
SoftwareX 16 (2021) 100863

a

A
b

1
c

o
t
(
o
B

a
d
g

h
2

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

Imaging framework: An interoperable and extendable connector for
image-related Java frameworks
Christoph Praschl a,∗, Andreas Pointner a, David Baumgartner c, Gerald Adam Zwettler a,b

Research Group Advanced Information Systems and Technology, Research and Development Department, University of Applied Sciences Upper
ustria, Softwarepark 11, 4232 Hagenberg i. M., Austria
Department of Software Engineering, School of Informatics, Communications and Media, University of Applied Sciences Upper Austria, Softwarepark
1, 4232 Hagenberg i. M., Austria
Department of Computer Science, Norwegian University of Science and Technology, Høgskoleringen 1, Trondheim, Norway

a r t i c l e i n f o

Article history:
Received 7 July 2021
Received in revised form22 September 2021
Accepted 19 October 2021

Keywords:
Java
Image processing
Computer vision
Interoperability and extendability

a b s t r a c t

The number of computer vision and image processing tasks has increased during the last years.
Although Python is most of the time the first choice in this area, there are situations, where the
utilization of another programming language such as Java should be preferred. For this reason,
multiple Java based frameworks as e.g. OpenIMAJ, ND4J or multiple OpenCV wrappers are available.
Unfortunately, these frameworks are not interoperable at all. In this work, the open-source Imaging
Framework is introduced to solve exactly this problem. The project features a concept for combining
multiple frameworks and provides an interoperable and extendable foundation to 9 image-related
projects with 10 different image representations in Java.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

Code metadata

Current code version 1.2.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-21-00126
Legal Code License Mozilla Public License, v. 2.0
Code versioning system used GIT
Software code languages, tools, and services used Java
Compilation requirements, operating environments & dependencies JDK 11 or newer
If available Link to developer documentation/manual https://fhooeaist.github.io/imaging/
Support email for questions contact@aist.science

1. Motivation and significance

This work introduces a framework that encourages the inter-
perability of Java frameworks in the context of image-related
asks. With the steady progress in the field of machine learning
ML), the number of computer vision (CV) applications based
n methods as convolutional neural networks are boosted, too.
esides, the importance of image processing (IP) tasks such as

∗ Corresponding author.
E-mail addresses: christoph.praschl@fh-hagenberg.at (Christoph Praschl),

ndreas.pointner@fh-hagenberg.at (Andreas Pointner),
avid.baumgartner@ntnu.no (David Baumgartner),
erald.zwettler@fh-hagenberg.at (G.A. Zwettler).

pre-processing or data augmentation has grown significantly in
the last years. Hand in hand with this, also the quantity of
frameworks that are used in this context has rose and existing
frameworks have been extended continuously. Especially, frame-
works such as Tensorflow [1], OpenCV [2], PyTorch [3] and similar
ones are based on the programming languages Python and C++
and have gained strongly in popularity. In particular, Python has
grown more and more in this area in the recent years [4]. But this
domain is not limited to these programming languages and the
number of frameworks in other languages as e.g. Java has also
expanded steadily.

For this reason, image processing tasks among Python and Java
were compared using plain implementations without additional
frameworks as well as framework based comparisons [5]. These
ttps://doi.org/10.1016/j.softx.2021.100863
352-7110/© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.softx.2021.100863
http://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2021.100863&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-21-00126
https://fhooeaist.github.io/imaging/
mailto:contact@aist.science
mailto:christoph.praschl@fh-hagenberg.at
mailto:andreas.pointner@fh-hagenberg.at
mailto:david.baumgartner@ntnu.no
mailto:gerald.zwettler@fh-hagenberg.at
https://doi.org/10.1016/j.softx.2021.100863
http://creativecommons.org/licenses/by/4.0/


Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863

c
a
t
a
t
N
f
f
a
[
a
b
a
a
d
b
t
i
l
a
C
c
c

w
o
O
w
o
u
m
c
I
f

b
p
f
a
t
m
s
i
e
r
m
t
t
i
o
m
i
f

2

u
c
o
i
d
u
I
i
t
t

omparisons show that Python itself is not really suitable for this
rea of application without using additional frameworks, due to
he high performance impact of basic control structures like loops
s investigated by Rui et al. [6]. This performance impact is also
he motivation of Kwan Lam et al. [7] for the creation of the
umba Just-In-Time compiler for Python. Most common Python
rameworks in the discussed area of application are based on a
oundation written in C++, which also allows implementing GPU-
ccelerated methods due to the usage of native libraries as CUDA
8] or OpenCL [9]. But C++ comes with a trade-off as programs
nd libraries implemented in this programming language have to
e built in reference to the target platform and are for this not
lways available or suitable for certain applications. This is also
transitive problem for Python, if such frameworks are used. In
ifference to that, Java focuses on its platform independence. The
efore mentioned comparison of Java and Python also showed,
hat Java is highly suitable with only a small loss of performance
n domains, where e.g. GPU support is not required, certain C++
ibraries are not available or where the target application is
lready based on Java. It also showed that the usage of a native
++ library as OpenCV comes with a lower overhead in Java
ompared to Python, at least in the presented use case of applying
onvolutional filters.
Based on this situation you can use different pure Java frame-

orks for ML-, CV- or IP-related tasks as ImageJ [10], Nd4j [11]
r OpenIMAJ [12], or native wrappers of popular C++ libraries as
penCV, Tensorflow or Tesseract [13]. While many Python frame-
orks/wrappers as OpenCV, Tensorflow or PyTorch are based on
r at least support the library numpy [14], the Java equivalents
se all their own foundation and domain classes. Like this, the
entioned Java frameworks are not compatible and cannot be
ombined in a comprehensive way. This is the motivation of the
maging Framework: an interoperable and extendable connector
or image-related Java frameworks.

To achieve this interoperability, the Imaging Framework is
ased on a module structure with the APImodule as central com-
onent, cf. Fig. 1. Based on this main module, additional internal
eatures as basic image processing or mesh related functions
re provided via the Core and the Mesh modules. In addition
o these two internal modules, there are multiple connection
odules used to integrate external frameworks. These exten-
ions provide framework specific implementations of the most
mportant interfaces defined in the API module and that way
stablish interchangeable objects, respectively images and image
elated functions. The project is already used in various do-
ains of vision-based analytics. One example is the utilization of

he framework in the context of image-based determination of
he orientation of augmented reality devices in outdoor scenar-
os [15]. Next to that, the project is used for the pose estimation
f human bodies [16], as well as the transformation of human
ask [17]. In addition to these use cases, the Imaging Framework

s also used for the 3D reconstruction of building plans [18], and
or automated person identification in online banking [19].

. Software description

The Imaging Framework is a free Java framework published
nder the Mozilla Public License Version 2.0 [20] and is open for
ontributions on GitHub [21]. It is available via Apache Maven [22]
n Maven Central [23] and can like this be easily integrated
nto any Maven based Java application. A general framework
ocumentation can be found in [24], while the Java class doc-
mentation can be found in [25]. The original purpose of the
maging Framework was to combine image-processing tasks us-
ng OpenCV in Java with functionalities of Microsoft’s Cogni-
ive Services [26] for face recognition and Tesseract [13] for op-
ical character recognition. Since then, the number of supported

Fig. 1. Module structure of the imaging project with the API module as central
component and additional modules building up on that.

frameworks has grown to 9 frameworks and 10 image repre-
sentations, that can be used interchangeable, cf. Fig. 1. At the
time of writing, the Imaging Framework supports interoperability
between the following frameworks:

1. OpenCV
2. ImageJ
3. OpenIMAJ
4. ND4J
5. PDFBox [27]

6. Microsoft Cognitive Ser-
vices

7. Tesseract
8. Java AWT [28]
9. JavaFX [29]

2.1. Software architecture

The Imaging Framework is built around one generic core in-
terface of the API module called ImageWrapper, see Fig. 2. This
interface wraps the most important information related to an 2D
image: (I) the width, (II) the height, (III) the color model with
the associated number of channels and (IV) the raw image itself.
To avoid memory leaks, especially with natively allocated objects,
the ImageWrapper interface extends Java’s Autocloseable and
like that is usable in try-with-resources blocks.

In the context of region of interests, the Imaging Framework
provides another domain class, that is called SubImageWrapper
and represents a spatial restricted view of a referenced source
ImageWrapper. Any read or write access to such a region of
interest is propagated to the originating ImageWrapper. The idea
of the ImageWrapper interface is to provide framework specific
implementations, which can be used interoperable due to the
interface. To reinforce this programming paradigm, implementa-
tions of the interface are package protected and are only available
via an associated ImageFactory. For this reason, the ImageFac-
tory interface provides multiple functionalities to create a new
image based on different parameters. The actual ImageFactory
implementations are in turn package protected. To be still able to
use an ImageFactory for a given generic image type, its imple-
mentations are registered to Java’s ServiceLoader [30] and can
be accessed via the central ImageFactoryFactory class. This
encapsulation allows to keep an user of the framework away from
implementation details, since only implementations against the
interfaces are required and accessible.

Due to the strict separation of the architecture, an image-
related framework can be connected to the Imaging Framework
and, like that, achieving interoperability to the other supported
frameworks with only three steps. To do so, an implementation
of the ImageWrapper interface, respectively an extension of
the AbstractImageWrapper implementation, must be created
in a first step. For this, you have to implement the following
five methods according to your image representation: (I) getH-
eight(), (II) getWidth(), (III) getValue(), (IV) setValue()
and (V) getSupportedType(). Next to the ImageWrapper, you
have to provide an ImageFactory implementation that allows
2



Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863

I
e
a

t
y

m
t
m
u
t
i
u
a
l
c

a
u
g
P
w

s
c
c
t
c
o
p

Fig. 2. Base classes and interfaces of the imaging project build around the ImageWrapper interface. Blue entities represent the image-related core classes of the
maging project, while green ones are factories to create those. In addition to that yellow entities are functions and consumers to interact with images. The gray
ntities represent important Java base interfaces. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this
rticle.)

o create images of your representation in a second step. Finally,
ou have to register your factory to Java’s ServiceLoader.
The Imaging Framework also provides image-related imple-

entations for Java’s Function and BiConsumer interfaces. On
he one hand the ImageFunction interface is the base for image
anipulating tasks in a functional-like programming style that
ses a given image to create a new one, on the other hand
he GenericImageConsumer can be used to manipulate a given
mage based on an additional object. While the first variant can be
tilized to implement filters like a Gaussian blur where the source
s well as the result image are required in subsequent steps, the
ast one can for example be used to draw geometric figures as a
ircle onto a given image.
Next to the image-related classes, the Imaging Framework

lso provides a basic geometric domain architecture, that is
sed for different aspects of the framework, cf. Fig. 3. These
eometric classes are built around the central AbstractJava-
oint class. This base class is extended by JavaPoint2D as
ell as, JavaPoint3D and is used to represent any two- or

three-dimensional point. Based on this spatial information, dif-
ferent abstract collection classes are used to represent e.g. an
unsorted point cloud using AbstractJavaPointCloud, or a
orted point sequence in the form of a polyline or polygon, that is
alled AbstractJavaPolygon. Next to these first two abstract
lasses, there is also the abstract representation of a line be-
ween two points called AbstractJavaLine. The four abstract
lasses in the geometric domain are extended by different two-
r three-dimensional implementations. These classes follow a
rogramming paradigm of rich and unmodifiable domain classes.

This means that the implementations offer, multiple functionali-
ties and cannot be manipulated after construction, but require the
creation of new objects on value changes. As example for the rich
class paradigm, the two-dimensional line implementation allows
to calculate its length or the intersection with another line and
will always consist of the same two points due to its unmodifiable
characteristic. In the case that one of the associated points should
be changed, a new line object has to be created containing the
new point and the remaining old point.

2.2. Software functionalities

Next to the meta information, the ImageWrapper interface
also provides common functionality to image related tasks as
getting and setting a pixel’s value at a given position, or applying
a pixel based read or write function. These functions are the
fundament of the interchangeability of images between different
frameworks via the Imaging Framework and are used to create a
deep copy-mechanism as well as pixel manipulation functional-
ities. This copy functionality is implemented with two methods
(I) createCopy() and (II) copyTo() of the ImageWrapper in-
terface. This is also the basis of the GenericImageFunction
that extends the interoperability of the Imaging Framework and
allows to apply a function for an image of type A, using a tem-
porary image of type B if required. The wrapped function results
in an image of type C , which is cast to type D if necessary, see
Fig. 4. While the GenericImageFunction comes with the big
advantage according to the usability and the interoperability of
different frameworks, it comes with the trade-of, that images are
3



Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863

A
b
r

p
i
O
I
a
i
b
f

v
p
t
s
o
c
T
i
i
a

3

i
t
t
s
a
s
a
g
o
T
i

Fig. 3. Geometric domain architecture of the imaging project used to represent different geometric forms. The architecture is build around the central
bstractJavaPoint class (blue) and other abstract classes building on that (green). There are multiple two- and three-dimensional implementations of the abstract
ase classes, which are used at different positions of the Imaging Framework. (For interpretation of the references to color in this figure legend, the reader is
eferred to the web version of this article.)

ixel-wise cast. So in the worst case with neither a matching
nput, nor a matching output type, there is a runtime overhead of
(2×w×h) in reference to the image’s width w and its height h.
n extreme cases, where many functions of another framework
re used, the recommended process consists of (I) casting the
mage once, applying the functions and finally casting the result
ack to the expected target or (II) wrapping multiple, consecutive
unction calls inside the GenericImageFunction, cf. Listing 2.

Based on the described fundamentals, the core module pro-
ides image processing functionalities as different high and low
ass filters, as well as arithmetic operators for e.g. adding, sub-
racting or multiplying images. Amongst those operators also
ome basic functionalities are contained as interpolation meth-
ds, fitness functions, segmentation methods or e.g. drawing
onsumers. These implementations are part of the Core module.
he reason for this module, is to provide some basic functionality
n cases, where mostly GUI related tasks and only some basic
mage processing functionalities are required in an application
nd other dependencies would lead to an unnecessary overhead.

. Illustrative examples

In a first example [31], two typical base steps using the Imag-
ng Framework are shown, cf. Listing 1. For this, in a first step
he ImageFactoryFactory is used to get an actual ImageFac-
ory for a given type, namely short[][][]. This array is the
implest representation in the Imaging Framework for an image
nd uses the first array dimension for the image’s columns, the
econd dimension for the rows and the last dimension for the
ctual pixel information in the form of a channel array. Using the
etImage() function allows to create such an image with a size
f 100 × 100 pixels and a grayscale channel type as color model.
he so created image is used as input for an image consumer
n a second step using DrawCircle, which allows to decorate

a given image with a circle based on a position represented as
JavaPoint2D using the accept()method. The manner how the
circle is drawn in terms of e.g. the color is controlled via different
set-methods.

Listing 1: Simple example for creating a new grayscale image
with 100x100px, onto which a white circle is drawn at the
position (50,50) using a DrawCircle consumer.

1 /* (1) Create a new short-array based
image */

2 try(var image = ImageFactoryFactory
3 .getImageFactory(short[][][].

class)
4 .getImage(100, 100, ChannelType

.GREYSCALE)){
5

6 /* (2) Draw a circle on the image
*/

7 var draw = new DrawCircle <short
[][][]>();

8 draw.setRadius(3);
9 draw.setColor(new double[]{255});

10 draw.accept(image, new JavaPoint2D
(50, 50));

11 }

The second example illustrates the interoperability of the
Imaging project based on the GenericImageFunction, cf. List-
ing 2. For this, a random image is created in a first step. This
process is comparable to the first step of the previous example,
but uses the getRandomImage() function instead of getIm-
age(). This method is provided primarily for testing and allows
to create a randomly initialized image within a given range,
in the presented case with 8-bit unsigned grayscale values in
the range of [0; 255]. Note the @Cleanup annotation of Project
4



Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863

L
w
t
t
c
b
f
G

s

ombok [32], that is used to avoid boilerplate code due to try-
ith-resources-blocks, as shown in the first example. It allows
o ensure the memory deallocation of the wrapped object at
he end of the scope. In a second step, the actual function is
reated using a Canny edge detector and a subsequent dilation,
oth implemented with the AistCV [33] Java build of the OpenCV
ramework. This function is wrapped in the third step using the
enericImageFunction. When creating the GenericImage-

Function object, the interim image type of the wrapped function
using OpenCV’s Mat class and the expected result type using a
three-dimensional double array are defined. In the fourth and
final step of the example, the wrapped function is applied, that
is implemented using OpenCV, on an image represented with
OpenIMAJ’s FImage class. The so created dilated edge represen-
tation of the input image is cast to the expected double[][][]
representation by the GenericImageFunction object.

Listing 2: Example for the interoperability of the Imaging Frame-
work using a Canny edge detection together with a image dilation
implemented in OpenCV, that is applied on an image created with
OpenIMAJ and resulting in a image represented as double array.

12 /* (1) Create new OpenIMAJ image */
13 Random rand = new Random(768457);
14 @lombok.Cleanup
15 var input = ImageFactoryFactory
16 .getImageFactory(FImage.class)
17 .getRandomImage(100, 100,

ChannelType.GREYSCALE , rand
, 0, 255, false);

18 /* (2) Combine multiple OpenCV function
calls in one lambda function using
a Canny edge detector and an image
dilation */

19 ImageFunction <Mat, Mat> f = i -> {
20 var image = i.getImage();
21 var res = new Mat();
22 // apply canny edge detector
23 Imgproc.Canny(image, res, 15, 125);
24 // prepare dilation
25 var element = Imgproc.

getStructuringElement(
26 Imgproc.CV_SHAPE_RECT ,
27 new Size(3,3),
28 new Point(1, 1)
29 );
30 // apply dilation
31 Imgproc.dilate(res, res, element);
32 return ImageFactoryFactory
33 .getImageFactory(Mat.class)
34 .getImage(i.getHeight(), i.

getWidth(),
35 ChannelType.BINARY,

res);
36 };
37 /* (3) Wrap the function in a

GenericImageFunction */
38 var function = new GenericImageFunction

<FImage, double[][][], Mat, Mat>(f,
Mat.class, double[][][].class);

39 /* (4) Apply the function on a non-
OpenCV image and create an image
represented as double-array */

40 @lombok.Cleanup
41 var thresholdResult = function.apply(

input);

4. Impact

Currently, the Imaging Framework supports images repre-
ented as three-dimensional short or double arrays, as well

as Java AWT’s BufferedImage, JavaFX’s WriteableImage,
OpenCV’s Mat, ND4J’s INDArray, OpenIMAJ’s FImage and MB-
FIMage, as well as ImageJ’s ImageProcessor and ImageStack.
For this, it allows to use the mentioned frameworks completely
interoperable and can be easily extended with further ones. Based
on this characteristic, the Imaging Framework represents a step
towards closing the gap between image-related Java frameworks,
which originates in the situation, that most of the mentioned
frameworks provide a partially overlapping functionality, but fo-
cus on certain areas of application without any common basis.
The Imaging Framework allows picking out the required features
from certain frameworks and to combine those to create more
advanced functionalities in an easy and comprehensive way.

Actually, the Imaging Framework allows creating a GUI ap-
plication using e.g. AWT, Swing, JavaFX or even ImageJ and to
add image-related methods using additional image processing
frameworks such as OpenCV. This is achieved due to the sup-
port of the image representations of the mentioned frameworks
within the imaging environment. Like this, any of the named
GUI frameworks can be used for frontend related tasks and
any supported image processing framework can be used for
image-related backend tasks.

Next to that, the Imaging Framework supports the combi-
nation of computer vision tasks with classic image processing
approaches. While, for example ND4J focuses on the utilization
of deep learning models such as neural networks, it does not
provide advanced image processing methods. To overcome this
limitation, frameworks as OpenCV or OpenIMAJ can be used. The
gap between these frameworks is in turn closed by the presented
Imaging Framework.

Due to the support of ND4J, the Imaging Framework does
not only close the gap between Java and computer vision tasks,
but also between GPU acceleration and image-related Java based
applications. Since ND4J comes with CUDA support and is one of
the connected frameworks, it also increases the interoperability
according to the supported platforms and can have a huge impact
according to the performance of many image-related tasks. Next
to ND4J, there are also Java based wrappers for OpenCV like
JavaCV [34], that come with GPU support and can be easily added
to the imaging environment.

Furthermore, due to the provided interfaces and service infras-
tructure the Imaging Framework allows to be easily extended by
additional frameworks, requiring only a few steps, as described
in Section 2.1. Like this, it is possible to increase the interop-
erability over further frameworks, by integrating the associated
image representations using an individual implementation of the
ImageWrapper and ImageFactory interfaces.

5. Conclusions and outlook

In this work, the Imaging Framework is presented, an in-
teroperable and extendable connector for image-related Java
frameworks. It was developed to close the gap between multi-
ple Java frameworks related to image processing and computer
vision tasks. The focus of the project is to provide a concept on
combining multiple frameworks without requiring any knowl-
edge in terms of differences of the used image representations,
and to provide an interoperable mechanism across framework
boundaries.

Due to the increasing number of image-related tasks in the
context of image processing and especially computer vision in
the previous years, our framework reaches a broad commu-
nity. Although Python is most of the time the first choice in
this area of application, there are situations, where developers
and researchers can profit from the advantages of executing
image processing tasks in Java. To our knowledge, there is no
comparable project available in the Java ecosystem.
5



Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863

i
a
t
i
a

C

Fig. 4. Sequence of a generic image function with a copy-based casting of the image if required before and after applying the wrapped function.

The future development of the imaging project is dedicated to
ncreasing the number of supported frameworks as Tensorflow
nd JavaCV amongst others. In addition to that, it is also planned
o increase the number of core functionalities and to further
mprove the code quality according to features, bugs and test
utomation.

RediT authorship contribution statement

Christoph Praschl: Conceptualization, Methodology, Software,
Writing – original draft, Writing – review & editing. Andreas
Pointner: Conceptualization, Methodology, Software, Writing
– review & editing. David Baumgartner: Conceptualization,
Methodology, Software, Writing – review & editing. Gerald Adam
Zwettler: Conceptualization, Supervision, Writing – review &
editing, Project administration, Funding acquisition.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared
to influence the work reported in this paper.

Funding

This research did not receive any specific grant from funding
agencies in the public, commercial, or not-for-profit sectors. It
was carried out to exploit synergies from the research projects
Guide (FFG project number 859431), Drive4Knowledge (FFG
project number 862975), PASS (FFG project number 872928) and
TrueSize (FFG project number 872105) funded by the Austrian
Research Promotion Agency FFG.

References

[1] Abadi M, Barham P, Chen J, Chen Z, Davis A, Dean J, et al. Tensorflow: A
system for large-scale machine learning. In: 12th USENIX symposium on
operating systems design and implementation. 2016. p. 265–83.

[2] Bradski G, Kaehler A. Learning OpenCV: Computer vision with the OpenCV
library. " O’Reilly Media, Inc."; 2008.

[3] Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, et al. Pytorch:
An imperative style, high-performance deep learning library. 2019, arXiv
preprint arXiv:1912.01703.

[4] Raschka S, Patterson J, Nolet C. Machine learning in python: Main de-
velopments and technology trends in data science, machine learning, and
artificial intelligence. Information 2020;11:193. http://dx.doi.org/10.3390/
info11040193.

[5] Praschl C, Pointner A, Baumgartner D. FHOOEAIST/coffee-burns-snake:
1.0.0. 2021, http://dx.doi.org/10.5281/zenodo.4980088.

[6] Pereira R, Couto M, Ribeiro F, Rua R, Cunha J, Fernandes JaP, et al.
Energy efficiency across programming languages: How do energy, time,
and memory relate? In: Proceedings of the 10th ACM SIGPLAN interna-
tional conference on software language engineering. New York, NY, USA:
Association for Computing Machinery; 2017, p. 256–67. http://dx.doi.org/
10.1145/3136014.3136031.

[7] Lam SK, Pitrou A, Seibert S. Numba: A LLVM-based python JIT compiler. In:
Proceedings of the second workshop on the LLVM compiler infrastructure
in HPC. New York, NY, USA: Association for Computing Machinery; 2015,
p. 1–6. http://dx.doi.org/10.1145/2833157.2833162.

[8] Sanders J, Kandrot E. CUDA by example: An introduction to general-
purpose GPU programming. Addison-Wesley Professional; 2010.

[9] Stone JE, Gohara D, Shi G. OpenCL: A parallel programming standard for
heterogeneous computing systems. Comput Sci Eng 2010;12(3):66.

[10] Rueden CT, Schindelin J, Hiner MC, DeZonia BE, Walter AE, Arena ET, et
al. ImageJ2: ImageJ for the next generation of scientific image data. BMC
Bioinform 2017;18(1). http://dx.doi.org/10.1186/s12859-017-1934-z.

[11] Team EDD. ND4J: Fast, scientific and numerical computing for the JVM.
2016, URL https://github.com/eclipse/deeplearning4j.

[12] Hare JS, Samangooei S, Dupplaw DP. OpenIMAJ and ImageTerrier: Java
libraries and tools for scalable multimedia analysis and indexing of images.
In: Proceedings of the 19th ACM international conference on multimedia.
New York, NY, USA: ACM; 2011, p. 691–4. http://dx.doi.org/10.1145/
2072298.2072421.

[13] Smith R. An overview of the tesseract OCR engine. In: Ninth international
conference on document analysis and recognition. vol. 2. IEEE; 2007, p.
629–33.

[14] Oliphant TE. A guide to NumPy. vol. 1. Trelgol Publishing USA; 2006.
[15] Praschl C, Krauss O, Zwettler GA. Enabling outdoor MR capabilities

for head mounted displays: a case study. Int J Simul Process Model
2020;15(6):512–23. http://dx.doi.org/10.1504/IJSPM.2020.112463.

[16] Baumgartner D, Zucali T, Zwettler GA. Hybrid approach for orientation-
estimation of rotating humans in video frames acquired by stationary
monocular camera. In: Computer science research notes. Západočeská
univerzita; 2020, p. 39–47. http://dx.doi.org/10.24132/csrn.2020.3001.5.

[17] Zwettler GA, Praschl C, Baumgartner D, Zucali T, Turk D, Hanreich M, et al.
Three-step alignment approach for fitting a normalized mask of a person
rotating in A-pose or T-pose essential for 3D reconstruction based on 2D
images and CGI derived reference target pose. In: VISIGRAPP (5: VISAPP).
2021, p. 281–92. http://dx.doi.org/10.5220/0010194102810292.

[18] Pointner A, Praschl C, Krauss O, Schuler A, Helm E, Zwettler G. Line
clustering and contour extraction in the context of 2D building plans. In:
Proceedings of the 17th international joint conference on computer vision,
imaging and computer graphics theory and applications. Západočeská
univerzita; 2021, p. 11–20. http://dx.doi.org/10.24132/csrn.2021.3101.2.

[19] Pointner A, Krauss O, Freilinger G, Strieder D, Zwettler G. Model-Based
Image Processing Approaches for Automated Person Identification and
Authentication in Online Banking. In: Conference: 30th European modeling
and simulation symposium. 2018. p. 36–46.

[20] Mozilla. Mozilla public license, version 2.0. 2013, URL https://www.mozilla.
org/en-US/MPL/2.0/, [Accessed 17 June 2021].

[21] Praschl C, Pointner A, Baumgartner D. FHOOEAIST/imaging: 1.2.0.
2021, http://dx.doi.org/10.5281/ZENODO.4541503, URL https://zenodo.org/
record/4541503.

[22] Miller FP, Vandome AF, McBrewster J. Apache Maven. Alpha Press; 2010.
[23] Sonatype, Inc. Maven central repository search. 2021, URL https:

//search.maven.org/search?q=g:%22science.aist.imaging%22, [Accessed 17
June 2021].

[24] Praschl C, Pointner A, Baumgartner D. Imaging – imaging. 2021, URL
https://fhooeaist.github.io/imaging/index.html, [Accessed 17 June 2021].

[25] Praschl C, Pointner A, Baumgartner D. Overview (imaging 1.2.0 API).
2021, URL https://javadoc.io/doc/science.aist.imaging/imaging/latest/index.
html, [Accessed 17 June 2021].

[26] Del Sole A. Introducing microsoft cognitive services. In: Microsoft computer
vision APIs distilled. Springer; 2018, p. 1–4.

[27] Butler S, Gamalielsson J, Lundell B, Brax C, Mattsson A, Gustavsson T, et
al. Maintaining interoperability in open source software: A case study of
the apache PDFBox project. J Syst Softw 2020;159:110452.

[28] Zukowski J. Java AWT reference. O’Reilly Media; 1997.
[29] Chin S, Vos J, Weaver J. Javafx fundamentals. In: The definitive guide to

modern java clients with JavaFX. Springer; 2019, p. 33–80.
6

http://refhub.elsevier.com/S2352-7110(21)00135-7/sb2
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb2
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb2
http://arxiv.org/abs/1912.01703
http://dx.doi.org/10.3390/info11040193
http://dx.doi.org/10.3390/info11040193
http://dx.doi.org/10.3390/info11040193
http://dx.doi.org/10.5281/zenodo.4980088
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/3136014.3136031
http://dx.doi.org/10.1145/2833157.2833162
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb8
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb8
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb8
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb9
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb9
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb9
http://dx.doi.org/10.1186/s12859-017-1934-z
https://github.com/eclipse/deeplearning4j
http://dx.doi.org/10.1145/2072298.2072421
http://dx.doi.org/10.1145/2072298.2072421
http://dx.doi.org/10.1145/2072298.2072421
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb13
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb13
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb13
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb13
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb13
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb14
http://dx.doi.org/10.1504/IJSPM.2020.112463
http://dx.doi.org/10.24132/csrn.2020.3001.5
http://dx.doi.org/10.5220/0010194102810292
http://dx.doi.org/10.24132/csrn.2021.3101.2
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
https://www.mozilla.org/en-US/MPL/2.0/
http://dx.doi.org/10.5281/ZENODO.4541503
https://zenodo.org/record/4541503
https://zenodo.org/record/4541503
https://zenodo.org/record/4541503
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb22
https://search.maven.org/search?q=g:%22science.aist.imaging%22
https://search.maven.org/search?q=g:%22science.aist.imaging%22
https://search.maven.org/search?q=g:%22science.aist.imaging%22
https://fhooeaist.github.io/imaging/index.html
https://javadoc.io/doc/science.aist.imaging/imaging/latest/index.html
https://javadoc.io/doc/science.aist.imaging/imaging/latest/index.html
https://javadoc.io/doc/science.aist.imaging/imaging/latest/index.html
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb26
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb26
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb26
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb27
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb27
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb27
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb27
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb27
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb28
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb29
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb29
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb29


Christoph Praschl, Andreas Pointner, David Baumgartner et al. SoftwareX 16 (2021) 100863
[30] Oracle. ServiceLoader (java SE 9 & JDK 9). 2017, https://docs.oracle.com/
javase/9/docs/api/java/util/ServiceLoader.html,[Accessed 21 June 2021].

[31] Praschl C, Pointner A, Baumgartner D. FHOOEAIST/imaging-paper: 1.0.0.
2021, http://dx.doi.org/10.5281/zenodo.5005652.

[32] Zwitserloot R, Spilker R. Project Lombok. 2016.

[33] Baumgartner D, Praschl C. FHOOEAIST/aistcv: 4.3.0. 2021, http://dx.doi.org/
10.5281/ZENODO.4506232, URL https://zenodo.org/record/4506232.

[34] Audet S. JavaCV: Java interface to OpenCV, FFmpeg, and more. 2018, URL:
https://github.com/bytedeco/javacv, [Accessed on 5 March 2020] Archived
at http://www.webcitation.org/6hZyxW85u.
7

https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
https://docs.oracle.com/javase/9/docs/api/java/util/ServiceLoader.html
http://dx.doi.org/10.5281/zenodo.5005652
http://refhub.elsevier.com/S2352-7110(21)00135-7/sb32
http://dx.doi.org/10.5281/ZENODO.4506232
http://dx.doi.org/10.5281/ZENODO.4506232
http://dx.doi.org/10.5281/ZENODO.4506232
https://zenodo.org/record/4506232
https://github.com/bytedeco/javacv

	Imaging framework: An interoperable and extendable connector for image-related Java frameworks
	Motivation and significance
	Software description
	Software architecture
	Software functionalities

	Illustrative examples
	Impact
	Conclusions and outlook
	CRediT authorship contribution statement
	Declaration of competing interest
	
	References


