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Abstract

Every year there are 1.9 million deaths world-
wide attributed to occupational health and safety
risk factors. To address poor working conditions
and fulfill UN’s SDG 8, “protect labour rights and
promote safe working environments for all work-
ers”, governmental agencies conduct labour inspec-
tions, using checklists to survey individual organ-
isations for working environment violations. Re-
cent research highlights the benefits of using ma-
chine learning for creating checklists. However,
the current methods only create static checklists
and do not adapt them to new information that sur-
faces during use. In contrast, we propose a new
method called Context-aware Bayesian Case-Based
Reasoning (CBCBR) that creates dynamic check-
lists. These checklists are continuously adapted as
the inspections progress, based on how they are an-
swered. Our evaluations show that CBCBR’s dy-
namic checklists outperform static checklists cre-
ated via the current state-of-the-art methods, in-
creasing the expected number of working environ-
ment violations found in the labour inspections.

1 Introduction

Checklists are extensively used in high-stakes decision mak-
ing, such as in surgery or food inspections [Jelacic et al.,
2020; Ho et al., 2018]. They are also used by government
agencies in labour inspections, to survey individual organi-
sations for non-compliance to working environment regula-
tions [Dahl and Sgberg, 2013; Karanikas and Hasan, 2022].
Such inspections are important to globally achieve UN’s SDG
8, “protect labour rights and promote safe working envi-
ronments for all workers”, specifically SDG 8.8. Despite
the inspection efforts, there are still 1.9 million registered
deaths world-wide each year that are attributed to occupa-
tional health and safety risk factors [World Health Organiza-
tion, 2021]. Our goal in this paper is to attack this problem by
introducing dynamic checklists created via machine learning.

A conceptual view of a labour inspection checklist is
shown in Figure 1. Here, a checklist consists of a subset of
K of N items where each item corresponds to a specific reg-
ulation. Each item has a yes or no answer which indicates
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Figure 1: A conceptual view of a checklist for labour inspections.
For a given inspection, a checklist ideally contains a subset of the K
items most likely to be non-compliant, out of N possible items.

the inspected organisation’s compliance to the corresponding
regulation. Any non-compliant item found at an inspection
is cited individually in a report which is sent to the inspected
organisation, with an order to rectify the violations.

Each inspected organisation may be subjected to several
hundred different regulations, which vary according to its
size, location and industry. Prioritizing the correct regula-
tions for inspections, in terms of risks to workers’ health and
safety, is very difficult. Assessing compliance to regulations
is also time-consuming, so a checklist should ideally contain
a small subset K of N possible items that are most likely to
be found non-compliant at the inspection. Creating or using
such checklists is difficult, partly because they are situation
dependent [Ho er al., 2018; Catchpole and Russ, 2015].

In order to create optimized checklists efficiently, Flogard
et al. [2021] propose to use machine learning (ML) to con-
struct checklists and a new ML problem called the Check-
list construction problem (CCP). They introduce a method
called BCBR, which constructs checklists for labour inspec-
tions. BCBR uses Bayesian inference (BI) to construct fea-
tures for cases used in case-based reasoning (CBR) [Aamodt
and Plaza, 1994]. The input to BCBR is an organisation tar-
geted for a labour inspection. BCBR then selects cases that
contain a set of the K out of N possible unique items that are
most likely to be found non-compliant at the given organisa-
tion. The output is an optimized checklist that consists of the
selected K items.

Motivation. A shortcoming with BCBR is that it only cre-
ates static checklists, which can be inaccurate in many real-
world situations where the context changes over time [Grigg,
2015]. For instance, new information obtained during an in-
spection could suggest that inquiries should be made into reg-
ulations that are not represented by the K items currently
on the checklist on Figure 1. A possible solution for this
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Figure 2: A dynamic checklist is a digital checklist that can adapt
to changes in environment or context during use. Such adaptations
to the checklists can increase their relevance and efficiency in aiding
users for their intended tasks.

is to dynamically adapt the checklists during use. Figure 2
shows how a dynamic checklist can be adapted to a situa-
tion, inferred from how a user answers the checklist. This
idea has been proposed and studied in clinical surgery trials
[Kulp et al., 2021], where the current approaches for adapting
checklists are based on process [Christov et al., 2016] or rule-
based models [De Bie et al., 2017]. However, these models
need to be built and maintained manually by domain experts,
which is infeasible for creating the ideal high-detailed mod-
els needed for many complex tasks. Kulp et al. [2021] also
discuss this limitation and highlight the need for a technical
solution that can adapt checklists without relying on manually
created models.

Scientific Contributions. There are two main contributions
in this work. The first contribution is to establish ML as a
means to create dynamic checklists. As far as we know, this
is a difficult problem where ML has not been used before. A
challenge here is to develop a method that is accurate and fast
enough to make real-time dynamic adaptations of checklists.

The second contribution is a new method called Context-
aware Bayesian Case-Based Reasoning (CBCBR), which is
an extension of BCBR. The novelty, compared to BCBR,
is a context-aware naive Bayesian inference model that en-
ables dynamic adaptations to the constructed checklists dur-
ing use. This means that CBCBR both creates new check-
lists and adapts them. The adaptations are done as recom-
mendations of new items for the checklists. The recommen-
dations are based on answers of the checklists, which can
be considered a part of the temporal context of the situa-
tions where the checklists are used [Haruna er al., 2017].
CBCBR is also a fully transparent, online model that en-
ables real-time creation and adaptation of checklists, which
is crucial for their usability in real-world situations. On-
line learning models are known for their effectiveness in
dynamic or non-stationary situations [Huleihel er al., 2021;
Idrees et al., 20201, such as labour inspections.

Social Impact. Our work focuses on improving checklists
used for labour inspections, which will have a direct impact
on the promotion of decent work (see SDG 8). We show
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that CBCBR’s dynamic checklists can improve task comple-
tion and increase the number of violations (non-compliance)
found during inspections, which in turn will increase levels of
compliance with working environment and labour rights and
also reduce injuries (SDG indicator 8.8.1 and 8.8.2). More
effective checklists could also reduce social dumping (SDG
8.5), human trafficking and forced labour (SDG 8.7).

2 Related Work

Checklist Construction. Until recently, checklists have been
created manually by domain experts via approaches like the
Delphi method [Morgan et al., 2007; Amaya et al., 2017].
However, creating checklists manually is difficult and time
consuming [Hasson er al., 2000]. Instead of relying on human
experts, Flogard et al. [2021] propose BCBR for constructing
static checklists. In experiments, they show that labour in-
spection checklists constructed by BCBR outperform human
domain experts and other ML methods. Zhang et al. [2021]
propose an ML method for constructing checklists for medi-
cal diagnosis, assuming that a checklist is a binary M-of-N
decision problem. They use an integer program to find an
optimal checklist of N items that most accurately predict a
diagnose, given that at least M items are checked. How-
ever, their method only creates static checklists and is also
not usable for creating labour inspection checklists, as they
are not binary M-of-N decision problems. An approach for
generating checklist items for construction site inspections is
proposed by Cai et al. [2020]. The approach is based on Nat-
ural Language Processing and generates new items from reg-
ulation document texts. Checklists are generated via SQL
queries, by matching generated items with keywords speci-
fied by a user. The checklists are described as dynamic, but
only in the sense that they are presented digitally, enabling
users to manually customize them.

Context-Aware Recommender Systems. Research shows
that dynamically elevating items on checklists can be effec-
tive for adapting them to context changes [De Bie er al.,
2017]. CBCBR’s recommendations can also be seen as a way
to elevate context-relevant items and is inspired by context-
aware recommender systems (CARS) and contextual mod-
elling [Adomavicius and Tuzhilin, 2011].

Case-Based Reasoning. In recommender systems, CBR
is used to address explainability and the long tail problem,
which are known issues in collaborative filtering [Alsham-
mari et al., 2017; Jorro-Aragoneses et al., 2020]. Reasoning
in CBR (and CBCBR) is based on retrieving the best past
cases to solve a given problem [Aamodt and Plaza, 1994]. To
improve reasoning, Bayesian methods are used to infer miss-
ing case features or information in CBR systems [Nikpour
and Aamodt, 2021; Kim et al., 2014]. For the same reason,
CBCBR’s cases are augmented with probability estimates to
improve case retrieval. CBCBR also learns from answered
checklists items, by using them for checklist adaptations or
retaining them to create future checklists.

Summary. To our knowledge, there is no previous work
where ML is used to dynamically adapt checklists. In our
work, we show that checklists can be significantly improved
by doing so, using answers to past items in a checklist to
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adapt future items in the same checklist. The approach is also
generic and can likely be used in many other domains, since
most checklists have some kind of answers recorded in them.
Thus, our work can potentially be seen as a starting point for
future ML research into dynamic context-aware checklists.

3 Definitions

Data Set and Cases. A data set D for variables Z =
{E,X,L} is a tuple (dy,...,dn) where a case d; € D is
an instantiation of Z [Darwiche, 2009]. A case can be de-
fined as a tuple d = (e, z,l) where e denotes a single item
of a checklist, = is the target organisation for the item and
[ € {0,1} denotes the binary answer to the item. A case in
the data set can be viewed as a past experience where an item
e has been applied to z to obtain the answer [. Any e, z and [
are instantiations of the variables E, X and L, respectively.

Organisation. Every case in the data set contains a tar-
get organisation description z, that consists of multiple sub-
features. These sub-features are all categorical and describe
the organisation’s location and industry [Flogard et al., 2021].
For brevity we treat x and X as categorical in our work.

Item. Each case in the data set contains an answerable item e,
used to survey the organisation z. There are N unique items
in the data set, so an item e is a categorical value that may
appear in multiple cases. Thus, FE is also categorical.

Checklist. The item in each case of the data set belongs to
a checklist y, which is a solution applied to the organisation
x. A checklist consists of a set of items such that y = (e; €
di,es € dg,...,e, € dy,). Anitem can only occur once per
checklist, such that e; # e; for every e; A e; € y. Thus, y
consists of items from multiple cases.

Answer. The label | € {0,1} of each case d; € D is the
recorded answer from applying the item e to the organisation
x. A positive answer (non-compliance) is observed if [ = 1.

The Checklist Construction Problem. Given a candidate
target organisation "¢, a model M needs to select K out of
N unique items (eq, ea, ..., e ) for an initial candidate check-
list y°*?. Each item e; € y°"? needs to be selected so that
it maximizes the probability for observing the answer [; = 1
when applied to the targeted 2",

Dynamic Adaptation of Checklists. Let (I1,...,{;) be the
observed answers to the items (eq,...,e;) € y°"¢ where
i < K. Given the target organisation z°"¢ and the answered
items, adapt the checklist so that the posterior probability for
observing a positive answer to any unanswered items on the
changed checklist is maximized. The adaptation could be
done by adding or removing items to the checklist in many
ways. In this work adaptation is done by recommending any
additional M of N items é ¢ y°"? that have higher posterior
probability for observing [ = 1 (given (1, ..., ;)), compared
to any existing items on y"?. The M recommendations are
appended to the existing K items of y"<.

4 CBCBR Framework

The purpose of CBCBR is to create a dynamic checklist for
any given x°"?, by retrieving past cases with items used in
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Figure 3: An overview of CBCBR. The black arrows show how the
case base is created or updated. The white arrows show the creation
of a candidate checklist. The checklist is dynamically updated via
the blue (and black) arrows, starting from the candidate checklist.

Recommended Cases
Case K+1

similar organisations, and with high estimated probabilities
for non-compliance. Answering the checklist may change the
estimates, triggering dynamic updates to the checklist.

An overview of CBCBR is shown in Figure 3 and consists
of the following steps: (1) a naive Bayesian inference (NBI)
model generates probability estimates (6°¢) for answers based
on empirical distributions of the data set D. (2) A case base
CB of augmented CBR cases c; is created by adding 6°¢ as
feature to the instances d; € D. (3) Similarity based retrieval
is used to retrieve K cases from CB3, given a query q that
contains the target organisation 2" and a fixed target value
for 6¢ in the cases. The retrieved cases contain the items
for the initial candidate checklist yC”d, as illustrated by the
white arrows on Figure 3. (4) The novel recommendation
part for adapting y°"¢ is shown by the blue arrows in Figure
3. First, an item on yc”d is answered, which prompts CBCBR
to refresh the CB with updated posterior °¢ estimates (via
NBI). CBCBR then retrieves any new cases from CB with
sufficiently increased 6°¢, containing M recommended items
which are appended to y°™?.

Further details for how 6% is calculated by the NBI model
in steps 1 and 4 are covered in Section 4.1 and 4.2, respec-
tively. The other details for step 2-4 are found in Section 4.3.

4.1 Naive Bayesian Inference for Checklist
Construction

NBI is based on using empirical distributions of the data set D
to estimate the probability for the event L = 1|z, e, expressed
as the mean of a Beta distribution [Darwiche, 2009]:

0% (L = 1|z,e) =
D#(LZ 1Asz/\E:e)+¢L:1\m,e
S oDHL=IANX =2 AE=¢)+Yr_pe

(D

where L = [, X = z and E = e denote the event where the
outcomes [, z and e are observed. Both (D#(L = 1A X =
2 ANE =e€)and (D#(L =0ANX =z AE = e) are pa-
rameters for the Beta distribution, and 17—, . denotes the
prior parameters. Equation 1 is used to calculate the proba-
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bility estimates needed for selecting the optimal items when
constructing the initial checklist y <.

4.2 Naive Bayesian Inference for Item
Recommendations

After answering an item e; on the checklist ycnd, the obtained
answer [; holds evidence that can be used to update the pos-
terior belief in any unobserved answer [ for a candidate item
é.! This assumption can be used to update the probability es-
timates from Equation 1, by estimating new additional Beta
distribution parameters with the following equation:
p(l,z,6,e,1;) =D#(L =IAX =2/
Ee{é:(ée)ecyn(x,e,l;)eD}). (2
The parameters are made by counting cases in D. Each case
in D is counted if it contains the given z, [ € {0,1}, é and
if there exist at least one other case d = (x, e;,[;) and a past
checklist y in D such that both e; and € exists in that checklist.

The posterior estimates can now be updated by inserting the
parameters above into the Beta distribution from Equation 1:

Poe(L = e, &,y =
5L:1|x,é + Z(li,eiGyC”d) P(L z, é7 €i, lz)

1 .
2o 5L:l”|x,é + Z(zi,eieywd) p(l,z, 8 e;,1;)
where 5L=17\x,é =D#(L = INX =2 ANE = é) +¢L=i\x,é~

The 6°¢ estimate in Equation 3 is calculated by summing the
parameters for every e; € y°™ that has an observed answer
l;. It should be noted that the equation above “naively” as-
sumes that all applied items e; are mutually independent of
each other given x. This is done to decrease the amount of
g% estimates based on low or zero case counts [Darwiche,
2009]. Equation 3 is an important technical contribution of
this paper, since it enables online adaptations of checklists.

4.3 Case Base and Retrieval of Checklist Items

This section defines the details for the augmented CBR cases,
case base and similarity based retrieval from Figure 3.

(©))

Creating Augmented CBR Cases and Case Base. Algo-
rithm 1 shows the creation of a case base CB with augmented
cases c. The « feature is included to adjust for the case counts
of the probability estimates when retrieving cases [Flogard et
al., 2021]. The algorithm iterates through each case d; € D
and creates x and 0% estimates for the case via Equation 1.
Both #¢ and £ are conditioned on the case features z and e;
and added as features to each d, to create cases c for CB3.

Case Retrieval for the Candidate Checklist. To retrieve
items e; for the candidate checklist y“"?, a query case q and a
similarity function are used. The query consists of the target
organisation 2" and the desired values for both the prob-
ability estimates and the case count features. The similar-
ity function assigns a score Sim(-,-) € [0,1] to every pair
(a,c; € CB). The function is the same linear weight similar-
ity function used by Flogard et al. [2021]. The function is ap-
plied to every c; € CB and a set of unique items (eq, ..., ex’)
is then retrieved from the K cases with the highest similarity
score, to create an initial checklist y“"d with K items.

'In this setting, é is a potential candidate for recommendation.
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Algorithm 1 Creating or updating C3 with cases ¢ containing
new 6°¢ estimates.
Input: D, y°*?; //y°"® is only included when updating C3
with new posterior % estimates after answering items.
Output: CB < (); //Initialize CB.
for eachd; € D do
//Both z; and e; are found in the current case d;.
if y°"? is empty then
0 < 0% (L = 1|z;,e;); //Eq. 1
else
0 < 0% (L = 1|z, e;,y"?); //Eq. 3
end if
KD#L=1NX =a; NE=¢ej);
c + Join(dy, 0, k); //merge d;, 6, x to a single case.
CB <« Insert(c); //Add the new case c to CB5.
end for
return CB; //The CB is now ready for any case retrievals.

Case Base Update and Retrieval for Recommendations.
Algorithm 1 also shows how the case base is refreshed after
answering items on the checklist. This procedure is done after
an item e; € y°"? has been applied to "%, First the existing
CB is cleared for cases. Then updated probability estimates
are calculated for each case d; € D via Eq. 3, conditioned
onx;, e; and every e; € y“"?® with an obtained /;. The newly
calculated 0 and ~ features are concatenated to each d; to
create the updated cases c for CB.

The updated cases are then retrieved for recommendation.
First, the function Sim(q, c;) is again applied to q and every
c; € CB. Afilter is then applied to remove all cases with sim-
ilarity scores less than any of the K cases that were selected
for the initial y°"?. Duplicated items are also removed so that
M cases with unique items remain. The size of M is usually
very small (between 0 and 4) and is not known or fixed, but
simply depends on how many eligible cases that remain after
applying the filter. If there are M > 0 remaining cases, the
items from these cases are recommended for the checklist.

5 Demonstration and Assessment of CBCBR

Data Set. We use the Checklist data set introduced by Flog-
ard et al. [2021], which has 1 111 502 entries d;. The entries
constitute 63 634 inspections conducted with 369 different
unique checklists, which in turn contain N = 1 947 unique
items in total. The checklists cover a wide range of industries
and the items on each checklist typically have an inspection
topic that specifically relates to a few intended target indus-
tries. Mengshoel et al. [2021] also use a similar data set.

Query. We use the configuration from Section 6.1. A rec-
ommendation is done after answering each item. The query
is q = (", 0, k) and contains the desired values of the re-
trieved cases, where 6 is set to 100% and « to 70. The target
organisation for the inspection "% is a hotel in Oslo.

Constructed Checklist and Item Recommendations. Ta-
ble 1 shows the constructed checklist y"? for the target hotel
¢ where two of the items have been answered. The an-
swers were randomly selected. The initial size of the check-
list is K = 5 items, however two items have been added as
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Checklist o~

Does the employer ensure that the employees work within the frame- ‘Yes)No
work in Chapter 10 of the Working Environment Act? o~
Has the employer ensured that the employment agreements are in line | Yes {No
with the minimum requirements set out in the Working Environment
Act §14-6?7
Does the company have routines for how violence, threats and other un- | Yes/No
fortunate burdens as a result of contact with others are to be prevented,
reported, handled and followed up?
Has the employer implemented the necessary measures and/or prepared | Yes/No
a plan describing measures to remove or reduce hazards and problems
at work?
Has the employer mapped the dangers and problems the employees may | Yes/No
be exposed to in the company and on this basis assessed the risk of
injury to or danger to the employees?

Added Items
Does the company pay at least a 40% supplement to the salary for over- | Yes/No
time work?
Does the employer have control over the working hours of the employ- | Yes/No
ees within the framework of the Working Environment Act, Chapter 10?

Table 1: The state of a dynamic checklist y°"¢ with K = 5 initial
items, generated for a hotel inspection in Oslo. Two items on the
checklist have been answered (as indicated with blue circles). Two
items have also been dynamically added to the checklist (at the bot-
tom), based on the answered items.

recommendations based on the answered items. Further items
may be added after more answers are given. The added items
increases the checklist length, but allow the inspector to focus
more on highly relevant risks in the inspected organisation.

Qualitative Assessment. The items in Table 1 cover a vari-
ety of topics such as working hours, overtime payment and
violence. These are all common risks for the hotel indus-
try, especially in a large city such as Oslo. The added items
shown in the table are also relevant and closely related to the
two answered items on the top of the checklist. Thus, the rec-
ommendations align well with the findings at the inspection.
CBCBR also performed well when we, with domain experts,
assessed a variety of other inputs (%) and lengths (K).

6 Experiment

In this section we conduct an experiment to measure the per-
formance of CBCBR against BCBR and other baselines.

6.1 Experimental Setup

CBCBR and BCBR Configuration. Both CBCBR and
BCBR generate the exact same initial checklists, but BCBR
does not perform any additional recommendations or dy-
namic adaptations. The two methods use the same config-
uration as Flogard et al. [2021]. The NBI models for CBCBR
and BCBR use fixed priors ¢p—1|; . = 1 and ¢—q[z,c = 5.
For every query q, the target matching value for 6°¢ is set to
100%. The target value for s is set to 70. The NBI mod-
els are created and updated via MSSQL17 queries and stored
as Python data frames. The similarity based retrieval is im-
plemented via MyCBR [Bach et al., 2019] for both meth-
ods. For performance reasons, CBCBR recommendations are
made each time 5 items on the checklist have been answered.

Generating Checklist Answers for Predictive CBCBR
Recommendations. To generate predictive recommenda-
tions for CBCBR in the experiment, we introduce a simulator.
The approach is similar to user-behaviour simulations in rec-
ommender systems [Zhang and Balog, 2020], as the goal of
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the simulator is to perform a realistic walk-through of an ini-
tial checklist to obtain an answer [; for each item e; € yc”d.
These answers are then used to generate realistic item recom-
mendations in the experiment below. This is done as follows:

1. For a given target organisation z°"¢, CBCBR (model
M) first constructs an initial checklist y"? with items
e;. Each e; is retrieved from a case ¢; € CB and has an
unobserved answer ;.

2. For each e; € y°"?, a value for /; needs to be generated
by drawing from the set {0, 1}.

3. To do so, the parameters b; of a Bernoulli distribution 5
for [; are estimated empirically from CB using the fol-
lowi ion: by — CB#(L=1AX=z"NE=¢;)

owing expression: b; CBA(X =z T F=c)

4. If e; is an item that has been recommended earlier in the
simulation, the recommendation context is taken into ac-
count when calculating b;. This is done by applying Eq.
3 to CB (instead of D): b; = 0¢(L = 1|z°"% ¢;, y°?).

5. The value /; € {0, 1} is now drawn from a Bernoulli dis-
tribution, given by B(b;, 1 — b;). If 5 values have been
generated since the last recommendation, then proceed
to the next step. Otherwise, go to Step 2.

6. After 5 [;-values are generated, CBCBR is updated with
the new values in order to perform a recommenda-
tion. Any recommended items are then automatically
appended to y"?. After the recommendation, go to Step
2 if there are any unanswered items left in y "%,

After the procedure above has been applied, the extended
checklist is ready for evaluation.

Baselines for the Experiment. We use these following base-
lines to generate static checklists: Multi layer perceptron
(NN), Random forest (RF), Naive Bayes inference (NBI), De-
cision tree (DT) and Logistic regression (LR).

Each baseline (M) above generates a checklist of K items
as follows: (1) M is first trained on a training set D of D,
using ! from each instance d = (e, x,l) as the target label.
Each M is trained with the goal of correctly classifying the
value of [, given z and e. (2) Given a validation set Do g of D
and an input z°"¢, M generates a prediction score ([0, 1]) for
every N possible items. Predictions are only generated for
items (e) with at least one corresponding instance (e, x,1) €
Dcp where © = 2", (3) The K items with the highest
scores are selected for the candidate checklist y <.

We also use the original, domain expert created checklists
(ECL) from the Checklist data set as baseline.

Baselines Configuration. The NBI-baseline is calculated us-
ing Equation 1 and is implemented via MSSQL17. The other
baselines are implemented via Sklearn, using the default con-
figurations for most of them. For the NN and RF baselines we
used GridsearchCV (Sklearn) for hyperparameter tuning. The
optimal configuration for NN was 20 layers, logistic activa-
tion function and L2 penalty of 0.0001. The optimal config-
uration for RF was 50 estimators, bootstrapping sample size
of 50% and minimum sample size of 10 for node splits.

Environment. The experiment is conducted on a fully up-
graded Dell Precision 5560 with Intel i9 11950h and 64GB
RAM, in a Python environment using Scikit-learn (Sklearn).
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Method Acc Prec(gt) Prec Rec Avg Time (sec)
ECL 0.365 0.177 0.176 0.592 0.328 -

DT 0.494 0.229 0.258 0.610 0.398 3641
LR 0.513 0.247 0.272 0.664 0.424 205

RF 0.518 0.253 0.284 0.676 0.433 4222
NBI 0.520 0.254 0.286 0.686 0.437 7.2

NN (MLP) 0.521 0.256 0.290 0.688 0.439 14280
BCBR 0.675 0.313 0.479 0.764 0.558 8.7
CBCBR 0.675 0.322 0.497 0.808 0.576 8.6 (4.5)

Table 2: The mean accuracy Acc, ground truth precision Prec (gt),
precision Prec and recall Rec for the content of the checklists, cre-
ated via the various methods in the table. The Avg column shows
the average scores of the four preceding columns. The last column
shows the training times in seconds for each method.

6.2 Evaluation of CBCBR’s Dynamic Checklists

The goal of this experiment is to evaluate the performance of
CBCBR against BCBR and other baselines.

Method and Data. The experiment is done on the data set
D from Section 5. An 8-fold cross-validation is used where
D is partitioned into training folds (Dr) and validation folds
(Dep). Dr is used to calculate any probability estimates
needed to select or recommend items for a checklist y°™<.
Dep is used for the case base (CB) and for performance eval-
uation. Each validation fold has 138 938 instances that con-
stitutes 7 954 inspections. Each inspection contains a target
organisation 2 that is used as input (2°"¢) to each checklist
construction model M. Each model M then generates a can-
didate checklist y°"? for each given z as described in Section
4 and 6.1. The target length of y°"? is set to K = 15.2
Statistics for all checklists created by each M are calcu-
lated as follows: For each generated y°"¢, all items ¢; € y°"¢
are considered as having predicted positive answers [; = 1.
The rest of the N possible items where e ¢ y°*¢ are con-
sidered as having predicted negative. The number of true
positive (T'P)/false positive (F'P) answers and true nega-
tive (T'N)/false negative (F'N) answers of y°"¢ are estimated
from empirical distributions of D¢p, as described by Flog-
ard et al. [2021]. This is done because every y°"? is a new
checklist, so most items ¢; € ymd do not have an observed
ground truth answer [;. The estimates are used to calculate
accuracy, precision and recall statistics for each y°"¢ via:

TP+TN _ TP

Accyena TPTFPITNTFN L TeCyend 7pirp and
_ TP

Recymd = TPiFN- The final mean Acc, Prec and Rec for

each validation fold are found by averaging each statistic over
all 7954 generated y“"¢. We also included Prec (gt), which is
mean precision calculated by only using the subset of items
on the checklists where ground truth answers are available.
The statistics are comparable to mean average (MA), used to
evaluate recommender systems [Natani and Watanabe, 2021].

Results and Discussion. The results are shown in Table
2. CBCBR has the highest Avg score and has higher scores
than BCBR on most of the statistics. This is impressive as

2For CBCBR, each generated y°? also includes recommended
items. The initial length of CBCBR’s checklists are K = 15, before
adding any extra items. The code for the experiment is published at
https://github.com/ntnu-ai-lab/cbcbr.
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CBCBR’s checklists are longer and should generally have
lower Acc, Prec and Prec (gt), since only 17.7% of the in-
stances in the data set have positive labels (I = 1) and longer
checklists means more predicted positives. NN has the third
highest Avg score, only marginally higher than NBI. It may be
possible to improve the results for NN with more advanced
parameter tuning methods, but this will unlikely be enough
to match BCBR or CBCBR’s performance. The domain ex-
perts’ checklists (ECL) have the lowest score.

On average, the checklists constructed by CBCBR con-
tain 9.13 violations (true positives) against 7.19 for BCBR.
CBCBR’s checklists also contain 18.1 items against 15.0 for
BCBR. This means that CBCBR recommends 3.1 items on
average, because CBCBR creates the same initial checklists
as BCBR. There are 1.94 violations found among the 3.1 rec-
ommended items, which corresponds to a precision score of
0.63. Thus, CBCBR’s recommendations have much higher
precision than static checklists created by BCBR or other
baselines in Table 2. Overall, the results suggest that using
CBCBR’s dynamic checklists for labour inspections will in-
crease efficiency and the amount of violations to working en-
vironment regulations found at the inspected organisations.

Time-wise, the slowest method is NN with an average
training time of 14 280 seconds, excluding hyper parame-
ter optimization. The fastest method is NBI with 7.2 sec-
onds training time. CBCBR is nearly as fast, as the combined
time for model training and generating an initial checklist is
8.6 seconds. This is much faster than LR and DT, which are
known for their low training times. It also takes 4.5 seconds
to update CBCBR and recommend new items after answering
a checklist. However, the cross-validation took more than 20
days to complete because CBCBR must be trained and up-
dated individually for each validation case. Still, the short
individual training and update times for each checklist means
that CBCBR can be used as an online model and we believe
that further speed-ups can be achieved via parallelization.

7 Conclusion

In this work we show that dynamic answer-based adaptations
to checklists can significantly increase the number of viola-
tions found in labour inspections. We introduce CBCBR for
real-time generation and adaption of checklists, which could
be employed by labour inspection agencies to increase the ef-
ficiency of their inspections. This will likely increase national
and global levels of compliance with labour rights and reduce
injuries (see SDG indicator 8.8.1 and 8.8.2). We are currently
testing the real-world performance of CBCBR in a trial.

This paper only explores one of many possible approaches
for dynamically adapting checklists. Future work could in-
vestigate other designs as well. An example is to dynamically
build checklists from ground-up, starting with one item and
adding K more, one-by-one as answers are obtained. Another
direction for future work is to explore approaches for creat-
ing checklist items, where Cai et al. [2020] could be a start-
ing point. It could also be interesting to look into other ML
methods for dynamically adapting checklists, such as RNNs.
CBCBR’s dynamic checklists could also be tested in other
relevant tasks, such as food inspections, aviation or surgeries.


https://github.com/ntnu-ai-lab/cbcbr
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