load for an actual
building model and reference building model should be consistent for a HVAC system
with the same efficiency (see Figure 2). Therefore, the building energy consumption could
be replaced with the building load as the criterion for the trade-off option to simplify
the process.
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Figure 2. Building load-based trade-off option in building energy efficiency design.

2.1. Representative Building

The present study focused in office buildings in severely cold and cold climate zones
in China. According to the national standard in China (Design Standard for Energy
Efficiency of Public Buildings (GB 50189-2015)), the corresponding limiting values and
energy efficiency performance were restricted to two levels based on different shape factors.
Therefore, two typical office buildings were selected as representative buildings, as shown
in Figure 3. The building model with the building shape factor ϕ = 0.49 had a length of
16.0 m, width of 10.0 m, height of 6.0 m, story height of 3.0 m, and window–wall ratio of 0.2
(see Figure 3a,b). The building model with ϕ = 0.29 had a length of 26.0 m, width of 10.0 m,
height of 29.7 m, story height of 3.3 m, and window–wall ratio of 0.2 (see Figure 3c,d). The
buildings faced south and the window–wall ratio was within the range recommended in
the related standard. The building envelope constructions were those employed widely
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in cold and severely cold zones of China. The thermophysical properties of the building
materials and their constructions are listed in Tables 1 and 2.
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Table 1. Thermophysical properties of building materials.

Material Thermal Conductivity λ
(W·m−1·◦C−1)

Density ρ
(kg·m−3)

Specific Heat Capacity c
(J·kg−1·◦C−1)

Cement mortar 0.930 1800 1050
Rigid polyurethane foam insulation board 0.022 30 1380

Steam pressurized concrete blocks 0.200 500 1005
Reinforced concrete 1.740 2500 920

Lime–sand brick 1.100 1900 1050
Polyurethane insulation board 0.030 30 1380
Expanded polystyrene board 0.049 20 1400

Table 2. Details of the building envelopes.

City Shape Factor Structure Construction (from Outside to Inside)

Xi’an

0.49

External wall 20 mm cement mortar, 100 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 65 mm polyurethane insulation board,

30 mm reinforced concrete

0.29

External wall 20 mm cement mortar, 90 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 45 mm polyurethane insulation board,

30 mm reinforced concrete

Beijing

0.49

External wall 20 mm cement mortar, 100 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 65 mm polyurethane insulation board,

30 mm reinforced concrete

0.29

External wall 20 mm cement mortar, 90 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 45 mm polyurethane insulation board,

30 mm reinforced concrete

Urumqi

0.49

External wall 20 mm cement mortar, 70 mm rigid polyurethane foam insulation
board, 180 mm reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 90 mm polyurethane insulation board,

30 mm reinforced concrete

0.29

External wall 20 mm cement mortar, 100 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 65 mm polyurethane insulation board,

30 mm reinforced concrete

Lhasa

0.49

External wall 20 mm cement mortar, 100 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 65 mm polyurethane insulation board,

30 mm reinforced concrete

0.29

External wall 20 mm cement mortar, 90 mm expanded polystyrene board, 180 mm
reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 45 mm polyurethane insulation board,

30 mm reinforced concrete
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Table 2. Cont.

City Shape Factor Structure Construction (from Outside to Inside)

Mohe

0.49

External wall 20 mm cement mortar, 75 mm rigid polyurethane foam insulation
board, 180 mm reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam

pressurized concrete block, 100 mm polyurethane insulation board,
30 mm reinforced concrete

0.29

External wall 20 mm cement mortar, 70 mm rigid polyurethane foam insulation
board, 180 mm reinforced concrete, 15 mm cement mortar

Roof
20 mm cement mortar, 30 mm reinforced concrete, 100 mm steam
pressurized concrete block, 90 mm polyurethane insulation board,

30 mm reinforced concrete

All cities All shape factors

Internal wall 20 mm cement mortar, 240 mm lime–sand brick,
20 mm cement mortar

Floor slab 5 mm cement mortar, 100 mm reinforced concrete,
5 mm cement mortar

Floor 20 mm cement mortar, 50 mm expanded polystyrene board, 120 mm
reinforced concrete

2.2. Simulation Process

EnergyPlus 8.7 [31] was mainly developed by the US Department of Energy and
National Renewable Energy Laboratory and it was employed to conduct numerical simula-
tions in this study. Several models can be used to describe dynamically changing external
SHTCs, including TARP, MoWiTT (Mobile Windows Thermal Test), DOE-2, and Simple-
Combined. TARP, Simple Natural Convection, and Ceiling Diffuser were developed for
internal SHTCs. The TARP model considers the wind speed and surface roughness, as well
as the differences between natural and forced convection, the direction of heat flux, and
wind along the building surface [18,32,33]. The researchers have shown that the predictions
of BLAST are very close to the actual measurements [34,35]. The TARP algorithm was
derived from the ASHRAE literature by Walton (1983), and was in good agreement with the
curve fitting values of BLAST simulation results, as shown in Figure 4 [36,37]. Therefore,
the TARP model was used for comparison with the results produced based on constant
SHTCs to obtain more reliable results. The SHTCs at the internal and external surfaces are
defined as follows:

hin = hin,c + hin,r (1)

hout = hout,c + hout,r (2)

where hin and hout are the SHTCs at the internal and external surfaces, respectively,
W·m−2·◦C−1; hin,c and hin,r are the convection and radiation components of hin; and hout,c
and hout,r are the convection and radiation components of hout [38].
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The natural convection component hin,n was only considered for hin,c. For the external
side, both the natural hout,n and forced convection components hout,f were considered for
hout,c, which are given as follows.

hin,c = hin,n (3)

hout,c = hout,n + hout,f (4)

The natural components hin&out,n of TARP-based CHTCs were determined using the
temperature difference and direction of the facing surface, as follows:

hin&out,n = 1.31·|∆T|0.33

when ∆T= 0 or for a vertical surface

hin&out,n = 9.48·|∆T|0.33

6.28
when ∆T < 0 for an upward facing surface, or ∆T > 0 for a downward facing surface

hin&out,n = 1.81·|∆T|0.33

2.38
when ∆T > 0 for an upward facing surface, or ∆T < 0 for a downward facing surface

(5)

where ∆T is the temperature difference between the surface and the air (◦C).
The forced components of TARP-based CHTCs were calculated with a correlation

proposed by Sparrow, Ramsey, and Mass, which is expressed as follows:

hout,f = 2.54·Wf·Rf·
(

P·Vz

A

)0.5
(6)

where Wf is the fitting coefficient, i.e., 1.0 for windward surfaces and 0.5 for leeward
surfaces; P is the perimeter of the surface, m; Vz is the local wind speed calculated at the
height above ground of the surface centroid, m·s−1; A is the surface area of the surface,
m2; and Rf is the surface roughness multiplier, which is based on the ASHRAE graph of
surface conductance, as shown in Table 3.

hin,r = ε·σ·
(

T2
in,s + T2

in.air

)
(Tin,s + Tin,air) (7)

hout,r = ε·σ·
(

T2
out,s + T2

out.air

)
(Tout,s + Tout,air) (8)
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where σ is the Stefan–Boltzmann constant; ε are the hemispherical emissivities of the
surfaces bounding the airspace; Tin,s and Tin,air are the internal wall surface temperature
and air temperature; Tout,s and Tout,air are the external wall surface temperature and air
temperature. For comparative studies on a typical day with constant SHTCs, the values
at the external surface were 23 W·m−2·◦C−1 in winter and 19 W·m−2·◦C−1 in summer.
The value at the internal surface was set at 8.7 W·m−2·◦C−1 for both typical days. For
annual cumulative heating and cooling load comparisons with constant SHTCs, the values
at the external surface were 23 and 19 W·m−2·◦C−1, respectively. The value at the internal
surface was set at 8.7 W·m−2·◦C−1 all year-round. All of the settings above were selected
according to the Code for thermal design of the civil building (GB 50176-2016). The
conduction transfer function (CTF) algorithm was employed to solve the heat transfer in
building envelopes, as defined in GB 50176-2016. According to the engineering reference
for EnergyPlus [39], the time step was selected as 1 h. Weather data comprised the typical
meteorological year (TMY) integrated with EnergyPlus [40]. The typical day was 21 January
in winter (the indoor temperature was 18 ◦C for calculations) and 21 July in summer (the
indoor temperature was 26 ◦C for calculations). For the annual cumulative heating and
cooling load comparisons, the indoor temperatures for calculations were 18 ◦C and 26 ◦C,
respectively. The hourly occupancy rate, lighting power density, and equipment power
density were 15 W/m2, air change rate were 0.7 ach, according to related standards.

Table 3. Surface roughness multipliers.

Roughness Rf Example

Very rough 2.17 Stucco
Rough 1.67 Brick

Medium rough 1.52 Concrete
Medium smooth 1.13 Clean pine

Smooth 1.11 Smooth plaster
Very smooth 1.00 Glass

The calculation formula of the envelope U-values was as follows:

UVHTC =
1

1
hin

+ ∑
(

d
λ

)
+ 1

hout

(9)

UCHTC,W =
1

1
8.7 + 1

23 + ∑
(

d
λ

) (10)

UCHTC,S =
1

1
8.7 + 1

19 + ∑
(

d
λ

) (11)

where UVHTC, UCHTC,W and UCHTC,S are the envelope U-values in the variable HTC model,
constant HTC model in winter and constant HTC model in summer respectively; d is the
thickness of the corresponding building material, λ is the thermal conductivity.

2.3. Climate Analysis

According to the “General Principles of Civil Building Design”, the five cities selected
for investigation from the severely cold zone and cold zone were Mohe, Urumqi, Beijing,
Xi’an, and Lhasa. The locations and annual average temperature and humidity values are
shown in Figure 5. Xi’an, Beijing, and Lhasa are located in the cold zone. Xi’an and Beijing
have similar climate characteristics, except for differences in the cold and hot temperatures.
Lhasa is located on the Tibetan Plateau at an altitude of more than 3000 m, with abundant
sunshine, intense solar radiation, and comfortable summers. The calculation of the heat
load demand was mainly considered in the winter. Mohe and Urumqi are located in the
severely cold zone, where the daily temperature range and annual temperature range are
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relatively large. Urumqi is cold and dry, and Mohe is located in a high latitude region. The
significant temperature differences greatly affected the cold and heat load calculations.
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3. Results and Discussion

This study investigated the building hourly load behavior on a typical day, daily
cumulative load behavior, and corrections of the annual cumulative load for different
SHTCs, shape factors, and locations.

3.1. Hourly Load Behavior on a Typical Day

The building model with ϕ = 0.49 for Xi’an in the cold zone in China was selected as
an example. The hourly load behavior with different internal SHTCs on a typical day is
illustrated in Figure 6. Different SHTCs at the internal surface are presented in Figure 6
for reference. For a typical day in winter and the selected building, the trend in the hourly
heating load was consistent with that in the SHTCs. In particular, the hourly heating load
tended to decrease from 6:00 and it decreased to 0 at 8:00. The value then remained at
0 until 20:00 because the running periods for lighting and electrical equipment were set
from 7:00 to 19:00, as described in previous studies, which was equivalent to an internal
heat source that could release heat to the indoor environment. The heat was released after
19:00 to reduce the heating load due to heat charge and discharge effects by the building
envelopes. Therefore, the heating load exhibited a downward trend or it even decreased to
0 from 7:00 to 19:00. The maximum relative deviation was 128.7% at 1:00 and the average
deviation was 52.0%. For a typical day in summer and the selected building, the trend
in the hourly heating load also remained constant with different SHTCs (see Figure 6b).
The deviations between the hourly cooling loads with different SHTCs were much smaller
(average relative deviation = 3.2%) than those for a typical winter day. At 20:00, the hourly
cooling load had a maximum deviation of 15.0%.

The hourly load behavior with different external SHTCs on a typical day is illustrated
in Figure 7. The hourly heating load on a typical day in winter for the selected room
calculated using the TARP model was lower than the constant SHTCs for the whole day
(the maximum deviation of 51.9% occurred at 1:00) because of low heat losses in the winter
due to low SHTCs. For a typical day in summer, the results were similar to those presented
in Figure 6b. However, the differences in the hourly cooling load on a typical summer day
were much lower than those in the hourly heating load with different SHTCs. Thus, the
effects of SHTCs on the hourly heating load were more significant than those on the hourly
cooling load.

Finally, the hourly load behavior was examined with different internal and external
SHTCs on a typical day, as shown in Figure 8. The results presented in Figure 8 comprise
the superposition of Figures 6 and 7. For a typical day in winter, the hourly heating load
was much larger with the TARP model than that with constant values. The maximum
deviation of 110.0% occurred at 20:00. For a typical day in summer, the results were similar
to those in other severely cold and cold climate zones in China under different calculation
conditions. The heating load generally attracted more attention for Xi’an in China. In
addition, the study methods could be duplicated for other selected cities. Therefore, the
daily load behavior was examined with different SHTCs on a typical day.
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3.2. Daily Cumulative Load Behavior on a Typical Day

The effects of different shape factors and locations on the daily cumulative loads of
whole buildings were studied. The relative deviations in the daily cumulative load with
TARP-based internal SHTCs and constant SHTCs are illustrated in Figure 9a. For a typical
day in winter, the effects of SHTCs on the daily cumulative load behavior were moderate
in all cities except Lhasa. For ϕ = 0.49, a relative deviation of 60.3% was observed in Lhasa.
Among all of the other cities, the largest relative deviation occurred in Xi’an, with a value
of 16.6%. For ϕ = 0.29, the relative deviation was lower than 12.4% in all other cities, which
was very different from the result for Lhasa. For a typical day in summer, relatively large
relative deviations in the daily cumulative load were observed in Lhasa and Urumqi for
ϕ = 0.49, i.e., 30.9% and 23.1%, respectively. For all of the other cities, the relative deviation
was lower than 20%. For ϕ = 0.29, a relative deviation lower than 12.1% was observed in
all cities. In most conditions, the relative deviation increased as the shape factor increased.

The relative deviations in the daily cumulative load results with TARP-based external
SHTCs and constant SHTCs are shown in Figure 9b. A relatively significant difference was
observed in Lhasa for both shape factors (42.7% and 35.9% on a typical winter day, and
26.8% and 11.3% on a typical summer day). In other cities, the deviations between the
different external SHTCs for cumulative heating and cooling loads were lower than 15%
on a typical day. A comparison of Figure 9a,b shows that the internal SHTCs had a greater
influence than the external SHTCs.

The relative deviations in the daily cumulative load results with TARP-based internal
and external SHTCs and constant SHTCs are shown in Figure 9c. The results demonstrate
the comprehensive effects of dynamically changing the SHTCs on two sides. For a typical
day in winter, the maximum relative deviation of −20.9% was observed at Lhasa with
ϕ = 0.29. However, for a typical summer day, the absolute value of the relative deviation in
Xi’an and Beijing was lower than 3.0%. Thus, for these cities, selecting different SHTCs had
little influence on the cumulative heating load results on a typical summer day. However,
for the other three cities, the differences could not be ignored at ϕ = 0.49, where the relative
deviations were larger than 20%.

Boxplots showing the relative deviations in the daily cumulative load on a typical day
with different SHTCs are shown in Figure 10. According to the results presented above
for the cumulative heating and cooling load on a typical day, the relative deviation was
influenced by different climate conditions and building shape factors. When dynamic
internal SHTCs were employed, the relative deviation with ϕ = 0.49 was larger than the
results obtained with ϕ = 0.29 for the selected cities. However, the results were reversed
for the external SHTCs. The comprehensive effect was integrated based on the internal and
external sides, and it was affected more by the side with the larger relative deviation.

3.3. Correction of Annual Cumulative Load

Based on the daily cumulative load behaviors obtained using different SHTCs, the
annual cumulative heating and cooling load corrections were determined. The annual
cumulative loads with various internal and external SHTCs are illustrated in Figure 11. The
annual cumulative loads were mainly determined by the daily cumulative load results on
a typical day. However, the annual cumulative loads were affected mainly by the climate
conditions during transition seasons. Therefore, the deviations between the internal and
external sides, two different shape factors, and cooling and heating loads are shown in
Figure 11.
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Boxplots representing the relative deviations in the annual cumulative heating and
cooling loads with different SHTCs are shown in Figure 12. The deviations in the heating
loads were considerable in Xi’an, Beijing, and Lhasa. The relative deviation even ranged
from 41.5% to 15.0% because Lhasa is located on the Tibetan Plateau. The traditional
approach for predicting the building cooling load using constant SHTCs was not accurate,
especially in Lhasa and Mohe because Lhasa is located on the Tibetan Plateau and Mohe is
at the highest latitude.
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3.4. Correction of Annual Cumulative Load

The current systems are based on constant SHTCs but the actual situation is closer
to the TARP model. Therefore, it is useful to obtain the actual deviation values according
to the different SHTCs for early-stage office building design. Furthermore, in the current
trade-off option for building energy efficiency, the assessment is based on comparing the
actual annual energy consumption and the reference building models. Therefore, correction
is also conducted based on the annual building load.

The annual building load (Q) was carefully compared under the two conditions with
TARP-based SHTCs and the current methods in the national standard (Design standard for
energy efficiency of public buildings (GB 50189-2015)), as shown in Figure 13. The relative
deviation was less than 5% under the two different shape factors for Mohe in a severely
cold zone (Figure 13). Thus, correction is not necessary for actual engineering applications
in areas where the climate is similar to Mohe. In Xi’an, Beijing, and Urumqi, the relative
deviations with shape factors of 0.49 and 0.29 were around 10% and 5%, respectively. Thus,
the correction factor should be considered for these cities to obtain more accurate results.
In Lhasa, the relative factors were 67.5% and 25.3% with shape factors of 0.49 and 0.29,
respectively. Thus, the results should be corrected and the results obtained with constant
SHTCs are no longer applicable in areas where the climate is similar to Lhasa.
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The correction is based on the current building energy efficiency systems in China.
The steady-state method and constant SHTCs are employed according to the specific
engineering needs and computational conditions. Therefore, the results obtained with
constant SHTCs should be corrected with the correction factor to increase their accuracy.
The demand for early-stage designs of energy-efficient office buildings has been increasing
recently. Thus, improvements can be made by applying unsteady-state methods and
dynamically changing SHTCs. The quantitative differences in the results obtained with
different SHTCs were determined in the present study, thereby providing an essential
reference for developer and publishers of standards for building energy efficiency.

4. Conclusions

In the present study, a building load-based trade-off option was established for
energy-efficient building design to address the limitations of the current building en-
ergy consumption-based trade-off option. A scientific research method was applied to
determine the building energy efficiency and building simulations were conducted, where
the actual building energy efficiency situation in China was adequately considered. Accord-
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ing to the related standards, two representative buildings were considered to investigate
the hourly load behavior on a typical day, daily cumulative load on a typical day, and
annual cumulative loads with different SHTCs. The main conclusions obtained in this
study are as follows.

(1) The hourly building loads on a typical day determined with the TARP model clearly
differed from those obtained with the traditional approach. In most conditions, the
relative deviation increased as the shape factor increased.

(2) Corrections were obtained for the annual cumulative loads based on the relative
deviations between the results produced by the TARP model and with the traditional
constant SHTCs. The correction factors were determined as 67.5% and 25.3% for
Lhasa with ϕ = 0.49 and 0.29, respectively. In Xi’an and Beijing, the correction factors
determined with ϕ = 0.49 were 13.3% and 12.0%, respectively. The correction factors
were lower than 5.0% for other conditions, thereby indicating that no corrections are
required.

(3) The SHTCs and shape factors are readily available types of information that can be
used for decision making in the early stages of building design, and they will clearly
influence the energy performance of a building through the design stage.
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