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Mathematics Education has at its core a conception of the mathematical performances 
that represent the aspirations of the mathematics classroom and curriculum. These 
performances are constituted through teacher and student participation in the 
activities stimulated by mathematical tasks selected by the teacher for the realization 
of an instructional purpose. In this nexus of activity, intention, interpretation and 
consequence, the mathematical task occupies a central place. This Research Forum 
provides an opportunity to explore and reflect upon the role that mathematical tasks 
play in the achievement of the goals of the international mathematics education 
community. Further, consistent with current curricular and theoretical priorities, the 
agency, attributes and activities of the student are foregrounded in the discussion of 
the instructional use of mathematical tasks. The contributors to this Research Forum 
represent a wide variety of theoretical perspectives and report research undertaken in 
different school systems and different cultures. These different perspectives offer a 
useful exploration of the theme: Mathematical Tasks and the Student. 

RATIONALE 
Attempts to model the complexity of the mathematics classroom have generated 
increased interest in theories capable of accommodating consideration of artifacts1 as 
well as individuals. Theories such as Activity Theory (Engeström, 1987) and 
Distributed Cognition (Hutchins, 1995) foreground the mediational role of artifacts in 
facilitating learning, and locate tasks among those mediating artifacts. 

Mediating artifacts might be mathematics textbooks, digital technologies, as well as tasks 
and problems, [and] language. (Rezat & Strässer, 2012) 

Rezat and Strässer (2012) identify the students’ mathematics-related activity as an 
example of the Vygotskian conception of an instrumental act, where the student’s 
interaction with mathematics is mediated by artifacts, such as mathematical tasks. 
Most importantly, recognizing the function of mathematical tasks as tools for the 
facilitation of student learning leads us to the further recognition that (à la Vygotsky) 
the use of a tool (i.e. a task) fundamentally affects the nature of the facilitated activity 

                                           
1 Either artifact or artefact are acceptable spellings to denote “arte factum” (Latin) as something made 
through the use of skill. We have employed Rezat and Strässer’s (2012) spelling in this proposal, 
which also corresponds to North American usage. 
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(i.e. student learning). Rezat and Strässer (2012) have re-conceptualized the familiar 
didactical triangle (teacher-student-mathematics) as a socio-didactical tetrahedron, 
where the vertices are teacher, student, mathematics and mediating artifacts. This 
reconception of didactical relationships recognizes that the connections represented by 
the sides of the original didactical triangle require mediation. The vehicles of this 
mediation are artifacts, which include everything from textbooks and IT tools to tasks 
and language. Use of the socio-didactical tetrahedron provides us with an important 
tool by which to give recognition to the mediational role of tasks in the teaching and 
learning of mathematics. 
One virtue of the socio-didactical tetrahedron is that it facilitates the separate 
consideration of the triangles forming each face of the tetrahedron and the vertices of 
each of those triangles. In this Research Forum, we focus attention on the task as 
mediating artifact and address the question of how the resultant socio-didactical 
tetrahedron (Fig. 1) might structure our consideration of research into the function of 
tasks in facilitating student learning and into the dynamic between student and task. 

 
Figure 1: The socio-didactical tetrahedron (Rezat & Strässer, 2012) 

To paraphrase Rezat and Strässer (2012, p. 645): Each of the triangular faces of the 
tetrahedron stands for a particular perspective on the role of tasks within mathematics 
education: the didactical role of the teacher is best described as an orchestrator of 
student mathematical activity as represented by the triangle teacher-task-student (Face 
A); the triangle student-task-mathematics represents the student’s task-mediated 
activity of learning mathematics (Face B); the triangle teacher-task-mathematics 
depicts the teacher’s task-mediated activity of representing mathematics in an 
instructional setting (Face C); the original didactical triangle constitutes the base of the 
model (i.e. student-teacher-mathematics) (Face D). The tetrahedral structure offers an 
important representation of the complexity of classroom teaching/learning that affords 
a level of detailed reflection on the didactical role of tasks. In utilizing this more 
complex conception of the instructional use of mathematical tasks, significant agency 
is accorded to each component (student, teacher, mathematics and task) in the 
determination of the actions and outcomes that find their nexus in the social situation 
for which the task provides the pretext.  
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Research into the design and use of mathematical tasks in instructional settings must 
accommodate student intentions, actions and interpretations to at least the same extent 
as those of the teacher. Research in this area is important, but fragmented. This 
Research Forum brings a variety of research studies together into a discussion intended 
to yield a more coherent picture and has been designed to assist in structuring the field 
of task-related research and to equip researchers to better situate the student within 
research on instructional task design. 
Goals framing the Research Forum: 

(i) To present research into the instructional use of mathematical tasks, with a 
specific focus on the associated student activity and the implications for task 
design, classroom practice and the mathematics curriculum internationally; 

(ii) To focus attention specifically on the agency of the student during the 
completion of mathematical tasks in educational settings and examine the 
performative expression of this agency in different settings and in response to 
different task types; 

(iii) To highlight, through the reporting of selected research studies, particular 
issues associated with the instructional use of mathematical tasks, including: 
teacher intentionality, student interpretation, implicit and actual task contexts, 
considerations of task sequence, and the distinction between the stated task and 
its realization as a social activity involving teacher and students; 

(iv) To bring together researchers from a variety of countries, who share an interest 
in both the instructional use of mathematical tasks and the intended and 
resultant student activity; 

(v) To draw to the attention of PME members some of the issues associated with 
the instructional use of mathematical tasks, particularly those arising from the 
assumptions implicit in different instructional theories, which may conceive 
the instructional purposes of mathematical tasks and optimal student activity 
very differently. 

The Research Forum has been structured around the following issues: 
(i) Differences in the instructional deployment and function of mathematical tasks 

and the nature of student task participation in different instructional settings; 
(ii) Utilizing mathematical tasks to promote higher order thinking skills; 
(iii) Differences in the theoretical frameworks by which the instructional use of 

mathematical tasks might be better understood (particularly from the 
perspective of the student) and thereby optimized; 

(iv) The accommodation of student agency within the instructional use of 
mathematical tasks. 

Each issue can be usefully addressed in the form of a question. 
Focus Question 1. What are the possible functions of a mathematical task in 
different instructional settings and how do these functions prescribe the nature of 
student task participation? 



Clarke, Strømskag, Johnson, Bikner-Ahsbahs, Gardner 

1 - 120 PME 2014 

Focus Question 2. What contingencies affect the effectiveness of a mathematical 
task as a tool for promoting student higher order thinking skills? 
Focus Question 3. How might we best theorize and research the learning processes 
and outcomes arising from the instructional use of any mathematical task or 
sequence of tasks from the perspective of the student? 
Focus Question 4. What differences exist in the degree of agency accorded to 
students in the completion of different mathematical tasks and with what 
consequences? 

The sequencing of the forum contributions constitutes a research narrative aligned with 
the issues listed above and structured by the socio-didactical tetrahedron already 
discussed. It is the construction of structure within substantial research diversity that 
provides a key motivation for this Research Forum. 

ISSUE ONE: DIFFERENCES IN THE FUNCTION OF MATHEMATICAL 
TASKS AND THE NATURE OF STUDENT TASK PARTICIPATION IN 
DIFFERENT INSTRUCTIONAL SETTINGS 
 

1: MAKING DISTINCTIONS IN TASK DESIGN AND STUDENT 
ACTIVITY 

Alf Coles, Laurinda Brown 
University of Bristol 

 
The design principles below have developed during the time of our collaboration, over 
a period of fifteen years (e.g., Brown & Coles, 1997). The principles are drawn both 
from the enactivist theory of cognition and learning (Varela, Thompson, & Rosch, 
1991) and the pedagogic ideas of Gattegno (1987). We developed these principles 
within a community centred around one school (School S) in the Bristol area of the 
UK. Laurinda made this school her main research site and visited, where possible, 
weekly. We focus on one particular community in the spirit of ‘particularization’ 
(Krainer, 2011, p. 52), to draw out general principles from an in-depth study of one 
case. Our data comes from transcripts of video recordings of lessons as well as the 
scheme of work of School S. 
We believe task design that centres around activities that provoke differences in 
student response can allow the opportunity for students to make mathematical 
distinctions and for teachers to introduce new skills. Our task design principles are: 

x starting with a closed activity (which may involve teaching a new skill). 
x considering at least two contrasting examples (where possible, images) and 

collecting responses on a ‘common board’. 
x asking students to comment on what is the same or different about contrasting 

examples and/or to pose questions. 
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x having an open-ended challenge prepared in case no questions are 
forthcoming. 

x introducing language and notation arising from student distinctions. 
x opportunities for students to spot patterns, make conjectures and work on 

proving them (hence involving generalising and algebra). 
x opportunities for the teacher to teach further new skills and for students to 

practice skills in different contexts. 
Our data analysis indicates these design principles operate to inform: (1) teacher 
planning, (2) teaching actions in the classroom and (3) students’ mathematical activity. 
Firstly, the principles inform teacher planning. For example, the offer of contrasting 
examples (principle 2) can be used to focus students on mathematical distinctions, 
from which questions and challenges can be generated that provoke further work with 
that distinction. Secondly, we have evidence from video recordings that, over time, our 
design principles inform teacher actions in the classroom. In particular, the principles 
seemed to support teachers in School S adapting tasks in the light of student responses. 
Thirdly, there is evidence from transcripts that the principles can inform (implicitly) 
student actions in the mathematics classroom; through making distinctions, students 
notice and extend patterns, they ask questions and generalize (principle 6).  
There is a significant problem, identified in the literature, around the student 
experience of tasks compared to the intentions of the designer or teacher (Watson & 
Mason, 2007). Mason, Graham and Johnston-Wilder (2005, p. 131) raise the issue of 
how an expert’s awarenesses get translated into instructions for the learner that do not 
lead to those same awarenesses.  
Our results indicate that the making of distinctions within mathematics can become a 
habit and a normal way of engaging in tasks for students. Creating opportunities for 
students to make distinctions within mathematics can also become a habit for teachers 
and a normal way of both planning activity and informing decisions in the classroom. 
When this happens, there is a convergence of planned and actual activity. With a focus 
on distinctions, there is a potential route out of the problems highlighted by Mason et 
al. (2005) around the divergence of teacher intention and student activity. With a focus 
on distinctions, the expert (teacher) can plan, initially via the choice of examples, to 
support students in making the same distinctions as a mathematician, leading to the 
same awarenesses. 
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2: ORDER OF TASKS IN SEQUENCES OF EARLY ALGEBRA2 
Joaquin Giménez1, Pedro Palhares2, Leonel Vieira2 

1Barcelona University, 2Institute of Education, University of Minho 
 
Rationale 
It is assumed that epistemic and cognitive aspects are fundamental to build sequences 
of tasks. We investigated different aspects that appear when we analyse the process as 
a teaching experiment and examined how teacher intentions evolved according to 
interactional and ecological suitability. 
Our research focused on student-related aspects influencing the ordering of tasks and 
how student responses are accommodated, using the case of early algebra. It is well 
known that structured investigative activities provide opportunities for meaningful 
learning of mathematical concepts. We consider task design as a crucial element of the 
learning environment, and describe a teaching experiment in which class discussion 
introduces unexpected new perspectives to an initial a priori instructional scheme. Our 
perspective relates to Realistic Mathematics Education, where the designer conducts 
anticipatory thought experiments by envisioning both how proposed instructional 
activities might be realized in the classroom, and what students might learn as they 
engage in them. 
Framework and Methodology 
It is important for our design process, a task analysis, to identify difficulty factors 
providing frameworks for hypothetical designs inspired initially by developmental 
cognition according to levels of abstraction. We decided to choose an early algebra 
task as the basis for a situated study supporting the perspective in which algebraic 
reasoning could be strongly promoted as a tool intertwined with arithmetic building 
through their interconnection in order to promote success by developing both 
arithmetic and algebra together, one implicated in the development of the other (Smith, 
2011). The study supporting this paper has been done with two classes of 8-9 years old 
students. The basis for building our sequence of tasks and test analysis was to promote 
algebraic thinking by overcoming relational apprehension and the use of patterns in 
connection with a search for order or structure.  Therefore regularity, repetition and 
symmetry are frequently present because of their relevance to the development of 
abstraction, generalization and the establishment of relations. Next step concerns the 
experimental task design process based upon a refined sequence of tasks. The 
principles for our task design are the following: (1) ensure the possibility of using 
arithmetic number sense related to algebraic reasoning; (2) apply suitability criteria for 
analysing mathematical activities; (3) use mathematical examples, using relations and 
diversity of representations but not letters for the unknowns; (4) prioritise the voice of 
the students for analyzing and promoting mathematisation and retention. The tasks 
                                           
2 Work partially funded by Ministry of Economy & Competitivity of Spain. EDU2012-32644. 
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were meant to be diverse, some leading to an exploratory and investigative open 
activity to improve meaningful construction. In our study, we considered one class 
solving 6 sequential tasks and then six structural tasks and another class solving six 
structural tasks and then six sequential tasks (Palhares, Giménez, & Vieira, 2013). A 
typical sequential task would ask the student to “Observe carefully the sequence of 
numbers: 6, 10, 14, 18, 22, . . . What will be the 20th term of the sequence? . . . Explain 
how you found the 20th term of the sequence. Will the number 63 be part of this 
sequence of numbers? Justify your answer.” A typical structural task would ask 
students to “Observe carefully the four ‘number machines’ (shown below). Replace the 
question mark with a number that follows the rule of the other three machines.” 

 
Figure 1 

The research design focused directly on the consequences of task sequence. 
Results and Final Comments 
Statistical results show that there are significant differences starting with sequential or 
with structural tasks. Sequential tasks are better for starters and apparently provide a 
solid foundation for the work with structural tasks. The study is a first step for 
reconsidering the tasks for the next redesign stage in which a new cycle of testing could 
lead to small or big changes in task sequence. It is clear that students who started with 
the sequential tasks seemed to be capable of establishing broad generalizations, when 
the other group could not. These findings argue for redesigning in terms of stability and 
improving connectivity in self-regulation processes as synthesis activities. Also, the 
group that started with sequential tasks appeared to retain their performance more 
robustly as stable across time. The experiment did not consider any modelling 
situations from the real world. We assume that this would improve and enrich not only 
structural, but sequential examples in providing students with new learning 
experiences.  
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3: TASKS TO PROMOTE HOLISTIC FLEXIBLE REASONING ABOUT 
SIMPLE ADDITIVE STRUCTURES 

Annie Savard1, Elena Polotskaia1, Viktor Freiman2, Claudine Gervais3 
1McGill University, 2Université de Moncton, 

3Commission scolaire des Grandes-Seigneuries 
 
Our team is conducting a 3-year research project funded by the Quebec Ministry of 
Education on additive problem solving in early grades of elementary school. The goals 
of the project are: 1) to develop a pedagogical approach that would promote holistic 
and flexible reasoning about simple additive structures; 2) to design and test a set of 
tasks and didactical scenarios that implements the new approach; 3) to propose a 
related teacher professional development program. Our research team consists of two 
researchers (Savard and Freiman), a designer (Polotskaia), and a school board 
consultant responsible for the teachers’ professional development (Gervais). We want 
to support teachers to guide their students on solving additive structures problems. 
There are two paradigms in which additive problem solving can be seen. The 
Operational Paradigm puts the focus on addition and subtraction as arithmetic 
operations. From this position, additive word problems can be seen as exercises where 
the knowledge about arithmetic operations can be applied or further developed. 
Contemporary research (Thevenot, 2010) shows that some problems are particularly 
difficult because they require a flexible and holistic analysis of their mathematical 
structure while easy problems do not require such analysis.  
The Relational Paradigm, appears in the work of Davydov (1982) and more recent 
studies (Iannece, Mellone, & Tortora, 2009). According to Davydov (1982), the 
concept of additive relationship is, “the law of composition by which the relation 
between two elements determines a unique third element as a function” (p. 229). 
Davydov (1982) advanced the premise that an adequate understanding of the additive 
relationship is the basis for the learning of addition and subtraction and should be 
taught prior to calculation. The analysis of the additive relationships present in the 
situation yields the following task design principles: 

1. The task should be based on a situation involving a simple additive relationship 
between three quantities. 

2. The task should involve students in the mathematical analysis of the described 
relationship as a whole. It should help students to discover different properties of 
the relationship, and to see how different arithmetic operations can be used in the 
described situation for different purposes.   

3. The task should use a socio-cultural context in which students can identify 
themselves as active agents. 

4. The task should not contain any explicit and immediate questions that could be 
answered by finding one particular number. This criterion is to prevent students 
from immediately calculating the answer. However, the task should include an 
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intriguing element, which would support students’ natural interest and 
commitment. 

5. The goal of the task, which is learning to analyze the situation, should be 
explicitly communicated to students. 

6. The text of the task should be very short and should contain simple words and 
expressions that the students are familiar with. 

7. The mathematical discussion of the situation should integrate appropriate 
graphical representations as a method of analysis. 

We provide here one example of the task that we named 360° situation to highlight the 
main goal – holistic analysis of the mathematical structure of the situation. This is an 
example of a text proposed to students. 

Peter, Gabriel and Daniel are playing marbles. Peter says, “I have 5 marbles.” Gabriel says, 
“I have 8 marbles.” Daniel says, “Peter has 4 marbles less than Gabriel”. 

We introduce this text as a strange situation or as a situation where one of the persons 
made a mistake. Students are invited to explain why the text is unrealistic and how it 
can be corrected considering different quantities involved. The objective of the first is 
to make explicit the fact that all three quantities are related to each other and that the 
choice of two values implies one (and only one) third value. At the next step, we invite 
students to construct a graphical representation, which can support discovering of the 
appropriate arithmetic operations. Each quantity should be evaluated to figure out a 
correct numeric value in the condition where the other two quantities are fixed. At this 
step, the formal use of arithmetic operations can be discussed.  Finally, the numbers in 
the text can be replaced with different ones to further generalise the initially discussed 
quantitative relations. This will complete the 360° tour around the situation. 
The teachers we worked with had a tendency to return to the traditional teaching 
behaviours as soon as they start to work with traditional problems. For example, once 
the numerical answer was found for the problem, the discussion of the problem often 
ended abruptly. Thus, the focus of the activity was often shifted towards the use of the 
correct representation or the calculation of the numerical answer. A one year follow-up 
provided for each teacher-participant was needed for a sustainable change in teaching 
habits. 
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ISSUE TWO: UTILIZING MATHEMATICAL TASKS TO PROMOTE 
STUDENTS’ HIGHER ORDER THINKING SKILLS 

4: HYBRID TASKS: PROMOTING STUDENT STATISTICAL 
THINKING AND CRITICAL THINKING THROUGH THE SAME 

MATHEMATICAL ACTIVITIES 
Einav Aizikovitsh-Udi1, Sebastian Kuntze2, David Clarke3 

1Beit Berl College, Israel, 2Ludwigsburg University of Education, Germany, 
3University of Melbourne, Australia 

 
In a well-known definition of Statistical Literacy by Gal (2004), a “critical stance” is 
included among the key attitudes for successful statistical thinking (ST) – hence, Gal 
includes such attitudes in his definition of statistical literacy. However, being critical in 
statistical contexts is not only an attitude. It is possible to describe specific abilities that 
have to be used in order to critically evaluate statistical data. Two key concepts or 
overarching ideas in statistical thinking relevant for a critical evaluation of data are 
manipulation of data by reduction and dealing with statistical variation. 
Critical thinking (CT) skills rely on self-regulation of the thinking processes, 
construction of meaning, and detection of patterns in supposedly disorganized 
structures (Ennis, 1989). Critical thinking tends to be complex and requires the use of 
multiple, sometimes mutually contradictory criteria, and frequently concludes with 
uncertainty. This description of CT already suggests links with ST, such as dealing 
with uncertainty, contradictions and a critical evaluation of given claims. Dealing 
critically with information – a crucial aspect for both domains – demands 
critical/evaluative thinking based on rational thinking processes and decisions 
(Aizikovitsh-Udi, 2012). 
In order to explore thinking processes related to tasks in the domains of both Statistical 
Thinking and Critical Thinking, individual semi-structured interviews were conducted 
with mathematics teachers. By using mathematics teachers as subjects, basic content 
competence can be assumed and it becomes possible to examine their content-related 
higher order thinking skills, both in terms of statistical thinking and critical thinking.  
The interviews focused on thinking-aloud when solving tasks and each lasted about 
40–50 minutes. Figure 1 shows a sample task. 
Looking at both CT and ST, the interviews appeared to highlight how elements of CT 
can contribute to ST, for example when evaluating data, its presentation and analysis, 
planning data collection, etc. Conversely, aspects of ST like dealing with statistical 
variation and uncertainty were shown to contribute to CT, especially when it comes to 
decisions in non-determinist situations, where full data is unavailable. This study has 
shown that both ST and CT skills can be evoked by the same task. We suggest that this 
models authentic and useful thinking practice more effectively than a more closed task 
that stimulated only statistical thinking and the application of taught procedures. 
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Connections clearly exist between Statistical Thinking and Critical Thinking at the 
level of individual reasoning practices. We suggest that an instructional program of 
hybrid tasks could provide the opportunity to employ Statistical Thinking, while 
simultaneously introducing students to the practices and structure of Critical Thinking. 

 A company produces two sorts of headache tablets. Both sorts have been tested in 
a laboratory with respectively 100 persons suffering from headache. The diagram 
below shows, how long it took until the headache was over. Each point represents 
one test person.  

 
 
Dr. Green: 
 
 
Find counter-arguments! 

Dr. Jenkins: 
 
 
Find counter-arguments! 

No, because ________________ No, because ________________ 

 

Tablet 1 is the better one! Tablet 2 is the better one! 

Tablet 1 

Tablet 2 

Time in minutes 

 
Figure 1: Task “tablets” (Kuntze, Lindmeier, & Reiss, 2008) 

 

5: DESIGNING COVARIATION TASKS TO SUPPORT STUDENTS’ 
REASONING ABOUT QUANTITIES INVOLVED IN RATE OF 

CHANGE 
Heather Lynn Johnson 

University of Colorado Denver 
 
Researchers using mathematical tasks involving dynamic representations of covarying 
quantities have supported secondary students’ forming and interpreting relationships 
between changing quantities (e.g., Johnson, 2012; Saldanha & Thompson, 1998). 
Taking into account students’ emergent conceptions of rates of change, the design of 
this covariation task sequence provided opportunities for students to use 
non-numerical quantitative reasoning in situations involving constant and varying 
rates of change. By covariation tasks, I mean tasks that involve forming and 
interpreting relationships between changing quantities. 
Adapting the bottle problem to design covariation tasks 
I designed covaration tasks by adapting Thompson, Byerly, and Hatfield’s (2013) 
version of the well-known bottle problem (see Figure 1). 
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Figure 1: Filling Rectangle and Filling Triangle Sketches 
The adaptation for middle school students resulted in a sequence of tasks. To 
accompany each task, I developed dynamic sketches linking a rectangle or right 
triangle “filling” with area to a graph representing shaded (“filled”) area as a function 
of height (Figure 1). Students could vary the height of the rectangle or triangle by 
animating or dragging points H (Figure 1, top) or D (Figure 1, bottom), respectively, 
then predict and create a corresponding graph representing shaded area as a function of 
height. Additionally, students could drag point F (Figure1, top) to vary the width of the 
rectangle. Anticipating that students might interpret linked graphs iconically 
(Leinhardt, Zaslavsky, & Stein, 1990), in particular that graphs would represent 
pictures of filling rectangles or triangles, I chose to represent the height of the shaded 
region on the horizontal rather than the vertical axis. By affording students’ 
manipulation of dynamically linked representations, the dynamic sketches provided 
opportunities for students to form and interpret relationships between quantities. 
Task design principles 
In designing the task sequence, I provided students with opportunities to demonstrate 
that they conceived of rate of change as some attribute of a situation that could be 
measured. In the case of the filling rectangle and triangle situations, such a conception 
of rate of change could entail a student being able to envision the filling area as 
increasing in relationship to another changing quantity. 
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To investigate how students might conceive of rate of change in the context of a filling 
rectangle or triangle situation, I began by asking students what changed and what 
stayed the same. This prompt provided students the opportunity to identify different 
attributes of the situation that could be measured. Once students demonstrated 
evidence of attending to a rate of change as something that could be measured in the 
context of the situation, I provided students with representations of constituent 
quantities (e.g., a graph representing area as a function of height) that could be used to 
quantify the measurable attribute students had just described. 
Task implementation results 
Students reasoning about area as a result of a numerical calculation interpreted variable 
increase as if it were constant. These students made sense of unfamiliar graphs by 
connecting shapes of objects to shapes of graphs such that rectangles elicit one type of 
graph and triangles elicit another type. Students’ work suggests that iconic 
interpretations of graphs extend to dynamic graphs such that dynamic graphs are 
pictures in motion. Students reasoning about area as a measurable attribute of a 
rectangle or triangle attended to variable increase in area when interpreting and/or 
predicting features of a graph relating area and side length. These students attended to 
variation in amounts of change in area, identified sections with different kinds of 
increases in area, and described variation in how area could increase as side length 
continually changed. Students attending to variable increase in area also interpreted 
dynamic sketches and graphs as relationships between quantities. 
Concluding remarks 
Using non-numerical quantitative reasoning, students can make predictions and create 
representations indicating how quantities might change together. Although 
representations included in the tasks explicitly indicate quantities of area and height, 
students may interpret the graphs shown in Fig. 1 as representing a relationship 
between area and elapsing time rather than area and height. The possibility for such 
interpretation highlights the complexity of designing tasks to provide students with 
opportunities to engage in rate-related reasoning. Future iterations of implementation 
and analysis could provide further explanation as to how students’ non-numerical 
reasoning develops when constructing relationships between quantities. 

ISSUE THREE: THEORETICAL FRAMEWORKS BY WHICH STUDENT 
PARTICIPATION IN MATHEMATICAL TASKS MIGHT BE BETTER 
UNDERSTOOD AND OPTIMIZED 
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6: APPLYING THE PHENOMENOGRAPHIC APPROACH TO 
STUDENTS’ CONCEPTIONS OF TASKS 

Kimberly Gardner 
Kennesaw State University, USA 

 
Tasks serve a communicative purpose between teacher and student, by conveying the 
teacher’s intent for learning and the student’s conception of that intent. Often, 
responses or work produced by students from a task reveal a disconnect between the 
teacher’s learning expectation and the true depth of knowledge attained by the student.  
By applying the descriptions of an outcomes space from a phenomenographic inquiry 
to student work samples, I will discuss how this approach informs a framework for 
connecting a student’s conception of learning to the quality of the individual’s task 
engagement.  
Phenomenography is a research methodology with its own theoretical framework that 
accounts for the qualitatively different ways people experience learning. From this 
theoretical stance, the impact a task has on learning may be analysed using the outcome 
space of student conceptions about the learning.  By analysing a student’s conception 
of, and approach to learning, the relationship between focal awareness and task 
performance is further documented.  The analysis is guided by the question: “What do 
students focus on when assigned a task, and in what way does the work produce 
communicate to the teacher the student’s personal epistemology of the content to be 
learned?”  
Learning is defined as perceiving, conceptualizing, or understanding something in a 
new way by discerning it from and relating it to a context. Furthermore, learning 
involves two aspects: i) what is to be learned, and ii) how one goes about learning 
(Marton & Booth, 1997). The learner’s perspective of what is to be learned is derived 
from the student’s definition of the direct object of learning. How the learner assigns 
meaning to the learning object is determined by the learning strategies the student 
utilizes to meet personal learning goals. 
To maintain consistency with the phenomenographic definition of learning, a task is 
characterized by its relationship to the structural and referential aspects of the learning 
experience. A task is a situation requiring the learner to experience the object of 
learning in such a way that the learner must discern components of the situation and 
how they are related (structural aspect), then assign a meaning to the situation 
(referential aspect). The task analysed in the study assessed student understanding of 
descriptive statistics and data analysis. 
Since the student’s conception is the unit of analysis, an explanation of what a student 
is attentive to when engaged in completing a task is warranted. The basic components 
of awareness are appresentation, discernment, and simultaneity (Marton & Booth, 
1997). Appresentation refers to being conscious of a perceptual or sensual experience 
in the presence of concrete or abstract entities; discernment involves recognizing a 
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foreground-background structure of a situation; simultaneity means knowing how the 
discerned parts are related to the whole structure. The structure of a student’s focal 
awareness directly informs the way the student understands content, which leads the 
student to perceive that something has been learned.   
Collectively, the various levels of student performance in the class fell into the first 
three conceptions of the learning of statistics outcome space. The majority of the 
students met the level of knowledge attainment deemed acceptable to teacher. This 
finding supports the proposition that the meaning and purpose a student assigns to a 
task seem to be aligned with the student’s meaning of learning, approaches to learning, 
and capabilities sought as a result of learning. 
 

7: THE MILIEU AND THE MATHEMATICAL KNOWLEDGE 
AIMED AT IN A TASK 

Heidi Strømskag 
Sør-Trøndelag University College 

 
Context and theoretical background 
The research question addressed in the paper is: How does the milieu devolved to the 
students for algebraic generalisation of shape patterns influence their mathematical 
activity? A gap between the teacher’s intention with a task and the students’ 
mathematical activity is explained in terms of a lacking coordination between the 
knowledge aimed at (an equivalence statement) and the milieu (Brousseau, 1997) 
devolved to the students.  
Participants in the reported research are two groups of three student teachers enrolled 
at a teacher education programme for primary and lower secondary school in Norway, 
and a teacher educator who teaches mathematics to these students. The data are a 
mathematical task and transcripts from video-recorded small-group sessions where the 
students engage with the task. The theory of didactical situations in mathematics 
(Brousseau, 1997) has been used to analyse the empirical material.  
A shape pattern in elementary algebra is usually instantiated by some consecutive 
geometric configurations in an alignment imagined as continuing until infinity. 
According to Måsøval (2011), there are two types of shape patterns: arbitrary patterns 
(Figure 1), and conjectural patterns (Figure 2).  

  
Figure 1: An arbitrary pattern Figure 2: A conjectural pattern 

These patterns correspond respectively to two different mathematical objects aimed at 
in the process of generalising (Måsøval, 2011): formula (for the general member of the 
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sequence mapped from the shape pattern; e.g., 3 1na n �  in Figure 1), and theorem (a 
general numerical statement; e.g., 21 3 5 2 1n n� � � � �   in Figure 2).  
A priori analysis: the milieu 
The pattern in Task 3 (with which the students engaged) is intended to be a conjectural 
pattern, aiming at the formulation of a theorem. It is made of a first milieu (Shape 
pattern 1, in Figure 3) that evolves (Shape pattern 2 with white squares, in Figure 4). 

 
 

Figure 3: Shape pattern 1 Figure 4: Shape pattern 2 

For the teacher, the role of Shape pattern 1 is to provide students with the elements to 
formulate the theorem “the sum of the first n odd numbers is equal to the square of n”, 
first in words and then algebraically: 21 3 5 2 1n n .� � � � �   It is important to 
notice that the solution of the problem (proof of the theorem) can be reached without 
the algebraic formulation by direct manipulation the elements of the pattern. A generic 
example of this manipulation (made by me) is shown in Figure 5. 

 
Figure 5: The third element manipulated into a 3x3 square 

An alternative shape pattern that would illustrate that the n-th square number is 
equivalent to the sum of the first n odd numbers is the pattern shown in Figure 2 above 
(where the relationship is visualised directly). The pattern would then play the role of a 
“real milieu” in the sense of Brousseau (1997). 

Because of that, the algebraic formulation � � 21 3 5 2 1n n� � � � �   does not appear 
as a necessary tool to construct the proof of the theorem; it is just a way to formulate a 
mathematical statement with symbols. In this respect, the pattern is a real milieu when 
it is considered as a geometrical representation of an arithmetical sequence, in that the 
elements of the pattern can be represented arithmetically 
( 2 2 21 1 ,  1 3 2 ,  1 3 5 3 ,  etc. �  � �  ) and serve as a “model” that can guide a process 
of algebraic thinking that aims at the equivalence statement 21 3 5 2 1 .n n� � � � �   
Here, the elements of the pattern serve as referents for first arithmetic and then 
algebraic symbols, the algebraic formulation being here only a tool to state the 
equivalence.  
Results from the analysis of the transcript data show that: 1) The students produce 
adequate solutions to subtasks, but this does not constitute a milieu for the formulation 
of the mathematical statement aimed at. This is consistent with the a priori analysis 
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presented above. 2) There is a weakness in the milieu caused by missing clarification 
of the concept of mathematical statement.  
Task 3 is focused on calculations (how many), but the intended knowledge is 
theoretical. Hence the focus should be on why the sum of the first n odd numbers is 
equal to the square of n. This question has potential to create the need to use algebra.  

ISSUE FOUR: ACCOMMODATING STUDENT RESPONSES AND STUDENT 
AGENCY WITHIN THE INSTRUCTIONAL USE OF MATHEMATICAL 
TASKS 
 

8: WRITING THE STUDENT INTO THE TASK: 
AGENCY AND VOICE 
Carmel Mesiti, David Clarke 

International Centre for Classroom Research, University of Melbourne 
 
The classroom performance of a task is ultimately a unique synthesis of task, teacher, 
students and situation. Task selection by teachers initiates an instructional process that 
includes task enactment (collaboratively by teacher and student) and the interpretation 
of the consequences of this enactment (again, by teacher and student). In undertaking 
this study, we examined the function of mathematical tasks in classrooms in five 
countries. A three-camera method of video data generation (see Clarke, 2006), was 
supplemented by post-lesson video-stimulated reconstructive interviews with teacher 
and students, and by teacher questionnaires and copies of student work. Our analysis 
characterized the tasks employed in each classroom with respect to intention, action 
and interpretation and related the instructional purpose that guided the teacher’s task 
selection and use to student interpretation and action, and, ultimately, to the learning 
that post-lesson interviews encouraged us to associate with each task. 
The eighth-grade mathematics classrooms that provided the sites for our analysis were 
drawn from the data set generated by the Learner’s Perspective Study (LPS) (Clarke, 
2006). Our initial goal in the analysis of mathematical tasks undertaken in these 
classrooms was the selection of tasks that could legitimately be described as distinctive 
because of the character of the mathematical activity or because of the teachers’ 
didactical moves in utilising the tasks to facilitate student learning.  
The tasks were selected for their disparity across the key attributes: mathematics 
invoked (both content category and level of sophistication); figurative context 
(real-world or decontextualised); resources utilised in task completion (diagrams and 
other representations); and the nature of the role of the task participants. Two examples 
are noteworthy:  
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Japan School 3 – Lesson 1 (the Long Task) 
In this task, the seemingly simple pair of simultaneous equations 5x + 2y = 9 and  
-5x + 3y = 1 engaged the class for a fifty-minute lesson (and indeed was the discussion 
point for the first fifteen minutes of the following lesson). A feature of the performance 
of this task was the extent to which student suggestions, responses and the articulation 
of their thinking were regarded as instruments for developing understanding. 
Shanghai School 3 – Lesson 7 (the Train Task) 
In relation to mathematical tasks, Clarke and Helme (1998) distinguished the social 
context in which the task is undertaken from any ‘figurative context’ that might be an 
element of the way the task is posed. In this sense, the task:  

Siu Ming’s family intends to travel to Beijing by train during the national holiday, so they 
have booked three adult tickets and one student ticket, totalling $560. After hearing this, 
Siu Ming’s classmate Siu Wong would like to go to Beijing with them. As a result they buy 
three adult tickets and two student tickets for a total of $640. Can you calculate the cost of 
each adult and student ticket? 

has a figurative context that integrates elements such as the family’s need to travel by 
train and the familiar difference in cost between an adult and a student ticket. The 
social context, however, could take a wide variety of forms, including: an exploratory 
instructional activity undertaken in small collaborative groups; the focus of a whole 
class discussion, orchestrated by the teacher to draw out existing student 
understandings; or, an assessment task to be undertaken individually. In each case, the 
manner in which the task will be performed is likely to be quite different, even though 
we can conceive of the same student as participant in each setting. 
Students were given a significant “voice” in the completion of each task, but the nature 
of their participation reflected differences in the extent and character of the distribution 
of responsibility for knowledge constructed in the course of task completion. This 
distribution of responsibility (or enhanced agency) is a consequence of each teacher’s 
strategic decision, moment by moment, of how best to orchestrate student work on the 
task. We see task performance as the iterative culmination in the joint construction, not 
only of the task solution, but of the mathematical principles of which the task is model 
and purveyor. 
Concluding Remarks 
Of particular interest in our analysis were differences in the function of mathematically 
similar tasks, dealing with similar mathematical content (those relating to systems of 
linear equations), when employed by different teachers, in different classrooms, for 
different instructional purposes, with different students. The “entry point” for our 
analysis was a tabulation of the details related to the social performance of the task. 
Using these tables, our analysis drew on the video-stimulated, post-lesson interview 
data to identify intention and interpretation and relate both to social performance of the 
task. 
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The significance of differences between social, cultural and curricular settings, 
together with differences between participating classroom communities, challenges 
any reductionist attempts to characterize instructional tasks independent of these 
considerations. The attention given by competent teachers to student voice and student 
agency, and the mathematical tasks that they employ to catalyse that voice and agency, 
support our belief that the maximization of student agency and voice in the 
performative enactment of a mathematical task should be recognized as a key principle 
of task design and delivery. 
 

9: EMERGENT TASKS: SPONTANEOUS DESIGN SUPPORTING 
IN-DEPTH LEARNING 
Angelika Bikner-Ahsbahs 

Bremen University, Germany 
 
According to Bruder (2000), a task can be regarded as a triplet of an initial state, a final 
state and a transformation that transforms the initial state into a final one. Even 
adaptive mathematical tasks such as self-differentiating tasks designed before the 
lesson can only support optimal learning if the teacher also is able to spontaneously 
transform the situation into a fruitful epistemic process (Prediger & Scherres, 2012). 
How can such transformations be achieved? This question is addressed by the concept 
of emergent tasks. Emergent tasks are ad-hoc tasks created by the teacher when the 
teacher conceives the mathematical potential of a learning opportunity and translates it 
into a task, so that 

x the students’ interest present in the situation is taken up and 
x acute mathematical problems and questions are addressed adaptively. 

Our investigation of emergent tasks aims at elucidating how the gap between the 
students’ epistemic needs and the affordances of a task can be bridged.  
In order to identify emergent tasks in empirical situations, four types of tasks are 
distinguished (see Vogt, 2012, p. 35):  

Task type Students express 
interest 

The teacher formulates an 
adaptive task for a situation 

prepared task - - 
spontaneous task - yes 
missed emergent task yes - 
emergent task yes yes 

Table 1: Types of tasks 
A prepared task is constructed before the lesson, it may or may not be adaptive or meet 
the students’ interests. A spontaneous task is acutely created by the teacher in order to 
support a specific learning situation, it is not a requirement that it meets the students’ 
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interest. However, if a student shows interest in a problem but the teacher does not take 
this opportunity up to transform the situation into a suitable learning opportunity the 
teacher has missed setting an emergent task, in such a case we observe a missed 
emergent task.  
Emergent tasks often appear when the initial and/or the final state of a problem are not 
clear to the students. If a student expresses epistemic interest for clarification, the 
teacher may translate this task into a more adaptive one, thus creating an emergent 
task. The students’ may also explicitly express a different epistemic need, in this case 
the teacher has the chance to set an adaptive, hence, emergent task. If the students’ 
epistemic need is implicit, the teacher may act in a sensitive way for instance by 
prompts (“please tell us what you mean”) to make the student’s problem visible and 
then formulate an emergent task. In addition, we found emergent tasks that unveiled an 
epistemic gap that initially remained unnoticed by the students. 
Our investigations of emergent tasks has yielded two results: (1) An emergent task has 
the tendency to initiate further emergent tasks leading to a sequence of fruitful learning 
opportunities that sometimes shape more than one lesson; (2) based on an initial 
emergent task we gained five design principles for building a task sequence on learning 
a procedure: emergent task (the teacher is reacting to a student’s interest), presenting 
and questioning (the students’ solutions of the task are presented and questioned), 
using and checking (an interesting student solution is used and checked by the other 
students), expanded use and application (the potential in use is evaluated by an 
expanded task), and institutionalization ((individual) textualization of the procedure). 
On the part of the teacher our studies point to the following conditions that enable the 
teacher to perform appropriate translations of learning situations into emergent tasks: 
“The teacher must 

x have mathematical knowledge that extends the content of the lesson, 
x show interest in the students’ learning processes, 
x and be open for unusual ways on the part of the students. She or he must be 

willing to abstain from the planned course” (cf. Bikner-Ahsbahs & Janßen, 
2013, p. 162). 

MATHEMATICAL TASKS AND THE STUDENT – MOVING FORWARD 
The didactical relationship between the student as learner of mathematics and 
the mathematical task as facilitating that learning 
The research reports present complementary perspectives on the student-task 
relationship and demonstrate just how diverse are the considerations affecting the 
instructional deployment of tasks and their role in facilitating student participation in 
particular types of mathematical activity Furthermore, considerable diversity is evident 
in the descriptions of the positioning of students within that mathematical activity, 
particularly with respect to the agency afforded to students to determine the nature of 
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their participation. The socio-didactical tetrahedron provides a reflective structure 
within which to discuss the various research reports. 
Teacher-student-task (Face A): In the mathematics classroom, the teacher, the student 
and the tasks provide the key structural elements through which the classroom’s social 
activity is constituted. There has long been a tacit assumption that the completion of 
mathematical tasks chosen or designed by the teacher will result in the student learning 
the intended mathematics. This view is persistent despite research that suggests this is 
not a direct relationship (Margolinas, 2004, 2005).  
Student-task-mathematics (Face B): For some time, theories of learning have viewed 
cognitive activity as not simply occurring in a social context, but as being constituted 
in and by social interaction (e.g., Hutchins, 1995). From this perspective, the activity 
that arises as a consequence of a student’s completion of a task is itself a constituent 
element of the learning process and the artifacts (both conceptual and physical) 
employed in the completion of the task serve simultaneous purposes as scaffolds for 
cognition, repositories of distributed cognition and as cognitive products. 
Teacher-task-mathematics (Face C): Task development, selection and sequencing by 
teachers represents the initiation of an instructional process that includes task 
performance (collaboratively by teacher and student) and the interpretation of the 
consequences of this enactment (again, by teacher and student). 
Teacher-mathematics-student (Face D – base): The original didactical triangle has the 
virtue of connecting the classroom participants with the knowledge domain that 
provides the pretext for their interaction. As noted, however, the connections 
represented by the sides of the original didactical triangle require mediation by 
artifacts; in this case, tasks. The theory of didactical situations (Brousseau, 1997) 
provides a conceptualisation of the didactic relationship between the teacher, the 
mathematics and the student. Here, the mathematical task is part of the milieu, which 
models the elements of the material and intellectual reality on which the students act. 
One of the dangers for both research and instructional design lies in the disconnection 
of the elements of the socio-didactical tetrahedron for separate, typically pairwise, 
study. For example, analysis of student response to a particular task independent of the 
instructional/learning context in which the task is encountered could understate the 
complexity of the activity under investigation by backgrounding considerations central 
to task completion, such as teacher intention, student interpretation, and curricular and 
organisational context. During the process of task completion, the effectiveness of the 
task in promoting learning will also be contingent on student intention (with respect to 
the task) and teacher interpretation (with respect to the students’ activity). These 
socio-mathematical considerations are central to any attempt to understand (and 
thereby optimize) the function of tasks in catalyzing student mathematical activity and 
consequent learning in institutionalized settings such as mathematics classrooms. 
Some of these considerations can be summarised in the form of questions: 
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x What problem does the student think she is solving? 
x What student-related factors determine the optimal selection and sequencing 

of tasks for instructional purposes? 
x What are the student-related considerations affecting the use of mathematical 

tasks to promote students’ higher order thinking skills? 
x What contribution does the student make to the performative shaping of the 

task and how is this contribution accommodated within available theoretical 
frameworks? 

x What degree of agency can the student realistically be afforded in the framing 
and performance of a mathematical task, if the teacher’s instructional agenda 
is to be achieved? 

These questions have been addressed to varying degrees in the papers that comprise 
this Research Forum. It is useful to review some of the key points made by each 
contribution. 
A recurrent theme in the framing of this Research Forum was the tension between the 
teacher’s instructional intentions and consequent student activity. Coles and Brown 
suggest that an emphasis on making distinctions foregrounds the targeted 
mathematical awarenesses that are otherwise only indirectly prompted by instruction 
based on different principles. This reduces the possibility of divergence of teacher 
intention and student activity by actively stimulating those student capabilities 
directly. Giménez, Palhares and Vieira investigated the role of task order in promoting 
algebraic thinking, by making comparison between instruction that commenced with 
sequential or structural tasks. This sensitivity to task sequence rather than simply to the 
quality or effectiveness of the individual tasks per se, introduces an additional 
consideration to the question of how best to utilise tasks to promote student learning. 
Savard, Polotskaia, Freiman and Gervais examined the contemporary premise that 
some problems (or tasks) are particularly difficult because they require a flexible and 
holistic analysis of their mathematical structure while easy problems do not require 
such analysis. The emphasis on the capacity of tasks to facilitate student consideration 
of mathematical relationships rather than simply mathematical operations introduces 
additional considerations in the design of instructional tasks.  
In combination, these three studies usefully demonstrate the diversity of considerations 
invoked by the different aspirations pertaining to specific organisational and curricular 
settings. The interplay of these considerations can be seen in the significance of the 
students’ response to a task and the sensitivity of that response to task characteristics, 
including task order. This interplay is most evident in the implicit compromise 
between prescription and devolution, undertaken in order to provide opportunities for 
the expression of student agency, while still holding out some hope that student 
activity and learning might resemble the teacher’s instructional intentions. 
The papers by Aizikovitsh-Udi et al. and Johnson identify some of the challenges faced 
by task designers hoping to elicit something more sophisticated than the replication of 
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a taught procedure. The dynamic between promoting the development of 
mathematics-specific skills and modes of thought and meeting the more encompassing 
aims of contemporary curricula is presented as potentially a productive symbiosis by 
Aizikovitsh-Udi and her co-authors. Johnson’s investigation of mathematical tasks 
involving dynamic representations of covarying quantities necessarily also documents 
student hypothesis formulation and associated mathematical reasoning. The capacity 
of her tasks to frame, shape and facilitate sophisticated student reasoning mirrors the 
capacity of the hybrid tasks of Aizikovitsh-Udi et al. to simultaneously stimulate 
statistical and critical thinking. Given the aspirations of contemporary curricula 
towards promoting higher order thinking skills, these two papers provide cause for 
optimism. 
Our use of the socio-didactical tetrahedron to frame this Research Forum has already 
placed a Vygotskian slant on our conception of the process of mathematics learning 
and the role of instructional tasks in facilitating that learning process. Without wishing 
to be theoretically exclusive, we would argue that recognizing the function of 
mathematical tasks as tools for the facilitation of student learning leads us to the further 
useful recognition that the use of a tool (i.e. a task) fundamentally affects the nature of 
the facilitated activity (i.e. student learning). This does not preclude the use of other 
theoretical perspectives in the analysis and optimisation of task use in instruction. 
Phenomenographic approaches, as illustrated by Gardner, precisely capture the 
reflexive connection between the teacher’s use of tasks and the students’ conceptions 
of those tasks. The prioritisation of student perception of the object of learning aligns 
Gardner’s perspective with aspects of the paper by Coles and Brown. However, 
Gardner adds a layer of sophistication in her consideration of the student’s perception 
of and response to a given task as the social enactment of the student’s conception of 
learning. This perspective accords a level of significance to student intellectual agency 
that both complicates and enhances our consideration of the student-task axis and its 
significance within the socio-didactical tetrahedron. The paper by Strømskag draws 
together several considerations: the tension between intention and activity, and the role 
of the task in creating a mileu (Brousseau, 1997) conducive to the promotion and use of 
the targeted mathematical knowledge. The conditions governing the teacher’s capacity 
to orchestrate the creation of a milieu suitable for the development of the targeted 
mathematical knowledge are a direct consequence of the choice of instructional task. 
The research narrative concludes by directing attention to student agency. Examination 
by Mesiti and Clarke of task functionality through the lens of international comparison 
highlights differences in instructional purpose and curricular context, which shape the 
particular activity arising from the instructional use of a task in differently situated 
classrooms. In the paper by Bikner-Ahsbahs, tasks encompass initial and final states 
[of knowing] and their connecting transformation. Emergent tasks appear, fractal-like, 
where the learning situation requires the revision, refinement, or elaboration of the 
intended task, including the insertion into the lesson of an entirely unintended task, 
called upon in response to the demands of the particular didactical situation. In an 
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interesting way, emergent tasks embody the teacher’s pedagogical agency through 
their incarnation of the teacher’s response to an instructional situation not anticipated 
in the lesson’s original planning. The implication is that teacher agency is best 
expressed in reflexive relation to student agency, but also in the provision of 
opportunities for the expression of that student agency. This recognition returns us to 
the assertion by Mesiti and Clarke that “the classroom performance of a task is 
ultimately a unique synthesis of task, teacher, students and situation” and reinvokes the 
socio-didactical tetrahedron. 
As a final recapitulation: There is a tension between the teacher’s instructional 
intentions (and associated actions) and the students’ consequent activity (and ultimate 
learning). This tension is probably inevitable and even productive. The existence of 
this tension should reassure us that student agency has not been precluded entirely 
from our classrooms. 
Equally, the tension is not one of opposition, but rather the recognition of the need for 
continual mutual adjustment. Both teacher and students are complicit in the 
construction of classroom practice; if the teacher appears to exert the greater control 
through task selection, the students can, by their responses, significantly determine the 
nature of consequent classroom activity. Within this process of incremental and 
iterative adjustment, the task serves as the frame for activity, while the activity 
constitutes the performance of the task. 
In the preceding discussion and the research narrative constituted through the various 
research reports, we have attempted to examine the instructional use of mathematical 
tasks, the roles played by students in the performance of those tasks, and the 
anticipation of those roles by teachers and task designers. The results of several of 
these analyses have been interpreted as indicating principles for instructional (task) 
design. Tasks and their social performance provide both a window into the practices of 
mathematics classrooms internationally and the means to realise our curricular 
ambitions.  
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