
ISBN 978-82-326-5563-2 (printed ver.)
ISBN 978-82-326-6584-6 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:12

Cristiano Gratton

Privacy-preserving distributed
machine learning for artificial
intelligence of thingsD

oc
to

ra
l t

he
si

s

D
octor al theses at N

TN
U

, 2023:12
Cristiano G

ratton

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

Thesis for the Degree of Philosophiae Doctor

Trondheim, January 2023

Norwegian University of Science and Technology
Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

Cristiano Gratton

Privacy-preserving distributed
machine learning for artificial
intelligence of things

NTNU
Norwegian University of Science and Technology

Thesis for the Degree of Philosophiae Doctor

Faculty of Information Technology and Electrical Engineering
Department of Electronic Systems

© Cristiano Gratton

ISBN 978-82-326-5563-2 (printed ver.)
ISBN 978-82-326-6584-6 (electronic ver.)
ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:12

Printed by NTNU Grafisk senter

Abstract

This thesis proposes machine learning algorithms that can be fully distributed over
ad-hoc networks of machines/agents. Developing distributed algorithms for artifi-
cial intelligence is necessary since running machine-learning-based data analytics
on a single central hub may be unfeasible due to computing/communication costs.
In the context of distributed learning, privacy violation risks due to curious mem-
bers of the network or eavesdroppers make the development of privacy-preserving
distributed algorithms imperative.

The main contributions of the thesis are around developing distributed machine
learning algorithms for artificial intelligence of things including distributed al-
gorithms with intrinsic privacy-preserving properties. In particular, the contribu-
tions can be grouped in the following categories:

• distributed learning over networks with horizontal/row partitioning of data

• intrinsically privacy-preserving distributed learning with zeroth-order op-
timization

• distributed learning over networks with vertical/feature partitioning of data.

In the context of distributed learning with horizontal partitioning of data, we pro-
pose a new distributed algorithm to solve the total least-squares (TLS) problem and
a privacy-preserving distributed algorithm to minimize a regularized empirical risk
function when the first-order information is not available.

We show that the latter algorithm has intrinsic privacy-preserving properties. Most
existing privacy-preserving distributed optimization/estimation algorithms exploit
some perturbation mechanism to preserve privacy, which comes at the cost of re-
duced accuracy. Contrarily, we exploit the inherent randomness due to the use of a

iii

iv

zeroth-order method and show that this stochasticity is sufficient to ensure differ-
ential privacy. Moreover, we demonstrate that the proposed algorithm outperforms
the existing differentially-private ones in terms of accuracy while yielding similar
privacy guarantees.

In the context of distributed learning with feature partitioning of data, we develop
a new distributed algorithm to solve the ridge regression problem. Subsequently,
we develop a new algorithm that is designed for an `2-norm-square cost func-
tion with non-smooth regularizers. Finally, we develop a new consensus-based
distributed algorithm for solving learning problems when the data is distributed
among agents in feature partitions and computing the conjugate of the possibly
non-smooth cost or regularizer functions is challenging or unfeasible. The pro-
posed algorithm is designed for optimizing generic non-smooth objective functions
over arbitrary graphs without using or computing any conjugate function. All the
above-mentioned algorithms are fully-distributed and based on the alternating dir-
ection method of multipliers (ADMM) that is suitable for distributed optimization
thanks to its scalability and robustness properties. We prove theoretically that the
proposed algorithms converge. We also confirm their network-wide convergence
via simulations.

Acknowledgments

First, I would like to thank my family, in particular my parents, my wife, and
my son for supporting me and giving me the motivation to perform the research
activities.

I would like to express my gratitude to my supervisor Professor Stefan Werner for
believing in me and giving me the opportunity to pursue the PhD degree at the
NTNU, for his availability and for guiding and encouraging me in this long and
hard path.

Further, I would like to thank my co-supervisor Reza Arablouei for his insightful
suggestions, for making available his expertise in the research fields, and for the
time and effort put into producing the papers forming the thesis.

I wish to thank my co-author Naveen K. D. Venkategowda for his patience in
helping me, his hints and his valuable contributions to the papers constiuting this
PhD thesis.

Finally, I also thank everybody from the Department of Electronic Systems (IES)
at the NTNU, in particular, the Signal Processing Group.

v

vi

Contents

Abstract iii

Acknowledgments v

List of Tables xi

List of Figures xvi

Abbreviations and Symbols xix

1 Introduction 1

1.1 Objectives . 4

1.2 Methodology . 5

1.3 Thesis Contributions . 5

1.3.1 List of Publications . 8

1.4 Thesis Organization . 9

2 Distributed Optimization and Privacy 11

2.1 Distributed Optimization . 11

2.1.1 Horizontal Partitioning 11

vii

viii CONTENTS

2.1.2 Feature Partitioning . 12

2.2 The Alternating Direction Method of Multipliers 14

2.2.1 Consensus-Based Reformulation 14

2.2.2 Distributed ADMM Algorithm 15

2.2.3 Evaluation Metrics . 17

2.3 Zeroth-Order Methods . 18

2.3.1 Two-Point Stochastic-Gradient Algorithm 19

2.4 Differential Privacy . 20

2.4.1 Attack Model and Privacy Concerns 20

2.4.2 Primal Variable Perturbation Mechanism 21

3 Distributed Optimization with Horizontal Partitioning 23

3.1 Distributed Total Least-Squares Estimation Using Parametric Semi-
definite Programming . 23

3.1.1 Related work . 23

3.1.2 Contributions . 24

3.1.3 System Model . 24

3.1.4 Distributed TLS . 25

3.1.5 Simulations . 29

3.1.6 Conclusion . 30

3.2 Distributed Learning with Non-Smooth Objective Functions . . . 30

3.2.1 Related Work . 32

3.2.2 Contributions . 32

3.2.3 Non-Smooth Distributed Learning 33

3.2.4 Simulations . 37

3.2.5 Conclusion . 40

4 Privacy-Preserved Distributed Learning with Zeroth-Order Optimiz-

CONTENTS ix

ation 41

4.1 Related Work . 42

4.2 Contributions . 43

4.3 System Model . 43

4.4 Intrinsic Differential Privacy Guarantee 44

4.4.1 Primal Variable Distribution 44

4.4.2 Covariance of the Primal Variable 46

4.4.3 l2-Norm Sensitivity . 47

4.4.4 Intrinsic (ε, δ)-Differential Privacy Guarantee 47

4.4.5 Total Privacy Leakage 49

4.5 Convergence Analysis and Privacy-Accuracy Trade-off 49

4.6 Simulations . 50

4.7 Conclusion . 60

5 Distributed Optimization with Feature Partitioning 61

5.1 Distributed Ridge Regression . 61

5.1.1 Related Work . 62

5.1.2 Contributions . 62

5.1.3 System Model . 62

5.1.4 Distributed Ridge Regression via ADMM 62

5.1.5 Simulations . 65

5.1.6 Conclusion . 67

5.2 Distributed Optimization with Non-Smooth Regularizers 67

5.2.1 Related Work . 67

5.2.2 Contributions . 69

5.2.3 System Model . 69

5.2.4 Distributed Algorithm for Learning with Feature Partitioning 69

x CONTENTS

5.2.5 Simulations . 74

5.2.6 Conclusion . 76

5.3 Decentralized Optimization with Distributed Features and Non-
Smooth Objective Functions . 77

5.3.1 Related Work . 77

5.3.2 Contributions . 78

5.3.3 System Model . 79

5.3.4 Algorithm . 80

5.3.5 Convergence Analysis 86

5.3.6 Simulations . 88

5.3.7 Conclusion . 98

6 Conclusions and Future Work 99

A Publications on Distributed Optimization with Horizontal Partitioning115

B Publications on Privacy-Preserved Distributed Learning with Zeroth-
Order Optimization 117

C Publications on Distributed Optimization with Feature Partitioning 119

List of Tables

1.1 Comparative Summary for [1] 6

1.2 Comparative summary for [2] . 8

xi

xii LIST OF TABLES

List of Figures

1.1 `1-norm regularization (lasso penalty). 2

2.1 Horizontal partitioning of data over a network with five agents. . . 12

2.2 Distributed features over a network with five agents. 13

3.1 Normalized error of the DA-TLS, D-TLS, and IPI-D-TLS algorithms
with two values of penalty parameter (ρ = 2 and ρ = 3) for DA-
TLS and two values of the step-size (µ = 0.2 and µ = 0.3) for
IPI-D-TLS. 31

3.2 Normalized error for different values of P . For DA-TLS, we set
ρ = 1 and, for IPI-D-TLS, we set µ = 1. 31

3.3 Normalized error of D-ZOA and D-SG for generalized lasso with
P = 10, ρ = 3 and two different values of N 39

3.4 Normalized error of D-ZOA for RRR with P = 5, S = 4, ρ = 3
and N = 10. 39

4.1 The normalized errors of D-ZOA, OR-ZO [3], and ZOO-ADMM [4]
versus the iteration number. 53

4.2 The histogram of g(t)
k at agent 2, the inner loop iteration t = 100,

and the outer loop iteration m = 50. 54

xiii

xiv LIST OF FIGURES

4.3 The QQ plot of g(t)
k at agent 2, the inner loop iteration t = 100,

and the outer loop iteration m = 50. 54

4.4 The histogram of g(t)
k at agent 2, the inner loop iteration t = 50,

and the outer loop iteration m = 150. 55

4.5 The QQ plot of g(t)
k at agent 2, the inner loop iteration t = 50, and

the outer loop iteration m = 150. 55

4.6 Normalized error of DPSGD, DP-ADMM, and D-ZOA for two
values of ε and δ = 10−3 for ERM with `1-norm regularization. . 56

4.7 Normalized error of DPSGD, DP-ADMM, and D-ZOA for two
values of ε and δ = 10−6 for ERM with `1-norm regularization. . 56

4.8 Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA
for ERM with `1-norm regularization for δ = 10−6 and δ = 10−3. 57

4.9 Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA
for ERM with `1-norm regularization for ε = 0.15 and ε = 0.95. . 57

4.10 Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA
for ε = 0.40 and δ = 10−3 for ERM with `2-norm regularization. . 58

4.11 Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA
for ε = 0.80 and δ = 10−3 for ERM with `2-norm regularization. . 58

4.12 Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP,
and D-ZOA for ERM with `2-norm regularization for δ = 10−3. . 59

4.13 Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP,
and D-ZOA for ERM with `2-norm regularization for ε = 0.95. . . 59

5.1 Topology of the considered multi-agent network. 66

5.2 The misalignment of D-Ridge and the diffusion-based algorithm
with different values of the step-size µ when one or all agents have
access to b. 66

5.3 The misalignment of D-Ridge for different values of B. 68

5.4 The misalignment of D-Ridge and the diffusion-based algorithm
for the considered network topology and for the linear topology
(L.T.). 68

LIST OF FIGURES xv

5.5 Normalized error of the proposed algorithm and the broadcast-
based algorithm of [5] with N = 20 agents and different values
of Pi. 75

5.6 Normalized error of the proposed algorithm and the broadcast-
based algorithm of [5] with Pi = 10 and different values of N . . . 75

5.7 The misalignment of the proposed algorithm solving the distrib-
uted elastic-net regression problem with different values of Pi . . 89

5.8 The misalignment of the proposed algorithm solving the distrib-
uted elastic-net regression problem with different values of M . . . 89

5.9 The misalignment of the proposed algorithm solving the distrib-
uted elastic-net regression problem with different values of N . . . 90

5.10 The misalignment of the proposed algorithm solving the distrib-
uted elastic-net regression problem with different topologies. . . . 90

5.11 The misalignment of the proposed algorithm and other considered
algorithms for the ridge regression problems with N = 10, M =
50, and Pi = 2. 92

5.12 The misalignment of the proposed algorithm and other considered
algorithms for the ridge regression problems with N = 10, M =
200, and Pi = 2. 92

5.13 The misalignment of the proposed algorithm and other considered
algorithms for the ridge regression problems with N = 20, M =
200, and Pi = 2. 93

5.14 The misalignment of the proposed algorithm and other considered
algorithms for the ridge regression problems with N = 10, M =
200, and Pi = 10. 93

5.15 The misalignment of the proposed algorithm and other considered
algorithms for the lasso regression problems with N = 10, M =
50, and Pi = 2. 95

5.16 The misalignment of the proposed algorithm and other considered
algorithms for the lasso regression problems with N = 10, M =
200, and Pi = 2. 95

5.17 The misalignment of the proposed algorithm and other considered
algorithms for the lasso regression problems with N = 20, M =
200, and Pi = 2. 96

xvi LIST OF FIGURES

5.18 The misalignment of the proposed algorithm and other considered
algorithms for the lasso regression problems with N = 10, M =
200, and Pi = 10. 96

Abbreviations and Symbols

Abbreviations

ADMM Alternating direction method of multipliers

BCD Block coordinate descent

D-TLS Distributed total least-squares

D-ZOA Distributed zeroth-order based ADMM

DA-TLS Distributed ADMM total least-squares

DC-ADMM Dual consensus ADMM

DPSGD Distributed subgradient algorithm

DVP Dual variable perturbation

ERM Empirical risk minimization

EVD Eigen-decomposition

IPI-D-TLS Inverse-power-iteration-based distributed total least-squares

KKT Karush-Kuhn-Tucker

PVP Primal variable perturbation

RRR Reduced-rank regression

SDR Semidefinite relaxation

xvii

xviii ABBREVIATIONS AND SYMBOLS

TLS Total least-squares

WSN Wireless sensor network

Symbols

(·)T Transpose of a matrix

IM M ×M identity matrix

E[·] Expectation operator

N Set of natural numbers

R Set of real numbers

R+ Set of positive real numbers

0M×N M ×N matrix with all zeros entries

0M M × 1 vector with all zeros entries

L Laplacian matrix

E Set of edges

G Graph

N (µ,Σ) Normal distribution with mean µ and covariance matrix Σ

V Set of vertices

‖x‖2A Quadratic form xTAx

⊗ Kronecker-product operator

∂f Subdifferential of function f

‖ · ‖ Euclidean norm

‖ · ‖∗ Nuclear norm

‖ · ‖∞ Infinity norm

‖ · ‖F Frobenius norm

|V| Cardinality of the set V

ABBREVIATIONS AND SYMBOLS xix

eij Graph edge from agent i to agent j

f ′ Subgradient of function f

f∗ Conjugate function of function f

λmax(·) Nonzero largest eigenvalue of a positive semidefinite matrix

λmin(·) Nonzero smallest eigenvalue of a positive semidefinite matrix

cov[·] Covariance operator

det(·) Determinant of a matrix

tr(·) Trace of a matrix

vec(·) Matrix-to-vector operator

xx ABBREVIATIONS AND SYMBOLS

Chapter 1

Introduction

With the recent advances in technology, large quantities of data are collected by
numerous sensors, which are often geographically dispersed. Hence, performing
data analytic tasks such as estimation and classification at a central processing
unit in a distributed network can be infeasible due to the associated computa-
tion/communication costs. In addition, collecting all the data in a central hub
creates a single point of failure. Therefore, it is necessary to develop algorithms
that facilitate in-network processing and model learning using data collected by
nodes/agents that are dispersed over a network. They ought to operate in a distrib-
uted fashion relying only on the available local information. In this context, each
agent in the network only possesses information of a local cost function and the
agents aim to collaboratively minimize the sum of the local objective functions.
Distributed optimization problems pertain to several applications in statistics, sig-
nal processing, machine learning, and control [6–10].

An important issue associated with distributed learning is how the data is distrib-
uted among the agents. Horizontal partitioning of data refers to when subsets
of data samples with a common set of features are distributed over the network.
Examples of learning with horizontal partitioning of data can be found in [11–
14]. However, many regression or classification problems encountered in machine
learning deal with heterogeneous data that do not contain common features. These
problems lead to the so-called feature (column) partitioning of the data where sub-
sets of features of all data samples are distributed over the network agents. Dis-
tributed learning problems with feature partitioning also arise in several signal
processing applications, e.g., bioinformatics, multi-view learning, and dictionary
learning [5, 15]. Further technical details about horizontal and feature partitioning
is given in Sections 2.1.1 and 2.1.2, respectively.

1

2 Introduction

Figure 1.1: `1-norm regularization (lasso penalty).

Regarding distributed learning with horizontal partitioning of data, we consider
a distributed solution to the total least-squares (TLS) problem and a distributed
solution for non-smooth optimization problems when the first-order information is
unavailable.

In the realm of linear estimation, the TLS method has been introduced as an altern-
ative to the ordinary least-squares method to deal with errors-in-variables models.
In such models, both independent and dependent variables are corrupted by noise
or perturbation. TLS has been successfully used in several signal processing ap-
plications, e.g., frequency estimation of power systems [16–18], cognitive spec-
trum sensing [19], system identification [20], and wireless sensor networks [14].
The existing consensus-based approaches to distributed TLS estimation are pro-
posed in [14, 21], however, their convergence highly depends on the choice of
the step-size, whose optimal tuning requires the global knowledge of the data and
network topology. In contrast, the proposed distributed ADMM TLS (DA-TLS)
algorithm does not require careful tuning of any design parameter.

3

There have been several works developing algorithms for solving distributed con-
vex optimization problems over ad-hoc networks. However, many existing al-
gorithms only offer solutions for problems with smooth objective functions, see,
e.g., [22–24]. In some real-world problems, obtaining first-order information is
hard due to non-smooth objectives [8, 9, 11] or lack of any complete objective
function. Non-smooth objectives arise, for example, in finding sparse solutions
that are required, e.g., in compressed sensing and cognitive radio [25]. In this
context, a common way of finding sparse solutions consists in solving the lasso
problem whose non-smooth regularizer function is shown in Figure 1.1. An-
other method for sparse optimization, which we consider in our simulations is
the reduced-rank regression (RRR). In the RRR problem, the objective function is
least squares with nuclear norm regularization [7]. Nuclear norm is a non-smooth
function that is used as a convex surrogate for the rank. RRR has applications
in robust PCA [26], low-rank matrix decomposition [27], matrix completion [28],
etc. There are some other scenarios where the complete objective function is not
available and we only have access to zeroth-order information, i.e., function val-
ues, e.g., in bandit optimization [29], in simulation-based optimization [30], or
in adversarial black-box machine learning [31]. This motivates the use of zeroth-
order methods, which only use the values of the objective functions to approximate
their gradients [4, 32, 33].

Most existing algorithms for non-smooth optimization rely on calculating sub-
gradients, e.g., [9, 10] or proximal operators, e.g., [5, 11]. However, the computa-
tion of subgradients might be hard to achieve for some objectives and the deriva-
tion of proximal operators might not be feasible in some scenarios. The proposed
distributed zeroth-order based ADMM (D-ZOA) algorithm is fully-distributed and
solves optimization problems when first-order information is not available. D-
ZOA is based on a zeroth-order method and, therefore, it only requires function
values to approximate gradients of the non-smooth objective function.

Regarding distributed learning with feature partitioning of data, we first consider
a distributed solution to the ridge regression problem. Next, we deal with a gen-
eralization of the last algorithm, which allows for distributed optimization with
feature partitioning and non-smooth regularizers. Finally, we consider a further
generalization allowing distributed optimization with feature partitioning of data
and generic non-smooth objectives.

Shrinkage methods such as ridge regression and lasso have attracted a lot of at-
tention since they play an important role in regularizing the learning parameters
by imposing a penalty on their size to avoid overfitting [11, 34]. Moreover, ridge
regression prevents the problem from being ill-posed due to possible rank defi-
ciency of the observation matrix [35]. In the ridge regression and lasso problems,

4 Introduction

the objective functions are least squares with `2-norm regularization and `1-norm
regularization, respectively. An existing work on distributed ridge regression with
feature partitioning, i.e., [35], is based on the diffusion strategy. However, it suf-
fers from relatively slow convergence. In this respect, we propose the D-Ridge
algorithm that outperforms its diffusion-based contender in terms of convergence
rate. Other approaches to distributed learning with feature partitioning are only de-
signed for specific objectives, e.g., lasso in [36] and basis pursuit in [37] or assume
an appropriate coloring scheme of the network and cannot be extended to a gen-
eral graph labeling [38]. Some other existing approaches are not fully-distributed
[5] or rely on the calculation of conjugate functions, which may be hard or un-
feasible for some objective functions. We first consider an extension of [22] in
[39] where we propose an algorithm to solve feature-distributed learning problems
with an `2-norm-square cost function and non-smooth regularizer functions over
arbitrary graphs while not relying on any conjugate of the regularizer function.
Next, we consider a further generalization of the previous algorithm in [1] where
we propose a fully-distributed distributed algorithm for optimizing generic non-
smooth objective functions over arbitrary graphs without using or computing any
conjugate function.

However, the communications between neighboring agents in a distributed net-
work may pose privacy violation risks. An adversary may infer sensitive data of
one or more agents by sniffing the communicated information. The adversary can
be either a curious member of the network or an eavesdropper. Therefore, it is im-
portant to develop privacy-preserving methods that allow distributed processing of
data without revealing private information. Differential privacy provides privacy
protection against adversarial attacks by ensuring minimal change in the outcome
of the algorithm regardless of whether or not a single individual’s data is taken into
account. Most existing privacy-preserving distributed optimization/estimation al-
gorithms exploit some perturbation mechanism to preserve privacy, which comes
at the cost of reduced accuracy, see, e.g., [40, 41]. Contrarily, by analyzing the
inherent randomness due to the use of a zeroth-order method, we show that the
proposed D-ZOA algorithm is intrinsically endowed with (ε, δ)−differential pri-
vacy. D-ZOA outperforms the existing differentially-private approaches in terms
of accuracy while yielding similar privacy guarantee.

1.1 Objectives
The goals of the thesis are twofold. First, we aim to design robust distributed solu-
tions for machine learning over networks with horizontal and feature partitioning
of data. The second goal consists in designing an algorithm that outperforms the
existing differentially-private approaches in terms of accuracy while yielding sim-

1.2. Methodology 5

ilar privacy guarantee. An itemized summary of the main objectives of the thesis
is as follows:

• O1: Designing robust algorithms for distributed optimization with hori-
zontal and feature partitioning of data.

• O2: Improving the accuracy of privacy-preserving distributed algorithms.

1.2 Methodology
The thesis proposes algorithms and methods to address the objectives O1 and O2
described in Section 1.1. The motivations for the thesis are in accordance with
the literature on distributed optimization and privacy preserving data analysis. We
employ tools from optimization and statistical modeling in order to deal with the
considered learning problems in distributed optimization and private data analysis.
The results and conclusions presented in the thesis stem from rigorous analysis.
The proposed methods are compared with the existing approaches to show their
effectiveness. Network-wide convergence of the proposed algorithms is confirmed
via theoretical analysis and simulation results.

1.3 Thesis Contributions
In the thesis, we develop algorithms and methods to address O1 and O2. Re-
garding the objective summarized in O1 and, more specifically, the algorithms for
distributed learning with horizontal partitioning, we first propose a distributed al-
gorithm to solve the TLS problem. The proposed algorithm, called DA-TLS, is
fully distributed and its performance is not sensitive to the tuning of its paramet-
ers. This makes DA-TLS more flexible and suitable for distributed deployment in
comparison with the algorithms of [14, 21]. Simulation results show faster con-
vergence of DA-TLS to the centralized solution at all agents in comparison with
the existing algorithms. Next, we develop a fully-distributed algorithm to solve an
optimization problem with a non-smooth convex objective function over an ad-hoc
network. We utilize the alternating direction method of multipliers (ADMM) for
distributed optimization and a zeroth-order method that is suitable for non-smooth
objectives to obtain an approximate minimizer of the augmented Lagrangian in
the ADMM’s primal update step. The proposed algorithm, called D-ZOA, is fully
distributed and does not compute any subgradient. It only requires the objective
function values to approximate the gradient of the augmented Lagrangian. The
simulations show that D-ZOA is competitive even on a problem that can be solved
using a subgradient-based algorithm. Furthermore, the experiments show the use-
fulness of D-ZOA on a problem where calculating any subgradient is impractical.

6 Introduction

Table 1.1: Comparative Summary for [1]

fully-
distributed

non-smooth
cost function

non-smooth
regularizer

no conjugate
function

[39] X X
[22] X
[5] X X
[15] X X
[37] X X
[36] X X
[38] X X
[42] X
[43]
[44] X
[45]
[46] X X X
[47] X X
[35] X X
[48] X
[49] X X
[50] X X
[51] X
[52] X X
[53] X X
[54] X X
[55] X X

proposed [1] X X X X

Regarding the contributions within distributed learning with feature partitioning,
we first propose a distributed algorithm, called D-Ridge to solve the ridge regres-
sion problem with feature partitioning of the observation matrix. D-Ridge is fully
distributed and is based on the ADMM. It also converges faster than the diffusion-
based algorithm of [35] and has a per-iteration per-agent computational complexity
order that is linear in the sample size. Our experiments with a variety of network
topologies show that D-Ridge outperforms its diffusion-based contender in terms
of convergence rate. Subsequently, we develop a new fully-distributed algorithm
to solve feature-distributed learning problems with an `2-norm-square cost func-

1.3. Thesis Contributions 7

tion and non-smooth regularizer functions. The cost function cannot be written
as the sum of the local agent-specific cost functions, i.e., it is not separable. To
achieve separability, we formulate the dual problem associated with the underly-
ing convex optimization problem and exploit its favorable structure that, unlike
the original problem, allows us to solve it by utilizing the ADMM. By using the
dual of the optimization problem associated with the ADMM primal variable up-
date step, we devise a new strategy that does not require any conjugate function
of the non-smooth regularizers, which may be infeasible or hard to obtain in some
scenarios. Finally, we extend D-Ridge and the previous algorithm by develop-
ing a fully-distributed algorithm for solving learning problems when the data is
distributed among agents in feature partitions and computing the conjugate of the
possibly non-smooth cost or regularizer functions is challenging or unfeasible. We
consider a general regularized non-smooth learning problem whose cost function
is not separable. To tackle the problem, we articulate the associated dual optimiz-
ation problem and utilize the ADMM to solve it as, unlike the original problem, its
structure is suitable for distributed treatment via the ADMM. We then consider the
dual of the optimization problem associated with the ADMM update step and solve
it via the BCD algorithm. In that manner, we devise an approach that enables us to
avoid the explicit computation of any conjugate function, which may be hard or in-
feasible for some objective functions. We demonstrate that the proposed algorithm
approaches the optimal centralized solution at all agents. Our experiments show
that the proposed algorithm converges to the optimal solution in various scenarios
and is competitive with the relevant existing algorithms even when dealing with
problems that, unlike its contenders, it is not tailored for. In Table 1.1, we provide
a comparative summary of the proposed algorithm with respect to the most rel-
evant existing ones in terms of the key features of being fully distributed, ability
to handle non-smooth cost or regularization functions, and non-reliance on any
conjugate function.

Regarding the objective summarized in O2, we show that the zeroth-order ap-
proach in D-ZOA is able to estimate the gradient in such a way that the inherent
randomness in the gradient estimate can be exploited to protect privacy. Unlike
the existing differentially-private algorithms that perturb the updates exchanged
among the agents by adding noise, we exploit the inherent randomness due to
the use of a zeroth-order method for solving the primal update optimization step
to guarantee (ε, δ)−differential privacy. We show that the proposed D-ZOA al-
gorithm is able to preserve privacy without requiring any explicit perturbation of
the primal or dual variables. We also show that the total privacy leakage of the pro-
posed D-ZOA algorithm grows sublinearly with the number of ADMM iterations.
Moreover, our proposed D-ZOA algorithm outperforms the existing differentially-
private approaches in terms of accuracy while yielding similar privacy guarantee.

8 Introduction

Table 1.2: Comparative summary for [2]

fully-
distributed

non-
strongly-
convex
objectives

non-
smooth
objectives

zeroth-
order
optimization

differential
privacy-
preserving

total
privacy-
preserving

intrinsic
privacy-
preserving

[13] X X X X
[11] X X X
[8] X X X
[4] X X X
[32] X X X
[41] X X
[56] X X X
[57] X X X
[58] X X X X
[59] X X
[60] X X X X
[40] X X X X
[61] X X X X
[62] X X
[63] X
[64] X X

proposed [2] X X X X X X X

We prove that D-ZOA reaches a neighborhood of the optimal solution. Our conver-
gence analysis also reveals a practically important trade-off between privacy and
accuracy of D-ZOA. In Table 1.2 below, we have highlighted the contributions re-
garding O2 in reference to the existing related literature. As illustrated in Table 1.2,
most existing works assume that the objective function is smooth and strongly con-
vex and the relevant first-order information is available. However, there are many
applications where the objective functions are non-smooth or their first-order in-
formation is unavailable. This problem has been addressed, for example, in [40]
by considering first-order approximations to non-smooth functions. However, in
our work, motivated by the fact that only approximate gradient knowledge is suf-
ficient for optimization, we use a zeroth-order method to solve the minimization
in the ADMM primal update step and show that the randomness intrinsic to the
employed zeroth-order method is sufficient to impart (ε, δ)-differential privacy.

1.3.1 List of Publications

This dissertation comprises a comprehensive summary of the research wherein
parts have been published in the following papers, containing minute details on
the algorithm derivations, proofs of theorem, and lemmas.

• P1: [12] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using paramet-

1.4. Thesis Organization 9

ric semidefinite programming,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5227–5231, May 2019.

• P2: [13] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning with non-smooth objective functions,” in Proc. 28th
European Signal Processing Conference, pp. 2180–2184, Jan. 2021.

• P3: [2] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Privacy-preserved distributed learning with zeroth-order optimization,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 265-279,
2022.

• P4: [22] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed ridge regression with feature partitioning,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, Oct. 2018.

• P5: [39] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning over networks with non-smooth regularizers and fea-
ture partitioning,” in Proc. European Speech and Signal Processing Confer-
ence, Aug. 2021.

• P6: [1] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Decentralized optimization with distributed features and non-smooth ob-
jective functions,” 2022, arXiv: 2208.11224.

The author of this dissertation has been responsible for the overall planning of
the research work, planning the research problem, developing the original ideas,
performing simulations, and writing the papers. The remaining authors have given
feedback to guide the research and writing.

1.4 Thesis Organization
The rest of the thesis is organized as follows. In Chapter 2, we provide the back-
ground on distributed optimization and privacy. Regarding distributed optimiza-
tion, we first present an essential aspect of distributed learning, namely, horizontal
and feature partitioning of data. Subsequently, we present relevant optimization
methods to tackle the considered learning problems and review the fundamentals
of differential privacy. In Chapter 3, we consider learning problems with hori-
zontal partitioning of data. We propose a new distributed algorithm to solve the
TLS problem. Further, we develop a new distributed algorithm to solve a learn-
ing problem with non-smooth objective functions when data are distributed over
a multi-agent network. In Chapter 4, we consider a privacy-preserving distributed

10 Introduction

algorithm to minimize a regularized empirical risk function when the first-order
information is not available and data is distributed over a multi-agent network. We
show that the proposed algorithm has intrinsic privacy-preserving properties. In
Chapter 5, we develop a distributed algorithm to solve the ridge regression prob-
lem with feature partitioning of the observation matrix. Subsequently, we consider
a generalization of this algorithm, which allows for distributed learning with fea-
ture partitioning and non-smooth regularizers. Finally, we devise further general-
ization that considers learning under distributed features with generic non-smooth
objective functions. In Chapter 6, we draw conclusions and discuss some possible
future work and research directions.

Chapter 2

Distributed Optimization and
Privacy

2.1 Distributed Optimization
Performing optimization tasks in a centralized setting where all the data is collec-
ted at a fusion center may be prohibitive due to the shortcomings mentioned in
the introductory chapter. Therefore, we consider a different setting where data is
collected/owned by agents dispersed over a distributed network. In this context,
each agent of the network communicates only with its immediate neighbors and
no central coordination is necessary. Each agent has access only to the information
of its local objective function while the agents aim to optimize the aggregate of the
local objective functions collaboratively.

We consider a network with N ∈ N agents and E ∈ N edges modeled as an
undirected graph G(V, E) where the vertex set V = {1, . . . , N} corresponds to the
agents and the set E represents the bidirectional communication links between the
pairs of neighboring agents. Edge eij = (i, j) ∈ E indicates that agent i and j are
neighbors. Agent i ∈ V can communicate only with the agents in its neighborhood
Vi = {j ∈ V | (i, j) ∈ E}.

2.1.1 Horizontal Partitioning

Horizontal partitioning of data refers to the case when the data samples containing
all features are distributed over the network. That is, all the agents estimate the
same common model. Examples of learning with horizontal partitioning of data
can be found in [6, 12–14]. Data with horizontal partitioning can also be referred to
as instance-distributed data [65], data with row-partitioning [37], or homogeneous

11

12 Distributed Optimization and Privacy

 ,

3,3

2,2

4,4

5,5

Figure 2.1: Horizontal partitioning of data over a network with five agents.

data [65].

Let us denote the network-wide data as an observation matrix1 A ∈ RM×P and
a response vector b ∈ RM×1 where M is the number of data samples and P is
the total number of features across the network. As we consider the horizontal
partitioning of the data, we denote the observation matrix of the ith agent by Ai ∈
RMi×P where Mi is the number of data samples specific to agent i. Accordingly,
we have M =

∑N
i=1Mi, A consists of N submatrices Ai as

A = [AT
1 ,A

T
2 , . . . ,A

T
N]T,

and the response vector b is a stack of N subvectors bi as

b =
[
bT
1 ,b

T
2 , . . . ,b

T
N

]T
.

The network-wide model vector that relates A and b is denoted by x ∈ RP×1. We
give an example for horizontal partitioning of data in Fig. 2.1 where data samples
are distributed over a network of five agents. In the context of distributed learning
with horizontal partitioning, we consider the problem when the N agents of the
network solve the following minimization problem collaboratively

min
x

N∑
i=1

fi(x;Ai,bi) (2.1)

where fi : RP → R is the local cost function.

2.1.2 Feature Partitioning

When subsets of the features of all data samples are distributed over the network
agents, we have feature partitioning of the data and every agent estimates a local
model that is a part of the network-wide model. In the machine learning termino-
logy, features are the descriptors or measurable characteristics of the data samples.

1Letter A is used in unified notation throughout the thesis to denote the observation matrix in
accordance with common use in the literature, see, e.g., [5, 6]

2.1. Distributed Optimization 13

Figure 2.2: Distributed features over a network with five agents.

In regression analysis, they may be called predictors or independent explanatory
variables.

Several machine learning problems deal with heterogeneous distributed data that
common features cannot describe. For example, in multi-agent systems, each agent
may acquire data to learn a local model and refrains from sharing the data with
other agents due to resource constraints or privacy concerns. However, the ag-
gregate data can be exploited to enhance accuracy or augment inference due to
the correlation of the data across agents. In the Internet of things, a device may
only be interested in estimating its own local model parameters. However, mul-
tiple devices distributed over an ad hoc network may be able to collectively pro-
cess the network-wide data and enhance the estimation/inference quality. Distrib-
uted learning problems with feature partitioning arise in several signal processing
applications, e.g., bioinformatics, multi-view learning, and dictionary learning,
as mentioned in [5, 15]. Data with feature partitioning can also be referred to
as attribute-distributed data [65], vertically-partitioned data [66, 67], data with
column-partitioning [37], or heterogeneous data [65].

In the context of distributed learning with feature partitioning of the data, we de-
note the observation matrix of the ith agent by Ai ∈ RM×Pi and its local model
vector by xi ∈ RPi×1 where Pi is the number of features specific to agent i. Ac-
cordingly, we have P =

∑N
i=1 Pi and the observation matrix A consists of N

submatrices Ai as

A = [A1,A2, . . . ,AN].

The network-wide model vector x ∈ RP×1 that relates A and the response vector
b is also a stack of N subvectors xi as

x =
[
xT
1 ,x

T
2 , . . . ,x

T
N

]T
.

We give an example for feature partitioning of data in Fig. 2.2 where features are
distributed over a network of five agents. We consider the problem when the N

14 Distributed Optimization and Privacy

agents of the network solve the following minimization problem collaboratively

min
{xi}

N∑
i=1

fi(xi;Ai,b) (2.2)

where fi : RPi → R is the local cost function.

2.2 The Alternating Direction Method of Multipliers
All the algorithms proposed in this thesis are based on the alternating direction
method of multipliers (ADMM) whose use is motivated by the fact that this method
is suitable for distributed optimization since it is robust and scalable with respect
to both the data size and the network size. In this section, we first discuss the
consensus-based reformulation of the optimization problems (2.1) and (2.2), which
allows us to find a distributed solution via the ADMM. Then, we describe the
ADMM procedure for solving the resulting constrained minimization problem.
This iterative process consists of two steps at each iteration, i.e., the primal and the
dual update steps.

2.2.1 Consensus-Based Reformulation

To solve (2.1) and (2.2) in a distributed manner, we reformulate them as the fol-
lowing constrained minimization problem

min
{xi}

N∑
i=1

fi(xi;Xi)

s.t. xi = xj , j ∈ Vi, ∀i ∈ V

(2.3)

where Xi represents the local information at agent i. In the case of horizontal par-
titioning of data, Xi is given by (Ai,bi) as in Section 2.1.1. The primal variables
P := {xi}i∈V represent local copies of x at the agents. In the scenario of feature
partitioning of data, Xi is given by (Ai,b) as in Section 2.1.2. Here, unlike the
case of horizontal partitioning of data, we do not need to introduce the local vari-
ables because the primal variables are already local model vectors due to feature
partitioning.

Since the network is connected, the equality constraints in (2.3) impose consensus
across each agent’s neighborhood Vi. To solve (2.3) collaboratively and in a fully-
distributed manner, we utilize the ADMM [7]. For this purpose, we rewrite (2.3)
as

min
{xi}

N∑
i=1

fi(xi;Xi)

s.t. xi = zji , xj = zji , j ∈ Vi, ∀i ∈ V

(2.4)

2.2. The Alternating Direction Method of Multipliers 15

where A := {zji}i∈V,j∈Vi are the auxiliary variables yielding an alternative but
equivalent representation of the constraints in (2.3). They help decouple xi in
the constraints and facilitate the derivation of the local recursions before being
eventually eliminated. The augmented Lagrangian function is given by

Lρ(P,A,D) =

N∑
i=1

fi(xi;Xi) +

N∑
i=1

∑
j∈Vi

[
λ̄
jT
i

(
xi − zji

)
+ λ̃

jT
i

(
xj − zji

)]

+
ρ

2

N∑
i=1

∑
j∈Vi

(∥∥∥xi − zji

∥∥∥2 + ∥∥∥xj − zji

∥∥∥2)
(2.5)

where D := {{λ̄j
i}j∈Vi , {λ̃

j
i}j∈Vi}i∈V are the Lagrange multipliers associated

with the constraints in (2.4), and ρ > 0 is a penalty parameter.
The ADMM will use the augmented Lagrangian in (2.5) to solve the optimization
problem in (2.3). The ADMM will require an iterative process that is described in
the next subsection.

2.2.2 Distributed ADMM Algorithm

To solve the minimization problem (2.4) in a distributed fashion, the ADMM
entails an iterative procedure consisting of three steps at each iteration. In the
first step, the augmented Lagrangian function Lρ is minimized with respect to the
primal variables P , i.e., .

P(k) = argmin
P

Lρ(P,A(k−1),D(k−1)) (2.6)

where superscript (k) denotes the iteration index of the ADMM loop and

P(k) := {x(k)
i }i∈V

A(k) := {{(zji)
(k−1)}i∈V,j∈Vi

D(k) := {{(λ̄j
i)

(k−1)}j∈Vi , {(λ̃
j
i)

(k−1)}j∈Vi}i∈V .

Then, Lρ is minimized with respect to the auxiliary variables A, i.e.,

A(k) = argmin
A

Lρ(P(k),A,D(k−1)). (2.7)

In the end, the Lagrange multipliers in D are updated via dual gradient-ascent
iterations [68], i.e.,

(λ̄
j
i)

(k) = (λ̄
j
i)

(k−1) + ρ[x
(k)
i − (zji)

(k)], j ∈ Vi, ∀i ∈ V

(λ̃
j
i)

(k) = (λ̃
j
i)

(k−1) + ρ[x
(k)
j − (zji)

(k)], j ∈ Vi, ∀i ∈ V .
(2.8)

16 Distributed Optimization and Privacy

Thanks to the reformulation of the original problems (2.1) and (2.2) as (2.4), the
augmented Lagrangian in (2.5) is decomposable both with respect to variables in
P , A and across agents.

By using the Karush-Kuhn-Tucker conditions of optimality for (2.4) and setting

λ
(k)
i = 2

∑
j∈Vi

(λ̄
j
i)

(k),

it can be shown that the auxiliary variables in A and the Lagrange multipliers
{λ̃j

i}i∈V,j∈Vi are eliminated [7, 11, 69]. Therefore, the distributed ADMM al-
gorithm reduces to the following iterative updates at the ith agent

x
(k)
i = argmin

xi

{
fi(xi;Xi) + (λ

(k−1)
i)Txi + ρ

∑
j∈Vi

∥∥∥∥∥xi −
x
(k−1)
i + x

(k−1)
j

2

∥∥∥∥∥
2}

(2.9)

λ
(k)
i = λ

(k−1)
i +ρ

∑
j∈Vi

[x
(k)
i −x

(k)
j] (2.10)

where all initial values {x(0)
i }i∈V , {λ(0)

i }i∈V are set to zero.

To show that (2.6), (2.7), and (2.8) are equivalent to (2.9) and (2.10), we first
consider (2.7) and observe that (zji)

(k) is given by

(zji)
(k) = argmin

zji

{
−((λ̄

j
i)

(k) + (λ̃
j
i)

(k))Tzji +
ρ

2

[∥∥∥x(k)
i −zji

∥∥∥2 + ∥∥∥x(k)
j −zji

∥∥∥2]}.
(2.11)

Problem (2.11) has a closed form solution that is given by

(zji)
(k) =

1

2ρ
((λ̄

j
i)

(k) + (λ̃
j
i)

(k)) +
1

2
(x

(k)
i +x

(k)
j). (2.12)

Using (2.12) and (2.8), it can be shown by induction that, if

(λ̄
j
i)

(0) = −(λ̃
j
i)

(0),

then
(λ̄

j
i)

(k) = −(λ̃
j
i)

(k)

for all k ≥ 0, where i ∈ V and j ∈ Vi. Therefore (zji)
(k) is given by

(zji)
(k) =

1

2
(x

(k)
i +x

(k)
j), j ∈ Vi, ∀i ∈ V . (2.13)

2.2. The Alternating Direction Method of Multipliers 17

Algorithm 1 Distributed ADMM

At all agents i ∈ V , initialize x
(0)
i = 0, λ(0)

i = 0, and locally run:
for k = 1, 2, . . . ,K do

Share x
(k−1)
i with the neighbors in Vi.

Update the primal variables x(k)
i via (2.9).

Update the Lagrange multipliers λ(k)
i via (2.10).

end for

By replacing (2.13) into the first equation of (2.8), we obtain

(λ̄
j
i)

(k) = (λ̄
j
i)

(k−1) + ρ(x
(k)
i −x

(k)
j), j ∈ Vi, ∀i ∈ V . (2.14)

From (2.14), we have that, if (λ̄j
i)

(0) = −(λ̄
i
j)

(0), then (λ̄
j
i)

(k) = −(λ̄
i
j)

(k) for all
k ≥ 0. From

(λ̄
j
i)

(k) = −(λ̃
j
i)

(k)

and
(λ̄

j
i)

(k) = −(λ̃
i
j)

(k),

we have
(λ̄

j
i)

(k) = (λ̃
i
j)

(k).

This implies that (2.6) is equivalent to (2.9) upon defining

λ
(k)
i = 2

∑
j∈Vi

(λ̄
j
i)

(k).

The iterations (2.9) and (2.10) can be implemented in a fully-distributed manner as
they only involve the parameters available within each agent’s neighborhood. The
distributed ADMM algorithm is summarized in Algorithm 1 where K denotes the
number of ADMM iterations.

2.2.3 Evaluation Metrics

In this section, we introduce the two metrics that are used throughout the thesis to
evaluate the performance of the proposed algorithms.

The former is the normalized error that is defined as

normalized error =

∑N
i=1

∥∥∥x(k)
i − xc

∥∥∥2
‖xc‖2

(2.15)

18 Distributed Optimization and Privacy

where xc is the centralized solution to problem (2.1) and x
(k)
i is the local estimate

at iteration k.

The latter is the misalignment and is defined as

misalignment =

∥∥xd(k)− ω
∥∥2

‖ω‖2
(2.16)

where

xd(k)=
[
x
(k)T
1 , . . . ,x

(k)T
N

]T
,

x
(k)
i are the local estimates and ω ∈ RP is drawn from multivariate normal dis-

tributions N (0, IP) and is related to the response vector b and the data matrix
A ∈ RM×P via

b = Aω +ψ

where ψ ∈ RM is drawn from multivariate normal distributions N (0, 0.1IM)
independently from ω.

From the definitions, it is clear that the two metrics slightly differ since the normal-
ized error evaluates the algorithm’s performance by measuring the error between
the centralized solutions xc and the local estimates while the misalignment meas-
ures the error between the vector generating the data and the local estimates.

2.3 Zeroth-Order Methods
In some real-world problems, obtaining first-order information is hard due to non-
smooth objectives or even impossible due to the lack of the complete cost func-
tion. For example, in some non-smooth optimization problems, computation of
subgradients might be hard to achieve for some objectives, or derivation of prox-
imal operators might not be feasible. In bandit optimization [29], an adversary
generates a sequence of loss functions and the goal is to minimize such sequence
that is only available at some points. In addition, in simulation-based optimization,
the objective is available only using repeated simulation [30], and in adversarial
black-box machine learning models, only the function values are given [31]. This
motivates the use of zeroth-order methods requiring only function values to ap-
proximate gradients. In the thesis, the goal of employing a zeroth-order method
is twofold. First, we provide a distributed solution for non-smooth optimization
problems when the first-order information is unavailable. Second, the stochasticity
due to the use of the zeroth-order method endows the proposed D-ZOA algorithm
with intrinsic privacy-preserving properties.

2.3. Zeroth-Order Methods 19

2.3.1 Two-Point Stochastic-Gradient Algorithm

In the thesis, we employ a zeroth-order method to solve the minimization problem
in the ADMM primal update step (2.9). Therefore, we consider the following
minimization problem

x
(k)
i = argmin

xi

Fi(xi). (2.17)

Since the objective function in (2.17) is assumed to be non-smooth, the corres-
ponding minimization problem cannot be solved using any first-order method. To
overcome this, we use a zeroth-order method as in [13]. We utilize the two-point
stochastic-gradient algorithm that has been proposed in [3] for optimizing gen-
eral non-smooth functions. More specifically, we use the stochastic mirror descent
method with the proximal function 1

2 ‖·‖ and the gradient estimator at point xi

given by

Γ(xi,λ
(k−1)
i , u1, u2,n1,n2) = u−1

2 [Fi(xi + u1n1

+ u2n2,λ
(k−1)
i)−Fi(xi + u1n1,λ

(k−1)
i)]n2 (2.18)

where u1 > 0 and u2 > 0 are smoothing constants and n1, n2 are independent
zero-mean Gaussian random vectors with the covariance matrix IP , i.e., n1,n2 ∼
N (0P , IP).

The two-point stochastic-gradient algorithm consists of two randomization steps
where the second step is aimed at preventing the perturbation vector n2 from being
close to a point of non-smoothness [3]. This algorithm entails an iterative proced-
ure that consists of three steps at each iteration t. First, S ∈ N independent random
vectors {ns,i

1,t}Ss=1 and {ns,i
2,t}Ss=1 are sampled from N (0P , IP). Second, an i-local

stochastic gradient g(t)
i is computed as

g
(t)
i =

1

S

S∑
s=1

g
(t)
s,i (2.19)

where
g
(t)
s,i = Γ(y

(t−1)
i ,λ

(k−1)
i , u1,t, u2,t,n

s,i
1,t,n

s,i
2,t),

y
(t)
i is the tth iterate of the two-point stochastic-gradient algorithm with the initial

value y
(0)
i = 0 and {u1,t}∞t=1 and {u2,t}∞t=1 are two non-increasing sequences of

positive parameters such that u2,t ≤ u1,t/2. Finally, y(t)
i is updated as

y
(t)
i = y

(t−1)
i − αtg

(t)
i (2.20)

20 Distributed Optimization and Privacy

where αt is a time-varying step-size. The step-size is computed as

αt =
α0R

L
√
tP log(2P)

where α0 is an appropriate initial step-size and R is an upper bound on the distance
between the minimizer x∗

i to (2.17) and the first iterate y
(1)
i as per [3].

We use multiple independent random samples {ns,i
1,t}Ss=1 and {ns,i

2,t}Ss=1 to obtain

a more accurate estimate of the gradient g(t)
i as remarked in [3].

2.4 Differential Privacy
In this section, we consider the privacy concerns associated with distributed learn-
ing with horizontal partitioning. Second, we present a perturbation mechanism
that enables the ADMM to preserve (ε, δ)-differential privacy. This mechanism
ensures privacy protection by perturbing the ADMM primal variable. We provide
a description of this Gaussian privacy preserving mechanism because the intrinsic
privacy preserving properties of the proposed D-ZOA algorithm are due to an in-
herent primal variable perturbation, which is brought about by the intrinsic ran-
domness due to the use of a zeroth-order method in the inner loop. Subsequently,
we define the l2-norm sensitivity of the primal variable, which is needed to com-
pute the covariance that the primal variable is required to have so that the privacy
leakage of a single iteration of the ADMM is bounded at each agent.

2.4.1 Attack Model and Privacy Concerns

In Algorithm 1, the data stored at each agent, Xi, is not shared with any other
agent. However, the local estimates {x(k)

i }i∈V are exchanged within the local
neighborhoods. Therefore, the risk of privacy breach still exists as it has been
shown by the model inversion attacks [70].

In the thesis, we consider the following attack model. We assume that the ad-
versary is able to access the local estimates {x(k)

i }i∈V that are exchanged through-
out the intermediate ADMM iterations as well as the final output. The adversary
can be either a honest-but-curious member of the network or an external eaves-
dropper. The adversary’s goal is to infer sensitive data of one or more agents by
sniffing the communicated information {x(k)

i }i∈V .

We will show that D-ZOA guarantees (ε, δ)-differential privacy as per the below
definition since it is intrinsically resistant to such inference attacks.

Definition 1. A randomized algorithm M is (ε, δ)-differentially private if for any
two neighboring datasets S and S ′ differing in only one data sample and for any

2.4. Differential Privacy 21

subset of outputs O ⊆ range(M), we have

Pr[M(S) ∈ O] ≤ eεPr[M(S ′) ∈ O] + δ. (2.21)

This means the ratio of the probability distributions of M(S) and M(S ′) is bounded
by eε.

In Definition 1, ε and δ are privacy parameters indicating the level of privacy pre-
servation ensured by a differentially private algorithm. A better privacy preser-
vation is achieved with smaller ε or δ. On the other hand, low privacy guarantee
corresponds to higher values of ε, i.e., close to 1. Therefore, it is reasonable to
assume that ε ∈ (0, 1] as in [58, 62].

2.4.2 Primal Variable Perturbation Mechanism

In this section, we present a Gaussian primal variable perturbation mechanism
that enables the ADMM to preserve (ε, δ)-differential privacy. This mechanism
consists in adding Gaussian noise to the local primal variable updates that are
exchanged throughout the learning process, i.e.,

x̃
(k)
i = x

(k)
i + ξ

(k)
i (2.22)

where ξ(k)i ∈ RP is a random variable representing the perturbation. Therefore,
the steps of the distributed ADMM with primal variable perturbation (PVP) are
expressed as

x
(k)
i = argmin

xi

{
fi(xi;Xi) + (λ

(k−1)
i)Txi + ρ

∑
j∈Vi

∥∥∥∥∥xi −
x
(k−1)
i + x

(k−1)
j

2

∥∥∥∥∥
2}

(2.23)

x̃
(k)
i = x

(k)
i + ξ

(k)
i (2.24)

λ
(k)
i = λ

(k−1)
i +ρ

∑
j∈Vi

[x̃
(k)
i −x̃

(k)
j] (2.25)

where all initial values {x(0)
i }i∈V , {λ(0)

i }i∈V are set to zero. The distributed
ADMM algorithm with PVP is summarized in Algorithm 2. Since we consider
a Gaussian perturbation mechanism, ξ(k)i is distributed as ξ(k)i ∼ N (0P , σ

2
i IP).

The magnitude of the noise by which x
(k)
i has to be perturbed to preserve privacy

is calibrated by the l2-norm sensitivity that is defined as

Definition 2. The l2-norm sensitivity of x(k)
i is defined as

∆i,2 = max
Si,S′

i

∥∥∥x(k)
i,Si

− x
(k)
i,S′

i

∥∥∥ (2.26)

22 Distributed Optimization and Privacy

Algorithm 2 Distributed ADMM with PVP

At all agents i ∈ V , initialize x
(0)
i = 0, λ(0)

i = 0, and locally run:
for k = 1, 2, . . . ,K do

Share x
(k−1)
i with the neighbors in Vi.

Update the primal variables x(k)
i via (2.23).

Perturb the primal variables via (2.24).
Update the Lagrange multipliers λ(k)

i via (2.25).
end for

where x(k)
i,Si

and x
(k)
i,S′

i
denote the local primal variables for two neighboring datasets

Si and S ′
i differing in only one data sample, i.e., one row of Ai and the correspond-

ing entry of bi.

Chapter 3

Distributed Optimization with
Horizontal Partitioning

In this chapter, we present two contributions in the context of distributed learning
with horizontal partitioning of data. The former is a consensus-based distributed
total least-squares estimation algorithm using parametric semidefinite program-
ming. The latter is a distributed algorithm for non-smooth optimization problems
when the first-order information is unavailable.

3.1 Distributed Total Least-Squares Estimation Using Para-
metric Semidefinite Programming

In [12], we propose a new distributed algorithm to solve the total least-squares
(TLS) problem when data are distributed over a multi-agent network. To de-
velop the proposed algorithm, named distributed ADMM TLS (DA-TLS), we re-
formulate the TLS problem as a parametric semidefinite program and solve it us-
ing the alternating direction method of multipliers (ADMM). Unlike the existing
consensus-based approaches to distributed TLS estimation, DA-TLS does not re-
quire careful tuning of any design parameter. Numerical experiments demonstrate
that the DA-TLS converges to the centralized solution significantly faster than the
existing consensus-based TLS algorithms.

3.1.1 Related work

The distributed TLS problem has previously been considered in [14, 21, 71–77].
The works in [14, 21] are based on the consensus strategy and rely on the dual-
based subgradient method. Their relatively high computational complexity has

23

24 Distributed Optimization with Horizontal Partitioning

partially motivated the works in [72–76]. While the approach of [72] is based on
the average consensus strategy, the algorithms in [73–77] are based on diffusion
strategies and, therefore, suffer from relatively slow convergence [22]. The con-
vergence speed of the algorithm proposed in [14] greatly depends on the network
topology and dimensionality of the data. Although these shortcomings are mitig-
ated in [21], the convergence rate of algorithms in [14] and [21] highly depends on
the choice of the step-size, whose optimal tuning requires the global knowledge of
the data and network topology.

3.1.2 Contributions

In [12], we tackle the TLS problem by transforming the non-convex distributed
TLS problem into a semidefinite program through a change of variable from a
vector to a rank-one matrix and subsequent semidefinite relaxation (SDR). We
solve the modified problem using the alternating direction method of multipliers
(ADMM) and a generalization of the algorithm proposed in [78] for fractional
programming. Since the optimal solution is rank-one, the relaxation is tight and
does not incur any loss of optimality [79]. In addition, as the objective function in
the modified problem is the sum of fractions of linear functions, the convergence
of the proposed algorithm to the globally optimal solution is guaranteed.

The proposed algorithm, called distributed ADMM TLS (DA-TLS), is fully dis-
tributed in the sense that it requires the agents to share data only with their imme-
diate neighbors at each iteration. Furthermore, the performance of DA-TLS is not
sensitive to the tuning of its parameters. This makes DA-TLS more flexible and
suitable for distributed deployment in comparison with the algorithms of [14, 21].
Simulation results show faster convergence of DA-TLS to the centralized solution
at all agents in comparison with the existing algorithms.

3.1.3 System Model

We consider the system model described in Section 2.1 with horizontal partitioning
of the observation matrix as presented in Section 2.1.1. In addition to the symbols
introduced in Section 2.1.1, let us denote by Ã ∈ RM×P and b̃ ∈ RM×1 the error
in the observation matrix and the error in the response vector, respectively. The
sought-after parameter vector x ∈ RP×1 relates A and b through (A − Ã)x =
b− b̃.

The TLS estimate of the unknown parameter vector x can be found by solving the
constrained optimization problem

min
x,Ã,b̃

∥∥∥Ã∥∥∥
F
+
∥∥∥b̃∥∥∥

s.t. (A− Ã)x = b− b̃.

(3.1)

3.1. Distributed Total Least-Squares Estimation Using Parametric Semidefinite Programming
25

When the entries of Ã and b̃ are independent and identically distributed (i.i.d.), a
centralized TLS solution xc of (3.1) can be obtained as

xc =
−1

vP+1
[v1, v2, . . . , vP]

T (3.2)

where v = [v1, v2, . . . , vP+1]
T is the right singular vector corresponding to the

smallest singular value of [A,b] [80].

An equivalent but more practical solution can be obtained by minimizing the
Rayleigh quotient cost function as [80]

min
x

‖Ax− b‖2

‖x‖2 + 1
or min

x

N∑
i=1

‖Aix− bi‖2

‖x‖2 + 1
. (3.3)

Since finding a centralized solution of (3.3) over a network may be inefficient, we
propose a distributed algorithm for this purpose in the following section.

3.1.4 Distributed TLS

We first discuss the SDR technique that allows us to transform the TLS problem
into a parametric semidefinite program, which we solve iteratively through two
nested loops. Then, we describe the consensus-based reformulation of the result-
ant parametric semidefinite program that enables its distributed solution via the
ADMM, which forms the inner loop. Finally, we describe the steps of the inner
and outer loops of the algorithm.

Semidefinite Relaxation

Using the properties of the matrix trace operator, we rewrite the Rayleigh quotient
cost function in (3.3) as

N∑
i=1

tr(xxTAT
i Ai)− 2bT

i Aix+ ‖bi‖2

tr(xxT) + 1
. (3.4)

Considering (3.4) and defining

X =

[
xxT x
xT 1

]
and Ci =

[
AT

i Ai −AT
i bi

−bT
i Ai ‖bi‖2

]
, (3.5)

(3.3) can be recast as

min
X�0

N∑
i=1

tr(CiX)

tr(X)

s.t. rank(X) = 1.

(3.6)

26 Distributed Optimization with Horizontal Partitioning

Relaxing the rank constraint in (3.6) turns it into the following aggregate linear-
fractional program

min
X�0

N∑
i=1

tr(CiX)

tr(X)
. (3.7)

Both numerator and denominator of the summands in the objective function of
(3.7) are linear functions of the matrix variable X. Therefore, (3.7) can be con-
verted to a parametric semidefinite program whose objective is in the subtractive
form as per the following proposition.

Proposition 1. Let X∗ denote the optimal solution to (3.7). Then, there exists a
vectorβ∗ = [β∗

1 , . . . , β
∗
N] such that X∗ is also the optimal solution of the following

semidefinite program

X∗ = arg min
X�0

N∑
i=1

tr(CiX)− β∗
i tr(X). (3.8)

In addition, X∗ also satisfies the following system of equations:

tr(CiX
∗)− β∗

i tr(X∗) = 0, i = 1, 2, . . . , N. (3.9)

Proof. The Karush-Kuhn-Tucker (KKT) conditions of optimality [81] for problem
(3.8) give the same solution set as the KKT conditions for the epigraph form of
(3.7). Since the KKT conditions for both problems are sufficient for optimality,
the two problems are equivalent. The system of equation (3.9) is due to the KKT
conditions.

In the next subsection, we describe a consensus-based reformulation of (3.8),
which allows the application of the ADMM to solve (3.8) for any given β∗.

Building Consensus

In order to tackle (3.8) in a distributed fashion, we introduce P := {Xi}Ni=1 rep-
resenting the local copies of X at the agents. Therefore, we rewrite (3.8) in the
following equivalent form

min
{Xi�0}

N∑
i=1

tr(CiXi)− β∗
i tr(Xi)

s.t. Xi = Xj , j ∈ Vi, i ∈ V .

(3.10)

The equality constraints enforce consensus over Xi, i = 1, . . . , N , across each
agent’s neighborhood Vi.

3.1. Distributed Total Least-Squares Estimation Using Parametric Semidefinite Programming
27

To solve (3.10) in a distributed fashion, we employ the ADMM [7]. Hence, we
introduce the auxiliary local variables A := {Zj

i}j∈Vi and rewrite (3.10) as

min
{Xi�0}

N∑
i=1

tr(CiXi)− β∗
i tr(Xi)

s.t. Xi = Zj
i ,Xj = Zj

i , j ∈ Vi, i ∈ V .

(3.11)

Using the auxiliary variables A, we obtain an equivalent alternative representation
of the constraints in (3.10). These variables are only used to derive the local re-
cursions and are eventually eliminated. By associating the Lagrange multipliers
D := {{Γj

i}j∈Vi , {Λ
j
i}j∈Vi}Ni=1 with the constraints in (3.11), we get the follow-

ing augmented Lagrangian function:

Lρ(P,A,D) =

N∑
i=1

tr (CiXi)− β∗
i tr(Xi)

+
N∑
i=1

∑
j∈Vi

tr
((

Λj
i

)T (
Xi − Zj

i

)
+
(
Γj
i

)T (
Xj − Zj

i

))

+
ρ

2

N∑
i=1

∑
j∈Vi

(∥∥∥Xi − Zj
i

∥∥∥2
F
+
∥∥∥Xj − Zj

i

∥∥∥2
F

)
, (3.12)

where the constant ρ > 0 is a penalty parameter.

Obtaining the solution through the ADMM entails an iterative process consisting
of the following steps at each iteration: 1) Lρ is minimized with respect to P; 2)
Lρ is minimized with respect to A; and, 3) the Lagrange multipliers D are updated
through gradient-ascent [7].

Thanks to the reformulation of (3.8) as (3.11), the Lagrangian function (3.12) can
be decoupled with respect to variables in P and A as well as across the network
agents V . It can be shown that, in the ADMM steps, the auxiliary variables A
and the Lagrange multipliers {Γj

i}j∈Vi are eliminated. Hence, we end up with the
following iterative updates at the ith agent

X
(k+1)
i = arg min

Xi�0
Lρ(Xi,Λ

(k)
i) (3.13)

Λ
(k+1)
i = Λ

(k)
i +ρ

∑
j∈Vi

[X
(k+1)
i −X

(k+1)
j], (3.14)

where Λ
(k)
i = 2

∑
j∈Vi

(Λj
i)

(k) and superscript (k) denotes the iteration index.

28 Distributed Optimization with Horizontal Partitioning

The constrained minimization problem in (3.13) can be expressed as the following
semidefinite least-squares problem

min
Xi�0

tr[XT
i (Xi − 2G

(k)
i)], (3.15)

where

G
(k)
i =

1

2ρ|Vi|

(
ρ|Vi|X(k)

i + ρ
∑
j∈Vi

X
(k)
j −Ci + βiIP+1 −Λ

(k)
i

)
. (3.16)

The solution of (3.15) is given by

X
(k+1)
i = U(k)max

(
Σ(k),0

)
(U(k))T, (3.17)

where U(k) and Σ(k) are the orthogonal and diagonal matrices coming from the
eigen-decomposition (EVD) G(k) = U(k)Σ(k)(U(k))T and max(Σ(k),0) denotes
the diagonal matrix whose entries are the maxima of the diagonal entries of Σ(k),
i.e., the eigenvalues of G(k)

i , and zero. Note that the most computationally intens-
ive operation is the EVD.

Algorithm

The DA-TLS algorithm consists of two loops. In the inner loop, the solution of
(3.8) is obtained using the ADMM for a given β∗. In the outer loop, we use a
single iteration of the Newton’s method [82] to find the solution of (3.9), i.e.,

β
(l+1)
i = β

(l)
i − [tr(X)]−1[β

(l)
i tr(X)− tr(CiX)].

The proposed algorithm is summarized in Algorithm 3.

After estimating Xi, the vector estimate xi is found as follows. Let X̆i = Xi/ωi

where ωi is the (P + 1), (P + 1) entry of Xi. Then, xi is the eigenvector corres-
ponding to the largest eigenvalue of the P × P upper-left submatrix of X̆i.

Using the results in [79, 83], it can be observed that the solution of (3.7) and
consequently (3.8) is rank-one. Hence, optimizing with respect to the matrix vari-
able X and relaxing the rank constraint do not lead to any loss of optimality [79].
Therefore, the solutions to (3.3) and (3.10) coincide.

Convergence Analysis

Convergence of the proposed DA-TLS algorithm to the global centralized solution
can be proven by checking that both inner and outer loops converge. The conver-
gence of the inner loop can be verified following [84, Proposition 3], i.e., for all
i ∈ V , the iterates {X(k)

i }, {Λ(k)
i } produced by (3.13) and (3.14) are convergent

3.1. Distributed Total Least-Squares Estimation Using Parametric Semidefinite Programming
29

Algorithm 3 DA-TLS

All agents i ∈ V initialize β
(1)
1 = tr(Ci)/(P + 1) and locally run

for l = 1, 2, . . . do
Initialize X

(0)
i = 0(P+1)×(P+1) and Λ

(0)
i = 0(P+1)×(P+1)

for k = 1, 2, . . . do
Receive X

(k)
i from neighbors in Vi

Update Λ
(k+1)
i as in (3.14)

Compute G
(k)
i as in (3.16)

Compute EVD of G(k)
i = U(k)Σ(k)(U(k))T

Update X
(k+1)
i = U(k)max

(
Σ(k),0

)
(U(k))T

end for

Update β
(l+1)
i =

tr
(
CiX

(k+1)
i

)
tr
(
X

(k+1)
i

)
end for

and X
(k)
i → X∗ as k → ∞. Moreover, the convergence of the outer loop follows

setting C̄ =
∑N

i=1Ci and β̄∗ =
∑N

i=1 β
∗
i and observing that the optimization in

(3.8) is equivalent to

min
X�0

tr(C̄X)− β̄∗tr(X). (3.18)

The objective function in (3.18) is the sum of two trace functions that are linear,
so the objective itself is linear and (3.18) is a standard semidefinite program with
a unique solution in the variable β̄∗. Furthermore, since linear functions are both
convex and concave, the requirements for the algorithm in [78] for fractional pro-
gramming are satisfied and, therefore, convergence of the DA-TLS algorithm is
guaranteed.

3.1.5 Simulations

The simulated network is connected with a random topology and consists of N =
20 agents where each agent is linked to three other agents on average. We average
results over 100 independent trials. In each trial, the scenario is generated ac-
cording to the same procedure as described in the simulation sections of [14, 21].
The parameters are also chosen as in [14, 21] in order to ensure a fair comparison
with the benchmark algorithms. For each agent i ∈ V , we create a 2P × P local
observation matrix Ai whose entries are drawn from a standard normal distribu-
tion. The entries of the parameter vector x are also drawn from a standard normal
distribution. The entries of the error matrix Ã and error vector b̃ are i.i.d. zero-
mean Gaussian with variance 0.25. To evaluate the performance of the proposed

30 Distributed Optimization with Horizontal Partitioning

algorithm, we use the normalized error between the centralized TLS solution xc

as per (3.2) and the local estimates that is defined as

∑N
i=1 ‖xi − xc‖2

‖xc‖2

where xi denotes the local estimate at agent i.

In Figs. 3.1-3.2, we plot the normalized error versus the total number of iterations,
which is given by the product between the number of iterations of the inner and
the outer loops. The former is set to 80 for Fig. 3.1 and 40 for Fig. 3.2, while the
latter is set to 5 for both the plots.
Fig. 3.1 shows that, for P = 9, DA-TLS with ρ = 2 and ρ = 3 converges
significantly faster than the existing approaches, i.e., the distributed TLS (D-TLS)
algorithm of [14] and the inverse-power-iteration-based distributed TLS (IPI-D-
TLS) algorithm of [21]. Fig. 3.2 shows the superiority of DA-TLS with ρ = 1
over IPI-D-TLS with µ = 1 for two different values of P .

3.1.6 Conclusion

In [12], we developed a new distributed algorithm for solving the TLS problem.
We recast the original optimization problem into an equivalent linear-fractional
program. Then, employing semidefinite relaxation, we transformed the resultant
problem into a parametric semidefinite program whose structure is suitable for
distributed treatment via ADMM. Simulation results showed that the proposed
algorithm converges faster than the existing alternative algorithms while being less
sensitive to tuning of the parameters involved in the algorithm.

3.2 Distributed Learning with Non-Smooth Objective Func-
tions

In [13], we develop a new distributed algorithm to solve a learning problem with
non-smooth objective functions when data are distributed over a multi-agent net-
work. We employ a zeroth-order method to minimize the associated augmented
Lagrangian in the primal domain using the alternating direction method of multi-
pliers (ADMM) to develop the proposed algorithm, named distributed zeroth-order
based ADMM (D-ZOA). Unlike most existing algorithms for non-smooth optim-
ization, which rely on calculating subgradients or proximal operators, D-ZOA only
requires function values to approximate gradients of the objective function. Con-
vergence of D-ZOA to the centralized solution is confirmed via theoretical analysis
and simulation results.

3.2. Distributed Learning with Non-Smooth Objective Functions 31

0 100 200 300 400

iterations

10
-4

10
-3

10
-2

10
-1

Figure 3.1: Normalized error of the DA-TLS, D-TLS, and IPI-D-TLS algorithms with
two values of penalty parameter (ρ = 2 and ρ = 3) for DA-TLS and two values of the
step-size (µ = 0.2 and µ = 0.3) for IPI-D-TLS.

0 50 100 150 200

iterations

10
-2

10
-1

Figure 3.2: Normalized error for different values of P . For DA-TLS, we set ρ = 1 and,
for IPI-D-TLS, we set µ = 1.

32 Distributed Optimization with Horizontal Partitioning

3.2.1 Related Work

There have been several works developing algorithms for solving distributed con-
vex optimization problems over ad-hoc networks. However, many existing al-
gorithms only offer solutions for problems with smooth objective functions, see,
e.g., [22–24]. Distributed optimization problems with non-smooth objectives have
been considered in [5, 8–11, 85–88]. The approaches taken in [9, 10, 85] are based
on subgradient methods. The works of [86, 87] are based on dual decomposition
techniques while the algorithms in [5, 11] are developed using soft-thresholding
operations. However, all the aforementioned algorithms require either the com-
putation of subgradients, which might be hard to achieve for some objectives, or
derivation of proximal operators, which might not be feasible in some scenarios.

Moreover, as remarked in the introductory chapter, there are some real-world prob-
lems where obtaining first-order information is impossible due to the lack of any
complete objective function, e.g., in bandit optimization [29], in simulation-based
optimization [30], or in adversarial black-box machine learning [31]. This motiv-
ates the use of zeroth-order methods, which only use the values of the objective
functions to approximate their gradients [4, 32, 33]. This motivates the use of
zeroth-order methods requiring only function values to approximate gradients.

The works in [8, 88] are based on zeroth-order methods within the distributed op-
timization setting. While the approach of [88] relies on approximate projections
for dealing with constraints, the algorithm ZONE-S proposed in [8] is based on a
primal-dual approach and deals with non-convex objectives. However, ZONE-
S addresses only consensus problems with a non-smooth regularization that is
handled by a central collector making the algorithm not fully distributed.

3.2.2 Contributions

In [13], we develop a fully-distributed algorithm to solve an optimization prob-
lem with a non-smooth convex objective function over an ad-hoc network. We
utilize the alternating direction method of multipliers (ADMM) for distributed
optimization. Furthermore, we employ the zeroth-order method called the two-
point stochastic gradient algorithm [3] that is suitable for non-smooth objectives
to obtain an approximate minimizer of the augmented Lagrangian in the ADMM’s
primal update step. The proposed algorithm, called distributed zeroth-order based
ADMM (D-ZOA), is fully distributed in the sense that each agent in the network
communicates only with its neighbors and no central coordinator is necessary. Fur-
thermore, D-ZOA does not compute any subgradient and only requires the object-
ive function values to approximate the gradient of the augmented Lagrangian. The
simulations show that D-ZOA is competitive even on a problem that can be easily

3.2. Distributed Learning with Non-Smooth Objective Functions 33

solved with a subgradient-based algorithm. Furthermore, the experiments show the
usefulness of D-ZOA on a problem where calculating any subgradient is imprac-
tical. Convergence of D-ZOA to the centralized solution at all agents is verified
through theoretical analysis and simulation results.

3.2.3 Non-Smooth Distributed Learning

We consider the system model described in Section 2.1 with horizontal partitioning
of data as presented in Section 2.1.1. Accordingly, we consider the minimization
problem in (2.1) where the local cost functions fi for i ∈ V are closed and convex
but non-smooth.

We first present the proposed D-ZOA algorithm that consists of two nested loops:
an ADMM-based outer loop and the zeroth-order two-point stochastic gradient al-
gorithm that constitutes the inner loop and solves the minimization problem in the
ADMM primal update step. Next, we discuss the related computational complex-
ity. Finally, we establish the convergence of D-ZOA theoretically.

Algorithm

To solve (2.1) in a fully-distributed fashion, we employ the distributed ADMM
algorithm presented in Section 2.2.2. Since the objective function in (2.1) is non-
smooth, the objective function of the minimization problem in the ADMM primal
update step (2.9) is also non-smooth, which makes it hard to obtain a solution
using first-order information. To solve this problem, we employ the zeroth-order
two-point stochastic gradient algorithm described in Section 2.3.1. Therefore, the
function Fi(·) in (2.17) is defined as

Fi(xi) := fi(xi;Xi) + hi(xi) (3.19)

where

hi(xi) := (λ
(k−1)
i)Txi + ρ

∑
j∈Vi

∥∥∥∥∥xi −
x
(k−1)
i + x

(k−1)
j

2

∥∥∥∥∥
2

. (3.20)

In order to solve the minimization problem in (2.9) utilizing a zeroth-order method,
we assume that Fi(·), for all i ∈ V , is Lipschitz-continuous with the Lipschitz
constant L. This assumption is common for zeroth-order optimization, see, e.g.,
[3, 8]. The resulting algorithm to solve (2.1) when the objective is non-smooth
or first-order information is unavailable consists of two nested loops: an outer
loop that is based on the ADMM and an inner loop that is based on the two-
point stochastic gradient algorithm. Note that no communication among agents is
involved throughout the inner loop. The proposed algorithm, D-ZOA, is summar-

34 Distributed Optimization with Horizontal Partitioning

Algorithm 4 D-ZOA

At all agents i ∈ V , initialize x
(0)
i = 0, λ(0)

i = 0, and locally run
for k = 1, 2, . . . ,K do

Share x
(k−1)
i with the neighbors in Vi

Update λ(k)
i as in (2.10)

Initialize y
(0)
i = 0

for t = 1, 2, . . . , T do
Draw independent n1, n2 ∼ N (0, IP)

Set u1,t = u1,1/t, u2,t = u1,1/t
2 and compute g

(t)
i as in (2.19)

Update y
(t)
i as in (2.20)

end for
Update x

(k)
i = y

(T)
i

end for

ized in Algorithm 4 where K and T denote the number of iterations of the ADMM
and the two-point stochastic gradient, respectively.

Computational Complexity

Solving D-ZOA’s inner loop, i.e., the minimization in (2.9), requires multiple eval-
uations of the function Fi(·). The computational requirement at each agent and
each ADMM outer loop iteration depends on the local objective function fi. Let
us indicate the number of computations required by D-ZOA to carry out one itera-
tion of the inner loop at agent i and the number of iterations of the inner loop by mi

and T , respectively. Hence, the total number of computations required by D-ZOA
at agent i and each ADMM outer loop iteration is O(Tmi). However, the cost of
transmission/communication among the neighboring agents does not depend on T
or mi since the inner loop does not require any communication among agents.

Convergence Analysis

The convergence of D-ZOA to a near-optimal solution is established by corrobor-
ating that both inner and outer loops of the algorithm converge.

The convergence of the inner loop can be verified following [3, Theorem 2], i.e.,
it can be shown that, if Fi(·) is Lipschitz-continuous with the Lipschitz constant
L, there exists a constant c such that, for each T representing a fixed number of

3.2. Distributed Learning with Non-Smooth Objective Functions 35

inner-loop iterations, the following inequality holds:

E[Fi(ŷ
(T)
i)−Fi(x

∗
i)] ≤ c

RL
√
P√

T

(
max{α0, α

−1
0 }
√
log(2P) +

u1 log(2T)√
T

)
(3.21)

where x∗
i is the minimizer to (2.17) and

ŷ
(T)
i =

1

T

T∑
t=1

y
(t)
i .

The inequality in (3.21) implies that the two-point stochastic gradient algorithm
constituting the inner loop converges at a rate of O(

√
P/T). In [3], it is shown

that c = 0.5 is suitable when ν1 and ν2 are sampled from a normal distribution.
The function Fi(·) is the sum of fi(·), which is assumed to be closed and convex,
and hi(·) that is also both closed and convex since it is a positive definite quadratic
function. Hence, the function Fi(·) is closed and convex in addition to being
Lipschitz-continuous [81]. Therefore the convergence result in (3.21) follow from
[3].

The convergence of the outer loop can be proven by verifying the convergence of
a fully-distributed ADMM with perturbed primal updates. Therefore, x(k)

i can be
written as

x
(k)
i = x̆

(k)
i + ξ

(k)
i (3.22)

where x̆
(k)
i ∈ RP is the exact ADMM primal update and ξ(k)i ∈ RP is a random

variable representing the perturbation of x̆
(k)
i . Similar to [58], we assume the

perturbation to have zero expectation, i.e., E[ξ(k)i] = 0, ∀i ∈ V and for all the
ADMM iterations k, and have finite covariance matrix, i.e., cov[ξ(k)i]i,j < ∞,
∀i ∈ V , ∀i, j = 1, . . . , P and for all the ADMM iterations k. To present the
convergence result, we rewrite (2.4) in the matrix form. By defining w ∈ RNP

concatenating all xi and z ∈ R2EP concatenating all zji , (2.4) can be written as

min
w,z

f(w)

s.t. Cw +Dz = 0
(3.23)

where

f(w) =
N∑
i=1

fi(xi),

C = [CT
1 ,C

T
2]

T, and C1,C2 ∈ R2EP×NP are both composed of 2E ×N blocks
of P × P matrices. If (i, j) ∈ E and zji is the qth block of z, then the (q, i)th

36 Distributed Optimization with Horizontal Partitioning

block of C1 and the (q, j)th block of C2 are the identity matrix IP . Otherwise, the
corresponding blocks are 0P×P . Furthermore, we have

D = [−I2EP ,−I2EP]
T.

To facilitate the representation, we also define the following matrices

M+ = CT
1 +CT

2

M− = CT
1 −CT

2

L+ = 0.5M+M
T
+

L− = 0.5M−M
T
−

H = 0.5(L+ + L−)

Q =
√
0.5L−.

We construct the auxiliary sequence

r(k) =
k∑

s=0

Qw(s)

and define the auxiliary vector q(k) and the auxiliary matrix G as

q(k) =

[
r(k)

w(k)

]
, G =

[
ρIP 0P×P

0P×P ρL+

2

]
. (3.24)

The convergence results of [63], [58], and [64] can now be adapted to D-ZOA as
per the following theorem that also provides an explicit privacy-accuracy trade-off.

Theorem 3.1. For any K > 0, we have

E[f(ŵ(K))− f(w∗)] ≤
∥∥q(0) − q

∥∥2
G

K
+

ρλ2
max(L+)

∑K−1
k=0 tr

(
cov[ξ(k)]

)
2Kλmin(L−)

(3.25)
where q = [rT, (w∗)T]T, w∗ is the optimal solution of (5.52), ξ(k) ∈ RNP is the
vector concatenating all ξ(k)i ∈ RP , and

ŵ(K) =
1

K

K∑
k=1

w̆(k).

Proof. Since E[ξ(k)i] = 0 and cov[ξ(k)i]i,j < ∞, ∀i ∈ V , ∀i, j = 1, . . . , P and for
all the ADMM iterations k, proof follows from [2, Theorem 3].

3.2. Distributed Learning with Non-Smooth Objective Functions 37

3.2.4 Simulations

The D-ZOA algorithm is tested on a multi-agent network with a random topology,
where each agent is linked to three other agents on average. To benchmark D-
ZOA with existing solutions, we consider a distributed version of the generalized
lasso [5] that can be solved with subgradient methods [9]. Furthermore, we con-
sider a distributed version of the reduced-rank regression (RRR) problem where
the objective function is least squares with nuclear norm regularization [7]. Nuc-
lear norm is a non-smooth function that is used as a convex surrogate for the rank.
Calculating any subgradient of the nuclear norm function is impractical. RRR
has applications in robust PCA [26], low-rank matrix decomposition [27], matrix
completion [28], etc.

The network-wide observations are represented as an observation matrix A ∈
RM×P and a response matrix B ∈ RM×S , where M is the number of data samples
and P is the number of features in each sample. The matrix A consists of N sub-
matrices Ai, i.e.,

A = [AT
1 ,A

T
2 , . . . ,A

T
N]T,

and the matrix B of N submatrices Bi, i.e., B =
[
BT

1 ,B
T
2 , . . . ,B

T
N

]T, as the data
are distributed among the agents and each agent i holds its respective Ai ∈ RMi×P

and Bi ∈ RMi×S where
∑N

i=1Mi = M . The parameter matrix that establishes a
linear regression between A and B is X ∈ RP×S . In the generalized lasso, S = 1
and, hence, B is the vector b ∈ RM and X becomes x ∈ RP as in Section 2.1.1.
In the centralized approach, a generalized lasso estimate of x is given by

xc = argmin
x

{‖Ax− b‖2 + η ‖Fx‖1} (3.26)

where η > 0 is a regularization parameter and F is an arbitrary matrix. An RRR
estimate of X is also given by

Xc = argmin
X

{‖AX−B‖2 + η∗ ‖X‖∗} (3.27)

where η∗ > 0 is a rank-controlling parameter. In the distributed setting, we solve
problem (2.3) with

fi(xi;Ai,bi) = ‖Aixi − bi‖2 +
η

N
‖Fxi‖1 (3.28)

for the generalized lasso case and with

fi(Xi;Ai,Bi) = ‖AiXi −Bi‖2 +
η

N
‖Xi‖∗ (3.29)

38 Distributed Optimization with Horizontal Partitioning

for the RRR case. For each agent i ∈ V , we create a 10P × P local observation
matrix Ai whose entries are independent identically distributed zero-mean unit-
variance Gaussian random variables. The response vector b is obtained as

b = Aω + φ

where ω ∈ RP and φ ∈ RM are chosen as random vector with distribution
N (0, IP) and N (0, 0.1IM). The response matrix H is obtained as

B = AΩ+Φ

where Ω ∈ RP×S and Φ ∈ RM×S are random matrices with matrix normal
distributions MN (0P×S , IP , IS) and MN (0M×S , 0.1IM , 0.1IS), respectively.
The regularization parameters η and η∗ are set to

η = 0.01
∥∥∥DTb

∥∥∥
∞

η∗ = 0.01
∥∥∥(IS ⊗D)Tvec(H)

∥∥∥
∞

as in [5]. The number of iterations of the ADMM outer loop is set to 200. For
the inner loop, the number of iterations is set to 1000, the smoothing constant u1,1
is set to 1 and the convergence in mean is achieved by averaging the outputs of
10 inner loops. Performance of D-ZOA is evaluated using the normalized error
between the centralized solutions xc as per (4.19) or Xc as per (3.27) and the local
estimates. It is defined as ∑N

i=1 ‖xi − xc‖2

‖xc‖2

for generalized lasso and as ∑N
i=1 ‖Xi −Xc‖2F

‖Xc‖2F

for RRR, where xi and Xi denote the local estimates at agent i. The centralized
solutions xc and Xc are computed using the convex optimization toolbox CVX
[89]. Results are obtained by averaging over 100 independent trials.

Figs. 3.3-3.4 show the performance of D-ZOA for the generalized lasso and the
RRR scenarios, respectively. In Fig. 3.3, we plot the normalized error versus
the outer loop iteration index for D-ZOA and a subgradient-based distributed al-
gorithm, called D-SG and proposed in [9]. We observe that, for P = 10 and
ρ = 3, D-ZOA has similar performance to D-SG both when the network consists
of 15 and 30 agents. Fig. 3.4 shows that D-ZOA converges to the centralized

3.2. Distributed Learning with Non-Smooth Objective Functions 39

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n
o

rm
a

liz
e

d
 e

rr
o

r

D-ZOA, N=30

D-SG, N=30

D-SG, N=15

D-ZOA, N=15

Figure 3.3: Normalized error of D-ZOA and D-SG for generalized lasso with P = 10,
ρ = 3 and two different values of N .

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

n
o

rm
a

liz
e

d
 e

rr
o

r

D-ZOA, =3

Figure 3.4: Normalized error of D-ZOA for RRR with P = 5, S = 4, ρ = 3 and N = 10.

solution of the considered RRR problem for P = 5, S = 4, N = 10 and ρ = 3.
The parameters related to the inner loop have been chosen to get the convergence

40 Distributed Optimization with Horizontal Partitioning

according to [3].The other parameters have been tuned in order to get the best per-
formance compared to the benchmark algorithms while benefiting from the con-
vergence properties of the ADMM illustrated in [5].

3.2.5 Conclusion

In [13], we developed a new consensus-based algorithm for solving a distributed
optimization problem with a non-smooth convex objective. We recast the original
problem into an equivalent constrained optimization problem whose structure is
suitable for distributed implementation via ADMM. We employed a zeroth-order
method, known as the two-point stochastic gradient algorithm, to minimize the
augmented Lagrangian in the primal update step. Compared to existing algorithms
for non-smooth optimization, D-ZOA is fully-distributed and does not require the
computation of subgradients, nor proximal operators which may be difficult to
derive in some scenarios. D-ZOA only requires the computation of objective func-
tion values. The convergence of D-ZOA to the centralized solution was verified
through theoretical analysis and simulations.

Chapter 4

Privacy-Preserved Distributed
Learning with Zeroth-Order
Optimization

In this chapter, we present our contribution developed in [2] where we propose
a privacy-preserving distributed algorithm to minimize a regularized empirical
risk function when the first-order information is not available and data is dis-
tributed over a multi-agent network. We employ a zeroth-order method to min-
imize the associated augmented Lagrangian function in the primal domain using
the alternating direction method of multipliers (ADMM). We show that the D-
ZOA algorithm presented in Section 3.2 has intrinsic privacy-preserving prop-
erties. Most existing privacy-preserving distributed optimization/estimation al-
gorithms exploit some perturbation mechanism to preserve privacy, which comes
at the cost of reduced accuracy. Contrarily, by analyzing the inherent random-
ness due to the use of a zeroth-order method, we show that D-ZOA is intrinsically
endowed with (ε, δ)−differential privacy. In addition, we employ the moments
accountant method to show that the total privacy leakage of D-ZOA grows sub-
linearly with the number of ADMM iterations. D-ZOA outperforms the existing
differentially-private approaches in terms of accuracy while yielding similar pri-
vacy guarantee. We prove that D-ZOA reaches a neighborhood of the optimal
solution whose size depends on the privacy parameter. The convergence analysis
also reveals a practically important trade-off between privacy and accuracy. Simu-
lation results verify the desirable privacy-preserving properties of D-ZOA and its
superiority over the state-of-the-art algorithms as well as its network-wide conver-
gence.

41

42 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

4.1 Related Work
There have been several works developing privacy-preserving algorithms for dis-
tributed convex optimization [40, 41, 56–61, 90–92]. The work in [41] proposes
two differentially private distributed algorithms that are based on the alternating
direction method of multipliers (ADMM). The algorithms in [41] are obtained by
perturbing the dual and the primal variable, respectively. However, in both al-
gorithms, the privacy leakage of an agent is bounded only at a single iteration and
an adversary might exploit knowledge available from all iterations to infer sensit-
ive information. This shortcoming is mitigated in [56–59]. The works in [56, 57]
develop ADMM-based differentially private algorithms with improved accuracy.
The work in [58] employs the ADMM to develop a distributed algorithm where
the primal variable is perturbed by adding a Gaussian noise with diminishing
variance to ensure zero-concentrated differential privacy enabling higher accuracy
compared to the common (ε, δ)-differential privacy. The work in [59] develops a
stochastic ADMM-based distributed algorithm that further enhances the accuracy
while ensuring differential privacy. The authors of [90–92] propose differentially-
private distributed algorithms that utilize the projected-gradient-descent method
for handling constraints. The differentially private distributed algorithm proposed
in [60] is based on perturbing the local objective functions. However, the al-
gorithms in [41, 56–60, 90–92] offer distributed solutions only for problems with
smooth objective functions.

The work in [40] addresses problems with non-smooth objective functions by em-
ploying a first-order approximation of the augmented Lagrangian with a scalar
l2-norm proximity operator. However, this algorithm is not fully distributed since
it requires a central coordinator to average all the perturbed primal variable up-
dates over the network at every iteration. All the above-mentioned algorithms
in [40, 41, 56–60, 90–92] require some modifications through deliberately per-
turbing either the local estimates or the objective functions. This compromises
the performance of the algorithm by degrading its accuracy especially when large
amount of noise is required to provide high privacy levels. The work in [61] con-
siders privacy-preserving properties that are intrinsic, i.e., they do not require any
change in the algorithm but are associated with the algorithm’s inherent properties.
However, the approach taken in [61] considers a privacy metric based on the topo-
logy of the communication graph. Therefore, none of the existing algorithms are
able to offer fully-distributed solutions that are intrinsically capable of ensuring
differential privacy.

4.2. Contributions 43

4.2 Contributions
In [2], we employ the D-ZOA algorithm presented in Section 3.2 to solve a class
of regularized empirical risk minimization (ERM) problems when first-order in-
formation is unavailable or hard to obtain. Furthermore, we show that D-ZOA
has intrinsic privacy-preserving properties. To substantiate this novel finding, we
model the primal variable at each agent as the sum of an exact (unperturbed) value
and a random perturbation. This enables us to address the challenging problem of
approximating the distribution of the primal variable and verify that the stochasti-
city inherent to the employed zeroth-order method can adequately make D-ZOA
differentially private. To this end, we find a suitable approximation for the prob-
ability distribution of the primal variable. Subsequently, we show that the inherent
randomness in D-ZOA enables it to preserve (ε, δ)-differential privacy. Utilizing
the moments accountant method [93], we also show that the total privacy leak-
age over all iterations grows sublinearly with the number of ADMM iterations.
This is particularly important as we observe that, with any similar level of privacy,
the optimization accuracy of D-ZOA is higher compared to the existing privacy-
preserving approaches, which perturb the variables exchanged among the network
agents by adding noise.

We prove that D-ZOA reaches a neighborhood of the optimal solution, i.e., a near-
optimal solution, and the size of the neighborhood is determined by the privacy
parameter. This gives an explicit privacy-accuracy trade-off, where a stronger pri-
vacy guarantee corresponds to a lower accuracy. Through numerical simulations,
we show that D-ZOA is competitive with the state-of-the-art zeroth-order-based
optimization algorithms even though they are designed for centralized processing.
We also verify numerically that the entries of the zeroth-order stochastic gradient
are normally distributed by illustrating the associated histograms and (quantile-
quantile) QQ plots. Simulation results also demonstrate that, with any given level
of required privacy guarantee, D-ZOA outperforms existing privacy-preserving al-
gorithms in terms of accuracy. To the best of our knowledge, this is the first work
on distributed non-smooth optimization that is capable of exploiting the inherent
randomness due to the use of a zeroth-order method and enjoy the ensuing intrinsic
(ε, δ)-differential privacy.

4.3 System Model
We consider the system model described in Section 2.1 with horizontal partitioning
of the observation matrix as presented in Section 2.1.1. In addition to the symbols
introduced in Section 2.1.1, each agent i ∈ V has a private dataset Si that is defined

44 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

as

Si =
{
(Ai,bi) : Ai = [ai,1,ai,2, . . . , ai,Mi]

T ∈ RMi×P ,

bi = [bi,1, bi,2, . . . , bi,Mi]
T ∈ RMi

}
.

We consider the problem of estimating a parameter of interest x ∈ RP that relates
the value of an output measurement stored in the response vector bi to input meas-
urements collected in the corresponding row of the local matrix Ai. The associated
supervised learning problem can be cast as a regularized ERM expressed by

min
x

N∑
i=1

1

Mi

Mi∑
j=1

`(ai,j , bi,j ;x) + ηR(x) (4.1)

where ` : RP → R is the loss function, R : RP → R is the regularizer function,
and η > 0 is the regularization parameter. The ERM problem pertains to several
applications in machine learning, e.g., linear regression [11], support vector ma-
chine [69], and logistic regression [40, 58]. We assume that the loss function `(·)
and the regularizer function R(·) are both closed and convex but at least one of
them is non-smooth. Let us denote the optimal solution of (4.1) by xc. A dis-
tributed solution to the minimization problem in (4.1) is found by employing the
D-ZOA algorithm presented in (3.2.3) with

fi(xi;Xi) =
1

Mi

Mi∑
j=1

`(ai,j , bi,j ;x) + ηR(x). (4.2)

4.4 Intrinsic Differential Privacy Guarantee
In this section, we consider the privacy concerns associated with distributed learn-
ing and reveal that the inherent randomness due to the use of a zeroth-order method
is sufficient for the proposed D-ZOA algorithm to preserve (ε, δ)-differential pri-
vacy. First, we propose our solution to the challenging problem of characterizing
the randomness inherent to the algorithm. Subsequently, we assess the l2-norm
sensitivity of the primal variable and compute the covariance that the primal vari-
able is required to have so that the privacy leakage of a single iteration of D-ZOA
is bounded at each agent. Finally, we prove that the total privacy leakage over all
iterations grows sublinearly with the number of ADMM iterations.

4.4.1 Primal Variable Distribution

Due to the stochasticity inherent to the zeroth-order method, its employment for
the ADMM primal update produces a perturbed estimate. Therefore, the solution

4.4. Intrinsic Differential Privacy Guarantee 45

in the primal update step in (2.9) at agent i using D-ZOA can be modeled as

x
(k)
i = x̆

(k)
i + ξ

(k)
i (4.3)

where x̆
(k)
i ∈ RP is the exact ADMM primal update and ξ(k)i ∈ RP is a random

variable representing the perturbation. As in [6], the optimality condition for x̆(k)
i

is given by

0 ∈ ∂fk(x̆
(k)
i) + λ

(k−1)
i + 2ρ|Vi|x̆(k)

i − ρ|Vi|x(k)
i − ρ

∑
j∈Vi

x
(k)
j . (4.4)

Hence, for any subgradient f ′
i(x̆

(k)
i) ∈ ∂fi(x̆

(k)
i), we have

f ′
k(x̆

(k)
i) = −λ(k−1)

i − 2ρ|Vi|x̆(k)
i + ρ|Vi|x(k)

i + ρ
∑
j∈Vi

x
(k)
j . (4.5)

The model (4.3) represents an implicit primal variable perturbation that can be
contrasted with the explicit primal variable perturbation used in [41, 58]. Using
(4.3) and the primal update equation in (4.5), the ADMM primal update step in
(2.9) can be expressed as

x̆
(k)
i =− 1

2ρ|Vi|
f ′
k

(
x̆
(k)
i

)
+

1

2|Vi|

(
|Vi|x(k)

i +
∑
j∈Vi

x
(k)
j

)
− 1

2ρ|Vi|
λ
(k−1)
i (4.6)

x
(k)
i = x̆

(k)
i + ξ

(k)
i (4.7)

where x̆(k)
i is the local exact primal update at agent i and iteration k and ξ(k)i is the

local perturbation of x̆(k)
i at agent i and iteration k.

To prove that the inherent randomness due to employing a zeroth-order method
makes D-ZOA differentially private, we need the knowledge of the probability dis-
tribution of the primal variable x(k)

i . To approximate the probability distribution, in
view of (2.20) and the fact that x(0)

i = 0, we unfold x
(k)
i as x(k)

i = −
∑T

t=1 αtg
(t)
i .

The stochastic gradient g(t)
i is the average of J independent random samples g(t)

j,i

that are functions of the random values {νj,i1,t}Jj=1 and {νj,i2,t}Jj=1 drawn from the

same normal distribution. Therefore, it is realistic to assume that {g(t)
j,i }Jj=1 are

independent and identically normally distributed with a common mean µ(t)
i and

finite covariance matrix Ψ
(t)
i , i.e., g(t)

j,i ∼ N (µ
(t)
i ,Ψ

(t)
i). Thus, the probability

distribution of x(k)
i is given by the following lemma.

46 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

Lemma 1. If {g(t)
j,i }Jj=1 are independent and identically distributed (i.i.d.) with

g
(t)
j,i ∼ N (µ

(t)
i ,Ψ

(t)
i), then x

(k)
i is distributed as

x
(k)
i ∼ N

(
x̆
(k)
i ,

1

J

T∑
t=1

α2
tΨ

(t)
i

)
. (4.8)

Proof. See proof of [2, Lemma 1].

In the next subsection, we find an explicit expression for the covariance of x(k)
i .

The assumption of normal distribution for g(t)
k is a natural one as g

(t)
k is the av-

erage of stochastic variable vectors {g(t)
j,k}

J
j=1, which are themselves functions

of normally-distributed random variable vectors {νj,k1,t}Jj=1 and {νj,k2,t}Jj=1. We
provide some numerical experiments to explicitly verify this assumption in Sec-
tion 4.6.

The assumption is necessary to make the problem of deriving theoretical differen-
tial privacy guarantees for the proposed algorithm tractable. Note that our analysis
based on this and other assumptions does not result in any deterministic guaran-
tee but yields a probabilistic statement for privacy guarantee by setting a bound
on a ratio of probabilities relevant in the concept of differential privacy. There-
fore, we do not require perfectly accurate evaluations of the parameters, variables,
or statistical models involved in the analysis. Nonetheless, we are cognizant that
the reliability of the results highly depends on the accuracy of the underlying as-
sumptions and approximations. Our simulation results in Section 4.6 implicitly
corroborate the veracity of our assumptions.

4.4.2 Covariance of the Primal Variable

In this subsection, we derive an explicit expression for the covariance of the primal
variable x

(k)
i . This is needed to show that the privacy leakage of any iteration of

D-ZOA is bounded at all agents.

To make the problem more tractable, we assume that the entries of the random
vector x(k)

i are independent of each other and have the same variance [40, 41, 62].
Let us denote the variance of every entry of ξ(k)i by σ2

i . Therefore, in view of
Lemma 1, we have

σ2
i =

1

JP

T∑
t=1

α2
t tr
(
Ψ

(t)
i

)
,

which can be computed as per the following lemma.

4.4. Intrinsic Differential Privacy Guarantee 47

Lemma 2. There exists a constant c such that

σ2
i =

cα2
0R

2

JP log(2P)

(
s1(1 + logP) + s2

)
− 4 ‖xc‖2

TJP
. (4.9)

where s1 =
∑T

t=1 t
−1, s2 =

∑T
t=1 t

−1.5, and xc is the optimal solution.

Proof. See proof of [2, Lemma 2].

In [3], it is shown that c = 0.5 is suitable when n1 and n2 are sampled from a
multivariate normal distribution, i.e., n1,n2 ∼ N (0P , IP). Note that s1 and s2
grow slowly with T . Hence, even for a very large T , s1 and s2 have reasonable
values. For example, with T = 2.5 × 108, we have

∑T
t=1 t

−1 < 20. A large T
will increase the computational complexity according to the discussions of Section
3.2.3.

4.4.3 l2-Norm Sensitivity

In this subsection, we estimate the l2-norm sensitivity of x̆(k)
i . The l2-norm sens-

itivity calibrates the magnitude of the noise by which x̆
(k)
i has to be perturbed to

preserve privacy. Unlike the existing privacy-preserving methods where the noise
is added to the output of the algorithm [40, 41, 58, 62, 94, 95], in D-ZOA, the noise
is inherent.

We introduce the following assumption that is widely used in the literature, see,
e.g., [40, 41, 62].

Assumption 1: There exists a constant c1 such that ‖`′(·)‖ ≤ c1 where `(·) is the
loss function defined in Section 4.3.

The l2-norm sensitivity of x̆(k)
i is an upper bound on ∆i,2 defined in (2.26) and is

computed as in the following lemma.

Lemma 3. Under Assumption 1, the l2-norm sensitivity of x̆(k)
i is given by

∆i,2 =
c1

ρ|Vi|Mi
. (4.10)

Proof. See proof of [2, Lemma 3].

4.4.4 Intrinsic (ε, δ)-Differential Privacy Guarantee

In this subsection, we reveal that the immanent stochasticity imparted by the em-
bedded zeroth-order method makes D-ZOA (ε, δ)-differentially private. We provide

48 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

an expression relating the primal variable variance, σi, to the privacy parameters ε
and δ as well as an expression for ε relating it to the relevant algorithmic paramet-
ers.

We first prove that Algorithm 4 is (ε, δ)-differentially private at each iteration
providing a relationship between σi and ε, δ.

Theorem 4.1. Let ε ∈ (0, 1] and

σi =
c1
√
2.1 log(1.25/δ)

ρ|Vi|Miε
. (4.11)

Under Assumption 1, at each iteration of D-ZOA, (ε, δ)-differential privacy is
guaranteed. Specifically, for any neighboring datasets Si and S ′

i and any output
x
(k)
i , the following inequality holds:

Pr[x(k)
i,Si

] ≤ eεPr[x(k)
i,S′

i
] + δ. (4.12)

Proof. See proof of [2, Theorem 1].

Theorem 1 shows that the primal variable variance is inversely proportional to the
privacy parameter ε. This implies that a higher variance leads to a smaller ε and
higher privacy guarantee. A smaller ε means that the ratio of the probability distri-
butions of x(k)

i,Si
and x

(k)
i,S′

i
is smaller and consequently less information is available

to any sniffing/spoofing adversary through xi hence the improved privacy [41].

We then introduce the following corollary.

Corollary 1. If {g(t)
j,i }Jj=1 are i.i.d. with g

(t)
j,i ∼ N (µ

(t)
i ,Ψ

(t)
i), and Assumption 1

holds, we have

ε =
c1

ρ|Vi|Mi

√√√√ 2.1JP log(1.25δ)

cR2α20
log(2P) (s1(1 + logP) + s2)− 4‖xc‖2

T

. (4.13)

Proof. The proof follows from equating the expressions for σi in Lemma 2, (4.9),
and Theorem 1, (4.11), and solving for ε.

The equation (4.13) shows how the intrinsic privacy preserving property of D-
ZOA is affected by various involved parameters. For example, a smaller J results
in a smaller ε. This is consistent with the fact that a smaller J leads to a higher

4.5. Convergence Analysis and Privacy-Accuracy Trade-off 49

variance, which yields a higher privacy guarantee due to the inherent randomness
brought about by using a zeroth-order method in the inner loop.

The denominator of the second factor in (4.13) is required to be positive for the
factor to be real. We ensure this by setting

T >
4 ‖xc‖2 log(2P)

cR2α2
0(s1(1 + log(P)) + s2)

. (4.14)

4.4.5 Total Privacy Leakage

In this subsection, we consider the total privacy leakage of the proposed D-ZOA
algorithm. Since D-ZOA is a K-fold adaptive algorithm, we utilize the results
of [93] together with the moments accountant method to evaluate its total privacy
leakage. The main result is summarized in the following theorem.

Theorem 4.2. Let ε ∈ (0, 1] and

σi =
c1
√

2.1 log(1.25/δ)

ρ|Vi|Miε
. (4.15)

Under Assumption 1, Algorithm 4 guarantees (ε̄, δ)-differential privacy where

ε̄ = ε

√
K log(1/δ)

1.05 log(1.25/δ)
. (4.16)

Proof. The proof is obtained by using the log moments of the privacy loss and
their linear composability in the same way as in [40, Theorem 2].

4.5 Convergence Analysis and Privacy-Accuracy Trade-
off

We establish the convergence of D-ZOA to a near-optimal solution by corroborat-
ing that both inner and outer loops of the algorithm converge as in Section 3.2.3.
By employing the covariance of the primal variable as in Section 4.4.2, the con-
vergence result in Theorem 3.1 can be extended as per the following theorem that
also provides an explicit privacy-accuracy trade-off.

Theorem 4.3. For any K > 0, we have

E[f(ŵ(K))− f(w∗)] ≤
∥∥q(0) − q

∥∥2
G

K
+

2.1c21P log(1.25/δ)λ2
max(L+)

2ρ|Vi|2M2
i ε

2λmin(L−)
(4.17)

50 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

where q = [rT, (w∗)T]T and

ŵ(K) =
1

K

K∑
k=1

w̆(k).

Proof. See proof of [2, Theorem 3].

Theorem 3 shows that D-ZOA reaches a neighborhood of the optimal (centralized)
solution with the size of the neighborhood determined by the privacy-parameter ε.
This discloses a privacy-accuracy trade-off offered by D-ZOA. When the privacy
guarantee is stronger (smaller ε and δ), the accuracy is lower.

Note that we do not need to solve the minimization problem in the ADMM primal
update step of the outer loop with high accuracy [6, 40]. We perform the ADMM
primal update step in the outer loop after obtaining an inexact solution to (2.9).
Therefore, we select the number of inner loop iterations T as the minimum number
of iterations satisfying (4.14) and entailing an accuracy that is sufficient to ensure
convergence of ADMM according to [3]. In fact, T should be chosen as low as
possible within the above-mentioned constraints to minimize the computational
complexity according to the discussions of Section 3.2.3.

4.6 Simulations
In this section, we present some simulation examples to evaluate the perform-
ance and the privacy-accuracy trade-off of the proposed D-ZOA algorithm. We
first benchmark D-ZOA against two popular existing algorithms for zeroth-order-
based optimization, which have originally been designed for centralized settings,
i.e., those proposed in [4] and [3] and called zeroth-order online ADMM (ZOO-
ADMM) and optimal-rate zeroth-order (OR-ZO) algorithm, respectively. Then,
we illustrate two sets of example histograms and QQ plots to verify that the entries
of the gradient vector g(t)

k are normally distributed. Next, we benchmark D-ZOA
against some existing baseline differentially-private algorithms: the ADMM al-
gorithm with primal variable perturbation (PVP) proposed in [40, 41], the ADMM
with dual variable perturbation proposed in [41], the ADMM-based algorithm DP-
ADMM proposed in [40], and the distributed subgradient algorithm (DPSGD) pro-
posed in [9] that is customized to include differential privacy. As for the applica-
tions, we consider a distributed version of the empirical risk minimization problem
with an `1-norm regularization (lasso penalty) and an `2-norm regularization (ridge
penalty) [5].

4.6. Simulations 51

In the centralized approach, a lasso estimate of x is given by

xc = argmin
x

{‖Ax− b‖2 + η ‖x‖1} (4.18)

while a ridge estimate of x is given by

xc = argmin
x

{‖Ax− b‖2 + η ‖x‖2}. (4.19)

In the distributed setting, we solve problem (4.1) with

Mi∑
j=1

`(ai,j , bi,j ;xi) = ‖Aixi − bi‖2 (4.20)

and R(xi) = ‖xi‖1 for the lasso penalty. For the ridge penalty, we have R(xi) =
‖xi‖2.

We assess the performance of the D-ZOA algorithm over a network of N = 5
agents with edge set E = {e12, e14, e23, e34, e45}. The number of samples at each
agent is set to Mi = 20 ∀i ∈ V and the total number of samples is M = 100.
The number of features in each sample is P = 10. For each agent i ∈ V , we
create a 2P × P local observation matrix Ai whose entries are i.i.d. zero-mean
unit-variance Gaussian random variables. The response vector b is synthesized as

b = Aω + φ

where ω ∈ RP and φ ∈ RM are random vectors with distributions N (0, IP) and
N (0, 0.1IM), respectively. The data are preprocessed by normalizing the columns
of A to guarantee that the maximum value of each column is 1 and by normalizing
the rows to enforce their l2-norm to be less than 1 as in [40]. This is motivated
by the need for homogeneous scaling of the features. Therefore, we have c1 = 1.
The regularization parameter is set to η = 1 and the penalty parameter is set to
ρ = 4. The number of iterations of the ADMM outer loop is set to 200. For the
inner loop, the number of iterations is set to 100 and the smoothing constant u1
to 1. We set α0 = 0.54 according to [96] and calculate J from equation (4.13)
by fixing ε, solving for J and rounding the solution to the nearest integer. With
the current choice of parameters in the simulation section, the right hand side in
equation (4.14) attains the value 5.85, so the inequality in (4.14) clearly holds since
the left hand side is given by T = 100. Performance of D-ZOA is evaluated using
the normalized error between the centralized solutions xc as per (4.19) and the
local estimates. It is defined as ∑N

i=1 ‖xi − xc‖2

‖xc‖2

52 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

where xi denotes the local estimate at agent i. The centralized solution xc is
computed using the convex optimization toolbox CVX [89]. Results are obtained
by averaging over 100 independent trials. The parameters related to the inner loop
have been chosen to get the convergence according to [3].The other parameters
have been chosen in order to achieve the best performance in terms of accuracy and
convergence rate in comparison with the benchmark algorithms, i.e., DP-ADMM,
DPSGD, PVP, DVP, OR-ZO, ZOO-ADMM while benefiting from the convergence
properties of the ADMM illustrated in [5] with respect to, e.g., to the number of
outer loop iterations or the choice of the regularization parameter ρ.

In Fig. 4.1, we compare the performance of the proposed D-ZOA algorithm with
that of two existing zeroth-order-based algorithms, i.e., those proposed in [4] and
[3]. The simulation results show that the steady-state normalized error of D-ZOA
is comparable to those of these algorithms, even though they are designed for
centralized processing. The centralized algorithms converge faster than D-ZOA
since, unlike our fully-distributed D-ZOA, they have all data concentrated at a
central processing hub and do not rely on diffusing information across the network
by sharing the local estimates within each agent’s neighborhood. Note that the
notion of iteration is essentially different for each algorithm whose learning curve
is shown in Fig. 4.1. Thus, we provide the learning curve plots in Fig. 4.1 only
to examine how D-ZOA performs in comparison with the existing zeroth-order
optimization algorithms notwithstanding the underlying fundamental differences.

In Figs. 4.2-4.5, we provide two sets of histograms and QQ plots for an arbitrary
entry of the stochastic gradient vector g(t)

k , i.e., the one corresponding to agent 2,
and different inner and outer loop iterations, i.e., t = 100, t = 50, and m = 50,
m = 150. The plots help us verify that the entries of g(t)

k are normally distributed
hence attest to the validity of our related assumption in Section 4.4.1.

We first benchmark our D-ZOA in the case of the ERM with the lasso penalty.
Since PVP and DVP cannot be employed when the objective function is non-
smooth, we benchmark our algorithm only with DP-ADMM and DPSGD sim-
ilar to [40]. In Fig. 4.6 and 4.7, we plot the normalized error versus the outer
loop iteration index for D-ZOA, DP-ADMM, and DPSGD. The plots show that
all algorithms converge for two different values of ε and δ. In all plots, accuracy
improves as ε increases. This is consistent with both Theorem 3 and [40, Theorem
3]. The hyper-parameters in DP-ADMM and DPSGD are tuned to achieve the
best accuracy and convergence rate. However, D-ZOA has higher accuracy than
DP-ADMM and DPSGD.

In Fig. 4.8 and 4.9, we illustrate the privacy-accuracy trade-off for D-ZOA, DP-
ADMM, and DPSGD. The figures show that D-ZOA, DP-ADMM, and DPSGD

4.6. Simulations 53

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n
o
rm

a
liz

e
d
 e

rr
o
r

D-ZOA

OR-ZO

ZOO-ADMM

Figure 4.1: The normalized errors of D-ZOA, OR-ZO [3], and ZOO-ADMM [4] versus
the iteration number.

achieve higher accuracy with larger ε and δ. In Fig. 4.8, we show the normalized
error versus the privacy parameter ε̄ as given in (4.16) for δ = 10−6 and δ = 10−3.
We observe that D-ZOA outperforms both DP-ADMM and DPSGD in terms of
accuracy likely due to its intrinsic privacy-preserving properties. Fig. 4.9 also
attests to the superiority of D-ZOA over DP-ADMM and DPSGD when ε = 0.15
and ε = 0.95 and δ varies between 10−6 and 10−2.

We also evaluate the performance of the D-ZOA algorithm in comparison with
the considered benchmark algorithms for the ERM with the ridge penalty. In Fig.
4.10 and 4.11, we plot the normalized error versus the outer loop iteration index for
D-ZOA, DP-ADMM, DPSGD, PVP, and DVP. The plots show that D-ZOA out-
performs all other considered algorithms in terms of accuracy for different values
of ε.

In Fig. 4.12 and 4.13, we demonstrate the privacy-accuracy trade-off for D-ZOA,
DP-ADMM, DPSGD, PVP, and DVP. As expected, smaller values of the privacy
parameters ε and δ lead to lower accuracy. However, D-ZOA outperforms all the
other approaches in terms of accuracy due to its intrinsic privacy-preserving prop-
erties.

In the considered applications of ERM with lasso and ridge penalty, we make
the following observations regarding the complexity-accuracy trade-off of D-ZOA

54 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

Figure 4.2: The histogram of g(t)
k at agent 2, the inner loop iteration t = 100, and the

outer loop iteration m = 50.

-2 -1 0 1 2

Standard Normal Quantiles

-4

-3

-2

-1

0

1

2

3

4

5

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

Figure 4.3: The QQ plot of g(t)
k at agent 2, the inner loop iteration t = 100, and the outer

loop iteration m = 50.

and the baseline algorithms. D-ZOA outperforms all the baseline algorithms in

4.6. Simulations 55

Figure 4.4: The histogram of g(t)
k at agent 2, the inner loop iteration t = 50, and the outer

loop iteration m = 150.

-2 -1 0 1 2

Standard Normal Quantiles

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

Figure 4.5: The QQ plot of g(t)
k at agent 2, the inner loop iteration t = 50, and the outer

loop iteration m = 150.

terms of accuracy by roughly two orders of magnitude. However, D-ZOA has a

56 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

0 50 100 150 200

iterations

10
-4

10
-2

10
0

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSGD, =0.15

DP-ADMM, =0.15

DP-ADMM, =0.95

DPSGD, =0.95

D-ZOA, =0.15

D-ZOA, =0.95

Figure 4.6: Normalized error of DPSGD, DP-ADMM, and D-ZOA for two values of ε
and δ = 10−3 for ERM with `1-norm regularization.

0 50 100 150 200

iterations

10
-4

10
-2

10
0

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSGD, =0.15

DP-ADMM, =0.15

DPSGD, =0.95

DP-ADMM, =0.95

D-ZOA, =0.15

D-ZOA, =0.95

Figure 4.7: Normalized error of DPSGD, DP-ADMM, and D-ZOA for two values of ε
and δ = 10−6 for ERM with `1-norm regularization.

relatively high computational complexity due to its inner loop that is run at every
agent i and every ADMM iteration. Since the number of arithmetic operations

4.6. Simulations 57

2 4 6 8 10 12 14
10

-4

10
-3

10
-2

10
-1

10
0

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSGD, =10
-6

DP-ADMM, =10
-6

DPSGD, =10
-3

DP-ADMM, =10
-3

D-ZOA, =10
-6

D-ZOA, =10
-3

Figure 4.8: Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA for ERM
with `1-norm regularization for δ = 10−6 and δ = 10−3.

0 0.2 0.4 0.6 0.8 1

10
-3

10
-4

10
-3

10
-2

10
-1

10
0

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSGD, =0.15

DP-ADMM, =0.15

DP-ADMM, =0.95

DPSGD, =0.95

D-ZOA, =0.15

D-ZOA, =0.95

Figure 4.9: Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA for ERM
with `1-norm regularization for ε = 0.15 and ε = 0.95.

58 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

0 100 200 300 400 500

iterations

10
-4

10
-2

10
0

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSG

PVP

DP-ADMM

DVP

D-ZOA

Figure 4.10: Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for ε =
0.40 and δ = 10−3 for ERM with `2-norm regularization.

0 100 200 300 400 500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSG

PVP

DVP

DP-ADMM

D-ZOA

Figure 4.11: Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for ε =
0.80 and δ = 10−3 for ERM with `2-norm regularization.

required to evaluate the objective function is O(PMi), calculation of (2.19) needs
O(JPMi) operations and, therefore, D-ZOA requires O(TJPMi) operations to

4.6. Simulations 59

4 6 8 10 12 14 16 18
10

-5

10
-4

10
-3

10
-2

10
-1

10
0

n
o

rm
a

liz
e

d
 e

rr
o

r

DPSG

PVP

DVP

DP-ADMM

D-ZOA

Figure 4.12: Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA
for ERM with `2-norm regularization for δ = 10−3.

0 0.002 0.004 0.006 0.008 0.01
10

-5

10
-4

10
-3

10
-2

10
-1

n
o

rm
a

liz
e

d
 e

rr
o

r

DVP

DPSG

PVP

DP-ADMM

D-ZOA

Figure 4.13: Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA
for ERM with `2-norm regularization for ε = 0.95.

60 Privacy-Preserved Distributed Learning with Zeroth-Order Optimization

perform (2.9). The baseline algorithms have the following computational com-
plexities: O(P 2Mi) for DP-ADMM and DPSGD, and O(P 2Mi + P 3) for PVP
and DVP. In order to be able to have a quicker and easier comparison between
the above-mentioned complexities, we recall that, in the simulations, the values
J = 30, T = 100 were used.

4.7 Conclusion
In [2], we showed that the D-ZOA algorithm proposed in [13] and described in
Section 3.2 is intrinsically capable of ensuring differential privacy. We proved
that the inherent randomness due to employing the zeroth-order method can ad-
equately make the D-ZOA algorithm intrinsically privacy-preserving. In addition,
we used the moments accountant method to show that the total privacy leakage of
D-ZOA grows sublinearly with the number of ADMM iterations. We verified the
convergence of D-ZOA to a near-optimal solution as well as studying its privacy-
preserving properties through both theoretical analysis and numerical simulations.

Chapter 5

Distributed Optimization with
Feature Partitioning

In this chapter, we present three contributions in the context of distributed learn-
ing with feature partitioning of data. The first contribution deals with a fully-
distributed algorithm to solve the ridge regression problem with feature parti-
tioning of data. In the second contribution, we propose an algorithm to solve
feature-distributed learning problems with an `2-norm-square cost function and
non-smooth regularizer functions. In the third contribution, we extend the two
previously proposed algorithms by developing a fully-distributed algorithm for
solving learning problems when the data is distributed among agents in feature
partitions and computing the conjugate of the possibly non-smooth cost or regu-
larizer functions is challenging or unfeasible.

5.1 Distributed Ridge Regression
In [22], we develop a new distributed algorithm to solve the ridge regression
problem with feature partitioning of the observation matrix. The proposed al-
gorithm, named D-Ridge, is based on the alternating direction method of multi-
pliers (ADMM) and estimates the parameters when the observation matrix is dis-
tributed among different agents with feature (or vertical) partitioning. We formu-
late the associated ridge regression problem as a distributed convex optimization
problem and utilize the ADMM to obtain an iterative solution. Numerical results
demonstrate that D-Ridge converges faster than its diffusion-based contender does.

61

62 Distributed Optimization with Feature Partitioning

5.1.1 Related Work

The regression problem with feature partitioning has previously been considered
in [35, 37, 38, 42]. However, works of [37, 38] assume a proper coloring scheme
of the network and cannot be extended to a general graph labeling. The algorithm
proposed in [42] is not truly distributed since its consensus constraints involve the
entire network instead of each agent’s local neighborhood. The algorithm in [35]
is fully distributed and based on the diffusion strategy [97]. However, as we will
show later on, it converges relatively slowly.

5.1.2 Contributions

In [22], we solve the ridge regression problem with feature partitioning of the ob-
servation matrix in a distributed fashion using the alternating direction method of
multipliers (ADMM). The proposed algorithm, called D-Ridge, is fully distributed
and requires communications only among neighboring agents. It also converges
faster than the diffusion-based algorithm of [35] and has a per-iteration per-agent
computational complexity order that is linear in the sample size. In addition, D-
Ridge does not require the agents to share their local data or dual variables with
the other agents but only the primal variables, which are the estimate solutions
of the corresponding local optimization subproblems. Hence, D-Ridge respects
the possible data privacy of the agents. We verify the convergence of D-Ridge to
the centralized solution at all agents through both theoretical analysis and simu-
lations. Our experiments with a variety of network topologies show that D-Ridge
outperforms its diffusion-based contender in terms of convergence rate.

5.1.3 System Model

We consider the system model described in Section 2.1 with feature partitioning of
data as presented in Section 2.1.2. In the centralized approach, a ridge regression
estimator of x is given by

x̂c = argmin
x

{‖Ax− b‖2 + η ‖x‖2} (5.1)

where η > 0 is the regularization parameter. From the normal equation associated
with (5.1), the centralized estimate is given by

x̂c = AT(AAT + ηIM)−1b. (5.2)

Since computing a centralized solution of (5.1) over a network may be inefficient,
we propose a distributed algorithm for this purpose in the following section.

5.1.4 Distributed Ridge Regression via ADMM

We first discuss the reformulation of the ridge regression problem whose solution
allows us to find a distributed solution to (5.1) via the ADMM. Then, we describe

5.1. Distributed Ridge Regression 63

the construction steps and main properties of the proposed algorithm for solving
the resulting constrained minimization problem. Finally, we establish the global
convergence of D-Ridge theoretically.

Reformulation of Ridge Regression

Let us define a vector fo ∈ RM×1 as

fo = (AAT + ηIM)−1b.

From (5.2), the part of xc corresponding to agent i can be calculated as

x̂c
i = AT

i f
o. (5.3)

For computing fo at all agents using only in-network processing of the locally
available data, we propose a consensus-based distributed algorithm. Note that fo

is the unique minimizer of the quadratic global cost function J (f) defined as

J (f) =
1

2
fT(AAT + ηIM)f − fTb. (5.4)

Since AAT =
∑N

i=1AiA
T
i , fo is given by

fo = argmin
f

N∑
i=1

Ji(f) (5.5)

where

Ji(f) =
1

2
fT
(
AiA

T
i +

η

N
IM

)
f − δi

B
fTb, (5.6)

B ∈ N is the number of agents having access to b, and δi = 1 if b is available at
agent i and δi = 0 otherwise.

Solving (5.5) is equivalent to solving problem (2.1) with horizontal partitioning.
Minimizing the objective in (5.5) through ADMM entails an iterative process that
is described in the next section.

Algorithm Description

To solve problem (5.5) in a fully-distributed fashion, we employ the ADMM as
described in Section 2.2. The resulting D-Ridge algorithm consists of two steps at
each iteration: the primal update and the dual update steps. Hence, the D-Ridge
algorithm consists of the following iterative updates that are carried out locally at

64 Distributed Optimization with Feature Partitioning

Algorithm 5 D-Ridge

At all agents i ∈ V , initialize f
(0)
i , λ(0)

i to zero vectors, and run locally
for k = 0, 1, . . . ,K do

Receive f
(k)
i from neighbors in Vi.

Update λ(k)
i as in (5.7).

Update f
(k+1)
i as in (5.8).

end for
Estimate x̂i = AT

i f
(K+1)
i .

every agent:

λ
(k)
i =λ

(k−1)
i + ρ

∑
j∈Vi

[f
(k)
i − f

(k)
j] (5.7)

f
(k+1)
i =argmin

{fi}

{1
2
fT
i

(
AiA

T
i +

η

N
IM

)
fi −

δi
B
fT
i b

+(λ
(k)
i)Tfi + ρ

∑
j∈Vi

∥∥∥∥∥fi − f
(k)
i + f

(k)
j

2

∥∥∥∥∥
2}

=
[
AiA

T
i +

(η

N
+ 2ρ|Vi|

)
IM

]−1

(δi
B
b− λ(k)

i + ρ|Vi|f (k)i + ρ
∑
j∈Vi

f
(k)
j

)
(5.8)

where superscript (k) is the iteration index and all initial values {f (0)i }i∈V , {µ(0)
i }i∈V

are set to zero. The proposed approach is summarized in Algorithm 5.

Note that f (k)i is the only vector that is shared between the agents at every iteration.
The computation of (5.8) has a per-iteration per-agent complexity of O(M2). It
involves the inversion of the M×M matrix AiA

T
i +
(

η
N +2ρ|Vi|

)
IM that may be

computationally demanding for M � Pi. However, this operation can be carried
out off-line before running the algorithm. Hence, we achieve a per-iteration per-
agent computational complexity of O(2MPi + P 2

i).

In the next subsection, we show that D-Ridge generates sequences of local iterates
f
(k)
i , i = 1, . . . , N , that, at each agent i, converge to the global centralized solution
xc as k → ∞.

5.1. Distributed Ridge Regression 65

Convergence Analysis

Convergence of the proposed algorithm is established by verifying that both con-
ditions for the ADMM to converge are fulfilled, namely, for each agent i ∈ V ,
the cost function Ji(f) is strongly convex and its gradient ∇fJi(f) is Lipschitz
continuous [98].
The function Ji(f) is strongly convex since it is twice continuously differentiable
and has a positive-definite Hessian matrix:

∇2
fJi(f) = AiA

T
i +

η

N
IM � 0.

Moreover, ∇fJi(f) is a linear function of f . Therefore, it is Lipschitz continuous
[99] with a Lipschitz constant being the operator norm of ∇2

fJi(f).

5.1.5 Simulations

The D-Ridge algorithm is tested here on a network of N = 10 agents with the to-
pology as shown in Fig. 5.1. Each agent holds the data for two features. Therefore,
Pi = 2, i = 1, ..., N , and P = 20. The observation data matrix A has M = 50
regressor vectors with independent zero-mean multivariate Gaussian distribution
as its rows. We calculate the response vector b as

b = Aω +ψ

where ω ∈ RP and ψ ∈ RM are independently drawn from the multivariate nor-
mal distributions N (0, IP) and N (0, 0.1IM), respectively. We evaluate the per-
formance of the proposed algorithm using the misalignment metric that is defined
as ∥∥xd(k)− ω

∥∥2
‖ω‖2

where

xd(k)=
[
x
(k)T
1 , . . . ,x

(k)T
N

]T
and x

(k)
i = AT

i f
(k)
i ∀i ∈ V denotes the local estimate at agent i. The penalty

parameter is set to ρ = 4 and, as in [35], the regularization parameter is set to
η = 10−3. The parameters are also chosen as in [35] in order to ensure a fair
comparison with the benchmark algorithms.
In Figs. 2-4, we plot the misalignment versus the iteration index for D-Ridge and
the diffusion-based algorithm of [35] with different values of the step-size µ.

The results in Figs. 5.2-5.4 are obtained by averaging over 100 independent trials.
The number of agents having access to b, i.e., B affects the convergence speed of

66 Distributed Optimization with Feature Partitioning

1

2

3
4

5

6

7

8

9
10

Figure 5.1: Topology of the considered multi-agent network.

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Figure 5.2: The misalignment of D-Ridge and the diffusion-based algorithm with different
values of the step-size µ when one or all agents have access to b.

D-Ridge, while it does not have any significant effect on the performance of the
diffusion-based algorithm [35]. In Figs. 5.2-5.4, the regression vector is placed in
the agent i with the greatest |Vi| if B = 1, while it is randomly placed over the
network if B > 1.

Fig. 5.2 shows that D-Ridge converges significantly faster than the diffusion-based
algorithm, especially when all agents have access to b, i.e., B = 10. Fig. 5.3
shows that the D-Ridge algorithm converges faster as the number of agents that
have access to b increases. Fig. 5.4 shows that D-Ridge converges faster than the
diffusion-based algorithm irrespective of the network topology. The performance

5.2. Distributed Optimization with Non-Smooth Regularizers 67

of the algorithm with the topology shown in Fig. 5.1 is compared to a linear
topology with the same number of agents where the agents are connected one after
the other, hence |Vi| = 3 for 1 < i < N and |Vi| = 2 for i = 1 and i = N .

5.1.6 Conclusion

In[22], we developed a new consensus-based algorithm for distributed solution of
the ridge regression problem with feature partitioning of the observation matrix.
To this end, we recast the ridge regression problem into an equivalent constrained
separable form, whose structure is suitable for distributed implementation through
ADMM. In the proposed algorithm, D-Ridge, the agents exchange messages only
within their neighborhoods. Simulation results showed that the sequences of local
iterates generated by D-Ridge converge to the centralized solution faster than the
diffusion-based algorithm does.

5.2 Distributed Optimization with Non-Smooth Regular-
izers

In [39], we develop a new algorithm for distributed learning with non-smooth regu-
larizers and feature partitioning. To this end, we transform the underlying optimiz-
ation problem into a suitable dual form and solve it using the alternating direction
method of multipliers. The proposed algorithm is fully-distributed and does not
require the conjugate function of any non-smooth regularizer function, which may
be unfeasible or computationally inefficient to acquire. Numerical experiments
demonstrate the effectiveness of the proposed algorithm.

5.2.1 Related Work

There have been several attempts to solve learning problems with feature partition-
ing of data, e.g., in [5, 15, 22, 35–38, 47, 50–55, 65]. However, the algorithms in
[36, 37] can only be used to solve the basis pursuit and lasso problems, respect-
ively, while the work in [38] is based on assuming an appropriate coloring scheme
of the network and cannot be extended to a general graph labeling. The algorithms
developed in [15, 35, 47] are based on the diffusion strategy. In contrast, the ap-
proaches in [5, 22] are based on the consensus strategy. However, [5] is not fully
distributed since the consensus constraints are imposed globally across the entire
network rather than being applied locally within each agent’s neighborhood. Al-
though the algorithm in [22] is fully distributed, it assumes a specific structure
for the objective function and is only suitable for ridge regression. The works
of [52–55] consider distributed agent-specific estimation. However, the objective
functions considered in these works are smooth. The authors of [50] propose a
coordinate-descent-based algorithm with an inexact update to reduce communic-

68 Distributed Optimization with Feature Partitioning

0 200 400 600 800 1000
10

-3

10
-2

10
-1

10
0

Figure 5.3: The misalignment of D-Ridge for different values of B.

0 500 1000 1500 2000
10

-3

10
-2

10
-1

10
0

Figure 5.4: The misalignment of D-Ridge and the diffusion-based algorithm for the con-
sidered network topology and for the linear topology (L.T.).

ation costs for feature-partitioned distributed learning. In [51], an asynchronous
stochastic gradient-descent algorithm was developed for distributed learning with

5.2. Distributed Optimization with Non-Smooth Regularizers 69

feature partitioning of data. However, none of the above-mentioned algorithms
consider distributed problems with general non-smooth regularization and arbit-
rary graphs.

5.2.2 Contributions

In [39], we develop a new fully-distributed algorithm for distributed learning with
non-smooth regularizers and feature partitioning of data. We consider a general
regularized learning problem whose cost function cannot be written as the sum of
the local agent-specific cost functions, i.e., it is not separable. To achieve separabil-
ity, we formulate the dual problem associated with the underlying convex optimiz-
ation problem and exploit its favorable structure that, unlike the original problem,
allows us to solve it by utilizing the alternating direction method of multipliers
(ADMM). By utilizing the dual of the optimization problem associated with the
ADMM primal variable update step, we devise a new strategy that does not require
any conjugate function of the non-smooth regularizers, which may be infeasible or
hard to obtain in some scenarios. The proposed algorithm is fully-distributed as
every agent communicates only with its neighboring agents and no central coordin-
ator is needed. Our simulation results show that the proposed algorithm converges
in various scenarios.

5.2.3 System Model

We consider the system model described in Section 2.1 with feature partitioning
of data as presented in Section 2.1.2. We consider a regularized learning problem
of form

min
{xi}

g
(∑N

i=1Aixi − b
)
+

N∑
i=1

ri(xi) (5.9)

where g(·) is the global cost function and ri(·), i = 1, . . . , N , are the agent-specific
regularizer functions. The learning problem (5.29) pertains to several applications
in machine learning, e.g., regression over distributed features [5], clustering in
graphs [100], smart grid control [101], dictionary learning [46], and network utility
maximization [102]. In this work, we consider learning problems where functions
ri(·), i = 1, . . . , N , are convex, proper, and lower semi-continuous but not neces-
sarily smooth and g(·) = ‖·‖2. In the next section, we solve (5.29) in a distributed
manner, where each agent communicates only with its neighbors.

5.2.4 Distributed Algorithm for Learning with Feature Partitioning

First, we present the reformulation of the considered non-separable problem into a
dual form that is separable and can be solved in a fully-distributed fashion via the
ADMM. Then, we describe the new strategy that allows us to employ the ADMM

70 Distributed Optimization with Feature Partitioning

without computing any conjugate function of the non-smooth regularizers expli-
citly.

Distributed ADMM for the Dual Problem

To develop a distributed solution, we introduce the auxiliary variables {zi}Ni=1 and
recast (5.29) as

min
{xi,zi}

g
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi)

s. t. Aixi = zi, i = 1, . . . , N.

(5.10)

The objective function in (5.30) is not separable among the agents. Therefore, we
consider the dual problem of (5.30). For this purpose, we associate the Lagrange
multipliers {µi}Ni=1 with the equality constraints in (5.30) and form the Lagrangian
function L({xi}, {zi}, {µi}). The dual function for problem (5.30) is given by

d({µi}) = inf
{xi,zi}

L({xi}, {zi}, {µi})

=−
N∑
i=1

r∗i (−AT
i µi) + inf

zi

{
g(

N∑
i=1

zi − b)−
N∑
i=1

µT
i zi

} (5.11)

where r∗i is the conjugate function of r defined as

r∗i (y) = sup
x

yTx− ri(x).

Next, for the second infimum in (5.32), introducing

z =
N∑
i=1

zi

and its corresponding dual variable λ, and using the duality theory, an alternate
form of the dual function (5.32) is obtained as

d̃({µi},λ) =

−g̃∗(λ)−
N∑
i=1

r∗i (−AT
i µi), λ = µi, ∀i ∈ V

−∞, otherwise

(5.12)

where
g̃∗(λ) = g∗(λ) + λTb.

5.2. Distributed Optimization with Non-Smooth Regularizers 71

Eliminating the redundant variable λ, the dual problem for (5.30) can be expressed
as

max
{µi}

− 1

N

N∑
i=1

g̃∗(µi)−
N∑
i=1

r∗i (−AT
i µi)

s. t. µ1 = µ2 = · · · = µN .

(5.13)

To solve (5.13) in a distributed fashion, we employ the ADMM [7]. First, we recast
(5.13) as a constrained minimization problem by imposing consensus constraints
across each agent’s neighborhood Vi as follows

min
{µi}

1

N

N∑
i=1

g̃∗(µi) +
N∑
i=1

r∗i (−AT
i µi)

s. t. µi = µj , j ∈ Vi, i = 1, . . . , N.

(5.14)

In (5.14), we recast the consensus constraints throughout the whole network into
localized constraints across each agent’s neighborhood. The previous problem can
be rewritten as the following constrained optimization problem

min
{µi},{u

j
i}

1

N

N∑
i=1

g̃∗(µi) +

N∑
i=1

r∗i (−AT
i µi)

s. t. µi = uj
i , µj = uj

i , j ∈ Vi, i = 1, . . . , N.

(5.15)

To facilitate a fully-distributed solution, we decouple the constraints in (5.13) by
introducing the auxiliary variables {uj

i}j∈Vi . Then, we generate the relevant aug-
mented Lagrangian function by associating the Lagrange multipliers {v̄j

i }j∈Vi ,
{ṽj

i }j∈Vi with the consensus constraints. In [7], it is shown that, by setting

v
(k)
i = 2

∑
j∈Vi

(v̄j
i)

(k),

the Lagrange multipliers {ṽj
i }j∈Vi and the auxiliary variables {uj

i}j∈Vi are elim-
inated through the steps illustrated in Section 2.2.2 and the ADMM reduces to an
iterative procedure with two steps at each iteration as

72 Distributed Optimization with Feature Partitioning

µ
(k)
i =argmin

µi

{ 1

N
g∗(µi) +

1

N
µT
i b+ r∗i (−AT

i µi)

+ µT
i v

(k−1)
i + ρ

∑
j∈Vi

∥∥∥µi −
µ
(k−1)
i + µ

(k−1)
j

2

∥∥∥2}, (5.16)

v
(k)
i =v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j). (5.17)

where ρ > 0 is the penalty parameter.

Since ri(·), i = 1, . . . , N , are non-smooth, the minimization problem in (5.36)
can be solved by employing appropriate subgradients or proximal operators [103,
104]. However, computing the conjugate function of the regularizers in (5.36) may
be hard. To overcome this challenge, in the next subsection, we describe a new
procedure that does not require the explicit calculation of any conjugate function.

ADMM with no Conjugate Function

In order to solve the problem in (5.36), we need to calculate the conjugate function
of r∗i . This can be difficult, especially for non-smooth functions. We exploit the
Fenchel-Moreau theorem to eliminate the computation of conjugate function.

To that end, the problem in (5.36) can be restated as

min
{µi,νi}

g∗(µi) + µ
T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i + ρ̄i ‖µi‖

2
2

s. t. AT
i µi + νi = 0

(5.18)

where

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j

and ρ̄i = ρ|Vi|. The Lagrangian function for (5.18) is

L(µi,νi,θi) =
g∗(µi) + µ

T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i

+ ρ̄i ‖µi‖
2
2 + θ

T
i (A

T
i µi + νi)

(5.19)

where θi is the Lagrange multiplier vector associated with the constraint in (5.18).

5.2. Distributed Optimization with Non-Smooth Regularizers 73

Hence, the dual function for the objective in (5.18) can be expressed as

δ(θi) = inf
{µi,νi}

L(µi,νi,θi)

= inf
νi

{r∗i (νi) + θTi νi}

+ inf
µi

{g∗(µi) + µ
T
i b

N
+ (c

(k−1)
i +Aiθi)

Tµi + ρ̄i ‖µi‖
2
}

=− r∗∗i (−θi)

+ inf
µi

{g∗(µi)

N
+

(
c
(k−1)
i +Aiθi +

b

N

)T

µi + ρ̄i ‖µi‖
2
}

(5.20)

where the last equality follows from the definition of conjugate function.

For g(·) = ‖·‖2, the conjugate function is given by g∗(µi) = ‖µi‖
2 /4. Thus, the

optimal value of second infimum of the dual function in (5.20) is

−1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2
and the infimum is attained at the optimal point

µo
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

o
i + c

(k−1)
i +

b

N

)
(5.21)

where θoi = argmaxθi
δ(θi). Since ri(·) is convex, proper, and lower semi-

continuous, we have r∗∗i = ri due to the Fenchel-Moreau theorem [105]. There-
fore, the dual function is given by

δ(θi) = −ri(−θi)−
1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2 . (5.22)

Using (5.21) and (5.22), the ADMM steps in (5.36) and (5.37) can be equivalently
expressed as

θ
(k)
i = argmin

θi

{
ri(−θi) +

1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2} (5.23)

µ
(k)
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

(k)
i + c

(k−1)
i +

b

N

)
(5.24)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (5.25)

c
(k)
i = v

(k)
i − ρ|Vi|µ(k)

i − ρ
∑
j∈Vi

µ
(k)
j . (5.26)

74 Distributed Optimization with Feature Partitioning

Algorithm 6 Proposed algorithm for feature-partitioned distributed learning

At all agents i ∈ V , initialize µ(0)
i = 0, v(0)

i = 0, and locally run:
for k = 1, 2, . . . ,K do

Update θ(k)i via (5.23).
Update the dual variables µ(k)

i via (5.24).
Share µ(k)

i with the neighbors in Vi.
Update the Lagrange multipliers v(k)

i via (5.25).
Update the auxiliary variables c(k)i via (5.26).

end for

The proposed algorithm is summarized in Algorithm 6. Note that the minimiz-
ation problem in (5.23) can be solved using standard optimization techniques,
or alternatively, subgradient-based algorithms [6]. Regardless of the technique
used to solve (5.23), the proposed algorithm converges according to [6, Section
3.6.2]. Convergence of Algorithm 6 follows from [11, Proposition 2] and [106].
Moreover, due to the strong duality theorem, we have θoi = xo

i , i.e., the optimal
dual variable θoi at agent i is the optimal estimate xo

i [81].

5.2.5 Simulations

To illustrate the performance of the proposed algorithm, we consider the elastic-
net regression problem [107] and benchmark the proposed algorithm against a
broadcast-based algorithm for learning with distributed features [5]. The only ex-
isting work considering non-smooth distributed learning with feature partitioning
over general graphs is [5]. Therefore, we compared our algorithm only with this al-
gorithm to provide a comparison that is as fair as possible. In a centralized setting,
the optimal solution xc is obtained as

xc = argmin
x

‖Ax− b‖22 + η1 ‖x‖1 + η2 ‖x‖22 (5.27)

where
A = [A1,A2, . . . ,AN]

x =
[
xT
1 , x

T
2 , . . . ,x

T
N

]T
,

and η1 ∈ R+ and η2 ∈ R+ are the regularization parameters. In the distributed
setting, we solve the problem (5.29) with

g(xi) =

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
2

,

ri(xi) = η1 ‖xi‖1 + η2 ‖xi‖2 .

5.2. Distributed Optimization with Non-Smooth Regularizers 75

0 100 200 300 400 500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

Figure 5.5: Normalized error of the proposed algorithm and the broadcast-based algorithm
of [5] with N = 20 agents and different values of Pi.

0 100 200 300 400 500

itearations

10
-4

10
-2

10
0

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

Figure 5.6: Normalized error of the proposed algorithm and the broadcast-based algorithm
of [5] with Pi = 10 and different values of N .

76 Distributed Optimization with Feature Partitioning

We test the proposed algorithm on a multi-agent network with a random topology,
where each agent links to three other agents on average. For each agent i ∈ V ,
we create an M × Pi local observation matrix Ai whose entries are independent
identically distributed Gaussian random variables with zero mean and unit vari-
ance. The response vector b is obtained as

b = Aω + φ

where ω ∈ RP , P =
∑N

i=1 Pi, and φ ∈ RM are drawn from the distributions
N (0, IP) and N (0, 0.1IM), respectively. The regularization parameters are set to
η1 = η2 = 1 and penalty parameter to ρ = 1. The performance of the proposed
algorithm is evaluated using the normalized error between the centralized solution
xc as per (5.27) and the solution from Algorithm 6 at iteration k denoted by

xd(k)=
[
(x

(k)
1)T, . . . , (x

(k)
N)T

]T
.

The normalized error is defined as∥∥xd(k)− xc
∥∥2

‖xc‖2
.

The centralized solution xc is computed using the optimization toolbox CVX [89].
Results are obtained by averaging over 100 independent trials. The parameters
have been tuned to achieve the best performance in terms of accuracy and conver-
gence rate while benefiting from the convergence properties of the ADMM illus-
trated in [5].

Fig. 5.5 shows that, for N = 20 agents, the proposed algorithm converges when
the number of parameters at the ith agent is Pi = 10 and Pi = 40, ∀i ∈ V .
Fig. 5.6 shows that the proposed algorithm converges when Pi = 10 and the
network consists of 20 or 50 agents. The faster convergence of the broadcast-based
algorithm of [5] is due to its centralized processing.

5.2.6 Conclusion

In [39], we developed a fully-distributed algorithm for learning with non-smooth
regularization functions under distributed features. We reformulated the under-
lying problem into an equivalent dual form and used the ADMM to solve it in
a distributed fashion without using any conjugate function. To the best of our
knowledge, the proposed algorithm is the first of its kind that solves the feature-
distributed learning problems with non-smooth regularizer functions over arbitrary
graphs while not relying on any conjugate function. We verified the convergence
of the proposed algorithm at all agents via simulation results.

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 77

5.3 Decentralized Optimization with Distributed Features
and Non-Smooth Objective Functions

In [1], we develop a new consensus-based distributed algorithm for solving learn-
ing problems with feature partitioning and non-smooth convex objective functions.
Such learning problems are not separable, i.e., the associated objective functions
cannot be directly written as a summation of agent-specific objective functions.
To overcome this challenge, we redefine the underlying optimization problem as a
dual convex problem whose structure is suitable for distributed optimization using
the alternating direction method of multipliers (ADMM). Next, we propose a new
method to solve the minimization problem associated with the ADMM update step
that does not rely on any conjugate function. Calculating the relevant conjugate
functions may be hard or even unfeasible, especially when the objective function
is non-smooth. To obviate computing any conjugate function, we solve the optim-
ization problem associated with each ADMM iteration in the dual domain utilizing
the block coordinate descent algorithm. Unlike the existing related algorithms, the
proposed algorithm is fully distributed and does away with the conjugate of the
objective function. We prove theoretically that the proposed algorithm attains the
optimal centralized solution. We also confirm its network-wide convergence via
simulations.

5.3.1 Related Work

Learning problems with feature partitioning of data have been considered in [5, 15,
22, 35–39, 42–51]. The algorithms proposed in [36, 37] solve the basis pursuit and
lasso problems, respectively. The work of [38] assumes an appropriate coloring
scheme of the network and cannot be extended to a general graph labeling.

The algorithms proposed in [5, 42–45] are not fully distributed since their con-
sensus constraints involve the entire network instead of each agent’s local neigh-
borhood. Furthermore, the algorithms proposed in [42, 44] only solve the ridge
regression problem, while the works of [43, 45] assume the cost function to be
convex and smooth with Lipschitz-continuous gradient. Both algorithms proposed
in [43, 45] can only be used for minimization problems with `2-norm regular-
ization (ridge penalty) and rely on the computation of the conjugate of the cost
function.

The algorithms in [15, 35, 46, 47] are based on the diffusion strategy, which is
suitable when stochastic gradients are available. Furthermore, the work in [15]
assumes that the cost function is convex and smooth with Lipschitz-continuous
gradient. The algorithm developed in [46] relies on the calculation of the relev-
ant conjugate functions. In addition, it assumes that the cost function is convex

78 Distributed Optimization with Feature Partitioning

and smooth, and the regularization functions are strongly convex. The work of
[47] also assumes that the regularizer functions are smooth and strongly convex.
Moreover, it relies on the computation of conjugate functions similar to the al-
gorithms proposed in [48, 49]. The diffusion-based algorithm proposed in [35]
only solves the ridge regression problem. The consensus-based algorithm of [22]
is also designed for ridge regression with feature partitioning. It outperforms the
algorithm proposed in [35] in terms of convergence speed.

The algorithm proposed in [39] is designed for an `2-norm-square cost function
and hence cannot be extended to general objective functions. The works of [52–
55] consider distributed agent-specific parameter estimation problem. However,
the objective functions considered in these works are smooth. The authors of [50]
propose a distributed coordinate-descent algorithm to reduce the communication
cost in distributed learning with feature partitioning. However, the cost function in
[50] is assumed to be strongly convex and smooth. The work of [51] considers an
asynchronous stochastic gradient-descent algorithm for learning with distributed
features. However, the objective function in [51] is assumed to be smooth.

None of the above-mentioned existing algorithms for distributed learning with fea-
ture partitioning is designed for optimizing generic non-smooth objective functions
over arbitrary graphs without using or computing any conjugate function.

5.3.2 Contributions

In [1], we develop a new fully-distributed algorithm for solving learning problems
when the data is distributed among agents in feature partitions and computing the
conjugate of the possibly non-smooth cost or regularizer functions is challenging
or unfeasible. We consider a general regularized non-smooth learning problem
whose cost function cannot be written as the sum of local agent-specific cost func-
tions, i.e., it is not separable as in (5.29) ahead.

To tackle the problem, we articulate the associated dual optimization problem and
utilize the alternating direction method of multipliers (ADMM) to solve it as, un-
like the original problem, its structure is suitable for distributed treatment via the
ADMM. We then consider the dual of the optimization problem associated with
the ADMM update step and solve it via the block coordinate-descent (BCD) al-
gorithm. In that manner, we devise an approach that enables us to avoid the explicit
computation of any conjugate function, which may be hard or infeasible for some
objective functions. The proposed algorithm is fully distributed, i.e., it only relies
on single-hop communications among neighboring agents and does not need any
central coordinator or processing hub. We demonstrate that the proposed algorithm
approaches the optimal centralized solution at all agents. Our experiments show

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 79

that the proposed algorithm converges to the optimal solution in various scenarios
and is competitive with the relevant existing algorithms even when dealing with
problems that, unlike its contenders, it is not tailored for.

5.3.3 System Model

We consider the system model described in Section 2.1 with feature partitioning
of data as presented in Section 2.1.2. We consider a regularized learning problem
consisting in minimizing a global cost function g(·) that is a function of the error
Ax−b and is added by a regularization function r(·). In the centralized approach,
the optimal solution is given by

xo = argmin
x

{
g (Ax− b) + r(x)

}
. (5.28)

Considering feature partitioning of the data, Ax can be written as

Ax =
N∑
i=1

Aixi

and assuming that the regularizer function r(·) can be written as a sum of agent-
specific regularizer functions as

r(x) =

N∑
i=1

ri(xi),

the regularized learning problem (5.28) is of the following form

min
{xi}

g
(∑N

i=1Aixi − b
)
+

N∑
i=1

ri(xi). (5.29)

The learning problem (5.29) pertains to several applications in machine learning,
e.g., regression over distributed features [5], clustering in graphs [100], smart grid
control [101], dictionary learning [46], and network utility maximization [102].
Similar to most existing works, e.g., [5, 15, 108], we consider learning problems
where functions g(·) and ri(·), i = 1, . . . , N , are convex, proper, and lower semi-
continuous. However, in this work, the objective functions are not necessarily
smooth or their conjugate functions known. Therefore, we propose a novel al-
gorithm that solves (5.29) in a fully distributed fashion wherein each agent com-
municates only with its neighbors without requiring the computation of any con-
jugate function. In the next section, we describe our proposed algorithm.

80 Distributed Optimization with Feature Partitioning

5.3.4 Algorithm

We first present the reformulation of the considered non-separable problem into a
dual form that can be solved in a fully-distributed fashion via the ADMM. Sub-
sequently, we describe a new approach to perform the ADMM primal update step
without explicitly computing any conjugate function of the cost or regularizer
functions.

Distributed ADMM for the Dual Problem

To develop a distributed solution, we introduce the auxiliary variables {zi}Ni=1 and
recast (5.29) as

min
{xi,zi}

g
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi)

s. t. Aixi = zi, i = 1, . . . , N.

(5.30)

The cost function g(·) in (5.30) is not separable among the agents. We consider
the dual problem of (5.30) and exploit its separability property, which is lacking
in the primal domain, to solve it by employing the ADMM. For this purpose, we
associate the Lagrange multipliers {µi}Ni=1 with the equality constraints in (5.30)
and state the related Lagrangian function as

L({xi}, {zi}, {µi})

=g
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi) +
N∑
i=1

µT
i (Aixi − zi)

=
N∑
i=1

(
ri(xi) + (AT

i µi)
Txi

)
+ g

(
N∑
i=1

zi − b

)
−

N∑
i=1

µT
i zi.

(5.31)

The dual function for problem (5.30) can be computed as

d({µi}) = inf
{xi,zi}

L({xi}, {zi}, {µi})

=−
N∑
i=1

r∗i (−AT
i µi) + inf

zi
g(

N∑
i=1

zi − b)−
N∑
i=1

µT
i zi

(5.32)

where r∗i is the conjugate function of r defined as

r∗i (y) = sup
x

yTx− ri(x).

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 81

Introducing auxiliary variable z that is defined as

z =
N∑
i=1

zi

and using the duality theory, an alternate form of the dual function (5.32) is given
by

d̃({µi},λ) = −g∗(λ)− λTb−
N∑
i=1

r∗i (−AT
i µi) (5.33)

when λ = µi ∀i ∈ V with λ being the dual variable corresponding to z =∑N
i=1 zi. Otherwise, we have d̃({µi},λ) = −∞.

By eliminating λ, the dual problem for (5.30) can be expressed as

min
{µi}

1

N

N∑
i=1

(
g∗(µi) + µ

T
i b
)
+

N∑
i=1

r∗i (−AT
i µi)

s. t. µ1 = µ2 = · · · = µN .

(5.34)

To facilitate a fully-distributed solution, we decouple the constraints in (5.34) as

µi = uj
i , µj = uj

i , j ∈ Vi, i = 1, . . . , N (5.35)

where {uj
i}i∈V,j∈Vi are auxiliary variables that will eventually be eliminated. For

further details on the reformulation of consensus throughout the whole network
into localized consensus in the neighborhoods, the reader can refer to the refor-
mulation of (5.13) into (5.15) via (5.14) in 5.2.4. Regarding the elimination for
auxiliary variables, the reader can refer to the steps illustrated in Section 2.2.2.

We generate a new augmented Lagrangian function by associating the new Lag-
range multipliers {v̄j

i }j∈Vi and {ṽj
i }j∈Vi with the consensus constraints in (5.35).

By using the Karush-Kuhn-Tucker conditions of optimality for (5.35) and setting

v
(k)
i = 2

∑
j∈Vi

(v̄j
i)

(k),

it can be shown that the Lagrange multipliers {ṽj
i }j∈Vi and the auxiliary variables

{uj
i}j∈Vi are eliminated [7]. Hence, the ADMM to solve (5.34) reduces to the

following iterative updates at the ith agent

82 Distributed Optimization with Feature Partitioning

µ
(k)
i = argmin

µi

{ 1

N
g∗(µi) +

1

N
µT
i b+ r∗i (−AT

i µi)

+ µT
i v

(k−1)
i + ρ

∑
j∈Vi

∥∥∥µi −
µ
(k−1)
i + µ

(k−1)
j

2

∥∥∥2} (5.36)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (5.37)

where ρ > 0 is the penalty parameter and k is the iteration index.

The objective function in (5.36) may be non-smooth as the global cost function g(·)
or the agent-specific regularizer functions ri(·), i = 1, . . . , N , and consequently
their conjugate functions may be non-smooth. Thus, the minimization problem
in (5.36) can be solved by employing suitable subgradient methods or proximal
operators [103, 104]. However, computing the conjugate functions of the cost or
the regularizer functions in (5.36) may be hard or even unfeasible. To overcome
this challenge, in the next subsection, we describe a new approach that does not
require the explicit calculation of any conjugate function.

ADMM without Conjugate Function

We rewrite the minimization problem in the ADMM primal update (5.36) as

µ
(k)
i = arg min

{µi,νi,αi}

{g∗(µi) + µ
T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i + ρ̄i ‖αi‖2

}
s.t. AT

i µi + νi = 0

µi = αi

(5.38)
where ρ̄i = ρ|Vi| and

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j . (5.39)

The Lagrangian function related to (5.38) is stated as

Lk(µi,νi,αi,θ
(k)
i ,β

(k)
i) =

g∗(µi) + µ
T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i

+ ρ̄i ‖αi‖2 + (θ
(k)
i)T(AT

i µi + νi)

+ (β
(k)
i)T(µi −αi)

(5.40)

where θ(k)i and β(k)
i are the Lagrange multipliers associated with the first and the

second constraints in (5.38), respectively, at iteration k.

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 83

Motivated by the close connection between a function and its double conjugate
(conjugate of conjugate), we express the dual for the objective in (5.38) as

δk(θ
(k)
i ,β

(k)
i) = inf

{µi,νi,αi}
Lk(µi,νi,αi,θ

(k)
i ,β

(k)
i)

= inf
νi

{r∗i (νi) + (θ
(k)
i)Tνi}+ inf

αi

{ρ̄i ‖αi‖2 − (β
(k)
i)Tαi}

+ inf
µi

{g∗(µi)

N
+

(
c
(k−1)
i +Aiθ

(k)
i +

b

N
+ β

(k)
i

)T

µi

}
.

(5.41)

By employing the definition of conjugate function, the first infimum in (5.41) is
equal to −r∗∗i (−θ(k)i). The second infimum in (5.41) can be easily obtained by
noting that the function

lk(αi) := ρ̄i ‖αi‖2 − (β
(k)
i)Tαi

is quadratic in αi. Hence, this infimum can be calculated by computing the gradi-
ent of lk(·) and equating it to zero, i.e.,

ρ̄i ‖αi‖2 − (β
(k)
i)Tαi = 0.

Solving this equation for αi gives

αo
i =

β
(k)
i

2ρ̄i
. (5.42)

This implies that the second infimum in (5.41) is attained at the optimal value αo
i ,

which in turn means that it is equal to

lk(α
o
i) = −

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

.

In view of the definition and properties of the conjugate function [81], the third
infimum in (5.41) is given by

−Ng∗∗
(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

Therefore, we have

δk(θ
(k)
i ,β

(k)
i) =− r∗∗i (−θ(k)i)−

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

−Ng∗∗
(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

(5.43)

84 Distributed Optimization with Feature Partitioning

Since g(·) and ri(·) are convex, proper, and lower semi-continuous, we know
g∗∗ = g and r∗∗i = ri due to the Fenchel Moreau Theorem [109]. Therefore,
we have

δk(θ
(k)
i ,β

(k)
i) =− ri(−θ(k)i)−

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

−Ng

(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

(5.44)

To find the optimal (θ(k)i ,β
(k)
i), we need to maximize δk(θ

(k)
i ,β

(k)
i) or, equival-

ently, to minimize −δk(θ
(k)
i ,β

(k)
i). Since this is a function of two variables θ(k)i

and β(k)
i , we employ the block coordinate descent algorithm (BCD) to minimize

−δk(θ
(k)
i ,β

(k)
i) and find the optimal values for (θ(k)i ,β

(k)
i). The BCD steps are

obtained by alternatively minimizing −δk(θ
(k)
i ,β

(k)
i) with respect to θ(k)i and β(k)

i

as follows

θ
(k,t)
i = argmin

θ
(k)
i

{
ri(−θ(k)i)

+Ng

(
−c

(k−1)
i −Aiθ

(k,t)
i − b

N
− β(k,t−1)

i

)}
(5.45)

β
(k,t)
i = argmin

β
(k)
i

{ 1

4ρ̄i

∥∥∥β(k)
i

∥∥∥2
+Ng

(
−c

(k−1)
i −Aiθ

(t)
i − b

N
− β(k)

i

)}
(5.46)

where t is the BCD iteration index. If we assume that the BCD algorithm converges
after T iterations. The optimal values of θ(k)i and β(k)

i can be denoted by θ(k,T)
i

and β(k,T)
i , respectively.

To update the Lagrange multipliers µ(k)
i we employ the complementary slackness

conditions, i.e.,
β
(k,T)
i (µ

(k)
i −αo

i) = 0 ∀i ∈ V .

Since β(k,T)
i 6= 0, ∀i ∈ V , we have

µ
(k)
i −αo

i = 0 ∀i ∈ V .

Using (5.42), we can update µ(k)
i as

µ
(k)
i =

β
(k,T)
i

2ρ̄i
. (5.47)

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 85

Algorithm 7 The proposed algorithm for feature-partitioned distributed learning
with unknown conjugate functions

At all agents i ∈ V , initialize µ(0)
i = 0, v(0)

i = 0, and locally run:
for k = 1, 2, . . . ,K do

Run BCD loop
for t = 1, 2, . . . , T do

Update θ(k,t)i via (5.45).
Update β(k,t)

i via (5.46).
end for
Update the dual variables µ(k)

i = β
(k,T)
i /(2ρ̄i).

Share µ(k)
i with the neighbors in Vi.

Update the Lagrange multipliers v(k)
i via (5.49).

Update the auxiliary variables c(k)i via (5.50).
end for

Collating the expressions in (5.47), (5.39), (5.37), the ADMM steps in (5.36) and
(5.37) can be equivalently expressed as

µ
(k)
i =

β
(k,T)
i

2ρ̄i
(5.48)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (5.49)

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j (5.50)

where k is the ADMM iteration index. We summarize the proposed algorithm in
Algorithm 7.

Assuming that the ADMM outer loop converges after K iterations, we denote the
optimal dual variable θ(K,T)

i by θoi . The estimate θoi at agent i is indeed the optimal
solution to the original problem (5.29), i.e., xo

i , as per the following theorem.

Theorem 5.1. For all agents i ∈ V , the optimal dual variable θoi at agent i is equal
to the optimal estimate xo

i , i.e., θoi = xo
i .

Proof. Since the optimization problem in (5.30) has a convex objective and is
feasible, the Slater’s condition is satisfied. Therefore, due to the Slater’s theorem,
strong duality holds and θoi = xo

i , ∀i ∈ V [81].

86 Distributed Optimization with Feature Partitioning

5.3.5 Convergence Analysis

The convergence of the proposed algorithm can be proven by corroborating that
both the inner-loop BCD and outer-loop ADMM iterations converge. First, the
convergence of the inner loop can be verified from results in [6] since all the as-
sumptions required for the convergence are satisfied, i.e., the function δ(·) is con-
vex and the feasible sets RM and RPi , ∀i ∈ V , are all convex. Assuming that the
optimal solution βo

i of the inner-loop BCD algorithm is attained for each i ∈ V ,
the dual variable µ(k)

i in the outer loop is updated accordingly.

Next, we prove that the estimates produced by the fully-distributed ADMM outer
loop, i.e., (5.36) and (5.37), approach the optimal centralized solution at all agents.
To present the convergence result, we rewrite the constraints in (5.34) as follows

µi = ūj
i , µj = ŭj

i , ūj
i = ŭj

i , j ∈ Vi, i = 1, . . . , N. (5.51)

Note that the constraints u ∈ Cu := {u : ūj
i = ŭj

i , i ∈ V , j ∈ Ni} are not
dualized and are introduced only to present the convergence result. Let us define
the following vectors

µ =[µT
1 , . . . ,µ

T
N]T

u =[(u
a1(1)
1)T, . . . , (u

aN (|VN |)
1)T,

. . . , (u
aN (1)
N)T, . . . , (u

aN (|VN |)
N)]T

where ai(j) is the index of the jth neighbor of agent i.

The problem (5.35) with the constraints in (5.51) can be written as

min
µ,u

G1(µ) +G2(u)

s.t. µ ∈ C1, u ∈ C2, Cµ = u
(5.52)

where C = [CT
1 ,C

T
2]

T, G2(u) = 0, C1 := RM , C2 := Cu,

C1 =

C11
...

C1N

 , C1i := (1|Ni|e
T
i)⊗ IM , i ∈ V

C2 =

C21
...

C2N

 , C2i :=

 eTii(1)
...

eTii(|Ni|)

⊗ IM , i ∈ V

G1(µ) =
1

N

N∑
i=1

(
g∗(µi) + µ

T
i b
)
+

N∑
i=1

r∗i (−AT
i µi),

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 87

and ei is the ith vector of the canonical basis of RM . The convergence result relies
on the following lemma.

Lemma 4. If G is a connected graph, then the local optimal solution µo
i at agent i

is equal to the optimal centralized solution of (5.35), i.e., µo
i = µ

o, ∀i ∈ V , where

µo = argmin
µ

{
g∗(µ) + µTb+

N∑
i=1

r∗i (−AT
i µ)

}
.

Proof. Let i and i′ be arbitrary agents in G and p(i, i′) : i, i1, i2, . . . , in, i
′ an

arbitrary path on G that connects i and i′. Since the adjacent agents in p(i, i′) are
neighbors, we have

µi = µi1 = µi2 = . . . = µin = µi′ ,

which imply
µi = µi′ .

Since G is connected and the path is arbitrary, the local constraints µi = µi′ can
be removed and replaced by the common constraint µi = µ. Hence, µo

i = µo

∀i ∈ V where

µo = argmin
µ

{
g∗(µ) + µTb+

N∑
i=1

r∗i (−AT
i µ)

}
.

We can now prove the convergence of the proposed algorithm as per the following
theorem.

Theorem 5.2. If G is a connected graph, then the proposed algorithm converges to
the optimal centralized solution, i.e.,

lim
k→∞

µ
(k)
i = µo, ∀i ∈ V . (5.53)

Proof. Thanks to Lemma 1, we only need to prove that

lim
k→∞

µ
(k)
i = µo

i .

For this purpose, we observe that (5.52) is in the same form as [103, eq. 4.77, p.
255]. Furthermore, the following assumptions are satisfied:

88 Distributed Optimization with Feature Partitioning

• G1(·) and G2(·) are convex functions;

• C1 and C2 are nonempty polyhedral sets;

• C is full column rank, hence, CTC is invertible.

Therefore, due to [103, Proposition 4.2, p. 256], we have

lim
k→∞

µ
(k)
i = µo, ∀i ∈ V .

5.3.6 Simulations

In this section, we present some simulation results to evaluate the performance
of the proposed algorithm. We first assess the proposed algorithm considering a
distributed elastic-net regression problem with different numbers of local features,
samples, and agents as well as different network topologies. Subsequently, we
benchmark the proposed algorithm against the most relevant existing algorithms
considering distributed ridge and lasso regression problems. The parameters are
tuned to achieve the best performance in terms of accuracy and convergence rate
while providing a comparison as fair as possible with the benchmark algorithms.

Distributed Elastic-Net Regression

To evaluate the performance of the proposed algorithm in different scenarios, we
consider the elastic-net regression problem. The calculation of the conjugate func-
tion for the objective function corresponding to this problem is practically infeas-
ible. In the distributed setting, we solve the elastic-net regression problem by
considering

g(xi) =

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
2

ri(xi) = η1 ‖xi‖1 + η2 ‖xi‖2
(5.54)

where η1 ∈ R+ and η2 ∈ R+ are the regularization parameters. We calculate the
response vector b as

b = Aω +ψ (5.55)

where ω ∈ RP and ψ ∈ RM are independently drawn from the multivariate
normal distributions N (0, IP) and N (0, 0.1IM), respectively. We set the regular-
ization parameters to η1 = 1, η2 = 1 and the penalty parameter to ρ = 2. We
use two iterations in the inner-loop BCD algorithm. We obtain the results by av-
eraging over 100 independent trials while considering a multi-agent network with

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 89

0 500 1000 1500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

Figure 5.7: The misalignment of the proposed algorithm solving the distributed elastic-net
regression problem with different values of Pi

0 200 400 600 800 1000

iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

Figure 5.8: The misalignment of the proposed algorithm solving the distributed elastic-net
regression problem with different values of M .

90 Distributed Optimization with Feature Partitioning

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n

t

Figure 5.9: The misalignment of the proposed algorithm solving the distributed elastic-net
regression problem with different values of N .

0 200 400 600 800 1000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

line topology

ring topology

star topology

fully-connected network

centralized solution

Figure 5.10: The misalignment of the proposed algorithm solving the distributed elastic-
net regression problem with different topologies.

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 91

a random topology where each agent links to three other agents on average. We
evaluate the performance of the proposed algorithm using the misalignment metric
that is defined as ∥∥xd(k)− ω

∥∥2
‖ω‖2

where
xd(k)=

[
x
(k)T
1 , . . . ,x

(k)T
N

]T
and x

(k)
i ∀i ∈ V denotes the local estimate at agent i.

In Fig. 5.7, we plot the misalignment of the proposed algorithm versus its outer-
loop iteration index for different values of Pi, i.e., Pi = 2, Pi = 10, Pi = 20, and
Pi = 50 while M = 800, M = 1000, M = 1100, and M = 1500, respectively.
Fig. 5.7 shows that the proposed algorithm converges faster as the number of local
features Pi decreases. In Fig. 5.8, we set Pi = 2 and use the same topology as
in Fig.5.7 but consider different values of M . Fig. 5.8 shows that the proposed
algorithm achieves higher accuracy as the number of samples M increases. Note
that we include the misalignment of the centralized optimal solution in all figures.

In Fig. 5.9, we consider different values of N while Pi = 2, M = 500, and the
network topology is arbitrary but with an average node degree of three. Fig. 5.9
shows that the proposed algorithm converges faster as the number of agents N
decreases. In Fig. 5.10, we evaluate the proposed algorithm by setting N = 10,
Pi = 2, M = 500 and considering four different common simple topologies, i.e.,

• line: the agents are connected one after the other, hence, |Ni| = 2 for 1 <
i < N and |Ni| = 1 for i = 1 and i = N

• ring: |Ni| = 2 for each i ∈ V

• star: |Ni| = N − 1 for i = 1 and |Ni| = 1 for i = 2, . . . , N

• fully-connected: each agent in the network is connected to all the other
agents.

In Fig. 5.10, we observe that the proposed algorithm converges faster as the av-
erage number of links per agent increases, i.e., the average connectivity of the
network increases.

Distributed Ridge Regression

Considering a distributed ridge regression problem, in Figs. 5.11, 5.12, 5.13, and 5.14,
we benchmark the proposed algorithm against some existing baseline algorithms,

92 Distributed Optimization with Feature Partitioning

0 500 1000 1500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n

t
DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

Figure 5.11: The misalignment of the proposed algorithm and other considered algorithms
for the ridge regression problems with N = 10, M = 50, and Pi = 2.

0 200 400 600 800 1000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

Figure 5.12: The misalignment of the proposed algorithm and other considered algorithms
for the ridge regression problems with N = 10, M = 200, and Pi = 2.

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 93

0 500 1000 1500 2000 2500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

Figure 5.13: The misalignment of the proposed algorithm and other considered algorithms
for the ridge regression problems with N = 20, M = 200, and Pi = 2.

0 500 1000 1500 2000 2500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

diffusion-based [24]

proposed algorithm

D-Ridge

broadcast-based [10]

centralized solution

Figure 5.14: The misalignment of the proposed algorithm and other considered algorithms
for the ridge regression problems with N = 10, M = 200, and Pi = 10.

94 Distributed Optimization with Feature Partitioning

namely, the broadcast-based algorithm for learning with distributed features pro-
posed in [5], the dual consensus ADMM (DC-ADMM) algorithm of [49], the
consensus-based algorithm for ridge regression (D-Ridge) introduced in [22], and
the diffusion-based algorithm of [35]. The algorithms proposed in [22, 35] are
only for solving the ridge regression problem. Here, we solve the problem (5.29)
with the objective function (5.54) and set the ith agent’s regularizer to

ri(xi) = η ‖xi‖2

where η ∈ R+ is the regularization parameter.

We calculate the response vector b as in (5.55). As per [22, 35], we set the reg-
ularization parameter to η = 0.001. We also set the number of inner-loop BCD
iterations of the proposed algorithm to 2 and obtain the results by averaging over
100 independent trials. In Fig. 5.11, we set N = 10, M = 50, and Pi = 2. In
Fig. 5.12, the parameter setting is the same as Fig. 5.11 except for the number of
samples M being larger, i.e., M = 200. In Fig. 5.13, we keep M = 200 and set
the number of agents to N = 20. In Fig. 5.14, we set N and M to 10 and 200,
respectively, while Pi = 10 ∀i ∈ V .

We observe in Figs. 5.11, 5.12, 5.13, and 5.14, that the proposed algorithm out-
performs the DC-ADMM algorithm. It also perform competitively in comparison
with the algorithms of [22, 35], which are specifically tailored to the ridge regres-
sion problem. The superior performance of the broadcast-based algorithm of [5]
is due to its centralized processing. We include it here only as a reference.

Distributed Lasso Regression

In Figs. 5.15, 5.16, 5.17, and 5.18, we compare the performance of the proposed
algorithm with that of the broadcast-based algorithm for learning with distributed
features proposed in [5] and the DC-ADMM algorithm of [49] considering a dis-
tributed lasso problem. Hence, we solve the problem (5.29) with the objective
function (5.54) and set the ith agent’s regularizer to

ri(xi) = η ‖xi‖1

where η ∈ R+ is the regularization parameter.

We calculate the response vector b as in (5.55). As per [22, 35], we set the reg-
ularization parameter to η = 0.001. We also set the number of inner-loop BCD
iterations of the proposed algorithm to 2 and obtain the results by averaging over
100 independent trials. In Fig. 5.15, we set N = 10, M = 50, and Pi = 2. In
Fig. 5.16, the parameter setting is the same as Fig. 5.15 except for the number of
samples M being larger, i.e., M = 200. In Fig. 5.17, we keep M = 200 and set

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 95

0 500 1000 1500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

Figure 5.15: The misalignment of the proposed algorithm and other considered algorithms
for the lasso regression problems with N = 10, M = 50, and Pi = 2.

0 500 1000 1500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

Figure 5.16: The misalignment of the proposed algorithm and other considered algorithms
for the lasso regression problems with N = 10, M = 200, and Pi = 2.

96 Distributed Optimization with Feature Partitioning

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

Figure 5.17: The misalignment of the proposed algorithm and other considered algorithms
for the lasso regression problems with N = 20, M = 200, and Pi = 2.

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

broadcast-based [10]

centralized solution

Figure 5.18: The misalignment of the proposed algorithm and other considered algorithms
for the lasso regression problems with N = 10, M = 200, and Pi = 10.

5.3. Decentralized Optimization with Distributed Features and Non-Smooth Objective
Functions 97

the number of agents to N = 20. In Fig. 5.18, we set N and M to 10 and 200,
respectively, while Pi = 10 ∀i ∈ V .

We observe in Figs. 5.15, 5.16, 5.17, and 5.18, that the proposed algorithm per-
forms very similar to the DC-ADMM algorithm as the learning curves of the two
algorithms almost overlap. Again, the superior performance of the broadcast-based
algorithm of [5] is due to its centralized processing.

Discussion

The main advantage of the proposed algorithm is in its ability to solve generic
feature-partitioned distributed optimization problems without resorting to any con-
jugate function even when the objective function is non-smooth. This is unique to
our proposed algorithm and, to the best of our knowledge, there is no existing
algorithm with the same utility. That is why we do not compare the proposed
algorithm with any other existing algorithm in Section 5.3.6 where the problem
at hand is feature-distributed elastic-net regression. The existing algorithms for
feature-partitioned distributed optimization such as DC-ADMM require the con-
jugate function of the objective or regularization function. In the case of elastic-net
regression, calculating the conjugate function is impracticable.

The simulation results in Sections 5.3.6 are to provide a comparative study of the
performance of the proposed algorithm with respect to the other most relevant ex-
isting algorithms. As evident by the results, the proposed algorithm’s performance
in solving the distributed ridge and lasso regression problems is on par with those
of its state-of-the-art competitors, even those that have specifically been design to
solve these problems.

As seen in the figures, in all simulations, the network-wide average estimate of the
proposed algorithm converges to the corresponding optimal centralized solution.
Although not shown here for conciseness, we have observed that the estimates at
all agents also converge to the optimal solution in all the experiments corroborating
our theoretical findings in Section 5.3.5.

In all simulations, we utilize only two BCD iterations with no extra inter-agent
communication overhead. Therefore, the computational complexity and commu-
nication requirements of the proposed algorithm are of the same order as those of
the related existing algorithms such as DC-ADMM. Indeed, we did not observe
any significant difference in the per-iteration run time of the proposed and DC-
ADMM algorithms.

98 Distributed Optimization with Feature Partitioning

5.3.7 Conclusion

In [1], we proposed a distributed algorithm for learning with non-smooth object-
ive functions under distributed features. We reformulated the considered non-
separable problem into a dual form that is separable and solved it via the ADMM.
Subsequently, we devised an approach based on articulating the dual of the dual
problem to overcome the challenge of computing the involved conjugate functions,
which may be hard or even infeasible with some objective functions. We employed
the BCD algorithm to solve the dual of the dual problem. Therefore, unlike most
existing algorithms for solving learning problems with feature partitioning, the
proposed algorithm does not require the explicit calculation of any conjugate of
the objective function. We verified the convergence of the proposed algorithm to
the optimal solution through both theoretical analysis and numerical simulations.

Chapter 6

Conclusions and Future Work

In the thesis, we developed machine learning algorithms for distributed optimiz-
ation over networks of machines/agents both when the agents estimate the same
common model (horizontal partitioning of data) and when every agent estimates
a local model that is a part of the network-wide model (feature partitioning or
vertical partitioning of data). Furthermore, we proposed a novel approach for
fully-distributed optimization that is capable of exploiting the inherent random-
ness due to the use of a zeroth-order method to protect privacy and improve accur-
acy in comparison with the existing privacy-preserving distributed optimization
approaches.

In Chapter 3, we presented two algorithms for distributed learning with horizontal
partitioning of data. The former, named distributed ADMM TLS (DA-TLS), al-
lows us to solve the distributed TLS problem without any careful tuning of the
parameters involved in the algorithm. Moreover, DA-TLS converges to the central-
ized solution faster than the existing alternative algorithms. The latter, named dis-
tributed zeroth-order based ADMM (D-ZOA), solves a distributed learning prob-
lem with non-smooth convex objective functions. D-ZOA does not require sub-
gradients or proximal operators to perform non-smooth optimization, it only re-
quires the function values to approximate the gradient of the objective function.
D-ZOA converges to a near-optimal solution and has comparable performance to
related first-order algorithms.

In Chapter 4, we investigated and characterized the intrinsic privacy-preserving
properties of the proposed D-ZOA algorithm. Unlike most existing related ap-
proaches where privacy mechanisms are based on the addition of noise with a given
distribution, we only exploited the inherent randomness due to the use of a zeroth-

99

100 Conclusions and Future Work

order method and showed that this stochasticity was sufficient to ensure differential
privacy. Furthermore, we showed that the total privacy leakage of the proposed
D-ZOA algorithm grows sublinearly with the number of ADMM iterations. In
addition, our proposed D-ZOA algorithm outperforms the existing differentially-
private approaches in terms of accuracy while yielding similar privacy guarantee.
A trade-off between privacy and accuracy is revealed by the convergence analysis
of D-ZOA.

In Chapter 5, we presented three algorithms for distributed learning with feature
partitioning of data. The first algorithm, named D-Ridge, solves the ridge regres-
sion problem with feature partitioning of the observation matrix and converges to
the centralized solution faster than its diffusion-based contender does. The second
algorithm is for learning tasks with feature partitioning of the observation matrix in
a fully-distributed fashion when the objective is constituted by an `2-norm-square
cost function and a non-smooth regularizer function. The proposed algorithm does
not require any conjugate function of the non-smooth convex regularizer, which
may be unfeasible or hard to obtain in some scenarios. The third algorithm ex-
tends the previously proposed algorithm by allowing us to solve distributed learn-
ing problems with feature partitioning and non-smooth convex objective functions.
The proposed algorithm is fully-distributed and does not require the calculation
of any conjugate of the possibly non-smooth cost or regularizer functions. The
proposed algorithm converges to a near-optimal solution and has comparable per-
formance to existing algorithms that are tailored to special objective functions.

The main drawbacks of the proposed algorithms are mainly due to the fact that
some them are formed by two loops. This is the case of the DA-TLS algorithm
where the outer loop is given by the Newton’s method and the inner loop is given
by the ADMM, the D-ZOA where the outer loop is given by the ADMM while
the inner loop is given by the zeroth-order method and, also, the algorithm for
feature-partitioned distributed learning with unknown conjugate functions where
the outer loop is ADMM-based while the inner loop is given by the BCD method.
Obviously, the existence of an inner loop for those cases brings about an increase
of the computational complexity of the proposed algorithms. Consequently, this
paves the way for future works.

Possible future research directions concern both distributed learning with hori-
zontal and feature partitioning and the related privacy preservation concepts. In
Chapter 3, we considered the distributed total least-squares problem with hori-
zontal partitioning of data. The proposed DA-TLS algorithm is formed by two
nested loops. A possible future work is to develop a reduced-complexity algorithm
that is capable of solving the distributed total least-squares problem with horizontal
partitioning of data using a single loop. Another possible direction is around de-

101

veloping solutions for the total least-squares problem with feature partitioning of
data. Regarding distributed learning with horizontal partitioning of data and non-
smooth objective functions, we proposed the D-ZOA algorithm. As we have seen
in Chapter 3, this algorithm consists of two nested loops: an ADMM-based outer
loop and a zeroth-order-based inner loop for solving the minimization problem in
the ADMM primal update step. A possible future work consists in developing a
computationally-efficient and fully-distributed algorithm for non-smooth distrib-
uted learning, which, unlike D-ZOA, does not require multiple iterations for the
ADMM primal update step and thereby reduces the computational complexity. By
employing zeroth-order information, the intrinsic privacy-preserving properties of
this approach can be investigated similar to the privacy analysis performed for
D-ZOA in Chapter 4.

Regarding distributed learning with feature partitioning, the distributed algorithm
proposed in [1] and described in Chapter 5, which is designed for solving gen-
eral regularized non-smooth learning problems with feature partitioning and non-
smooth convex objective functions, consists of two nested loops: the inner-loop
BCD and outer-loop ADMM. First, a possible future work extending the above-
mentioned algorithm is to develop a solution that is capable of solving non-smooth
distributed learning problems under distributed features within one loop and hence
reducing the computational complexity. Another possible future work extend-
ing [1] can be around solving problems with feature partitioning of data where
first-order information is not available and we only have access to zeroth-order
information, i.e., function values. In this scenario, zeroth-order methods can be
employed and, therefore, the inherent privacy-preserving properties can be invest-
igated similar to the privacy analysis performed in Chapter 4.

102 Conclusions and Future Work

Bibliography

[1] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “De-
centralized optimization with distributed features and non-smooth objective
functions,” http://arxiv.org/abs/2208.11224, 2022.

[2] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Privacy-
preserved distributed learning with zeroth-order optimization,” IEEE Trans-
actions on Information Forensics and Security, vol. 17, pp. 265–279, 2022.

[3] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal
rates for zero-order convex optimization: the power of two function evalu-
ations,” IEEE Transactions on Information Theory, vol. 61, pp. 2788–2806,
May 2015.

[4] S. Liu, J. Chen, P.-Y. Chen, and A. Hero, “Zeroth-order online alternating
direction method of multipliers: convergence analysis and applications,”
in Proceedings of the Twenty-First International Conference on Artificial
Intelligence and Statistics, vol. 84 of Proceedings of Machine Learning Re-
search, pp. 288–297, Apr. 2018.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optim-
ization and statistical learning via the alternating direction method of mul-
tipliers,” Foundations and Trends in Machine Learning, vol. 3, pp. 1–122,
Jan. 2010.

[6] Z. Han, M. Hong, and D. Wang, Signal processing and networking for big
data applications. Cambridge University Press, 2017.

[7] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting Methods
in Communication, Imaging, Science, and Engineering. Scientific Compu-
tation, Cham: Springer International Publishing, 2016.

103

104 BIBLIOGRAPHY

[8] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order nonconvex
multiagent optimization over networks,” IEEE Transactions on Automatic
Control, vol. 64, pp. 3995–4010, Oct. 2019.

[9] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
pp. 48–61, Jan. 2009.

[10] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and optim-
ization in multi-agent networks,” IEEE Transactions on Automatic Control,
vol. 55, pp. 922–938, Apr. 2010.

[11] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse linear
regression,” IEEE Transactions on Signal Processing, vol. 58, pp. 5262–
5276, Oct. 2010.

[12] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using paramet-
ric semidefinite programming,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5227–5231, May 2019.

[13] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Distrib-
uted learning with non-smooth objective functions,” in Proc. 28th European
Signal Processing Conference, pp. 2180–2184, Jan. 2021.

[14] A. Bertrand and M. Moonen, “Consensus-based distributed total least
squares estimation in ad hoc wireless sensor networks,” IEEE Transactions
on Signal Processing, vol. 59, pp. 2320–2330, May 2011.

[15] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under distributed
features,” IEEE Transactions on Signal Processing, vol. 67, pp. 977–992,
Feb. 2019.

[16] R. Arablouei, K. Dogançay, and S. Werner, “Recursive total least-squares
estimation of frequency in three-phase power systems,” in Proc. 22nd
European Signal Processing Conference, pp. 2330–2334, Sept. 2014.

[17] R. Arablouei, K. Doğançay, and S. Werner, “Adaptive frequency estimation
of three-phase power systems,” Signal Processing, vol. 109, pp. 290–300,
Apr. 2015.

[18] R. Arablouei, S. Werner, and K. Doğançay, “Estimating frequency of three-
phase power systems via widely-linear modeling and total least-squares,”
in Proc. 5th IEEE International Workshop on Computational Advances in
Multi-Sensor Adaptive Processing, pp. 464–467, Dec. 2013.

BIBLIOGRAPHY 105

[19] E. Dall’Anese and G. B. Giannakis, “Distributed cognitive spectrum sensing
via group sparse total least-squares,” in Proc. 4th IEEE International Work-
shop on Computational Advances in Multi-Sensor Adaptive Processing,
pp. 341–344, Dec. 2011.

[20] I. Markovsky, J. Willems, S. Van Huffel, Bart De Moor, and R. Pinte-
lon, “Application of structured total least squares for system identification
and model reduction,” IEEE Transactions on Automatic Control, vol. 50,
pp. 1490–1500, Oct. 2005.

[21] A. Bertrand and M. Moonen, “Low-complexity distributed total least
squares estimation in ad hoc sensor networks,” IEEE Transactions on Signal
Processing, vol. 60, pp. 4321–4333, Aug. 2012.

[22] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Distrib-
uted ridge regression with feature partitioning,” in Proc. Asilomar Confer-
ence on Signals, Systems, and Computers, Oct. 2018.

[23] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed optimiz-
ation,” IEEE Transactions on Control of Network Systems, vol. 5, pp. 1245–
1260, Sep. 2018.

[24] A. Nedic and A. Olshevsky, “Stochastic gradient-push for strongly convex
functions on time-varying directed graphs,” IEEE Transactions on Auto-
matic Control, vol. 61, pp. 3936–3947, Dec. 2016.

[25] J. A. Bazerque and G. B. Giannakis, “Distributed spectrum sensing for cog-
nitive radio networks by exploiting sparsity,” IEEE Transactions on Signal
Processing, vol. 58, no. 3, pp. 1847–1862, 2010.

[26] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?,” Journal of the ACM, vol. 58, Jun. 2011.

[27] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky, “Rank-
sparsity incoherence for matrix decomposition,” SIAM Journal on Optimiz-
ation, vol. 21, pp. 572–596, 2011.

[28] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized sparsity-
regularized rank minimization: algorithms and applications,” IEEE Trans-
actions on Signal Processing, vol. 61, pp. 5374–5388, Nov. 2013.

[29] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online con-
vex optimization with multi-point bandit feedback,” in Proc. 23rd Annual
Conference on Learning Theory, pp. 28–40, Jun. 2010.

106 BIBLIOGRAPHY

[30] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley,
2003.

[31] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth or-
der optimization based black-box attacks to deep neural networks without
training substitute models,” in Proc. 10th ACM Workshop on Artificial In-
telligence and Security, pp. 15–26, Nov. 2017.

[32] F. Huang, S. Gao, S. Chen, and H. Huang, “Zeroth-order stochastic altern-
ating direction method of multipliers for nonconvex nonsmooth optimiza-
tion,” in Proc. 28th International Joint Conference on Artificial Intelligence
(S. Kraus, ed.), pp. 2549–2555, 2019.

[33] S. Liu, P. Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K. Varsh-
ney, “A primer on zeroth-order optimization in signal processing and ma-
chine learning: principals, recent advances, and applications,” IEEE Signal
Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020.

[34] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learn-
ing: Data Mining, Inference, and Prediction. Springer series in statistics,
Springer, 2009.

[35] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Model-distributed
solution of regularized least-squares problem over sensor networks,” in
Proc. 2015 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 3821–3825, Apr. 2015.

[36] C. Manss, D. Shutin, and G. Leus, “Distributed splitting-over-features
sparse bayesian learning with alternating direction method of multipliers,”
in 2018 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 3654–3658, 2018.

[37] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “Distributed
basis pursuit,” IEEE Transactions on Signal Processing, vol. 60, pp. 1942–
1956, Apr. 2012.

[38] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “D-admm: A
communication-efficient distributed algorithm for separable optimization,”
IEEE Transactions on Signal Processing, vol. 61, pp. 2718–2723, May
2013.

[39] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed learning over networks with non-smooth regularizers and feature

BIBLIOGRAPHY 107

partitioning,” in Proc. European Speech and Signal Processing Conference,
Aug. 2021.

[40] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “DP-ADMM:
ADMM-based distributed learning with differential privacy,” IEEE Trans-
actions on Information Forensics and Security, vol. 15, pp. 1002–1012,
2020.

[41] T. Zhang and Q. Zhu, “Dynamic differential privacy for ADMM-based
distributed classification learning,” IEEE Transactions on Information
Forensics and Security, vol. 12, pp. 172–187, Jan. 2017.

[42] N. Kashyap, S. Werner, Y.-F. Huang, and R. Arablouei, “Privacy pre-
serving decentralized power system state estimation with phasor measure-
ment units,” in Proc. 2016 IEEE Sensor Array and Multichannel Signal
Processing Workshop, pp. 1–5, Jul. 2016.

[43] C. Heinze, B. McWilliams, and N. Meinshausen, “DUAL-LOCO: Distribut-
ing statistical estimation using random projections,” in Proc. 19th Interna-
tional Conference on Artificial Intelligence and Statistics, vol. 51, pp. 875–
883, May 2016.

[44] C. Heinze-Deml, B. McWilliams, N. Meinshausen, and G. Krummenacher,
“LOCO: Distributing ridge regression with random projections,” 2015.

[45] C. Heinze-Deml, B. McWilliams, and N. Meinshausen, “Preserving differ-
ential privacy between features in distributed estimation,” 2017.

[46] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over distributed
models,” IEEE Transactions on Signal Processing, vol. 63, no. 4, pp. 1001–
1016, 2015.

[47] S. A. Alghunaim, M. Yan, and A. H. Sayed, “A multi-agent primal-dual
strategy for composite optimization over distributed features,” in Proc. 28th
European Signal Processing Conference, pp. 2095–2099, Jan. 2021.

[48] V. Smith, S. Forte, C. Ma, M. Takáč, M. I. Jordan, and M. Jaggi, “CoCoA: A
general framework for communication-efficient distributed optimization,” J.
Mach. Learn. Res., vol. 18, p. 8590–8638, Jan. 2017.

[49] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization
via inexact consensus ADMM,” IEEE Transactions on Signal Processing,
vol. 63, no. 2, pp. 482–497, 2015.

108 BIBLIOGRAPHY

[50] B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient distributed
learning with feature partitioned data,” in 2018 52nd Annual Conference on
Information Sciences and Systems (CISS), pp. 1–6, Mar. 2018.

[51] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A collaborative machine
learning framework for distributed features,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 2232–2240, 2019.

[52] J. Szurley, A. Bertrand, and M. Moonen, “Topology-independent distributed
adaptive node-specific signal estimation in wireless sensor networks,” IEEE
Transactions on Signal and Information Processing over Networks, vol. 3,
no. 1, pp. 130–144, 2017.

[53] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS for clustered mul-
titask networks,” in 2014 IEEE International Conference on Acoustics,
Speech and Signal Processing, pp. 5487–5491, 2014.

[54] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
incremental-based LMS for node-specific adaptive parameter estimation,”
IEEE Transactions on Signal Processing, vol. 62, no. 20, pp. 5382–5397,
2014.

[55] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed diffusion-
based LMS for node-specific adaptive parameter estimation,” IEEE Trans-
actions on Signal Processing, vol. 63, no. 13, pp. 3448–3460, 2015.

[56] X. Zhang, M. M. Khalili, and M. Liu, “Recycled ADMM: Improve privacy
and accuracy with less computation in distributed algorithms,” in Proc. 56th
Annual Allerton Conference on Communication, Control, and Computing,
pp. 959–965, Oct. 2018.

[57] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and accur-
acy of ADMM-based distributed algorithms,” in Proc. 35th International
Conference on Machine Learning, vol. 80, pp. 5796–5805, Jul. 2018.

[58] J. Ding, Y. Gong, M. Pan, and Z. Han, “Optimal differentially private
ADMM for distributed machine learning,” 2019.

[59] J. Ding, S. M. Errapotu, H. Zhang, Y. Gong, M. Pan, and Z. Han, “Stochastic
ADMM based distributed machine learning with differential privacy,” in
Proc. 15th SecureComm, pp. 257–277, Oct. 2019.

BIBLIOGRAPHY 109

[60] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private distrib-
uted convex optimization via functional perturbation,” IEEE Transactions
on Control of Network Systems, vol. 5, no. 1, pp. 395–408, 2018.

[61] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed
autonomous online learning: regrets and intrinsic privacy-preserving prop-
erties,” IEEE Transactions on Knowledge and Data Engineering, vol. 25,
no. 11, pp. 2483–2493, 2013.

[62] Y. Hu, P. Liu, L. Kong, and D. Niu, “Learning privately over distributed
features: an ADMM sharing approach,” 2019.

[63] Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, and P. K. Varshney, “Robust fed-
erated learning using ADMM in the presence of data falsifying byzantines,”
2017.

[64] Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, and P. K. Varshney, “Robust
decentralized learning using ADMM with unreliable agents,” 2018.

[65] H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
Models, limits, and algorithms,” IEEE Transactions on Signal Processing,
vol. 59, pp. 386–398, Jan. 2011.

[66] O. L. Mangasarian, E. W. Wild, and G. M. Fung, “Privacy-preserving clas-
sification of vertically partitioned data via random kernels,” ACM Transac-
tions on Knowledge Discovery from Data, vol. 2, Oct. 2008.

[67] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over ver-
tically partitioned data,” in Proc. 9th ACM International Conference on
Knowledge Discovery and Data Mining, pp. 206–215, 2003.

[68] D. P. Bertsekas, Parallel and distributed computation : numerical methods.
Englewood Cliffs, N.J: Prentice-Hall, 1989.

[69] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based distributed
support vector machines,” Journal of Machine Learning Research, vol. 11,
pp. 1663–1707, Aug. 2010.

[70] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that ex-
ploit confidence information and basic countermeasures,” in Proc. 2015
ACM SIGSAC Conference on Computer and Communications Security,
pp. 1322–1333, Oct. 2015.

[71] S. Huang and C. Li, “Distributed sparse total least-squares over networks,”
vol. 63, pp. 2986–2998, Jun. 2015.

110 BIBLIOGRAPHY

[72] R. Lopez-Valcarce, S. S. Pereira, and A. Pages-Zamora, “Distributed Total
Least Squares estimation over networks,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 7580–7584, May
2014.

[73] R. Arablouei, S. Werner, and K. Doğançay, “Diffusion-based distributed
adaptive estimation utilizing gradient-descent total least-squares,” in Proc.
IEEE International Conference on Acoustics, Speech and Signal Pro-
cessing, pp. 5308–5312, May 2013.

[74] R. Abdolee and B. Champagne, “Diffusion LMS strategies in sensor net-
works with noisy input data,” IEEE/ACM Transactions on Networking,
vol. 24, pp. 3–14, Feb. 2016.

[75] L. Lu, H. Zhao, and B. Champagne, “Diffusion total least-squares algorithm
with multi-node feedback,” Signal Processing, Jul. 2018.

[76] S. Silva Pereira, A. Pages-Zamora, and R. Lopez-Valcarce, “Distributed
TLS estimation under random data faults,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, pp. 2949–2953, Apr.
2015.

[77] C. Li, S. Huang, Y. Liu, and Y. Liu, “Distributed TLS over multi-
task networks with adaptive intertask cooperation,” IEEE Transactions on
Aerospace and Electronic Systems, vol. 52, pp. 3036–3052, Dec. 2016.

[78] W. Dinkelbach, “On nonlinear fractional programming,” Managemeny Sci-
ence, vol. 13, pp. 492–498, Mar. 1967.

[79] Z.-Q. Luo, W.-K. Ma, A. So, Y. Ye, and S. Zhang, “Semidefinite relaxation
of quadratic optimization Problems,” IEEE Signal Processing Magazine,
vol. 27, pp. 20–34, May 2010.

[80] R. Arablouei, S. Werner, and K. Doğançay, “Analysis of the gradient-
descent total least-squares adaptive filtering algorithm,” IEEE Transactions
on Signal Processing, vol. 62, pp. 1256–1264, Mar. 2014.

[81] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge University
Press, 2004.

[82] J.-P. Crouzeix and J. A. Ferland, “Algorithms for generalized fractional pro-
gramming,” Mathematical Programming, vol. 52, pp. 191–207, May 1991.

BIBLIOGRAPHY 111

[83] G. Pataki, “On the rank of extreme matrices in semidefinite programs and
the multiplicity of optimal eigenvalues,” Mathematics of Operations Re-
search, vol. 23, pp. 339–358, Jan. 1998.

[84] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed optimal power
flow for smart microgrids,” IEEE Transactions on Smart Grid, vol. 4,
pp. 1464–1475, Sep. 2013.

[85] A. Nedic and A. Olshevsky, “Distributed optimization over time-varying
directed graphs,” IEEE Transactions on Automatic Control, vol. 60,
pp. 601–615, Mar. 2015.

[86] E. Ghadimi, I. Shames, and M. Johansson, “Multi-step gradient methods for
networked optimization,” IEEE Transactions on Signal Processing, vol. 61,
pp. 5417–5429, Nov. 2013.

[87] X. Wu and J. Lu, “Improved convergence rates of P-EXTRA for non-
smooth distributed optimization,” in IEEE International Conference on
Control and Automation, pp. 55–60, Jul. 2019.

[88] D. Yuan, D. W. C. Ho, and S. Xu, “Zeroth-order method for distributed
optimization with approximate projections,” IEEE Transactions on Neural
Networks and Learning Systems, vol. 27, pp. 284–294, Feb. 2016.

[89] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex pro-
gramming, version 2.1.” http://cvxr.com/cvx, 2014.

[90] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed optim-
ization,” in Proc. 2015 International Conference on Distributed Computing
and Networking, 2015.

[91] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed con-
strained optimization,” IEEE Transactions on Automatic Control, vol. 62,
no. 1, pp. 50–64, 2017.

[92] M. T. Hale and M. Egerstedty, “Differentially private cloud-based multi-
agent optimization with constraints,” in Proc. 2015 American Control Con-
ference, pp. 1235–1240, Jul. 2015.

[93] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Talwar,
and L. Zhang, “Deep learning with differential privacy,” in Proc. 2016 ACM
SIGSAC Conference on Computer and Communications Security, pp. 308–
318, 2016.

112 BIBLIOGRAPHY

[94] C. Dwork and A. Roth, “The algorithmic foundations of differential pri-
vacy,” Foundations and Trends in Theoretical Computer Science, vol. 9,
pp. 211–407, Aug. 2014.

[95] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Third Conference on Theory of
Cryptography, pp. 265–284, Springer-Verlag, 2006.

[96] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms for non-
convex multi-agent optimization,” 2020.

[97] A. H. Sayed, “Adaptive Networks,” Proceedings of the IEEE, vol. 102,
pp. 460–497, Apr. 2014.

[98] T. Lin, S. Ma, and S. Zhang, “On the global linear convergence of the
admm with multiblock variables,” SIAM Journal on Optimization, vol. 25,
pp. 1478–1497, Jan. 2015.

[99] K. Eriksson, Applied Mathematics: Body and Soul : Volume 1: Derivatives
and Geometry in IR3. 2004.

[100] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and optim-
ization in large graphs,” in Proceedings of the 21th ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, p. 387–396,
2015.

[101] T. Chang, A. Nedić, and A. Scaglione, “Distributed constrained optimiza-
tion by consensus-based primal-dual perturbation method,” IEEE Transac-
tions on Automatic Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[102] D. P. Palomar and Mung Chiang, “A tutorial on decomposition methods for
network utility maximization,” IEEE Journal on Selected Areas in Commu-
nications, vol. 24, no. 8, pp. 1439–1451, 2006.

[103] D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.

[104] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends in
Optimization, vol. 1, p. 127–239, Jan. 2014.

[105] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear optimiza-
tion: theory and examples. Springer, 2006.

[106] P. Tseng, “Convergence of a block coordinate descent method for nondiffer-
entiable minimization,” Journal of Optimization Theory and Applications,
vol. 109, pp. 475–494, Jan. 2001.

BIBLIOGRAPHY 113

[107] H. Zou and T. Hastie, “Regularization and variable selection via the elastic
net,” Journal of the Royal Statistical Society. Series B (Statistical Methodo-
logy), vol. 67, no. 2, pp. 301–320, 2005.

[108] M. Fukushima, “Application of the alternating direction method of multi-
pliers to separable convex programming problems,” Computational Optim-
ization and Applications, vol. 1, pp. 93–111, 1992.

[109] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear Optimiza-
tion, Theory and Examples. Springer, 2000.

114 BIBLIOGRAPHY

Appendix A

Publications on Distributed
Optimization with Horizontal
Partitioning

• P1: [12] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using paramet-
ric semidefinite programming,” in Proc. IEEE International Conference on
Acoustics, Speech and Signal Processing, pp. 5227–5231, May 2019.

• P2: [13] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning with non-smooth objective functions,” in Proc. 28th
European Signal Processing Conference, pp. 2180–2184, Jan. 2021.

115

116 Publications on Distributed Optimization with Horizontal Partitioning

Appendix B

Publications on
Privacy-Preserved Distributed
Learning with Zeroth-Order
Optimization

• P3: [2] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Privacy-preserved distributed learning with zeroth-order optimization,” IEEE
Transactions on Information Forensics and Security, vol. 17, pp. 265-279,
2022.

117

118 Publications on Privacy-Preserved Distributed Learning with Zeroth-Order
Optimization

Appendix C

Publications on Distributed
Optimization with Feature
Partitioning

• P4: [22] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed ridge regression with feature partitioning,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, Oct. 2018.

• P5: [39] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning over networks with non-smooth regularizers and fea-
ture partitioning,” in Proc. European Speech and Signal Processing Confer-
ence, Aug. 2021.

• P6: [1] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Decentralized optimization with distributed features and non-smooth ob-
jective functions,” 2022, arXiv: 2208.11224.

119

CONSENSUS-BASED DISTRIBUTED TOTAL LEAST-SQUARES ESTIMATION USING

PARAMETRIC SEMIDEFINITE PROGRAMMING

Cristiano Gratton⋆, Naveen K. D. Venkategowda⋆ , Reza Arablouei†, Stefan Werner⋆

⋆ Department of Electronic Systems, NTNU - Norwegian University of Science and Technology
† CSIRO’s Data61, Pullenvale QLD 4069, Australia

ABSTRACT

We propose a new distributed algorithm to solve the total

least-squares (TLS) problem when data are distributed over

a multi-agent network. To develop the proposed algorithm,

named distributed ADMM TLS (DA-TLS), we reformulate

the TLS problem as a parametric semidefinite program and

solve it using the alternating direction method of multipliers

(ADMM). Unlike the existing consensus-based approaches to

distributed TLS estimation, DA-TLS does not require care-

ful tuning of any design parameter. Numerical experiments

demonstrate that the DA-TLS converges to the centralized so-

lution significantly faster than the existing consensus-based

TLS algorithms.

Index Terms— ADMM, consensus, distributed estima-

tion, total least squares, semidefinite programming.

1. INTRODUCTION

With the recent advances in technology, large quantities of

data are collected by numerous sensors, which are often geo-

graphically dispersed. Hence, performing data analysis tasks

such as estimation and classification at a central processing

unit is impractical due to transmission cost or privacy rea-

sons. Furthermore, collecting all the data in a fusion center

creates a single point of failure. Therefore, it is imperative to

develop algorithms that are capable of processing data spread

across multiple agents [1–7].

In the realm of linear estimation, the total least-squares

(TLS) method has been introduced as an alternative to the or-

dinary least-squares method to deal with errors-in-variables

models. In such models, both independent and dependent

variables are corrupted by noise or perturbation. TLS has

been successfully used in several signal processing applica-

tions, e.g., frequency estimation of power systems [8–10],

cognitive spectrum sensing [11], system identification [12],

and wireless sensor networks [13].

The distributed TLS problem has previously been con-

sidered in [13–21]. The works in [13, 14] are based on the

consensus strategy and rely on the dual-based subgradient

This work was partly supported by the Research Council of Noway.

method. Their relatively high computational complexity has

partially motivated the works in [16–20]. While the approach

of [16] is based on the average consensus strategy, the algo-

rithms in [17–21] are based on diffusion strategies and, there-

fore, suffer from relatively slow convergence [6]. The conver-

gence speed of the algorithm proposed in [13] greatly depends

on the network topology and dimensionality of the data. Al-

though these shortcomings are mitigated in [14], the conver-

gence rate of algorithms in [13] and [14] highly depends on

the choice of the step-size, whose optimal tuning requires the

global knowledge of the data and network topology.

In this paper, we solve the distributed TLS problem when

each agent has access to parts of a set of linear equations, i.e.,

a subset of the rows of the observation matrix and the output

vector. This is a common scenario in wireless sensor net-

works, e.g., distributed system identification [22]. Through

a change of variable from a vector to a rank-one matrix and

subsequent semidefinite relaxation (SDR), we transform the

non-convex distributed TLS problem into a semidefinite pro-

gram. We solve the modified problem using the alternating di-

rection method of multipliers (ADMM) and a generalization

of the algorithm proposed in [23] for fractional programming.

Since the optimal solution is rank-one, the relaxation is tight

and does not incur any loss of optimality [24]. In addition, as

the objective function in the modified problem is the sum of

fractions of linear functions, the convergence of the proposed

algorithm to the globally optimal solution is guaranteed.

The proposed algorithm, called distributed ADMM TLS

(DA-TLS), is fully distributed in the sense that it requires the

agents to share data only with their immediate neighbors at

each iteration. Furthermore, the performance of DA-TLS is

not sensitive to the tuning of its parameters. This makes DA-

TLS more flexible and suitable for distributed deployment in

comparison with the algorithms of [13,14]. Simulation results

show faster convergence of DA-TLS to the centralized solu-

tion at all agents in comparison with the existing algorithms.

2. SYSTEM MODEL

We consider a connected network of K ∈ N agents mod-

eled as an undirected graph G(K, E) where the set of vertices

K = {1, . . . ,K} corresponds to the agents and the edge set

E represents the communication links between the pairs of

agents. Agent k ∈ K can communicate with its neighbors

whose indexes are in the set Nk with cardinality |Nk|. By

convention, Nk does not include the agent k itself.

Let X ∈ R
N×P be the observation matrix, ∆ ∈ R

N×P

the error in the observation matrix, y ∈ R
N×1 the response

vector, δ ∈ R
N×1 the error in the response vector, and w ∈

R
P×1 the sought-after parameter vector that relates X and y

through (X−∆)w = y−δ. The matrix X consists of K sub-

matrices Xk, i.e., X = [XT
1,X

T
2, . . . ,X

T
K]T, and the vector

y ∈ R
N×1 of K subvectors yk, i.e., y =

[

yT
1 ,y

T
2 , . . . ,y

T
K

]T
,

as the data are distributed among the agents and each agent k
holds its respective Xk ∈ R

Nk×P and yk ∈ R
Nk×1 where

∑K
k=1 Nk = N and (·)T denotes the matrix transpose.

The TLS estimate of the unknown parameter vector w can

be found by solving the constrained optimization problem

min
w,∆,δ

‖∆‖F + ‖δ‖

s.t. (X−∆)w = y − δ
(1)

where ‖·‖F and ‖·‖ denote the Frobenius norm and Euclidean

norm, respectively. When the entries of ∆ and δ are inde-

pendent and identically distributed (i.i.d.), a centralized TLS

solution wc of (1) can be obtained as

wc =
−1

vP+1
[v1, v2, . . . , vP]

T (2)

where v = [v1, v2, . . . , vP+1]
T is the right singular vector

corresponding to the smallest singular value of [X,y] [25].

An equivalent but more practical solution can be obtained

by minimizing the Rayleigh quotient cost function as [25]

min
w

‖Xw − y‖2

‖w‖2 + 1
or min

w

K
∑

k=1

‖Xkw − yk‖
2

‖w‖2 + 1
. (3)

Since finding a centralized solution of (3) over a network may

be inefficient, we propose a distributed algorithm for this pur-

pose in the following section.

3. DISTRIBUTED TLS

We first discuss the SDR technique that allows us to trans-

form the TLS problem into a parametric semidefinite pro-

gram, which we solve iteratively through two nested loops.

Then, we describe the consensus-based reformulation of the

resultant parametric semidefinite program that enables its dis-

tributed solution via the ADMM, which forms the inner loop.

Finally, we describe the steps of the inner and outer loops of

the algorithm.

3.1. Semidefinite Relaxation

Using the properties of the matrix trace operator, we rewrite

the Rayleigh quotient cost function in (3) as

K
∑

k=1

tr(wwTXT
kXk)− 2yT

kXkw + ‖yk‖
2

tr(wwT) + 1
. (4)

Considering (4) and defining

W =

[

wwT w

wT 1

]

and Ck =

[

XT
kXk −XT

k yk

−yT
k Xk ‖yk‖2

]

, (5)

(3) can be recast as

min
W�0

K
∑

k=1

tr(CkW)

tr(W)

s.t. rank(W) = 1.

(6)

Relaxing the rank constraint in (6) turns it into the following

aggregate linear-fractional program

min
W�0

K
∑

k=1

tr(CkW)

tr(W)
. (7)

Both numerator and denominator of the summands in the ob-

jective function of (7) are linear functions of the matrix vari-

able W. Therefore, (7) can be converted to a parametric

semidefinite program whose objective is in the subtractive

form as per the following proposition.

Proposition 1. Let W∗ denote the optimal solution to (7).

Then, there exists a vector β∗ = [β∗
1 , . . . , β

∗
K] such that W∗

is also the optimal solution of the following semidefinite pro-

gram

W∗ = arg min
W�0

K
∑

k=1

tr(CkW)− β∗
k tr(W). (8)

In addition, W∗ also satisfies the following system of equa-

tions:

tr(CkW
∗)− β∗

k tr(W∗) = 0, k = 1, 2, . . . ,K. (9)

Proof. The Karush-Kuhn-Tucker (KKT) conditions of opti-

mality [26] for problem (8) give the same solution set as the

KKT conditions for the epigraph form of (7). Since the KKT

conditions for both problems are sufficient for optimality, the

two problems are equivalent. The system of equation (9) is

due to the KKT conditions.

In the next subsection, we describe a consensus-based

reformulation of (8), which allows the application of the

ADMM to solve (8) for any given β∗.

3.2. Building Consensus

In order to tackle (8) in a distributed fashion, we introduce

W := {Wk}
K
k=1 representing the local copies of W at the

agents. Therefore, we rewrite (8) in the following equivalent

form

min
{Wk�0}

K
∑

k=1

tr(CkWk)− β∗
k tr(Wk)

s.t. Wk = Wl, l ∈ Nk, k ∈ K.

(10)

The equality constraints enforce consensus over Wk, k =
1, . . . ,K, across each agent’s neighborhood Nk.

To solve (10) in a distributed fashion, we employ the

ADMM [1]. Hence, we introduce the auxiliary local vari-

ables Z := {Zl
k}l∈Nk

and rewrite (10) as

min
{Wk�0}

K
∑

k=1

tr(CkWk)− β∗
k tr(Wk)

s.t. Wk = Zl
k,Wl = Zl

k, l ∈ Nk, k ∈ K.

(11)

Using the auxiliary variables Z , we obtain an equivalent

alternative representation of the constraints in (10). These

variables are only used to derive the local recursions and are

eventually eliminated. By associating the Lagrange multipli-

ers V := {{Γl
k}l∈Nk

, {Λl
k}l∈Nk

}Kk=1 with the constraints in

(11), we get the following augmented Lagrangian function:

Lρ(W,Z,V) =
K
∑

k=1

tr (CkWk)− β∗
k tr(Wk)

+
K
∑

k=1

∑

l∈Nk

tr

(

(

Λl
k

)T (

Wk − Zl
k

)

+
(

Γl
k

)T (

Wl − Zl
k

)

)

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥Wk − Zl
k

∥

∥

2

F
+
∥

∥Wl − Zl
k

∥

∥

2

F

)

, (12)

where the constant ρ > 0 is a penalty parameter.

Obtaining the solution through the ADMM entails an it-

erative process consisting of the following steps at each iter-

ation: 1) Lρ is minimized with respect to W; 2) Lρ is mini-

mized with respect to Z; and, 3) the Lagrange multipliers V
are updated through gradient-ascent [1].

Thanks to the reformulation of (8) as (11), the Lagrangian

function (12) can be decoupled with respect to variables in W
and Z as well as across the network agents K. It can be shown

that, in the ADMM steps, the auxiliary variables Z and the

Lagrange multipliers {Γl
k}l∈Nk

are eliminated. Hence, we

end up with the following iterative updates at the kth agent

Wk(m+ 1) = arg min
Wk�0

Lρ(Wk,Λk(m)) (13)

Λk(m+ 1) = Λk(m)+ρ
∑

l∈Nk

[Wk(m+ 1)−Wl(m+ 1)],

(14)

where Λk(m) = 2
∑

l∈Nk
Λl

k(m) and m is the iteration in-

dex.

The constrained minimization problem in (13) can be ex-

pressed as the following semidefinite least-squares problem

min
Wk�0

tr[WT
k(Wk − 2Gk(m))], (15)

where

Gk(m) =
1

2ρ|Nk|

(

ρ|Nk|Wk(m) + ρ
∑

l∈Nk

Wl(m)

−Ck + βkI−Λk(m)
)

. (16)

The solution of (15) is given by

Wk(m+ 1) = U(m)max (Σ(m),0)U(m)T, (17)

where U(m) and Σ(m) are the orthogonal and diagonal ma-

trices coming from the eigen-decomposition (EVD) G(m) =
U(m)Σ(m)UT(m) and max(Σ(m),0) denotes the diagonal

matrix whose entries are the maxima of the diagonal entries

of Σ(m), i.e., the eigenvalues of Gk(m), and zero. Note that

the most computationally intensive operation is the EVD.

3.3. Algorithm

The DA-TLS algorithm consists of two loops. In the inner

loop, the solution of (8) is obtained using the ADMM for

a given β∗. In the outer loop, we use a single iteration of

the Newton’s method [27] to find the solution of (9), i.e.,

βk(j + 1) = βk(j) − [tr(W)]−1[βk(j)tr(W) − tr(CkW)].
The proposed algorithm is summarized in Algorithm 1.

Algorithm 1 DA-TLS

All agents k ∈ K initialize βk(1) = tr(Ck)/(p + 1) and

locally run

for j = 1, 2, . . . do

Initialize Wk(0) = 0 and Λk(0) = 0

for m = 1, 2, . . . do

Receive Wk(m) from neighbors in Nk

Update Λk(m+ 1) as in (14)

Compute Gk(m) as in (16)

Compute EVD of Gk(m) = U(m)Σ(m)UT(m)
Update Wk(m+1) = U(m)max (Σ(m),0)UT(m)

end for

Update βk(j + 1) = tr(CkWk(m+1))
tr(Wk(m+1))

end for

After estimating Wk, the vector estimate wk is found as

follows. Let W̆k = Wk/ωk where ωk is the (P +1), (P +1)
entry of Wk. Then, wk is the eigenvector corresponding to

the smallest eigenvalue of the P × P upper-left submatrix of

W̆k.

Using the results in [24, 28], it can be observed that the

solution of (7) and consequently (8) is rank-one. Hence, op-

timizing with respect to the matrix variable W and relax-

ing the rank constraint do not lead to any loss of optimal-

ity [24]. Therefore, the solutions to (3) and (10) coincide.

Convergence of the proposed DA-TLS algorithm to the global

centralized solution can be proven by checking that both in-

ner and outer loops converge. The convergence of the inner

loop can be verified following [29, Proposition 3], i.e., for all

k ∈ K, the iterates {Wk(m)}, {Λk(m)} produced by (13)

and (14) are convergent and Wk(m) → W∗ as m → ∞.

Moreover, the convergence of the outer loop follows setting

C̄ =
∑K

k=1 Ck and β̄∗ =
∑K

k=1 β
∗
k and observing that the

optimization in (8) is equivalent to

min
W�0

tr(C̄W)− β̄∗
tr(W). (18)

Since the objective function in (18) is linear, (18) is a stan-

dard semidefinite program with a unique solution. Therefore,

DA-TLS naturally inherits the theoretical properties of the al-

gorithm proposed in [23] for fractional programming whose

convergence is guaranteed.

4. SIMULATIONS

The simulated network is connected with a random topology

and consists of K = 20 agents where each agent is linked to

three other agents on average. We average results over 100

independent trials. In each trial, the scenario is generated

according to the same procedure as described in the simu-

lation sections of [13, 14]. For each agent k ∈ K, we cre-

ate a 2P × P local observation matrix Xk whose entries are

drawn from a standard normal distribution. The entries of

the parameter vector w are also drawn from a standard nor-

mal distribution. The entries of the error matrix ∆ and error

vector δ are i.i.d. zero-mean Gaussian with variance 0.25.

To evaluate the performance of the proposed algorithm, we

use the normalized error between the centralized TLS solu-

tion wc as per (2) and the local estimates that is defined as
∑K

k=1 ‖wk −wc‖2/‖wc‖2 where wk denotes the local esti-

mate at agent k. In Figs. 1-2, we plot the normalized error

versus the total number of iterations, which is given by the

product between the number of iterations of the inner and the

outer loop. The former is set to 80 for Fig. 1 and 40 for Fig.

2, while the latter is set to 5 for both the plots.

Fig. 1 shows that, for P = 9, DA-TLS with ρ = 2
and ρ = 3 converges significantly faster than the existing ap-

proaches, i.e., the distributed TLS (D-TLS) algorithm of [13]

and the inverse-power-iteration-based distributed TLS (IPI-

D-TLS) algorithm of [14]. Fig. 2 shows the superiority of

DA-TLS with ρ = 1 over IPI-D-TLS with µ = 1 for two

different values of P . Although not further substantiated here

due to the space constraints, we have observed that DA-TLS

consistently outperforms its contenders in various scenarios.

5. CONCLUSION

In this paper, we developed a new distributed algorithm for

solving the TLS problem. We recast the original optimization

problem into an equivalent linear-fractional program. Then,

0 100 200 300 400

iterations

10
-4

10
-3

10
-2

10
-1

Fig. 1. Normalized error of the DA-TLS, D-TLS, and IPI-D-

TLS algorithms with two values of penalty parameter (ρ = 2
and ρ = 3) for DA-TLS and two values of the step-size (µ =
0.2 and µ = 0.3) for IPI-D-TLS.

0 50 100 150 200

iterations

10
-2

10
-1

Fig. 2. Normalized error for different values of P . For DA-

TLS, we set ρ = 1 and, for IPI-D-TLS, we set µ = 1.

employing semidefinite relaxation, we transformed the resul-

tant problem into a parametric semidefinite program whose

structure is suitable for distributed treatment via ADMM.

Simulation results showed that the proposed algorithm con-

verges faster than the existing alternative algorithms while

being less sensitive to tuning of the parameters involved in

the algorithm.

6. REFERENCES

[1] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Split-

ting Methods in Communication, Imaging, Science, and Engi-

neering, ser. Scientific Computation, R. Glowinski, S. J. Osher,

and W. Yin, Eds. Cham: Springer International Publishing,

2016.

[2] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed

sparse linear regression,” IEEE Transactions on Signal Pro-

cessing, vol. 58, no. 10, pp. 5262–5276, Oct 2010.

[3] S. Kumar, R. Jain, and K. Rajawat, “Asynchronous optimiza-

tion over heterogeneous networks via consensus admm,” IEEE

Transactions on Signal and Information Processing over Net-

works, vol. 3, no. 1, pp. 114–129, Mar 2017.

[4] J. Akhtar and K. Rajawat, “Distributed sequential estimation

in wireless sensor networks,” IEEE Transactions on Wireless

Communications, vol. 17, no. 1, pp. 86–100, Jan 2018.

[5] N. K. D. Venkategowda and S. Werner, “Privacy-preserving

distributed precoder design for decentralized estimation,” in

Proc. IEEE Global Conference on Signal and Information Pro-

cessing, Nov 2018.

[6] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and

S. Werner, “Distributed ridge regression with feature partition-

ing,” in Proc. Asilomar Conf. Signals Syst. Comput., Oct 2018.

[7] S. P. Talebi, S. Werner, and D. P. Mandic, “Distributed adaptive

filtering of α-stable signals,” IEEE Signal Processing Letters,

vol. 25, no. 10, pp. 1450–1454, Oct 2018.

[8] R. Arablouei, K. Doganay, and S. Werner, “Recursive total

least-squares estimation of frequency in three-phase power sys-

tems,” in Proc. 22nd European Signal Processing Conference,

Sept 2014, pp. 2330–2334.

[9] R. Arablouei, K. Doğançay, and S. Werner, “Adaptive fre-

quency estimation of three-phase power systems,” Signal Pro-

cessing, vol. 109, pp. 290–300, Apr 2015.

[10] R. Arablouei, S. Werner, and K. Doğançay, “Estimating fre-

quency of three-phase power systems via widely-linear mod-

eling and total least-squares,” in Proc. 5th IEEE International

Workshop on Computational Advances in Multi-Sensor Adap-

tive Processing, Dec 2013, pp. 464–467.

[11] E. Dall’Anese and G. B. Giannakis, “Distributed cognitive

spectrum sensing via group sparse total least-squares,” in Proc.

4th IEEE International Workshop on Computational Advances

in Multi-Sensor Adaptive Processing, Dec 2011, pp. 341–344.

[12] I. Markovsky, J. Willems, S. Van Huffel, Bart De Moor, and

R. Pintelon, “Application of structured total least squares for

system identification and model reduction,” IEEE Transactions

on Automatic Control, vol. 50, no. 10, pp. 1490–1500, Oct

2005.

[13] A. Bertrand and M. Moonen, “Consensus-based distributed

total least squares estimation in ad hoc wireless sensor net-

works,” IEEE Transactions on Signal Processing, vol. 59,

no. 5, pp. 2320–2330, May 2011.

[14] ——, “Low-complexity distributed total least squares estima-

tion in ad hoc sensor networks,” IEEE Transactions on Signal

Processing, vol. 60, no. 8, pp. 4321–4333, Aug 2012.

[15] S. Huang and C. Li, “Distributed sparse total least-squares over

networks,” IEEE Trans. Signal Process., vol. 63, no. 11, pp.

2986–2998, Jun 2015.

[16] R. Lopez-Valcarce, S. S. Pereira, and A. Pages-Zamora, “Dis-

tributed Total Least Squares estimation over networks,” in

Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, May 2014, pp. 7580–7584.

[17] R. Arablouei, S. Werner, and K. Doğançay, “Diffusion-based

distributed adaptive estimation utilizing gradient-descent to-

tal least-squares,” in Proc. IEEE International Conference

on Acoustics, Speech and Signal Processing, May 2013, pp.

5308–5312.

[18] R. Abdolee and B. Champagne, “Diffusion LMS strategies in

sensor networks with noisy input data,” IEEE/ACM Transac-

tions on Networking, vol. 24, no. 1, pp. 3–14, Feb 2016.

[19] L. Lu, H. Zhao, and B. Champagne, “Diffusion total least-

squares algorithm with multi-node feedback,” Signal Process-

ing, Jul 2018.

[20] S. Silva Pereira, A. Pages-Zamora, and R. Lopez-Valcarce,

“Distributed TLS estimation under random data faults,” in

Proc. IEEE International Conference on Acoustics, Speech and

Signal Processing, Apr 2015, pp. 2949–2953.

[21] C. Li, S. Huang, Y. Liu, and Y. Liu, “Distributed TLS over

multitask networks with adaptive intertask cooperation,” IEEE

Transactions on Aerospace and Electronic Systems, vol. 52,

no. 6, pp. 3036–3052, Dec 2016.

[22] C. G. Lopes and A. H. Sayed, “Diffusion least-mean squares

over adaptive networks: Formulation and performance analy-

sis,” IEEE Transactions on Signal Processing, vol. 56, no. 7,

pp. 3122–3136, Jul 2008.

[23] W. Dinkelbach, “On nonlinear fractional programming,” Man-

agemeny Science, vol. 13, no. 7, pp. 492–498, Mar 1967.

[24] Z.-Q. Luo, W.-K. Ma, A. So, Y. Ye, and S. Zhang, “Semidefi-

nite relaxation of quadratic optimization Problems,” IEEE Sig-

nal Processing Magazine, vol. 27, no. 3, pp. 20–34, May 2010.

[25] R. Arablouei, S. Werner, and K. Doğançay, “Analysis of

the gradient-descent total least-squares adaptive filtering algo-

rithm,” IEEE Transactions on Signal Processing, vol. 62, no. 5,

pp. 1256–1264, Mar 2014.

[26] S. Boyd and L. Vandenberghe, Convex Optimization. Cam-

bridge University Press, 2004.

[27] J.-P. Crouzeix and J. A. Ferland, “Algorithms for general-

ized fractional programming,” Mathematical Programming,

vol. 52, no. 1, pp. 191–207, May 1991.

[28] G. Pataki, “On the rank of extreme matrices in semidefinite

programs and the multiplicity of optimal eigenvalues,” Math-

ematics of Operations Research, vol. 23, no. 2, pp. 339–358,

Jan. 1998.

[29] E. Dall’Anese, H. Zhu, and G. B. Giannakis, “Distributed op-

timal power flow for smart microgrids,” IEEE Transactions on

Smart Grid, vol. 4, no. 3, pp. 1464–1475, Sep 2013.

Distributed Learning with Non-Smooth Objective

Functions

Cristiano Gratton∗, Naveen K. D. Venkategowda∗, Reza Arablouei†, Stefan Werner∗

∗ Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
† CSIRO’s Data61, Pullenvale QLD 4069, Australia

Abstract—We develop a new distributed algorithm to solve a
learning problem with non-smooth objective functions when data
are distributed over a multi-agent network. We employ a zeroth-
order method to minimize the associated augmented Lagrangian
in the primal domain using the alternating direction method of
multipliers (ADMM) to develop the proposed algorithm, named
distributed zeroth-order based ADMM (D-ZOA). Unlike most
existing algorithms for non-smooth optimization, which rely on
calculating subgradients or proximal operators, D-ZOA only
requires function values to approximate gradients of the objective
function. Convergence of D-ZOA to the centralized solution is
confirmed via theoretical analysis and simulation results.

I. INTRODUCTION

Performing learning tasks at a central processing unit in a

large distributed network can be prohibitive due to commu-

nication/computation costs or privacy issues. Therefore, it is

important to develop algorithms that are able to distributedly

process the data collected by agents scattered over a large

geographical area [1]–[8]. In this context, each agent in the

network only possesses information of a local cost function

and the agents aim to collaboratively minimize the sum of

the local objective functions. Such optimization problems are

relevant to several applications in statistics [3]–[5], signal

processing [6]–[8] and control [1], [2].

There have been several works developing algorithms for

solving distributed convex optimization problems over ad-

hoc networks. However, many existing algorithms only offer

solutions for problems with smooth objective functions, see,

e.g., [5], [9], [10]. Distributed optimization problems with

non-smooth objectives have been considered in [1], [2], [4],

[11]–[16]. The approaches taken in [2], [11], [12] are based

on subgradient methods. The works of [13], [14] are based

on dual decomposition techniques while the algorithms in

[4], [15] are developed using soft-thresholding operations.

However, all the aforementioned algorithms require either the

computation of subgradients, which might be hard to achieve

for some objectives, or derivation of proximal operators, which

might not be feasible in some scenarios.

Moreover, there are some real-world problems where ob-

taining first-order information is impossible due to the lack of

the complete loss function. For example, in bandit optimization

[17], an adversary generates a sequence of loss functions and

the goal is to minimize such sequence that is only available

at some points. In addition, in simulation-based optimization,

This work was partly supported by the Research Council of Norway.

the objective is available only using repeated simulation [18],

and in adversarial black-box machine learning models, only

the function values are given [19]. This motivates the use

of zeroth-order methods requiring only function values to

approximate gradients.

The works in [1], [16] are based on zeroth-order methods

within the distributed optimization setting. While the approach

of [16] relies on approximate projections for dealing with

constraints, the algorithm ZONE-S proposed in [1] is based on

a primal-dual approach and deals with non-convex objectives.

However, ZONE-S addresses only consensus problems with a

non-smooth regularization that is handled by a central collector

making the algorithm not fully distributed.

In this paper, we develop a fully-distributed algorithm to

solve an optimization problem with a non-smooth convex

objective function over an ad-hoc network. We utilize the

alternating direction method of multipliers (ADMM) for dis-

tributed optimization. Furthermore, we employ the zeroth-

order method called the two-point stochastic gradient algo-

rithm [20] that is suitable for non-smooth objectives to obtain

an approximate minimizer of the augmented Lagrangian in

the ADMM’s primal update step. The proposed algorithm,

called distributed zeroth-order based ADMM (D-ZOA), is

fully distributed in the sense that each agent in the network

communicates only with its neighbors and no central coordina-

tor is necessary. Furthermore, D-ZOA does not compute any

subgradient and only requires the objective function values

to approximate the gradient of the augmented Lagrangian.

The simulations show that D-ZOA is competitive even on a

problem that can be easily solved with a subgradient-based

algorithm. Furthermore, the experiments show the usefulness

of D-ZOA on a problem where calculating any subgradient

is impractical. Convergence of D-ZOA to the centralized

solution at all agents is verified through theoretical analysis

and simulation results.

Mathematical Notations: The set of natural and real numbers

are denoted by N and R, respectively. Scalars, column vectors

and matrices are respectively denoted by lowercase, bold

lowercase, and bold uppercase letters. The operators (·)T and

tr(·) denote transpose and trace of a matrix, respectively. Ip
denotes an identity matrix of size p, 0q×l defines a matrix with

all zero entries, and ⊗ stands for the Kronecker product. The

statistical expectation and covariance operators are represented

by E[·] and cov[·], respectively. For a vector y and a matrix

Y ∈ R
r×s, ‖y‖

Y
denotes the quadratic form yTYy. The

nuclear norm of Y is denoted by ‖Y‖∗ and is defined as

‖Y‖∗ =

min{r,s}
∑

i=1

σi(Y)

where σi(Y) denotes the ith singular value of Y. ‖·‖ and

‖·‖F represent the Euclidean norm and the Frobenius norm,

respectively. The operators vec(Y) forms a column vector

from the matrix Y = [y1, . . . ,ys] by stacking the column

vectors yi. For a positive semidefinite matrix X, λmin(X) and

λmax(X) denote the nonzero smallest and largest eigenvalues

of X, respectively.

II. SYSTEM MODEL

We consider a network with K ∈ N agents and E ∈ N

edges that is modeled as an undirected graph G(K, E), where

the set of vertices K = {1, . . . ,K} corresponds to the agents

and the set E represents the bidirectional communication links

between the pairs of agents. Agent k ∈ K can communicate

only with the agents in its neighborhood Nk whose cardinality

is denoted by |Nk|. By convention, the set Nk includes the

agent k as well.

We consider the problem when the K agents of the network

solve the following minimization problem collaboratively

min
x

K
∑

k=1

fk(x;Xk) (1)

where x ∈ R
P is the unknown model parameter, Xk represents

the local information at agent k, and fk : RP → R is the local

cost function that is convex but non-smooth. Let us denote the

solution to (1) by xc.

III. NON-SMOOTH DISTRIBUTED LEARNING

We first discuss the consensus-based reformulation of the

problem that allows its distributed solution through an iterative

process consisting of two nested loops. Then, we describe the

ADMM procedure that forms the outer loop and the zeroth-

order two-point stochastic gradient algorithm that constitutes

the inner loop solving the ADMM primal update step. Finally,

we establish the convergence of D-ZOA theoretically.

A. Consensus-Based Reformulation

To solve (1) in a distributed fashion, we introduce the primal

variables V := {xk}
K
k=1

that represent local copies of x at the

agents. Then, we reformulate (1) as the following constrained

minimization problem:

min
{xk}

K
∑

k=1

fk(xk;Xk)

s.t. xk = xl, l ∈ Nk, ∀k ∈ K.

(2)

Since the network is connected, the equality constraints in

(2) enforce consensus over {xk}Kk=1
by imposing consensus

across each agent’s neighborhood Nk. To solve (2) in a

distributed fashion, we employ the ADMM [8]. Therefore, we

introduce the auxiliary variables Z := {zlk}l∈Nk
and rewrite

(2) as

min
{xk}

K
∑

k=1

fk(xk;Xk)

s.t. xk = zlk, xl = zlk, l ∈ Nk, ∀k ∈ K.

(3)

The use of auxiliary variables Z renders an equivalent rep-

resentation of the constraints in (2). These variables are

only used to derive the local recursions and are eventually

eliminated. The augmented Lagrangian function is given by

Lρ(V ,Z,M) =
K
∑

k=1

fk(xk;Xk)

+
K
∑

k=1

∑

l∈Nk

[

µlT
k

(

xk − zlk
)

+ λlT
k

(

xl − zlk
)

]

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥xk − zlk
∥

∥

2
+

∥

∥xl − zlk
∥

∥

2
)

(4)

where M := {{µl
k}l∈Nk

, {λl
k}l∈Nk

}Kk=1
are the Lagrange

multipliers associated with (3), and ρ > 0 is a penalty

parameter.

Solving (3) via the ADMM requires an iterative process that

is described in the next subsection.

B. Distributed ADMM Algorithm

To solve the minimization problem (3) in a distributed

fashion, the ADMM entails an iterative procedure consisting of

three steps at each iteration. In the first step, Lρ is minimized

with respect to the primal variables V . Then, Lρ is minimized

with respect to the auxiliary variables Z . In the end, the La-

grange multipliers in M are updated via dual gradient-ascent

iterations [8]. By using the Karush-Kuhn-Tucker conditions

of optimality for (3) and setting λk(m) = 2
∑

l∈Nk
λl
k(m),

it can be shown that the Lagrange multipliers {µl
k}l∈Nk

and

the auxiliary variables Z are eliminated [8]. Therefore, the

distributed ADMM algorithm reduces to the following iterative

updates at the kth agent

xk(m+ 1) = argmin
xk

Lρ(xk,λk(m)) (5)

λk(m+ 1) = λk(m)+ρ
∑

l∈Nk

[xk(m+ 1)−xl(m+ 1)] (6)

where m is the iteration index and all initial values

{xk(0)}k∈K, {λk(0)}k∈K are set to zero. The iterations (5)

and (6) can be implemented in a fully distributed manner as

they only involve the parameters available within each node’s

neighborhood.

The objective function of the minimization problem in (5)

is non-smooth, which makes it hard to obtain a solution using

first-order information. To solve this problem, we employ a

zeroth-order method described in the next subsection.

Algorithm 1 D-ZOA

At all agents k ∈ K, initialize xk(0) = 0, λk(0) = 0, and

locally run

for m = 1, 2, . . . do

Receive xk(m) from neighbors in Nk

Update λk(m+ 1) as in (6)

Initialize x0
k = 0

for t = 1, 2, . . . , T do

Draw independent ν1, ν2 ∼ N (0, IP)
Set ut

1 = u1/t, u
t
2 = u1/t

2 and compute gt as in (8)

Update xt+1

k as in (9)

end for

Update xk(m+ 1) = xT+1

k

end for

C. Zeroth-Order Method

In order to solve (5) utilizing a zeroth-order method, we

assume that Lρ(·) is closed and Lipschitz-continuous with

the Lipschitz constant G. These assumptions are common for

zeroth-order optimization, see, e.g., [1], [20].

Subsequently, we employ the two-point stochastic gradient

algorithm for general non-smooth functions proposed in [20].

More specifically, we use the stochastic mirror descent method

with the proximal function ‖·‖ /2 and the gradient estimator

at point xk given by

Gns(xk;u1, u2,ν1,ν2,λk(m)) = u−1

2 [Lρ(xk + u1ν1

+ u2ν2,λk(m))− Lρ(xk + u1ν1,λk(m))]ν2 (7)

where u1 > 0 and u2 > 0 are smoothing constants and ν1,ν2

are zero-mean Gaussian random vectors independent of each

other with covariance matrix IP , i.e., ν1,ν2 ∼ N (0, IP).
The two-point stochastic gradient algorithm entails an iter-

ative procedure that consists of three steps at each iteration

t. First, independent random vectors νt
1 and νt

2 are sampled

from N (0, IP). Second, a stochastic gradient gt is formed as

gt = Gns(x
t
k;λk(m), ut

1, u
t
2,ν

t
1,ν

t
2) (8)

where xt
k is the tth iterate of the two-point stochastic gradient

algorithm with the initial point xk = 0, {ut
1}

∞
t=1 and {ut

2}
∞
t=1

are two non-increasing sequences of positive parameters such

that ut
2 ≤ ut

1/2. Finally, xt+1

k is updated as

xt+1

k = xt
k − α(t)gt (9)

where the time-dependent step-size α(t) is set as α(t) =
(G

√

tP log(2P))−1α0R, α0 is an appropriate initial step-size

and R is an upper bound for the distance between a minimizer

x∗
k to (5) and the first iterate x1

k as per [20].

Note that no communication among agents is involved

throughout the inner loop.

The proposed algorithm, D-ZOA, is summarized in Algo-

rithm 1.

In the next subsection, we show that the D-ZOA produces

sequences of local iterates xk(m), k ∈ K, that converge to the

global centralized solution xc as m → ∞.

D. Convergence Analysis

The convergence of D-ZOA to the centralized solution is

established by corroborating that both inner and outer loops

of the algorithm converge.

The convergence of the inner loop can be proven following

[20, Theorem 2], i.e., it can be shown that there exists a

numerical constant c such that, for each T representing a fixed

number of iterations of the inner loop, the following inequality

holds:

E[Lρ(x̂k(T))− Lρ(x
∗
k)]

≤c
RG

√
P

√
T

[

max{α0, α
−1

0 }
√

log(2P) +
u1 log(2T)√

T

] (10)

where x̂k(T) = T−1
∑T

t=1
xt
k. In [20], it is shown that

c = 0.5 whenever ν1 and ν2 are sampled from a normal

distribution.

The convergence of the outer loop can be verified by proving

the convergence of a fully distributed ADMM with inexact

primal updates. For this purpose, the primal variable can be

assumed to be a perturbed version of the exact primal update

as per [21]. Therefore, xk(m+ 1) can be written as

xk(m+ 1) = x̄k(m+ 1) + γk(m+ 1) (11)

where x̄k(m + 1) is the exact ADMM primal update and

γk(m+1) is a random variable representing the perturbation

of x̄k(m+ 1). Similar to [21], we assume the perturbation to

have zero expectation, i.e., E[γk(m+1)] = 0, ∀k ∈ K and for

all the ADMM iterations m, and have finite covariance matrix,

i.e., cov[γk(m + 1)]i,j < ∞, ∀k ∈ K, ∀i, j = 1, . . . , P and

for all the ADMM iterations m.

For a clear presentation of the convergence results, we

rewrite (3) in the matrix form. By defining x̃ ∈ R
KP as a

vector concatenating all xk and z̃ ∈ R
2EP concatenating all

zlk, (3) can be written as

min
x̃,z̃

f(x̃) + g(z̃)

s.t. Ax̃+Bz̃ = 0
(12)

where f(x̃) =
∑K

k=1
fk(xk;Xk), g(z̃) = 0, A = [A1;A2],

and A1,A2 ∈ R
2EP×KP are both composed of 2E × K

blocks of P × P matrices. If (k, l) ∈ E and zlk is the qth

block of z̃, then the (q, k)th block of A1 and the (q, l)th block

of A2 are identity matrices IP . Otherwise, the corresponding

blocks are P×P zero matrices 0P . Furthermore, we have B =
[−I2EP ;−I2EP]. We define the matrices M+ = AT

1+AT

2 and

M− = AT

1−AT

2 , L+ = 0.5M+M
T

+, L− = 0.5M−M
T

−, Q =
√

0.5L− and γ(m + 1) ∈ R
KP as the vector concatenating

all γk(m+ 1).
We construct the auxiliary sequence r(m) =

∑m
s=0

Qx̃(s)
and define the auxiliary vector q(m) and the auxiliary matrix

G as

q(m) =

[

r(m)
x̃(m)

]

, G =

[

ρIP 0P×P

0P×P ρL+

2

]

. (13)

The convergence results of [21] can now be adapted to D-

ZOA as per the following theorem.

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n
o
rm

a
liz

e
d
 e

rr
o
r

D-ZOA, K=30

D-SG, K=30

D-SG, K=15

D-ZOA, K=15

Fig. 1. Normalized error of D-ZOA and D-SG for generalized lasso with
P = 10, ρ = 3 and two different values of K.

Theorem 1. If f(·) is convex, then, for any fixed number of

iterations N of the outer loop, we have

E[f(x̂N)− f(x̃∗)]

≤
‖q(0)− q‖2

G

N
+

ρλ2
max(L+)

∑N−1

m=0
tr (cov[γ(m)])

2Nλmin(L−)

(14)

where the expectation is taken with respect to the perturbation,

x̃∗ is the optimal solution of (12) and x̂N = 1

N

∑N−1

m=0
x̃(m+

1).

Proof. Since E[γk(m)] = 0 and cov[γk(m)]i,j < ∞, ∀k ∈ K,

∀i, j = 1, . . . , P and for all the ADMM iterations m, proof

follows from [21, Lemma 6] and [21, Theorem 5].

IV. SIMULATIONS

The D-ZOA algorithm is tested on a multi-agent network

with a random topology, where each agent is linked to three

other agents on average. To benchmark D-ZOA with existing

solutions, we consider a distributed version of the generalized

lasso [15] that can be solved with subgradient methods [2].

Furthermore, we consider a distributed version of the reduced-

rank regression (RRR) problem where the objective function

is least squares with nuclear norm regularization [8]. Nuclear

norm is a non-smooth function that is used as a convex

surrogate for the rank. Calculating any subgradient of the

nuclear norm function is impractical. RRR has applications in

robust PCA [22], low-rank matrix decomposition [23], matrix

completion [24], etc.

The network-wide observations are represented as an obser-

vation matrix D ∈ R
M×P and a response matrix H ∈ R

M×S ,

where M is the number of data samples and P is the number

of features in each sample. The matrix D consists of K sub-

matrices Dk, i.e., D = [DT

1 ,D
T

2 , . . . ,D
T

K]T, and the matrix

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

n
o

rm
a

liz
e

d
 e

rr
o

r

D-ZOA, =3

Fig. 2. Normalized error of D-ZOA for RRR with P = 5, S = 4, ρ = 3

and K = 10.

H of K submatrices Hk, i.e., H =
[

HT

1 ,H
T

2 , . . . ,H
T

K

]T

, as

the data are distributed among the agents and each agent k
holds its respective Dk ∈ R

Mk×P and Hk ∈ R
Mk×S where

∑K
k=1

Mk = M . The parameter matrix that establishes a linear

regression between D and H is X ∈ R
P×S . In the generalized

lasso, S = 1 and, hence, H is the vector h ∈ R
M and X

becomes x ∈ R
P . In the centralized approach, a generalized

lasso estimate of x is given by

xc = argmin
x

{‖Dx− b‖2 + η ‖Fx‖
1
} (15)

where η > 0 is a regularization parameter and F is an arbitrary

matrix. An RRR estimate of X is also given by

Xc = argmin
X

{‖DX−H‖2 + η∗ ‖X‖∗} (16)

where η∗ > 0 is a rank-controlling parameter. In the distributed

setting, we solve problem (2) with

fk(xk;Xk) = ‖Dkxk − hk‖
2
+

η

K
‖Fxk‖1 (17)

for the generalized lasso case and with

fk(Xk;Xk) = ‖DkXk −Hk‖
2
+

η

K
‖Xk‖∗ (18)

for the RRR case. For each agent k ∈ K, we create a

10P × P local observation matrix Dk whose entries are

independent identically distributed zero-mean unit-variance

Gaussian random variables. The response vector h is obtained

as

h = Dβ + ǫ

where β ∈ R
P and ǫ ∈ R

M are chosen as random vector with

distribution N (0, IP) and N (0, 0.1IM). The response matrix

H is obtained as

H = DΦ+Ψ

where Φ ∈ R
P×S and Ψ ∈ R

M×S are random ma-

trices with matrix normal distributions MN (0P×S , IP , IS)
and MN (0M×S , 0.1IM , 0.1IS), respectively. The regular-

ization parameter η is set to 0.01
∥

∥DTb
∥

∥

∞
and η∗ is set

to 0.01
∥

∥(IS ⊗D)Tvec(H)
∥

∥

∞
as in [15]. The number of

iterations of the ADMM outer loop is set to 200. For the inner

loop, the number of iterations is set to 1000, the smoothing

constant u1 is set to 1 and the convergence in mean is achieved

by averaging the outputs of 10 inner loops. Performance of

D-ZOA is evaluated using the normalized error between the

centralized solutions xc as per (15) or Xc as per (16) and

the local estimates. It is defined as
∑K

k=1
‖xk − xc‖2/‖xc‖2

for generalized lasso and as
∑K

k=1
‖Xk −Xc‖2F /‖X

c‖2F for

RRR, where xk and Xk denote the local estimates at agent k.

The centralized solutions xc and Xc are computed using the

convex optimization toolbox CVX [25]. Results are obtained

by averaging over 100 independent trials.

Figs. 1-2 show the performance of D-ZOA for the general-

ized lasso and the RRR scenarios, respectively. In Fig. 1, we

plot the normalized error versus the outer loop iteration index

for D-ZOA and a subgradient-based distributed algorithm,

called D-SG and proposed in [2]. We observe that, for P = 10
and ρ = 3, D-ZOA has similar performance to D-SG both

when the network consists of 15 and 30 agents. Fig. 2

shows that D-ZOA converges to the centralized solution of

the considered RRR problem for P = 5, S = 4, K = 10 and

ρ = 3.

V. CONCLUSION

We developed a new consensus-based algorithm for solving

a distributed optimization problem with a non-smooth convex

objective. We recast the original problem into an equivalent

constrained optimization problem whose structure is suitable

for distributed implementation via ADMM. We employed

a zeroth-order method, known as the two-point stochastic

gradient algorithm, to minimize the augmented Lagrangian

in the primal update step. Compared to existing algorithms

for non-smooth optimization, D-ZOA is fully-distributed and

does not require the computation of subgradients, nor proximal

operators which may be difficult to derive in some scenarios.

D-ZOA only requires the computation of objective function

values. The convergence of D-ZOA to the centralized solution

was verified through theoretical analysis and simulations.

REFERENCES

[1] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order non-
convex multiagent optimization over networks,” IEEE Transactions on

Automatic Control, vol. 64, no. 10, pp. 3995–4010, Oct. 2019.
[2] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-

agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[3] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using para-
metric semidefinite programming,” in Proc. IEEE International Con-

ference on Acoustics, Speech and Signal Processing, May 2019, pp.
5227–5231.

[4] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, Oct. 2010.

[5] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed ridge regression with feature partitioning,” in Proc. Asilomar

Conference on Signals, Systems, and Computers, Oct. 2018.

[6] J. Akhtar and K. Rajawat, “Distributed sequential estimation in wireless
sensor networks,” IEEE Transactions on Wireless Communications,
vol. 17, no. 1, pp. 86–100, Jan. 2018.

[7] N. K. D. Venkategowda and S. Werner, “Privacy-preserving distributed
precoder design for decentralized estimation,” in Proc. IEEE Global

Conference on Signal and Information Processing, Nov. 2018.

[8] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting

Methods in Communication, Imaging, Science, and Engineering, ser.
Scientific Computation, R. Glowinski, S. J. Osher, and W. Yin, Eds.
Cham: Springer International Publishing, 2016.

[9] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed
optimization,” IEEE Transactions on Control of Network Systems, vol. 5,
no. 3, pp. 1245–1260, Sep. 2018.

[10] A. Nedic and A. Olshevsky, “Stochastic gradient-push for strongly
convex functions on time-varying directed graphs,” IEEE Transactions

on Automatic Control, vol. 61, no. 12, pp. 3936–3947, Dec. 2016.

[11] ——, “Distributed optimization over time-varying directed graphs,”
IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 601–615,
Mar. 2015.

[12] A. Nedic, A. Ozdaglar, and P. Parrilo, “Constrained consensus and
optimization in multi-agent networks,” IEEE Transactions on Automatic

Control, vol. 55, no. 4, pp. 922–938, Apr. 2010.

[13] E. Ghadimi, I. Shames, and M. Johansson, “Multi-step gradient methods
for networked optimization,” IEEE Transactions on Signal Processing,
vol. 61, no. 21, pp. 5417–5429, Nov. 2013.

[14] X. Wu and J. Lu, “Improved convergence rates of P-EXTRA for non-
smooth distributed optimization,” in IEEE International Conference on

Control and Automation, Jul. 2019, pp. 55–60.

[15] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, Jan. 2010.

[16] D. Yuan, D. W. C. Ho, and S. Xu, “Zeroth-order method for distributed
optimization with approximate projections,” IEEE Transactions on Neu-

ral Networks and Learning Systems, vol. 27, no. 2, pp. 284–294, Feb.
2016.

[17] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online
convex optimization with multi-point bandit feedback,” in Proc. 23rd

Annual Conference on Learning Theory, Jun. 2010, pp. 28–40.

[18] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley,
2003.

[19] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proc. 10th ACM Workshop on

Artificial Intelligence and Security, Nov. 2017, pp. 15–26.

[20] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal
rates for zero-order convex optimization: the power of two function
evaluations,” IEEE Transactions on Information Theory, vol. 61, no. 5,
pp. 2788–2806, May 2015.

[21] J. Ding, Y. Gong, M. Pan, and Z. Han, “Optimal differentially private
ADMM for distributed machine learning,” 2019. [Online]. Available:
http://arxiv.org/abs/1901.02094

[22] E. J. Candès, X. Li, Y. Ma, and J. Wright, “Robust principal component
analysis?” Journal of the ACM, vol. 58, no. 3, Jun. 2011.

[23] V. Chandrasekaran, S. Sanghavi, P. A. Parrilo, and A. S. Willsky,
“Rank-sparsity incoherence for matrix decomposition,” SIAM Journal

on Optimization, vol. 21, pp. 572–596, 2011.

[24] M. Mardani, G. Mateos, and G. B. Giannakis, “Decentralized sparsity-
regularized rank minimization: algorithms and applications,” IEEE

Transactions on Signal Processing, vol. 61, no. 21, pp. 5374–5388, Nov.
2013.

[25] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, 2014.

1

Privacy-Preserved Distributed Learning with
Zeroth-Order Optimization

Cristiano Gratton, Member, IEEE, Naveen K. D. Venkategowda, Member, IEEE, Reza Arablouei,
and Stefan Werner, Senior Member, IEEE

Abstract—We develop a privacy-preserving distributed algo-
rithm to minimize a regularized empirical risk function when
the first-order information is not available and data is distributed
over a multi-agent network. We employ a zeroth-order method
to minimize the associated augmented Lagrangian function in
the primal domain using the alternating direction method of
multipliers (ADMM). We show that the proposed algorithm,
named distributed zeroth-order ADMM (D-ZOA), has intrinsic
privacy-preserving properties. Most existing privacy-preserving
distributed optimization/estimation algorithms exploit some per-
turbation mechanism to preserve privacy, which comes at the
cost of reduced accuracy. Contrarily, by analyzing the inherent
randomness due to the use of a zeroth-order method, we show
that D-ZOA is intrinsically endowed with (ϵ, δ)−differential pri-
vacy. In addition, we employ the moments accountant method to
show that the total privacy leakage of D-ZOA grows sublinearly
with the number of ADMM iterations. D-ZOA outperforms the
existing differentially-private approaches in terms of accuracy
while yielding similar privacy guarantee. We prove that D-
ZOA reaches a neighborhood of the optimal solution whose size
depends on the privacy parameter. The convergence analysis
also reveals a practically important trade-off between privacy
and accuracy. Simulation results verify the desirable privacy-
preserving properties of D-ZOA and its superiority over the state-
of-the-art algorithms as well as its network-wide convergence.

Index Terms—Alternating direction method of multipliers,
differential privacy, distributed optimization, zeroth-order op-
timization methods.

I. INTRODUCTION

PERFORMING learning tasks at a central processing hub
in a large distributed network may be prohibitive due

to computation/communication costs. Collecting all data at a
central hub may also create a single point of failure. There-
fore, it is important to develop algorithms that are capable
of processing the data gathered by agents dispersed over a
distributed network [2]–[10]. Such distributed solutions are
highly demanded in many of today’s optimization problems
pertaining to statistics [2]–[4], signal processing [5]–[7], and
control [8]–[10].

This work was partly supported by the Research Council of Noway. A
conference precursor of this work appears in the Proceedings of the European
Signal Processing Conference, Amsterdam, NL, January 2021 [1].

C. Gratton and S. Werner are with the Department of Electronic Sys-
tems, Norwegian University of Science and Technology, Trondheim, Norway
(email:cristiano.gratton@ntnu.no; stefan.werner@ntnu.no).

N. K. D. Venkategowda is with the Department of Science and
Technology, Linköping University, 601 74, Norrköping, Sweden (email:
naveen.venkategowda@liu.se).

R. Arablouei is with the Commonwealth Scientific and
Industrial Research Organisation, Pullenvale QLD 4069, Australia
(email:reza.arablouei@csiro.au).

Moreover, in some real-world problems, obtaining first-
order information is hard due to non-smooth objectives [2], [8],
[9] or lack of any complete objective function, e.g., in bandit
optimization [11], in simulation-based optimization [12], or in
adversarial black-box machine learning [13]. This motivates
the use of zeroth-order methods, which only use the values
of the objective functions to approximate their gradients [14]–
[16].

However, the communications between neighboring agents
in a distributed network may lead to privacy violation issues.
An adversary may infer sensitive data of one or more agents
by sniffing the communicated information. The adversary can
be either a curious member of the network or an eavesdropper.
Therefore, it is important to develop privacy-preserving meth-
ods that allow distributed processing of data without revealing
private information. Differential privacy provides privacy pro-
tection against adversarial attacks by ensuring minimal change
in the outcome of the algorithm regardless of whether or not
a single individual’s data is taken into account.

There have been several works developing privacy-
preserving algorithms for distributed convex optimization
[17]–[28]. The work in [17] proposes two differentially private
distributed algorithms that are based on the alternating direc-
tion method of multipliers (ADMM). The algorithms in [17]
are obtained by perturbing the dual and the primal variable, re-
spectively. However, in both algorithms, the privacy leakage of
an agent is bounded only at a single iteration and an adversary
might exploit knowledge available from all iterations to infer
sensitive information. This shortcoming is mitigated in [18]–
[21]. The works in [18], [19] develop ADMM-based differen-
tially private algorithms with improved accuracy. The work in
[20] employs the ADMM to develop a distributed algorithm
where the primal variable is perturbed by adding a Gaussian
noise with diminishing variance to ensure zero-concentrated
differential privacy enabling higher accuracy compared to the
common (ϵ, δ)-differential privacy. The work in [21] develops
a stochastic ADMM-based distributed algorithm that further
enhances the accuracy while ensuring differential privacy. The
authors of [22]–[24] propose differentially-private distributed
algorithms that utilize the projected-gradient-descent method
for handling constraints. The differentially private distributed
algorithm proposed in [25] is based on perturbing the local
objective functions. However, the algorithms in [17]–[25],
[27] offer distributed solutions only for problems with smooth
objective functions.

The work in [26] addresses problems with non-smooth
objective functions by employing a first-order approximation

2

of the augmented Lagrangian with a scalar l2-norm proximity
operator. However, this algorithm is not fully distributed since
it requires a central coordinator to average all the perturbed
primal variable updates over the network at every iteration.
All the above-mentioned algorithms in [17]–[26] require some
modifications through deliberately perturbing either the local
estimates or the objective functions. This compromises the per-
formance of the algorithm by degrading its accuracy especially
when large amount of noise is required to provide high privacy
levels. The work in [28] considers privacy-preserving proper-
ties that are intrinsic, i.e., they do not require any change in
the algorithm but are associated with the algorithm’s inherent
properties. However, the approach taken in [28] considers a
privacy metric based on the topology of the communication
graph. Therefore, none of the existing algorithms are able to
offer fully-distributed solutions that are intrinsically capable
of ensuring differential privacy.

A. Contributions
In this paper, we develop a fully-distributed differentially-

private algorithm to solve a class of regularized empirical risk
minimization (ERM) problems when first-order information
is unavailable or hard to obtain. We utilize the ADMM for
distributed optimization and a zeroth-order method, called
the two-point stochastic gradient algorithm [29], to minimize
the augmented Lagrangian function in the ADMM’s primal
update step. The proposed algorithm, called distributed zeroth-
order ADMM (D-ZOA), is fully distributed in the sense
that each agent of the network communicates only with its
immediate neighbors and no central coordination is necessary.
No communication among agents is required throughout the
inner loop.

The privacy-preserving properties of the proposed D-ZOA
algorithm are intrinsic. To substantiate this novel finding, we
model the primal variable at each agent as the sum of an
exact (unperturbed) value and a random perturbation. This
enables us to address the challenging problem of approximat-
ing the distribution of the primal variable and verify that the
stochasticity inherent to the employed zeroth-order method can
adequately make D-ZOA differentially private. To this end, we
find a suitable approximation for the probability distribution of
the primal variable. Subsequently, we show that the inherent
randomness in D-ZOA enables it to preserve (ϵ, δ)-differential
privacy. Utilizing the moments accountant method [30], we
also show that the total privacy leakage over all iterations
grows sublinearly with the number of ADMM iterations. This
is particularly important as we observe that, with any similar
level of privacy, the optimization accuracy of D-ZOA is higher
compared to the existing privacy-preserving approaches, which
perturb the variables exchanged among the network agents by
adding noise.

We prove that D-ZOA reaches a neighborhood of the
optimal solution, i.e., a near-optimal solution, and the size of
the neighborhood is determined by the privacy parameter. This
gives an explicit privacy-accuracy trade-off where a stronger
privacy guarantee corresponds to a lower accuracy. Through
numerical simulations, we show that D-ZOA is competi-
tive with the state-of-the-art zeroth-order-based optimization

algorithms even though they are designed for centralized
processing. We also verify numerically that the entries of the
zeroth-order stochastic gradient are normally distributed by
illustrating the associated histograms and (quantile-quantile)
QQ plots. Simulation results also demonstrate that, with any
given level of required privacy guarantee, D-ZOA outperforms
existing privacy-preserving algorithms in terms of accuracy. To
the best of our knowledge, this is the first work on distributed
non-smooth optimization that is capable of exploiting the
inherent randomness due to the use of a zeroth-order method
and enjoy the ensuing intrinsic (ϵ, δ)-differential privacy.

B. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the distributed
ERM problem when first-order information is not available.
In Section III, we describe our proposed D-ZOA algorithm.
In Section IV, we explain the privacy issues associated with
distributed learning and we propose a solution to the very
difficult problem of characterizing the distribution of the
inherent randomness. Hence, we present the intrinsic privacy-
preserving properties of the proposed D-ZOA algorithm by
showing that the privacy leakage of each agent at any iteration
is bounded and the total privacy leakage grows sublinearly
with the number of ADMM iterations. In Section V, we
prove the convergence of D-ZOA by confirming that both
inner and outer loops of the algorithm converge. We provide
some simulation results in Section VI and draw conclusions
in Section VII.

C. Mathematical Notations

The set of natural and real numbers are denoted by N and
R, respectively. The set of positive real numbers is denoted
by R+. Scalars, column vectors, and matrices are respectively
denoted by lowercase, bold lowercase, and bold uppercase
letters. The operators (·)T, det(·), and tr(·) denote transpose,
determinant, and trace of a matrix, respectively. ∥·∥ represents
the Euclidean norm of its vector argument. In is an identity
matrix of size n, 0n is an n × 1 vector with all zeros
entries, 0n×p = 0n0

T
p , and | · | denotes the cardinality if its

argument is a set. The statistical expectation and covariance
operators are represented by E[·] and cov[·], respectively. The
notation N (µ,Σ) denotes normal distribution with mean µ
and covariance matrix Σ. For a positive semidefinite matrix
X, λmin(X) and λmax(X) denote the nonzero smallest and
largest eigenvalues of X, respectively. For a vector x ∈ Rn

and a matrix A, ∥x∥2A denotes the quadratic form xTAx. For
a function f , its subgradient and subdifferential are denoted
by f ′ and ∂f , respectively.

II. SYSTEM MODEL

We consider a network with K ∈ N agents and E ∈ N
edges modeled as an undirected graph G(V, E) where the
vertex set V = {1, . . . ,K} corresponds to the agents and
the set E represents the bidirectional communication links
between the pairs of neighboring agents. Edge ekl = (k, l) ∈ E

3

indicates that agent k and l are neighbors. Agent k ∈ V
can communicate only with the agents in its neighborhood
Vk = {l ∈ V | (k, l) ∈ E}.

Each agent k ∈ V has a private dataset

Dk =
{
(Xk,yk) : Xk = [xk,1,xk,2, . . . ,xk,Nk

]T ∈ RNk×P ,

yk = [yk,1, yk,2, . . . , yk,Nk
]T ∈ RNk

}
where Nk is the number of data samples collected at agent k
and P is the number of features in each sample.

We consider the problem of estimating a parameter of
interest β ∈ RP that relates the value of an output measure-
ment stored in the response vector yk to input measurements
collected in the corresponding row of the local matrix Xk.
The associated supervised learning problem can be cast as a
regularized ERM expressed by

min
β

K∑
k=1

1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;β) + ηR(β) (1)

where ℓ : RP → R is the loss function, R : RP → R is the
regularizer function, and η > 0 is the regularization parameter.
The ERM problem pertains to several applications in machine
learning, e.g., linear regression [2], support vector machine
[31], and logistic regression [20], [26]. We assume that the
loss function ℓ(·) and the regularizer function R(·) are both
closed and convex but at least one of them is non-smooth. Let
us denote the optimal solution of (1) by βc.

III. NON-SMOOTH DISTRIBUTED LEARNING

We first discuss the consensus-based reformulation of the
problem that allows its distributed solution through an iterative
process consisting of two nested loops. Then, we describe the
ADMM procedure that forms the outer loop and the zeroth-
order two-point stochastic gradient algorithm that constitutes
the inner loop solving the ADMM primal update step. Finally,
we discuss the related computational complexity.

A. Consensus-Based Reformulation

To solve (1) in a distributed manner, we reformulate it as
the following constrained minimization problem

min
{βk}

K∑
k=1

(1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk)

)
s.t. βk = βl, l ∈ Vk, ∀k ∈ V

(2)

where {βk}Kk=1 are the primal variables representing local
copies of β at the agents. The equality constraints impose
consensus across each agent’s neighborhood Vk. To solve (2)
collaboratively and in a fully-distributed manner, we utilize
the ADMM [7]. For this purpose, we rewrite (2) as

min
{βk}

K∑
k=1

(1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk)

)
s.t. βk = zlk, βl = zlk, l ∈ Vk, ∀k ∈ V

(3)

where {zlk}k∈V,l∈Vk
are the auxiliary variables yielding an

alternative but equivalent representation of the constraints in
(2). They help decouple βk in the constraints and facilitate
the derivation of the local recursions before being eventually
eliminated. Solving (3) via the ADMM requires an iterative
process that is described in the next subsection.

B. Zeroth-Order-Based Distributed ADMM Algorithm

To solve (3) by employing the ADMM, we generate the
augmented Lagrangian function by associating the Lagrange
multipliers {γ̄l

k}l∈Vk
, {γ̃l

k}l∈Vk
with the constraints in (3).

Following the steps outlined in [7], the ADMM iterations to
solve (3) in a distributed manner are given by

β
(m)
k =argmin

βk

Fk(βk) (4)

γ
(m)
k = γ

(m−1)
k + ρ

∑
l∈Vk

(
β
(m)
k − β(m)

l

)
. (5)

where

Fk(βk) =fk(βk) + hk(βk),

fk(βk) =
1

Nk

Nk∑
j=1

ℓ(xk,j , yk,j ;βk) +
η

K
R(βk),

hk(βk) =β
T
kγ

(m−1)
k + ρ

∑
l∈Vk

∥∥∥βk −
β
(m−1)
k + β

(m−1)
l

2

∥∥∥2,
γ
(m)
k =2

∑
l∈Vk

γ̄
l(m)
k ,

(6)
m is the iteration index, and all initial values {β(0)

k }k∈V ,
{γ(0)k }k∈V are set to zero. Note that the update equations in
(4) and (5) can be implemented in a fully-distributed fashion
since they involve only the variables available within every
agent’s neighborhood.

Since the objective function in (4) is assumed to be non-
smooth, the corresponding minimization problem cannot be
solved using any first-order method. To overcome this, we
use a zeroth-order method as in [1]. We utilize the two-
point stochastic-gradient algorithm that has been proposed
in [29] for optimizing general non-smooth functions. More
specifically, we use the stochastic mirror descent method with
the proximal function 1

2 ∥·∥ and the gradient estimator at point
βk given by

Γ(βk,γ
(m−1)
k , u1, u2,ν1,ν2) = u−1

2 [Fk(βk + u1ν1

+ u2ν2,γ
(m−1)
k)−Fk(βk + u1ν1,γ

(m−1)
k)]ν2 (7)

where u1 > 0 and u2 > 0 are smoothing constants and ν1,
ν2 are independent zero-mean Gaussian random vectors with
the covariance matrix IP , i.e., ν1,ν2 ∼ N (0P , IP).

The two-point stochastic-gradient algorithm consists of two
randomization steps where the second step is aimed at pre-
venting the perturbation vector ν2 from being close to a point
of non-smoothness [29]. This algorithm entails an iterative
procedure that consists of three steps at each iteration t. First,
J ∈ N independent random vectors {νj,k

1,t}Jj=1 and {νj,k
2,t}Jj=1

4

are sampled from N (0P , IP). Second, a k-local stochastic
gradient g(t)k is computed as

g
(t)
k =

1

J

J∑
j=1

g
(t)
j,k (8)

where

g
(t)
j,k = Γ(β̃

(t)

k ,γ
(m−1)
k , u1,t, u2,t,ν

j,k
1,t ,ν

j,k
2,t),

β̃
(t)

k is the tth iterate of the two-point stochastic-gradient
algorithm with the initial value β̃

(0)

k = 0 and {u1,t}∞t=1

and {u2,t}∞t=1 are two non-increasing sequences of positive
parameters such that u2,t ≤ u1,t/2. Finally, β̃

(t)

k is updated as

β̃
(t)

k = β̃
(t−1)

k − αtg
(t)
k (9)

where αt is a time-varying step-size. The step-size is computed
as

αt =
(
L
√
tP log(2P)

)−1

α0R

where α0 is an appropriate initial step-size and R is an upper
bound on the distance between the minimizer β∗

k to (4) and
the first iterate β̃

(1)

k as per [29].
We use multiple independent random samples {νj,k

1,t}Jj=1

and {νj,k
2,t}Jj=1 to obtain a more accurate estimate of the gra-

dient g(t)k as remarked in [29]. Furthermore, no communication
among agents is needed in the inner loop.

The proposed algorithm, D-ZOA, is summarized in Algo-
rithm 1.

C. Computational Complexity

Solving D-ZOA’s inner loop, i.e., the minimization in (4),
requires multiple evaluations of the function Fk(·). The com-
putational requirement at each agent and each ADMM outer
loop iteration depends on the local objective function fk. Let
us indicate the number of computations required by D-ZOA
to carry out one iteration of the inner loop at agent k and
the number of iterations of the inner loop by mk and T ,
respectively. Hence, the total number of computations required
by D-ZOA at agent k and each ADMM outer loop iteration is
O(Tmk). However, the cost of transmission/communication
among the neighboring agents does not depend on T or mk

since the inner loop does not require any communication
among agents.

IV. INTRINSIC DIFFERENTIAL PRIVACY GUARANTEE

In this section, we consider the privacy concerns associated
with distributed learning and reveal that the inherent random-
ness due to the use of a zeroth-order method is sufficient for
the proposed D-ZOA algorithm to preserve (ϵ, δ)-differential
privacy. First, we present the attack model along with the
definition of the attacker. Second, we propose our solution
to the challenging problem of characterizing the randomness
inherent to the algorithm. Subsequently, we assess the l2-norm
sensitivity of the primal variable and compute the covariance
that the primal variable is required to have so that the privacy
leakage of a single iteration of D-ZOA is bounded at each

Algorithm 1 Distributed Zeroth-Order ADMM (D-ZOA)

At all agents k ∈ V , initialize β(0)
k = 0, γ(0)k = 0, and

locally run
for m = 1, 2, . . . ,M do

Share β(m−1)
k with neighbors in Vk

Update γ(m)
k as in (5)

Initialize β̃
(0)

k = 0
for t = 1, 2, . . . , T do

Draw independent {νj,k
1,t}Jj=1, {ν

j,k
2,t}Jj=1 ∼ N (0P , IP)

Set u1,t = u1/t, u2,t = u1/(Pt)2

Compute g
(t)
k as in (8) and (7)

Update β̃
(t)

k = β̃
(t−1)

k − αtg
(t)
k

end for
Update β(m)

k = β̃
(T)

k

end for

agent. Finally, we prove that the total privacy leakage over
all iterations grows sublinearly with the number of ADMM
iterations.

A. Attack Model and Privacy Concerns

In Algorithm 1, the data stored at each agent, Xk and yk, is
not shared with any other agent. However, the local estimates
{β(m)

k }k∈V are exchanged within the local neighborhoods.
Therefore, the risk of privacy breach still exists as it has been
shown by the model inversion attacks [32].

In this paper, we consider the following attack model. We
assume that the adversary is able to access the local estimates
{β(m)

k }k∈V that are exchanged throughout the intermediate
ADMM iterations as well as the final output. The adversary
can be either a honest-but-curious member of the network or
an external eavesdropper. The adversary’s goal is to infer sen-
sitive data of one or more agents by sniffing the communicated
information {β(m)

k }k∈V .
We show that D-ZOA guarantees (ϵ, δ)-differential privacy

as per the below definition since it is intrinsically resistant to
such inference attacks.

Definition 1. A randomized algorithm M is (ϵ, δ)-
differentially private if for any two neighboring datasets D
and D′ differing in only one data sample and for any subset
of outputs O ⊆ range(M), we have

Pr[M(D) ∈ O] ≤ eϵPr[M(D′) ∈ O] + δ. (10)

This means the ratio of the probability distributions of M(D)
and M(D′) is bounded by eϵ.

In Definition 1, ϵ and δ are privacy parameters indicating
the level of privacy preservation ensured by a differentially
private algorithm. A better privacy preservation is achieved
with smaller ϵ or δ. On the other hand, low privacy guarantee
corresponds to higher values of ϵ, i.e., close to 1. Therefore,
it is reasonable to assume that ϵ ∈ (0, 1] as in [20], [33].

In the next subsection, we find an approximate distribution
of the primal variable, which is needed to prove that (10) holds
for our proposed D-ZOA.

5

B. Primal Variable Distribution

Due to the stochasticity inherent to the zeroth-order method,
its employment for the ADMM primal update produces a
perturbed estimate. Therefore, the solution in the primal update
step in (4) at agent k using D-ZOA can be modeled as

β
(m)
k = β̆

(m)

k + ξ
(m)
k (11)

where β̆
(m)

k ∈ RP is the exact ADMM primal update and
ξ
(m)
k ∈ RP is a random variable representing the perturbation.

As in [34], the optimality condition for β̆
(m)

k is given by

0 ∈∂fk(β̆(m)
k) + γ

(m−1)
k + 2ρ|Vk|β̆

(m)

− ρ|Vk|β(m−1)
k − ρ

∑
l∈Vk

β
(m−1)
l .

(12)

Hence, for any subgradient f ′
k(β̆

(m)

k) ∈ ∂fk(β̆
(m)

k), we have

f ′
k(β̆

(m)
k) =− γ(m−1)

k − 2ρ|Vk|β̆
(m)

+ ρ|Vk|β(m−1)
k + ρ

∑
l∈Vk

β
(m−1)
l .

(13)

The model (11) represents an implicit primal variable pertur-
bation that can be contrasted with the explicit primal variable
perturbation used in [17], [20]. Using (11) and the primal
update equation in (13), the ADMM primal update step in
(4) can be expressed as

β̆
(m)

k =− 1

2ρ|Vk|
f ′
k

(
β̆
(m)

k

)
+

1

2|Vk|

(
|Vk|β(m−1)

k

+
∑
l∈Vk

β
(m−1)
l

)
− 1

2ρ|Vk|
γ
(m−1)
k (14)

β
(m)
k = β̆

(m)

k + ξ
(m)
k (15)

where β̆k is the local exact primal update at agent k and ξk
is the local perturbation of β̆k at agent k.

To prove that the inherent randomness due to employing
a zeroth-order method makes D-ZOA differentially private,
we need the knowledge of the probability distribution of
the primal variable β

(m)
k . To approximate the probability

distribution, in view of (9) and the fact that β(0)
k = 0,

we unfold β(m)
k as β(m)

k = −
∑T

t=1 αtg
(t)
k . The stochastic

gradient g(t)k is the average of J independent random samples
{g(t)j,k}Jj=1 that are functions of the random values {νj,k

1,t}Jj=1

and {νj,k
2,t}Jj=1 drawn from the same normal distribution.

Therefore, we assume that g
(t)
k is normally distributed with

the mean µ
(t)
k and the finite covariance matrix Ψ

(t)
k , i.e.,

g
(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k). Thus, the probability distribution of

β
(m)
k is given by the following lemma.

Lemma 1. Given g
(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k), the distribution of

β
(m)
k is

β
(m)
k ∼ N

(
β̆
(m)

k ,
1

J

T∑
t=1

α2
tΨ

(t)
k

)
. (16)

Proof. See Appendix A.

In the next subsection, we find an explicit expression for
the covariance of β(m)

k .
The assumption of normal distribution for g

(t)
k is a nat-

ural one as g
(t)
k is the average of stochastic variable vec-

tors {g(t)j,k}Jj=1, which are themselves functions of normally-
distributed random variable vectors {νj,k

1,t}Jj=1 and {νj,k
2,t}Jj=1.

We provide some numerical experiments to explicitly verify
this assumption in Section VI.

The assumption is necessary to make the problem of deriv-
ing theoretical differential privacy guarantees for the proposed
algorithm tractable. Note that our analysis based on this and
other assumptions does not result in any deterministic guaran-
tee but yields a probabilistic statement for privacy guarantee
by setting a bound on a ratio of probabilities relevant in the
concept of differential privacy. Therefore, we do not require
perfectly accurate evaluations of the parameters, variables,
or statistical models involved in the analysis. Nonetheless,
we are cognizant that the reliability of the results highly
depends on the accuracy of the underlying assumptions and
approximations. Our simulation results in Section VI implicitly
corroborate the veracity of our assumptions.

C. Covariance of the Primal Variable

In this subsection, we derive an explicit expression for the
covariance of the primal variable β(m)

k . This is needed to show
that the privacy leakage of any iteration of D-ZOA is bounded
at all agents.

To make the problem more tractable, we assume that the
entries of the random vector β(m)

k are independent of each
other and have the same variance [17], [26], [33]. Let us denote
the variance of every entry of ξ(m)

k by σ2k. Therefore, in view
of Lemma 1, we have

σ2k =
1

JP

T∑
t=1

α2
t tr

(
Ψ

(t)
k

)
,

which can be computed as per the following lemma.

Lemma 2. There exists a constant c such that

σ2k =
cα2

0R
2

JP log(2P)

(
s1(1 + logP) + s2

)
− 4 ∥βc∥2

TJP
. (17)

where s1 =
∑T

t=1 t
−1, s2 =

∑T
t=1 t

−1.5, and βc is the
optimal solution.

Proof. See Appendix B.

In [29], it is shown that c = 0.5 is suitable when ν1 and ν2
are sampled from a multivariate normal distribution. Note that
s1 and s2 grow slowly with T . Hence, even for a very large
T , s1 and s2 have reasonable values. For example, with T =
2.5 × 108, we have

∑T
t=1 t

−1 < 20. A large T will increase
the computational complexity according to the discussions of
Section III.D.

D. l2-norm Sensitivity

In this subsection, we estimate the l2-norm sensitivity of
β̆
(m)

k . The l2-norm sensitivity calibrates the magnitude of

6

the noise by which β̆
(m)

k has to be perturbed to preserve
privacy. Unlike the existing privacy-preserving methods where
the noise is added to the output of the algorithm [17], [20],
[26], [33], [35], [36], in D-ZOA, the noise is inherent.

We introduce the following assumption that is widely used
in the literature, see, e.g., [17], [26], [33].

Assumption 1: There exists a constant c1 such that ∥ℓ′(·)∥ ≤
c1 where ℓ(·) is the loss function defined in Section II.

Similar to the classical methods of differential privacy
analysis, e.g., [26], [33], we first define the l2 norm sensitivity.
Subsequently, we estimate the l2-norm sensitivity of β(m)

k .

Definition 2. The l2-norm sensitivity of β̆
(m)

k is defined as

∆k,2 = max
Dk,D′

k

∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥ (18)

where β̆
(m)

k,Dk
and β̆

(m)

k,D′
k

denote the local primal variables for
two neighboring datasets Dk and D′

k differing in only one data
sample, i.e., one row of Xk and the corresponding entry of yk.

The l2-norm sensitivity of β̆
(m)

k is an upper bound on ∆k,2

and is computed as in the following lemma.

Lemma 3. Under Assumption 1, the l2-norm sensitivity of
β̆
(m)

k is given by
∆k,2 =

c1
ρ|Vk|Nk

. (19)

Proof. See Appendix C.

E. Intrinsic (ϵ, δ)-Differential Privacy Guarantee

In this subsection, we reveal that the immanent stochasticity
imparted by the embedded zeroth-order method makes D-ZOA
(ϵ, δ)-differentially private. We provide an expression relating
the primal variable variance, σk, to the privacy parameters ϵ
and δ as well as an expression for ϵ relating it to the relevant
algorithmic parameters.

We first prove that Algorithm 1 is (ϵ, δ)-differentially private
at each iteration providing a relationship between σk and ϵ, δ.

Theorem 1. Let ϵ ∈ (0, 1] and

σk =
c1
√
2.1 log(1.25/δ)

ρ|Vk|Nkϵ
. (20)

Under Assumption 1, at each iteration of D-ZOA, (ϵ, δ)-
differential privacy is guaranteed. Specifically, for any neigh-
boring datasets Dk and D′

k and any output β(m)
k , the following

inequality holds:

Pr[β(m)
k,Dk

] ≤ eϵPr[β(m)
k,D′

k
] + δ. (21)

Proof. See Appendix D.

Theorem 1 shows that the primal variable variance is
inversely proportional to the privacy parameter ϵ. This implies
that a higher variance leads to a smaller ϵ and higher privacy
guarantee. A smaller ϵ means that the ratio of the probability
distributions of β(m)

k,Dk
and β(m)

k,D′
k

is smaller and consequently
less information is available to any sniffing/spoofing adversary
through βk hence the improved privacy [17].

We then introduce the following corollary.

Corollary 1. If {g(t)j,k}Jj=1 are i.i.d. with g
(t)
j,k ∼ N (µ

(t)
k ,Ψ

(t)
k),

and Assumption 1 holds, we have

ϵ =
c1

ρ|Vk|Nk

√√√√ 2.1JP log(1.25δ)
cR2α2

0

log(2P) (s1(1 + logP) + s2)− 4∥βc∥2

T

.

(22)

Proof. The proof follows from equating the expressions for
σk in Lemma 2, (17), and Theorem 1, (20), and solving for
ϵ.

The equation (22) shows how the intrinsic privacy pre-
serving property of D-ZOA is affected by various involved
parameters. For example, a smaller J results in a smaller ϵ.
This is consistent with the fact that a smaller J leads to a
higher variance, which yields a higher privacy guarantee due
to the inherent randomness brought about by using a zeroth-
order method in the inner loop.

The denominator of the second factor in (22) is required to
be positive for the factor to be real. We ensure this by setting

T >
4 ∥βc∥2 log(2P)

cR2α2
0(s1(1 + log(P)) + s2)

. (23)

F. Total Privacy Leakage

In this subsection, we consider the total privacy leakage of
the proposed D-ZOA algorithm. Since D-ZOA is an M -fold
adaptive algorithm, we utilize the results of [30] together with
the moments accountant method to evaluate its total privacy
leakage. The main result is summarized in the following
theorem.

Theorem 2. Let ϵ ∈ (0, 1] and

σk =
c1
√
2.1 log(1.25/δ)

ρ|Vk|Nkϵ
. (24)

Under Assumption 1, Algorithm 1 guarantees (ϵ̄, δ)-differential
privacy where

ϵ̄ = ϵ

√
M log(1/δ)

1.05 log(1.25/δ)
. (25)

Proof. The proof is obtained by using the log moments of the
privacy loss and their linear composability in the same way as
in [26, Theorem 2].

V. CONVERGENCE ANALYSIS AND PRIVACY-ACCURACY
TRADE-OFF

We establish the convergence of D-ZOA to a near-optimal
solution by corroborating that both inner and outer loops of
the algorithm converge.

7

0 50 100 150 200

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

n
o

rm
a

liz
e

d
 e

rr
o

r
D-ZOA

OR-ZO

ZOO-ADMM

Fig. 1. The normalized errors of D-ZOA, OR-ZO [29], and ZOO-ADMM [14]
versus the iteration number.

A. Convergence of the Inner Loop

The convergence of the inner loop can be verified follow-
ing [29, Theorem 2], i.e., it can be shown that, if Fk(·)
is Lipschitz-continuous with the Lipschitz constant L, there
exists a constant c such that, for each T representing a fixed
number of inner-loop iterations, the following inequality holds:

E[Fk(β̂
(T)

k)−Fk(β
∗
k)]

≤cRL
√
P√
T

(
max{α0, α−1

0 }
√
log(2P) +

u1 log(2T)√
T

) (26)

where β∗
k is the minimizer to (4) and

β̂
(T)

k =
1

T

T∑
t=1

β̃
(t)

k .

The inequality in (26) implies that the two-point stochastic
gradient algorithm constituting the inner loop converges at a
rate of O(

√
P/T). In [29], it is shown that c = 0.5 is suitable

when ν1 and ν2 are sampled from a normal distribution. The
function Fk(·) is the sum of fk(·), which is assumed to be
closed and convex, and hk(·) that is also both closed and
convex since it is a positive definite quadratic function. Hence,
the function Fk(·) is closed and convex in addition to being
Lipschitz-continuous [37]. Therefore the convergence result in
(26) follow from [29].

B. Convergence of the Outer Loop

The convergence of the outer loop can be proven by
verifying the convergence of a fully-distributed ADMM with
perturbed primal updates. To present the convergence result,
we rewrite (3) in the matrix form. By defining w ∈ RKP

concatenating all βk and z ∈ R2EP concatenating all zlk, (3)
can be written as

min
w,z

f(w)

s.t. Aw +Bz = 0
(27)

where

f(w) =
K∑

k=1

fk(βk),

A = [AT
1 ,A

T
2]

T, and A1,A2 ∈ R2EP×KP are both composed
of 2E × K blocks of P × P matrices. If (k, l) ∈ E and zlk
is the qth block of z, then the (q, k)th block of A1 and the
(q, l)th block of A2 are the identity matrix IP . Otherwise, the
corresponding blocks are 0P×P . Furthermore, we have

B = [−I2EP ,−I2EP]
T.

To facilitate the representation, we also define the following
matrices

M+ = BT
1 +BT

2

M− = BT
1 −BT

2

L+ = 0.5M+M
T
+

L− = 0.5M−M
T
−

H = 0.5(L+ + L−)

Q =
√
0.5L−.

We construct the auxiliary sequence

r(m) =

m∑
s=0

Qw(s)

and define the auxiliary vector q(m) and the auxiliary matrix
G as

q(m) =

[
r(m)

w(m)

]
, G =

[
ρIP 0P×P

0P×P ρL+

2

]
. (28)

The convergence results of [38], [20], and [39] can now
be adapted to D-ZOA as per the following theorem that also
provides an explicit privacy-accuracy trade-off.

Theorem 3. For any M > 0, we have

E[f(ŵ(M))− f(w∗)]

≤
∥∥q(0) − q

∥∥2
G

M
+

2.1c21P log(1.25/δ)λ2max(L+)

2ρ|Vk|2N2
k ε

2λmin(L−)

(29)

where q = [rT, (w∗)T]T and

ŵ(M) =
1

M

M∑
m=1

w̆(m).

Proof. See Appendix E.

Theorem 3 shows that D-ZOA reaches a neighborhood of
the optimal (centralized) solution with the size of the neigh-
borhood determined by the privacy-parameter ε. This discloses
a privacy-accuracy trade-off offered by D-ZOA. When the
privacy guarantee is stronger (smaller ε and δ), the accuracy
is lower.

Note that we do not need to solve the minimization problem
in the ADMM primal update step of the outer loop with high
accuracy [26], [34]. We perform the ADMM primal update
step in the outer loop after obtaining an inexact solution to
(4). Therefore, we select the number of inner loop iterations
T as the minimum number of iterations satisfying (23) and

8

(a) Histogram

-2 -1 0 1 2

Standard Normal Quantiles

-4

-3

-2

-1

0

1

2

3

4

5

Q
u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

(b) QQ plot

Fig. 2. The histogram and the QQ plot of g(t)k at agent 2, the inner loop iteration t = 100, and the outer loop iteration m = 50.

(a) Histogram

-2 -1 0 1 2

Standard Normal Quantiles

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4
Q

u
a
n
ti
le

s
 o

f
In

p
u
t
S

a
m

p
le

(b) QQ plot

Fig. 3. The histogram and the QQ plot of g(t)k at agent 2, the inner loop iteration t = 50, and the outer loop iteration m = 150.

entailing an accuracy that is sufficient to ensure convergence
of ADMM according to [29]. In fact, T should be chosen
as low as possible within the above-mentioned constraints
to minimize the computational complexity according to the
discussions of Section III.D.

VI. SIMULATIONS

In this section, we present some simulation examples to
evaluate the performance of the proposed D-ZOA algorithm in
comparison with the most relevant state-of-the-art algorithms
as well as the privacy-accuracy trade-off offered by the pro-
posed algorithm.

We first benchmark D-ZOA against two popular existing
algorithms for zeroth-order-based optimization, which have
originally been designed for centralized settings, i.e., those
proposed in [14] and [29] and called zeroth-order online
ADMM (ZOO-ADMM) and optimal-rate zeroth-order (OR-
ZO) algorithm, respectively. Then, we illustrate two sets of
example histograms and QQ plots to verify that the entries of
the gradient vector g(t)k are normally distributed.

Next, we benchmark D-ZOA against some existing baseline
differentially-private algorithms: the ADMM algorithm with
primal variable perturbation (PVP) proposed in [17], [26],
the ADMM with dual variable perturbation (DVP) proposed

9

0 50 100 150 200

iterations

10-4

10-2

100

102

no
rm

al
iz

ed
 e

rr
or

DPSGD, =0.15
DP-ADMM, =0.15
DP-ADMM, =0.95
DPSGD, =0.95
D-ZOA, =0.15
D-ZOA, =0.95

(a) δ = 10−

0 50 100 150 200

iterations

10-4

10-2

100

102

no
rm

al
iz

ed
 e

rr
or

DPSGD, =0.15
DP-ADMM, =0.15
DPSGD, =0.95
DP-ADMM, =0.95
D-ZOA, =0.15
D-ZOA, =0.95

(b) δ = 10−6

Fig. 4. Normalized error of DPSGD, DP-ADMM, and D-ZOA for two values of ε and fixed δ for ERM with �1-norm regularization.

2 4 6 8 10 12 14
10-4

10-3

10-2

10-1

100

no
rm

al
iz

ed
 e

rr
or

DPSGD, =10-6

DP-ADMM, =10-6

DPSGD, =10-3

DP-ADMM, =10-3

D-ZOA, =10-6

D-ZOA, =10-3

(a) δ = 10−6 and δ = 10−

0 0.2 0.4 0.6 0.8 1

10-3

10-4

10-3

10-2

10-1

100

no
rm

al
iz

ed
 e

rr
or

DPSGD, =0.15
DP-ADMM, =0.15
DP-ADMM, =0.95
DPSGD, =0.95
D-ZOA, =0.15
D-ZOA, =0.95

(b) ε = 0.15 and ε = 0.95

Fig. 5. Privacy-accuracy trade-off of DPSGD, DP-ADMM, and D-ZOA for ERM with �1-norm regularization.

in [17], the ADMM-based differentially private distributed

algorithm called DP-ADMM and proposed in [26], and the dis-

tributed subgradient method proposed in [9] that is customized

to include differential privacy (DPSG). Note that DP-ADMM

is the only existing privacy-preserving distributed algorithm

for non-smooth objectives.

As for the applications, we consider a distributed version

of the empirical risk minimization problem with an �1-norm

regularization (lasso penalty) and an �2-norm regularization

(ridge penalty) [40].

The network-wide observations are represented by a design

matrix X ∈ R
N×P and a response vector y ∈ R

N×1 where

N is the number of data samples and P is the number

of features in each sample. The matrix X consists of K
submatrices Xk, i.e., X = [XT

1 ,X
T
2 , . . . ,X

T
K]T, and the vector

y consists of K subvectors yk, i.e., y =
[
yT
1 ,y

T
2 , . . . ,y

T
K

]T
,

as the data is distributed among the agents and each agent k
holds its respective Xk ∈ R

Nk×P and yk ∈ R
Nk×1 where

N =
∑K

k=1 Nk. The parameter vector that establishes a linear

regression between X and y is β ∈ R
P×1. In the centralized

approach, a lasso estimate of β is given by

βc = argmin
β

{‖Xβ − y‖2 + η ‖β‖1} (30)

while a ridge estimate of β is given by

βc = argmin
β

{‖Xβ − y‖2 + η ‖β‖2}. (31)

10

0 100 200 300 400 500

iterations

10-4

10-2

100

102

no
rm

al
iz

ed
 e

rr
or

DPSG
PVP
DP-ADMM
DVP
D-ZOA

(a) ε = 0.40 and δ = 10−

0 100 200 300 400 500

iterations

10-5

10-4

10-3

10-2

10-1

100

101

no
rm

al
iz

ed
 e

rr
or

DPSG
PVP
DVP
DP-ADMM
D-ZOA

(b) ε = 0.80 and δ = 10−

Fig. 6. Normalized error of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for two values of ε and fixed δ for ERM with �2-norm regularization.

4 6 8 10 12 14 16 18
10-5

10-4

10-3

10-2

10-1

100

no
rm

al
iz

ed
 e

rr
or

DPSG
PVP
DVP
DP-ADMM
D-ZOA

(a) δ = 10−

0 0.002 0.004 0.006 0.008 0.01
10-5

10-4

10-3

10-2

10-1

no
rm

al
iz

ed
 e

rr
or

DVP
DPSG
PVP
DP-ADMM
D-ZOA

(b) ε = 0.95

Fig. 7. Privacy-accuracy trade-off of DPSGD, PVP, DP-ADMM, DVP, and D-ZOA for ERM with �2-norm regularization.

In the distributed setting, we solve problem (2) with

Nk∑
j=1

�(xk,j , yk,j ;βk) = ‖Xkβk − yk‖2 (32)

and R(βk) = ‖βk‖1 for the lasso penalty. For the ridge

penalty, we have R(βk) = ‖βk‖2.

We assess the performance of the D-ZOA algorithm

over a network of K = 5 agents with edge set E =
{e12, e14, e23, e34, e45}. The number of samples at each agent

is set to Nk = 20 ∀k ∈ V and the total number of samples

is N = 100. The number of features in each sample is

P = 10. For each agent k ∈ V , we create a 2P × P local

observation matrix Xk whose entries are i.i.d. zero-mean unit-

variance Gaussian random variables. The response vector y is

synthesized as y = Xω+ψ where ω ∈ R
P and ψ ∈ R

M are

random vectors with distributions N (0, IP) and N (0, 0.1IN),
respectively. The data are preprocessed by normalizing the

columns of X to guarantee that the maximum value of each

column is 1 and by normalizing the rows to enforce their l2-

norm to be less than 1 as in [26]. This is motivated by the

need for homogeneous scaling of the features. Therefore, we

have c1 = 1. The regularization parameter is set to η = 1
and the penalty parameter is set to ρ = 4. The number of

iterations of the ADMM outer loop is set to 200. For the inner

loop, the number of iterations is set to 100 and the smoothing

constant u1 to 1. We set α0 = 0.54 according to [41] and

11

calculate J from equation (22) by fixing ϵ, solving for J and
rounding the solution to the nearest integer. Performance of
D-ZOA is evaluated using the normalized error between the
centralized solutions βc as per (31) and the local estimates.
It is defined as

∑K
k=1 ∥βk − βc∥2/∥βc∥2 where βk denotes

the local estimate at agent k. The centralized solution βc is
computed using the convex optimization toolbox CVX [42].
Results are obtained by averaging over 100 independent trials.

In Fig. 1, we compare the performance of the proposed D-
ZOA algorithm with that of two existing zeroth-order-based
algorithms, i.e., those proposed in [14] and [29]. The simula-
tion results show that the steady-state normalized error of D-
ZOA is comparable to those of these algorithms, even though
they are designed for centralized processing. The centralized
algorithms converge faster than Z-DOA since, unlike our fully-
distributed D-ZOA, they have all data concentrated at a central
processing hub and do not rely on diffusing information across
the network by sharing the local estimates within each agent’s
neighborhood. Note that the notion of iteration is essentially
different for each algorithm whose learning curve is shown
in Fig. 1. Thus, we provide the learning curve plots in Fig. 1
only to examine how D-ZOA performs in comparison with the
existing zeroth-order optimization algorithms notwithstanding
the underlying fundamental differences.

In Figs. 2 and 3, we provide two sets of histograms and QQ
plots for an arbitrary entry of the stochastic gradient vector
g
(t)
k , i.e., the one corresponding to agent 2, and different inner

and outer loop iterations, i.e., t = 100, t = 50, and m =
50, m = 150. The plots help us verify that the entries of
g
(t)
k are normally distributed hence attest to the validity of

our related assumption in Section IV-B. Meanwhile, we made
similar observations with other entries of g

(t)
k and iteration

numbers. However, due to space limitation, we only provide
Figs. 2 and 3 as examples.

We first benchmark our D-ZOA in the case of the ERM with
the lasso penalty. Since PVP and DVP cannot be employed
when the objective function is non-smooth, we benchmark
our algorithm only with DP-ADMM and DPSGD similar to
[26]. In Fig. 4, we plot the normalized error versus the outer
loop iteration index for D-ZOA, DP-ADMM, and DPSGD.
The plots show that all algorithms converge for two different
values of ϵ and δ. In all plots, accuracy improves as ϵ increases.
This is consistent with both Theorem 3 and [26, Theorem 3].
The hyper-parameters in DP-ADMM and DPSGD are tuned
to achieve the best accuracy and convergence rate. However,
D-ZOA has higher accuracy than DP-ADMM and DPSGD.

In Fig. 5, we illustrate the privacy-accuracy trade-off for
D-ZOA, DP-ADMM, and DPSGD. The figures show that D-
ZOA, DP-ADMM, and DPSGD achieve higher accuracy with
larger ϵ and δ. In Fig. 5(a), we show the normalized error
versus the privacy parameter ϵ̄ as given in (25) for δ = 10−6

and δ = 10−3. We observe that D-ZOA outperforms both DP-
ADMM and DPSGD in terms of accuracy likely due to its
intrinsic privacy-preserving properties. Fig. 5(b) also attests to
the superiority of D-ZOA over DP-ADMM and DPSGD when
ϵ = 0.15 and ϵ = 0.95 and δ varies between 10−6 and 10−2.

We also evaluate the performance of the D-ZOA algorithm
in comparison with the considered benchmark algorithms for

the ERM with the ridge penalty. In Fig. 6, we plot the
normalized error versus the outer loop iteration index for D-
ZOA, DP-ADMM, DPSGD, PVP, and DVP. The plots show
that D-ZOA outperforms all other considered algorithms in
terms of accuracy for different values of ϵ.

In Fig. 7, we demonstrate the privacy-accuracy trade-off for
D-ZOA, DP-ADMM, DPSGD, PVP, and DVP. As expected,
smaller values of the privacy parameters ϵ and δ lead to
lower accuracy. However, D-ZOA outperforms all the other
approaches in terms of accuracy due to its intrinsic privacy-
preserving properties.

In the considered applications of ERM with lasso and ridge
penalty, we make the following observations regarding the
complexity-accuracy trade-off of D-ZOA and the baseline
algorithms. D-ZOA outperforms all the baseline algorithms in
terms of accuracy by roughly two orders of magnitude. How-
ever, D-ZOA has a relatively high computational complexity
due to its inner loop that is run at every agent k and every
ADMM iteration. Since the number of arithmetic operations
required to evaluate the objective function is O(PNk), calcula-
tion of (8) needs O(JPNk) operations and, therefore, D-ZOA
requires O(TJPNk) operations to perform (4). The baseline
algorithms have the following computational complexities:
O(P 2Nk) for DP-ADMM and DPSGD, and O(P 2Nk + P 3)
for PVP and DVP.

VII. CONCLUSION

We proposed an intrinsically privacy-preserving consensus-
based algorithm for solving a class of distributed regularized
ERM problems where first-order information is hard or even
impossible to obtain. We recast the original problem into an
equivalent constrained optimization problem whose structure
is suitable for distributed implementation via ADMM. We
employed a zeroth-order method, known as the two-point
stochastic-gradient algorithm, to minimize the augmented La-
grangian in the primal update step. We proved that the inherent
randomness due to employing the zeroth-order method can
adequately make the D-ZOA algorithm intrinsically privacy-
preserving. In addition, we used the moments accountant
method to show that the total privacy leakage of D-ZOA
grows sublinearly with the number of ADMM iterations. We
verified the convergence of D-ZOA to a near-optimal solution
as well as studying its privacy-preserving properties through
both theoretical analysis and numerical simulations.

APPENDIX A
PROOF OF LEMMA 1

Proof. We prove this lemma in two steps. First, we prove that
E[β(m)

k] = β̆
(m)

k . Then, we calculate the covariance of β(m)
k .

We prove that E[β(m)
k] = β̆

(m)

k by induction over m.

Base case: Since β(0)
k = β̆

(0)

k = 0, we have E[β(0)
k] = β̆

(0)

k .

12

Induction step: We assume that E[β(m−1)
k] = β̆

(m−1)

k as the
induction hypothesis. Considering (14) and (11), we have

E[β(m)
k] = E[β̆

(m)

k] + E[ξ(m)
k]

= − 1

2ρ|Vk|
f ′
k(β̆

(m)

k) +
1

2|Vk|

(
|Vk|β̆

(m−1)

k

+
∑
l∈Vk

β̆
(m−1)

l

)
− 1

2ρ|Vk|
γ
(m−1)
k + E[ξ(m)

k]

= − 1

2ρ|Vk|
E[f ′

k(β̆
(m)

k)]

+
1

2|Vk|

(
|Vk|E[β(m−1)

k] +
∑
l∈Vk

E[β(m−1)
l]

)
− 1

2ρ|Vk|
E[γ(m−1)

k] + E[ξ(m)
k]

= E[β(m)
k] + E[ξ(m)

k],

which implies that E[ξ(m)
k] = 0. Therefore, E[β(m)

k] = β̆
(m)

k .
Since we have g

(t)
k ∼ N (µ

(t)
k ,Ψ

(t)
k) and β

(m)
k =

−
∑T

t=1 αtg
(t)
k , in view of the additive property of the normal

distribution, β(m)
k is normally distributed with the mean β̆

(m)

k

and the covariance

cov[β(m)
k] =

1

J

T∑
t=1

α2
tΨ

(t)
k . (33)

APPENDIX B
PROOF OF LEMMA 2

Proof. It is easy to verify that

tr(Ψ(t)
k) = E

[∥∥∥g(t)j,k

∥∥∥2]− ∥∥∥µ(t)
k

∥∥∥2 . (34)

By [29, Lemma 2], there exists a constant c such that

E
[∥∥∥g(t)j,k

∥∥∥2] ≤ cL2P
(√u2,t

u1,t
P + 1 + log(P)

)
. (35)

Since u2,t/u1,t = P−2t−1, we have

E
[∥∥∥g(t)j,k

∥∥∥2] ≤ cL2P
(1√

t
+ 1 + log(P)

)
. (36)

In addition, from β
(m)
k = −

∑T
t=1 αtg

(t)
k and (11), we have

β̆
(m)

k = −
T∑

t=1

αtµ
(t)
k . (37)

Taking the Euclidean norm of both sides in (37) and using the
triangle inequality, we have∥∥∥β̆(m)

k

∥∥∥ =

∥∥∥∥∥−
T∑

t=1

αtµ
(t)
k

∥∥∥∥∥ ≤
T∑

t=1

|αt|
∥∥∥µ(t)

k

∥∥∥ . (38)

Squaring both sides of (38) and using the Cauchy-Schwarz
inequality, we get∥∥∥β̆(m)

k

∥∥∥2 ≤
(T∑
t=1

|αt|
∥∥∥µ(t)

k

∥∥∥)2 ≤ T
T∑

t=1

|αt|2
∥∥∥µ(t)

k

∥∥∥2 (39)

and consequently

− 1

JP

T∑
t=1

α2
t

∥∥∥µ(t)
k

∥∥∥2 ≤ − 1

TJP

∥∥∥β̆(m)

k

∥∥∥2 . (40)

Using (36), (40), and the definition of αt after (9), we have

1

JP

T−1∑
t=1

α2
t tr(Ψ(t)

k)

≤ 1

JP

T−1∑
t=1

α2
t cL

2P
(1√

t
+ 1 + log(P)

)
− 1

JP

T−1∑
t=1

α2
t

∥∥∥µ(t)
k

∥∥∥2
=

1

JP

cα2
0R

2

log(2P)

(T∑
t=1

1

t
√
t
+ (1 + log(P))

T∑
t=1

1

t

)
− 1

TJP

∥∥∥β̆(m)

k

∥∥∥2 .

(41)

Defining s1 =
∑T−1

t=1 t−1 and s2 =
∑T−1

t=1 t−1.5, (41)
simplifies to

1

JP

T∑
t=1

α2
t tr(Ψ(t)

k)

≤ cα2
0R

2

JP log(2P)

(
s1(1 + log(P)) + s2

)
−

∥∥∥β̆(m)

k

∥∥∥2
TJP

.

(42)

Considering that the algorithm converges as proven in
Section V, i.e., β̆

(m)

k → βc as m → ∞, β̆
(0)

k = 0, and the
triangle inequality, for m > 0 we have

∣∣∣∥∥∥β̆(m)

k

∥∥∥− ∥βc∥
∣∣∣ ≤ ∥∥∥β̆(m)

k − βc
∥∥∥ ≤ ∥βc∥ , (43)

which implies
∥∥∥β̆(m)

k

∥∥∥ ≤ 2 ∥βc∥. Therefore, we obtain

1

JP

T∑
t=1

α2
t tr(Ψ(t)

k)

=
cα2

0R
2

JP log(2P)

(
s1(1 + log(P)) + s2

)
− 4 ∥βc∥2

TJP
.

(44)

and consequently (17).

13

APPENDIX C
PROOF OF LEMMA 3

Proof. From the adopted exact primal update equation (14),
we obtain

β̆
(m)

k,Dk
=− 0.5

ρ|Vk|

(1

Nk

Nk∑
j=1

ℓ′(xk,j , yk,j ; β̆k) + γ
(m−1)
k

)
+

0.5

|Vk|

(
β̆
(m−1)

k +
∑
l∈Vk

β̆
(m−1)

l +
ηR′(β̆k)

ρK

)
β̆
(m)

k,D′
k
=− 0.5

ρ|Vk|

(1

Nk

Nk−1∑
j=1

ℓ′(xk,j , yk,j ; β̆k) + γ
(m−1)
k

+
1

Nk
ℓ′(x′

k,Nk
, y′k,Nk

; β̆k)
)

+
0.5

|Vk|

(
β̆
(m−1)

k +
∑
l∈Vk

β̆
(m−1)

l +
ηR′(β̆k)

ρK

)
.

(45)
Using Assumption 1, the quantity

∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥ is upper
bounded as follows∥∥∥β̆(m)

k,Dk
− β̆

(m)

k,D′
k

∥∥∥
=

∥∥∥ℓ′(x′
k,Nk

, y′k,Nk
; β̆k)− ℓ′(xk,Nk

, yk,Nk
; β̆k)

∥∥∥
2ρ|Vk|Nk

≤ c1
ρ|Vk|Nk

.

(46)

APPENDIX D
PROOF OF THEOREM 1

Proof. The privacy loss due to sharing β(m)
k is calculated as∣∣∣∣∣∣log Pr[β(m)

k,Dk
]

Pr[β(m)
k,D′

k
]

∣∣∣∣∣∣ =
∣∣∣∣∣∣log Pr[ξ(m)

k,Dk
]

Pr[ξ(m)
k,D′

k
]

∣∣∣∣∣∣ =
∣∣∣∣∣∣log Pr[ξ(m)

s,k,Dk
]

Pr[ξ(m)
s,k,D′

k
]

∣∣∣∣∣∣ (47)

where the first equality holds since the Jacobian matrix of the
linear transformation from β

(m)
k to ξ(m)

k is the identity matrix
and the second equality holds as the entries of ξ(m)

k , denoted
by ξ

(m)
s,k , are independent of each other, for any entry s.

Using the triangle inequality, Lemma 3, and substituting σk

in the resulting expression, we obtain∣∣∣∣∣∣log Pr[β(m)
k,Dk

]

Pr[β(m)
k,D′

k
]

∣∣∣∣∣∣ ≤ ρ|Vk|Nkϵ
2

2.1c1 log(1.25/δ)

∣∣∣∣ξ(m)
s,k +

c1
2ρ|Vk|Nk

∣∣∣∣ .
(48)

When

|ξ(m)
s,k | ≤ c1

ρ|Vk|Nk

(
2.1ϵ−1 log(1.25/δ)− 0.5

)
,

the privacy loss is bounded by ϵ. Hence, let us define

r =
c1

ρ|Vk|Nk

(
2.1ϵ−1 log(1.25/δ)− 0.5

)
.

Subsequently, we need to prove that

Pr[|ξ(m)
s,k | > r] ≤ δ

or equivalently

Pr[ξ(m)
s,k > r] ≤ 0.5δ.

Using the tail bound of the normal distribution N (0, σ2k) [35],
we obtain

Pr[ξ(m)
s,k > r] ≤ σk

r
√
2π

exp
(
− r2

2σ2k

)
. (49)

Since δ is assumed to be small (≤ 0.01) and ϵ ≤ 1, we have
σk < r and −r2 < 2σ2k log(0.5

√
2πδ). Therefore, Pr[ξ(m)

s,k >

r] < 0.5δ, which implies Pr[|ξ(m)
s,k | > r] ≤ δ. By defining

A1 = {ξ(m)
s,k : |ξ(m)

s,k | ≤ r}, A2 = {ξ(m)
s,k : |ξ(m)

s,k | > r},

we have

Pr[β(m)
k,Dk

] = Pr[β̆(m)
s,k,Dk

+ ξ
(m)
s,k : ξ

(m)
s,k ∈ A1]

+ Pr[β̆(m)
s,k,Dk

+ ξ
(m)
s,k : ξ

(m)
s,k ∈ A2]

< eϵPr[β(m)
k,D′

k
] + δ,

(50)

which concludes the proof by showing that, at each iteration
of D-ZOA, (ϵ, δ)-differential privacy is guaranteed.

APPENDIX E
PROOF OF THEOREM 3

Proof. In virtue of [38, Lemma 1 and Lemma 2], w̆(m)

satisfies the following equation

f ′(w̆(m))

ρ
= 2Hξ(m)−2Qr(m)−L+(w

(m)−w(m−1)). (51)

Therefore, by using (51), [38, Lemma 3, Lemma 4 and Lemma
5], and the steps in the proof of [39, Theorem 1], we can show
that, for any r ∈ RKP and m > 0, we have

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ

−
∥∥∥Qw̆(m)

∥∥∥2 − ∥∥∥Qξ(m)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r)

+ 2
(L+

2
(w̆(m) −w∗)

)T

(w(m−1) − w̆(m−1))

(52)

where q = [rT, (w∗)T]T.
For any symmetric matrix X ∈ RP×P and vector y ∈ RP ,

we have

∥y∥2 λmin(X) ≤ yTXy ≤ ∥y∥2 λmax(X)

and, for any a,b ∈ RP and τ ∈ R+, we have

2aTb ≤ τ−1 ∥a∥2 + τ ∥b∥2 .

14

Therefore, (52) yields

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ
−
∥∥∥Qξ(m)

∥∥∥2
− λmin(L−)

2

∥∥∥w̆(m) −w∗
∥∥∥2 + 1

τ

∥∥∥∥L+

2
(w̆(m) −w∗)

∥∥∥∥2
+ τ

∥∥∥w(m−1) − w̆(m−1)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r).

(53)
By setting

τ =
λ2max(L+)

2λmin(L−)
,

(53) leads to

f(w̆(m))− f(w∗)

ρ
+ 2rTQw̆(m)

≤
∥∥q(m−1) − q

∥∥2
G

ρ
−

∥∥q(m) − q
∥∥2
G

ρ

+
λ2max(L+)

2λmin(L−)

∥∥∥ξ(m−1)
∥∥∥2 + 2(ξ(m))TQ(r(m) − r).

(54)

Setting r = 0P and summing both sides of (54) over m = 1
to M gives

1

ρ

M∑
m=1

(f(w̆(m))− f(w∗)) ≤ 1

ρ

∥∥∥q(0) − q
∥∥∥2
G

+

M∑
m=1

λ2max(L+)

2λmin(L−)

∥∥∥ξ(m−1)
∥∥∥2 + 2(ξ(m))TQr(m).

(55)

Using Jensen’s inequality [43], (17), (20), and applying the
expectation operator to both sides of (55), we obtain

E[f(ŵ(M))− f(w∗)]

≤ 1

M

∥∥∥q(0) − q
∥∥∥2
G
+

ρλ2max(L+)

2Mλmin(L−)

M∑
m=1

E
[∥∥∥ξ(m−1)

∥∥∥2]

≤
∥∥q(0) − q

∥∥2
G

M
+

2.1c21P log(1.25/δ)λ2max(L+)

2ρ|Vk|2N2
k ϵ

2λmin(L−)
(56)

where

ŵ(M) =
1

M

M∑
m=1

w̆(m).

REFERENCES

[1] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning with non-smooth objective functions,” in Proc.
European Speech and Signal Processing Conference, Jan. 2021.

[2] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, Oct. 2010.

[3] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using para-
metric semidefinite programming,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, May 2019, pp.
5227–5231.

[4] ——, “Distributed ridge regression with feature partitioning,” in Proc.
Asilomar Conference on Signals, Systems, and Computers, Oct. 2018.

[5] J. Akhtar and K. Rajawat, “Distributed sequential estimation in wireless
sensor networks,” IEEE Transactions on Wireless Communications,
vol. 17, no. 1, pp. 86–100, Jan. 2018.

[6] N. K. D. Venkategowda and S. Werner, “Privacy-preserving distributed
precoder design for decentralized estimation,” in Proc. IEEE Global
Conference on Signal and Information Processing, Nov. 2018.

[7] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting
Methods in Communication, Imaging, Science, and Engineering, ser.
Scientific Computation, R. Glowinski, S. J. Osher, and W. Yin, Eds.
Cham: Springer International Publishing, 2016.

[8] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order non-
convex multiagent optimization over networks,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 3995–4010, Oct. 2019.

[9] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[10] S. P. Talebi and S. Werner, “Distributed Kalman filtering and control
through embedded average consensus information fusion,” IEEE Trans-
actions on Automatic Control, vol. 64, no. 10, pp. 4396–4403, Mar.
2019.

[11] A. Agarwal, O. Dekel, and L. Xiao, “Optimal algorithms for online
convex optimization with multi-point bandit feedback,” in Proc. 23rd
Annual Conference on Learning Theory, Jun. 2010, pp. 28–40.

[12] J. C. Spall, Introduction to Stochastic Search and Optimization. Wiley,
2003.

[13] P.-Y. Chen, H. Zhang, Y. Sharma, J. Yi, and C.-J. Hsieh, “ZOO: Zeroth
order optimization based black-box attacks to deep neural networks
without training substitute models,” in Proc. 10th ACM Workshop on
Artificial Intelligence and Security, Nov. 2017, pp. 15–26.

[14] S. Liu, J. Chen, P.-Y. Chen, and A. Hero, “Zeroth-order online alternating
direction method of multipliers: convergence analysis and applications,”
in Proceedings of the Twenty-First International Conference on Artifi-
cial Intelligence and Statistics, ser. Proceedings of Machine Learning
Research, vol. 84, Apr. 2018, pp. 288–297.

[15] F. Huang, S. Gao, S. Chen, and H. Huang, “Zeroth-order stochastic
alternating direction method of multipliers for nonconvex nonsmooth
optimization,” in Proc. 28th International Joint Conference on Artificial
Intelligence, S. Kraus, Ed., 2019, pp. 2549–2555.

[16] S. Liu, P. Y. Chen, B. Kailkhura, G. Zhang, A. O. Hero III, and P. K.
Varshney, “A primer on zeroth-order optimization in signal processing
and machine learning: principals, recent advances, and applications,”
IEEE Signal Processing Magazine, vol. 37, no. 5, pp. 43–54, 2020.

[17] T. Zhang and Q. Zhu, “Dynamic differential privacy for ADMM-based
distributed classification learning,” IEEE Transactions on Information
Forensics and Security, vol. 12, no. 1, pp. 172–187, Jan. 2017.

[18] X. Zhang, M. M. Khalili, and M. Liu, “Recycled ADMM: Improve
privacy and accuracy with less computation in distributed algorithms,”
in Proc. 56th Annual Allerton Conference on Communication, Control,
and Computing, Oct. 2018, pp. 959–965.

[19] X. Zhang, M. M. Khalili, and M. Liu, “Improving the privacy and
accuracy of ADMM-based distributed algorithms,” in Proc. 35th In-
ternational Conference on Machine Learning, vol. 80, Jul. 2018, pp.
5796–5805.

[20] J. Ding, Y. Gong, M. Pan, and Z. Han, “Optimal differentially private
ADMM for distributed machine learning,” 2019. [Online]. Available:
http://arxiv.org/abs/1901.02094

[21] J. Ding, S. M. Errapotu, H. Zhang, Y. Gong, M. Pan, and Z. Han,
“Stochastic ADMM based distributed machine learning with differential
privacy,” in Proc. 15th SecureComm, Oct. 2019, pp. 257–277.

[22] Z. Huang, S. Mitra, and N. Vaidya, “Differentially private distributed
optimization,” in Proc. 2015 International Conference on Distributed
Computing and Networking, 2015.

[23] S. Han, U. Topcu, and G. J. Pappas, “Differentially private distributed
constrained optimization,” IEEE Transactions on Automatic Control,
vol. 62, no. 1, pp. 50–64, 2017.

[24] M. T. Hale and M. Egerstedty, “Differentially private cloud-based multi-
agent optimization with constraints,” in Proc. 2015 American Control
Conference, Jul. 2015, pp. 1235–1240.

[25] E. Nozari, P. Tallapragada, and J. Cortés, “Differentially private dis-
tributed convex optimization via functional perturbation,” IEEE Trans-
actions on Control of Network Systems, vol. 5, no. 1, pp. 395–408, 2018.

[26] Z. Huang, R. Hu, Y. Guo, E. Chan-Tin, and Y. Gong, “DP-ADMM:
ADMM-based distributed learning with differential privacy,” IEEE
Transactions on Information Forensics and Security, vol. 15, pp. 1002–
1012, 2020.

15

[27] F. Farokhi, N. Wu, D. Smith, and M. A. Kaafar, “The cost of privacy
in asynchronous differentially-private machine learning,” IEEE Trans-
actions on Information Forensics and Security, vol. 16, pp. 2118–2129,
2021.

[28] F. Yan, S. Sundaram, S. V. N. Vishwanathan, and Y. Qi, “Distributed
autonomous online learning: regrets and intrinsic privacy-preserving
properties,” IEEE Transactions on Knowledge and Data Engineering,
vol. 25, no. 11, pp. 2483–2493, 2013.

[29] J. C. Duchi, M. I. Jordan, M. J. Wainwright, and A. Wibisono, “Optimal
rates for zero-order convex optimization: the power of two function
evaluations,” IEEE Transactions on Information Theory, vol. 61, no. 5,
pp. 2788–2806, May 2015.

[30] M. Abadi, A. Chu, I. Goodfellow, H. B. McMahan, I. Mironov, K. Tal-
war, and L. Zhang, “Deep learning with differential privacy,” in Proc.
2016 ACM SIGSAC Conference on Computer and Communications
Security, 2016, pp. 308–318.

[31] P. A. Forero, A. Cano, and G. B. Giannakis, “Consensus-based dis-
tributed support vector machines,” Journal of Machine Learning Re-
search, vol. 11, pp. 1663–1707, Aug. 2010.

[32] M. Fredrikson, S. Jha, and T. Ristenpart, “Model inversion attacks that
exploit confidence information and basic countermeasures,” in Proc.
2015 ACM SIGSAC Conference on Computer and Communications
Security, Oct. 2015, pp. 1322–1333.

[33] Y. Hu, P. Liu, L. Kong, and D. Niu, “Learning privately over distributed
features: an ADMM sharing approach,” 2019. [Online]. Available:
http://arxiv.org/abs/1907.07735

[34] Z. Han, M. Hong, and D. Wang, Signal processing and networking for
big data applications. Cambridge University Press, 2017.

[35] C. Dwork and A. Roth, “The algorithmic foundations of differential
privacy,” Foundations and Trends in Theoretical Computer Science,
vol. 9, no. 3–4, pp. 211–407, Aug. 2014.

[36] C. Dwork, F. McSherry, K. Nissim, and A. Smith, “Calibrating noise to
sensitivity in private data analysis,” in Proc. Third Conference on Theory
of Cryptography. Springer-Verlag, 2006, pp. 265–284.

[37] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[38] Q. Li, B. Kailkhura, R. Goldhahn, P. Ray, and P. K. Varshney, “Robust
federated learning using ADMM in the presence of data falsifying
byzantines,” 2017. [Online]. Available: http://arxiv.org/abs/1710.05241

[39] ——, “Robust decentralized learning using ADMM with unreliable
agents,” 2018. [Online]. Available: http://arxiv.org/abs/1710.05241

[40] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, Jan. 2010.

[41] Y. Tang, J. Zhang, and N. Li, “Distributed zero-order algorithms
for nonconvex multi-agent optimization,” 2020. [Online]. Available:
https://arxiv.org/abs/1908.11444

[42] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, 2014.

[43] A. Papoulis and S. U. Pillai, Probability, random variables, and stochas-
tic processes, 4th ed. McGraw Hill, 2002.

Cristiano Gratton received both the B.Sc. and
M.Sc. degree in Mathematics from the University
of Udine (Italy) in 2014 and 2017, respectively.
He is pursuing the Ph.D. degree at the Department
of Electronic Systems, Norwegian University of
Science and Technology, Trondheim, Norway. His
research interests are around distributed optimization
and private data analysis.

Naveen K. D. Venkategowda Naveen K. D. Venkat-
egowda (S’12–M’17) received the B.E. degree in
electronics and communication engineering from
Bangalore University, Bengaluru, India, in 2008,
and the Ph.D. degree in electrical engineering from
Indian Institute of Technology, Kanpur, India, in
2016. He is currently an Universitetslektor at the
Department of Science and Technology, Linköping
University, Sweden. From Oct. 2017 to Feb. 2021,
he was postdoctoral researcher at the Department of
Electronic Systems, Norwegian University of Sci-

ence and Technology, Trondheim, Norway. He was a Research Professor at the
School of Electrical Engineering, Korea University, South Korea from Aug.
2016 to Sep. 2017. He was a recipient of the TCS Research Fellowship (2011-
15) from TCS for graduate studies in computing sciences and the ERCIM
Alain Bensoussan Fellowship in 2017.

Reza Arablouei received the Ph.D. degree in
telecommunications engineering from the Institute
for Telecommunications Research, University of
South Australia, Mawson Lakes, SA, Australia, in
2013. He was a Research Fellow with the Uni-
versity of South Australia from 2013 to 2015. He
is currently a Senior Research Scientist with the
Commonwealth Scientific and Industrial Research
Organisation (CSIRO), Pullenvale, QLD, Australia.
His research interests include signal processing and
machine learning on embedded systems.

Stefan Werner (SM’07) received the M.Sc. degree
in electrical engineering from the Royal Institute
of Technology, Stockholm, Sweden, in 1998, and
the D.Sc. degree (Hons.) in electrical engineering
from the Signal Processing Laboratory, Helsinki
University of Technology, Espoo, Finland, in 2002.
He is currently a Professor at the Department of
Electronic Systems, Norwegian University of Sci-
ence and Technology (NTNU), and Director of
IoT@NTNU. He is also an Adjunct Professor with
Aalto University in Finland and an Adjunct Se-

nior Research Fellow with the Institute for Telecommunications Research,
University of South Australia. He was a visiting Melchor Professor with
the University of Notre Dame during summer 2019 and held an Academy
Research Fellowship, funded by the Academy of Finland, from 2009 to 2014.
His research interests include adaptive and statistical signal processing, signal
processing for communications, and security and privacy in cyberphysical
systems. He is a member of the editorial boards for the EURASIP Journal
of Signal Processing and the IEEE Transactions on Signal and Information
Processing over Networks.

Distributed Ridge Regression with Feature

Partitioning

Cristiano Gratton∗, Naveen K. D. Venkategowda∗, Reza Arablouei†, Stefan Werner∗

∗ Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway
† CSIRO’s Data61, Pullenvale QLD 4069, Australia

Abstract—We develop a new distributed algorithm to solve
the ridge regression problem with feature partitioning of the
observation matrix. The proposed algorithm, named D-Ridge, is
based on the alternating direction method of multipliers (ADMM)
and estimates the parameters when the observation matrix is
distributed among different agents with feature (or vertical) par-
titioning. We formulate the associated ridge regression problem as
a distributed convex optimization problem and utilize the ADMM
to obtain an iterative solution. Numerical results demonstrate
that D-Ridge converges faster than its diffusion-based contender
does.

I. INTRODUCTION

With the recent advances in technology, ever-growing

amounts of data are constantly collected and stored on

electronic devices, which are often geographically dispersed.

Transporting the entire data to a central processing unit is often

unfeasible due to energy constraints or privacy concerns. In

addition, concentrating the data in a central hub can create

a single point of failure. Hence, we need algorithms that are

capable of processing data spread across multiple agents. They

ought to operate in a distributed fashion relying only on the

available local information [1]–[10].

Distributed solutions for learning, inference, or prediction

using sensor data are highly demanded in many of today’s data

analysis tasks pertaining to statistics, signal processing and

machine learning. In this context, an important data analysis

tool is the distributed multivariate linear regression.

In recent years, there have been several works describing

algorithms to distribute regression problems, i.e., [5]–[19]. In

particular, shrinkage methods such as ridge regression and

lasso have attracted a lot of attention since they play an

important role in preventing the problem from being ill-posed

due to possible rank deficiency of the observation matrix.

Moreover, such methods regularize the regression parameters

by imposing a penalty on their size or density to avoid

overfitting [6], [8], [19]–[21]. Example applications are in

wireless sensor networks operating under strict power budget

constraints where agents collecting and processing data are

distributed over a large geographical area [8].

A central issue in distributed regression is how the data

are distributed among agents. Horizontal partitioning of data

refers to the case when the data samples containing all features

This work was carried out during the tenure of an ERCIM ‘Alain Ben-
soussan’ Fellowship Programme and was partly supported by the Research
Council of Noway.

are distributed over the network. On the other hand, when

subsets of features of all data samples are distributed over the

agents, we have feature (vertical) partitioning of data [22].

Regression problems with horizontally partitioned data have

been considered for example in [7], [8], [23]. In the framework

of vertically partitioned data, some applications related to

clustering and classification have been considered in [24],

[25]. The regression problem with feature partitioning has

also previously been considered in [6], [19]–[21]. However,

works of [20], [21] assume a proper coloring scheme of the

network and cannot be extended to a general graph labeling.

The algorithm proposed in [19] is not truly distributed since

its consensus constraints involve the entire network instead of

each agent’s local neighborhood. The algorithm in [6] is fully

distributed and based on the diffusion strategy [26]. However,

as we will show later on, it converges relatively slowly.

In this paper, we solve the ridge regression problem with

feature partitioning of the observation matrix in a distributed

fashion using the alternating direction method of multipliers

(ADMM). The proposed algorithm, called D-Ridge, is fully

distributed and requires communications only among neigh-

boring agents. It also converges faster than the diffusion-

based algorithm of [6] and has a per-iteration per-agent

computational complexity order that is linear in the sample

size. In addition, D-Ridge does not require the agents to share

their local data or dual variables with the other agents but

only the primal variables, which are the estimate solutions of

the corresponding local optimization subproblems. Hence, D-

Ridge respects the possible data privacy of the agents. We

verify the convergence of D-Ridge to the centralized solution

at all agents through both theoretical analysis and simulations.

Our experiments with a verity of network topologies show that

D-Ridge outperforms its diffusion-based contender in terms of

convergence rate.

II. SYSTEM MODEL

We consider a network with K ∈ N agents modeled

as an undirected graph G(K, E) where the set of vertices

K := {1, . . . ,K} corresponds to the agents and the edge set

E represents the bidirectional communication links between

the pairs of agents. Agent k ∈ K can communicate with the

agents in its neighborhood set Nk whose cardinality is denoted

by |Nk|. The set Nk includes the agent k as well.

Let us denote the network-wide observations as an obser-

vation matrix X ∈ R
N×P and a response vector y ∈ R

N×1

where N is the number of data samples and P is the number

of features in each sample. The data collected at each agent k
are stored in the matrix Xk ∈ R

N×Pk where
∑K

k=1 Pk = P .

Due to feature partitioning, the observation matrix X ∈ R
N×P

consists of K submatrices Xk, i.e., X = [X1,X2, . . . ,XK].
Accordingly, the parameter vector β ∈ R

P×1 that establishes

a linear regression between X and y is a stack of K subvectors

βk ∈ R
Pk×1, i.e., β =

[

βT
1,β

T
2, . . . ,β

T
K

]T
.

In the centralized approach, a ridge regression estimator of

β is given by

β̂o = argmin
β

{‖y −Xβ‖22 + η ‖β‖22} (1)

where η > 0 is the regularization parameter. From the normal

equation associated with (1), the centralized estimate is given

by

β̂o = XT(XXT + ηIN)−1y (2)

where IN indicates the N ×N identity matrix.

Since computing a centralized solution of (1) over a network

may be inefficient, we propose a distributed algorithm for this

purpose in the following section.

III. DISTRIBUTED RIDGE REGRESSION VIA ADMM

We first discuss the consensus-based reformulation of the

ridge regression problem whose solution allows us to find a

distributed solution to (1) via the ADMM. Then, we describe

the construction steps and main properties of the proposed

algorithm for solving the resulting constrained minimization

problem. Finally, we establish the global convergence of D-

Ridge theoretically.

A. Consensus-Based Reformulation of Ridge Regression

Let us define a vector fo ∈ R
N×1 as

fo = (XXT + ηIN)−1y.

From (2), the part of βo corresponding to agent k can be

calculated as

β̂o
k = XT

kf
o. (3)

For computing fo at all agents using only in-network process-

ing of the locally available data, we propose a consensus-based

distributed algorithm. Note that fo is the unique minimizer of

the quadratic global cost function J (f) defined as

J (f) =
1

2
fT(XXT + ηIN)f − fTy. (4)

Since XXT =
∑K

k=1 XkX
T
k, fo is given by

fo = argmin
f

K
∑

k=1

Jk(f) (5)

where

Jk(f) =
1

2
fT
(

XkX
T
k +

η

K
IN

)

f −
δk
B
fTy, (6)

B ∈ N is the number of agents having access to y, and δk = 1
if y is available at agent k and δk = 0 otherwise.

We introduce the local variables F := {fk}
K
k=1 representing

the local copies of fo at the agents. Then, we reformulate

the unconstrained optimization problem (5) as the following

convex constrained minimization problem:

{fok}
K
k=1 = argmin

{fk}

K
∑

k=1

1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk
B
fT
ky

s.t. fk = fl, l ∈ Nk, k ∈ K. (7)

The equality constraints enforce local consensus over {fk}
across each agent’s neighborhood.

To solve (7) in a distributed fashion, we use the ADMM

[5]. Hence, we introduce the auxiliary local variables A :=
{gl

k}l∈Nk
and rewrite the problem (7) as

argmin
{fk}

K
∑

k=1

1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk
B
fT
ky

s.t. fk = gl
k, fl = gl

k, l ∈ Nk, k ∈ K, k 6= l. (8)

Using the auxiliary variables A yields an equivalent alter-

native representation of the constraints in (7). These vari-

ables are only used to derive the local recursions and are

eventually eliminated. Associating the Lagrange multipliers

V := {{µl
k}l∈Nk

, {λl
k}l∈Nk

}Kk=1 with the constraints in (8),

we have the following augmented Lagrangian function:

Lρ(F ,A,V) =
K
∑

k=1

(1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk
B
fT
ky

)

+
K
∑

k=1

∑

l∈Nk

(

(µl
k)

T(fk − gl
k) + (λl

k)
T(fl − gl

k)
)

+
ρ

2

K
∑

k=1

∑

l∈Nk

(

∥

∥fk − gl
k

∥

∥

2

2
+

∥

∥fl − gl
k

∥

∥

2

2

)

(9)

where the constant ρ > 0 is the penalty parameter.

Minimizing (7) through ADMM entails an iterative process

that is described in the next section.

B. Algorithm Description

The D-Ridge algorithm consists of three steps at each

iteration. First, the augmented Lagrangian function Lρ is

minimized with respect to F . Second, Lρ is minimized with

respect to A. Finally, the Lagrange multipliers in V are updated

through gradient-ascent [27].

Thanks to the reformulation of the original problem (5) as

(8), the augmented Lagrangian in (9) is decomposable both

with respect to variables in F , A and across agents.

Setting µk(m) = 2
∑

l∈Nk
µl

k(m), and using the Karush-

Kuhn-Tucker conditions of optimality [28] for (8), the aux-

iliary local variables A and multipliers V can be eliminated.

Algorithm 1 D-Ridge

At all agents k ∈ K, initialize fk(0), µk(0) to zero vectors,

and run locally

for m = 0, 1, . . . ,M do

Receive fk(m) from neighbors in Nk.

Update µk(m) as in (10).

Update fk(m+ 1) as in (11).

end for

Estimate β̂k = XT
kfk(M + 1).

Hence, the D-Ridge algorithm reduces to the following itera-

tive updates that are carried out locally at every agent:

µk(m) =µk(m− 1) + ρ
∑

l∈Nk

[fk(m)− fl(m)] (10)

fk(m+ 1) =argmin
{fk}

{1

2
fT
k

(

XkX
T
k +

η

K
IN

)

fk −
δk
B
fT
ky

+µT
k(m)fk + ρ

∑

l∈Nk

∥

∥

∥

∥

fk −
fk(m) + fl(m)

2

∥

∥

∥

∥

2

2

}

=
[

XkX
T
k +

(η

K
+ 2ρ|Nk|

)

IN

]−1

(δk
B
y − µk(m) + ρ|Nk|fk(m) + ρ

∑

l∈Nk

fl(m)
)

(11)

where m is the iteration index and all initial values

{fk(0)}k∈K, {µk(0)}k∈K are set to zero. The proposed ap-

proach is summarized in Algorithm 1.

Note that fk(m) is the only vector that is shared between the

agents at every iteration. The computation of (11) has a per-

iteration per-agent complexity of O(N3 +N2Pk). It involves

the inversion of the N ×N matrix XkX
T
k+

(

η
K
+2ρ|Nk|

)

IN

that may be computationally demanding for N ≫ Pk. How-

ever, this operation can be carried out off-line before running

the algorithm. We can also use the matrix inversion lemma to

obtain (XkX
T
k+cIN)−1 = c−1[IN−Xk(cIPk

+XT
kXk)

−1XT
k]

where c = η
K
+2ρ|Nk|. Hence, the dimensions of the matrix to

be inverted become Pk×Pk entailing a per-iteration per-agent

computational complexity of O(NP 2
k + P 3

k).
In the next subsection, we show that D-Ridge generates

sequences of local iterates fk(m), k = 1, . . . ,K, that, at each

agent k, converge to the global centralized solution fo as m →
∞.

C. Convergence Analysis

Convergence of the proposed algorithm is established by

verifying that both conditions for the ADMM to converge are

fulfilled, namely, for each agent k ∈ K, the cost function

Jk(f) is strongly convex and its gradient ∇fJk(f) is Lipschitz

continuous [29].

The function Jk(f) is strongly convex since it is twice

continuously differentiable and has a positive-definite Hessian

matrix:

∇2
f
Jk(f) = XkX

T
k +

η

K
IN ≻ 0.

1

2

3
4

5

6

7

8

9
10

Fig. 1. Topology of the considered multi-agent network.

Moreover, ∇fJk(f) is a linear function of f . Therefore, it

is Lipschitz continuous [30] with a Lipschitz constant being

the operator norm of ∇2
f
Jk(f).

IV. SIMULATIONS

The D-Ridge algorithm is tested here on a network of

K = 10 agents with the topology as shown in Fig. 1. Each

agent holds the data for two features. Therefore, Pk = 2,

k = 1, ...,K, and P = 20. The observation data matrix X

has N = 50 regressor vectors with independent zero-mean

multivariate Gaussian distribution as its rows. The relationship

between the entries of y, denoted by yn ∈ R, and the rows of

X, denoted by xn ∈ R
1×P , with n = 1, . . . , N , is governed

by

yn =
K
∑

k=1

xn,kβk + ǫn

where xn,k ∈ R
1×Pk is the part of xn that is available at agent

k and ǫn ∈ R is the zero-mean Gaussian noise with variance

σ2
ǫ = 0.1. The penalty parameter is set to ρ = 4 and, as in

[6], the regularization parameter is set to η = 10−3.

In Figs. 2-4, we plot the normalized mean squared er-

ror (MSE) versus the iteration index for D-Ridge and the

diffusion-based algorithm of [6] with different values of the

step-size µ.

The normalized MSE is defined as

nMSE(m) =

∑K
k=1 ‖βk(m)− βk‖

2
2

‖β‖22

where βk is given by (3) and βk(m) = XT
kfk(m).

The results in Figs. 2-4 are obtained by averaging over 100

independent trials. The number of agents having access to y,

i.e., B affects the convergence speed of D-Ridge, while it

does not have any significant effect on the performance of

the diffusion-based algorithm [6]. In Figs. 2-4, the regression

vector is placed in the agent k with the greatest |Nk| if B = 1,

while it is randomly placed over the network if B > 1.

Fig. 2 shows that D-Ridge converges significantly faster

than the diffusion-based algorithm, especially when all agents

have access to y, i.e., B = 10. Fig. 3 shows that the D-Ridge

algorithm converges faster as the number of agents that have

access to y increases. Fig. 4 shows that D-Ridge converges

faster than the diffusion-based algorithm irrespective of the

0 200 400 600 800 1000

10
-3

10
-2

10
-1

10
0

Fig. 2. Normalized MSE of D-Ridge and the diffusion-based algorithm with
different values of the step-size µ when one or all agents have access to y.

0 200 400 600 800 1000

10
-3

10
-2

10
-1

10
0

Fig. 3. Normalized MSE of D-Ridge for different values of B.

network topology. The performance of the algorithm with the

topology shown in Fig. 1 is compared to a linear topology with

the same number of agents where the agents are connected one

after the other, hence |Nk| = 3 for 1 < k < K and |Nk| = 2
for k = 1 and k = K.

V. CONCLUSION

In this paper, we developed a new consensus-based algo-

rithm for distributed solution of the ridge regression problem

with feature partitioning of the observation matrix. To this

end, we recast the ridge regression problem into an equivalent

constrained separable form, whose structure is suitable for

distributed implementation through ADMM. In the proposed

0 500 1000 1500 2000

10
-3

10
-2

10
-1

10
0

Fig. 4. Normalized MSE of D-Ridge and the diffusion-based algorithm for
the considered network topology and for the linear topology (L.T.).

algorithm, D-Ridge, the agents exchange messages only within

their neighborhoods. Simulation results showed that the se-

quences of local iterates generated by D-Ridge converge to the

centralized solution faster than the diffusion-based algorithm

does.

REFERENCES

[1] N. K. D. Venkategowda and S. Werner, “Privacy-preserving distributed
precoder design for decentralized estimation,” in Proc. IEEE Global

Conference on Signal and Information Processing, Nov. 2018.

[2] C. Li, S. Huang, Y. Liu, and Z. Zhang, “Distributed jointly sparse
multitask learning over networks,” IEEE Transactions on Cybernetics,
vol. 48, no. 1, pp. 151–164, Jan. 2018.

[3] J. Akhtar and K. Rajawat, “Distributed sequential estimation in wireless
sensor networks,” IEEE Transactions on Wireless Communications,
vol. 17, no. 1, pp. 86–100, Jan. 2018.

[4] S. P. Talebi, S. Werner, and D. P. Mandic, “Distributed adaptive filtering
of α-stable signals,” IEEE Signal Processing Letters, vol. 25, no. 10,
pp. 1450–1454, Oct. 2018.

[5] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting

Methods in Communication, Imaging, Science, and Engineering, ser.
Scientific Computation, R. Glowinski, S. J. Osher, and W. Yin, Eds.
Cham: Springer International Publishing, 2016.

[6] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Model-
distributed solution of regularized least-squares problem over sensor
networks,” in Proc. 2015 IEEE International Conference on Acoustics,

Speech and Signal Processing, Apr. 2015, pp. 3821–3825.

[7] R. Arablouei, S. Werner, and K. Doğançay, “Diffusion-based distributed
adaptive estimation utilizing gradient-descent total least-squares,” in
Proc. IEEE International Conference on Acoustics, Speech and Signal

Processing, May 2013, pp. 5308–5312.

[8] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Transactions on Signal Processing, vol. 58,
no. 10, pp. 5262–5276, Oct. 2010.

[9] I. Schizas, G. Mateos, and G. Giannakis, “Distributed LMS for
consensus-based in-network adaptive processing,” IEEE Transactions on

Signal Processing, vol. 57, no. 6, pp. 2365–2382, Jun. 2009.

[10] G. Mateos, I. Schizas, and G. Giannakis, “Distributed recursive least-
squares for consensus-based in-network adaptive estimation,” IEEE

Transactions on Signal Processing, vol. 57, no. 11, pp. 4583–4588, Nov.
2009.

[11] A. Bertrand and M. Moonen, “Consensus-based distributed total least
squares estimation in ad hoc wireless sensor networks,” IEEE Transac-

tions on Signal Processing, vol. 59, no. 5, pp. 2320–2330, May 2011.
[12] ——, “Low-complexity distributed total least squares estimation in ad

hoc sensor networks,” IEEE Transactions on Signal Processing, vol. 60,
no. 8, pp. 4321–4333, Aug. 2012.

[13] R. Abdolee and B. Champagne, “Diffusion LMS strategies in sensor net-
works with noisy input data,” IEEE/ACM Transactions on Networking,
vol. 24, no. 1, pp. 3–14, Feb. 2016.

[14] L. Lu, H. Zhao, and B. Champagne, “Diffusion total least-squares
algorithm with multi-node feedback,” Signal Processing, Jul. 2018.

[15] R. Arablouei, S. Werner, Y.-F. Huang, and K. Doğançay, “Distributed
least mean-square estimation with partial diffusion,” IEEE Transactions

on Signal Processing, vol. 62, no. 2, pp. 472–484, Jan. 2014.
[16] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Adaptive

distributed estimation based on recursive least-squares and partial dif-
fusion,” IEEE Transactions on Signal Processing, vol. 62, no. 14, pp.
3510–3522, Jul. 2014.

[17] R. Arablouei, S. Werner, and K. Doğançay, “Partial-diffusion recursive
least-squares estimation over adaptive networks,” in Proc. 2013 5th IEEE

International Workshop on Computational Advances in Multi-Sensor

Adaptive Processing, Dec. 2013, pp. 89–92.
[18] R. Arablouei, K. Doğançay, and S. Werner, “Reduced-complexity

distributed least-squares estimation over adaptive networks,” in Proc.

2013 IEEE 14th Workshop on Signal Processing Advances in Wireless

Communications, Jun. 2013, pp. 150–154.
[19] N. Kashyap, S. Werner, Y.-F. Huang, and R. Arablouei, “Privacy

preserving decentralized power system state estimation with phasor
measurement units,” in Proc. 2016 IEEE Sensor Array and Multichannel

Signal Processing Workshop, Jul. 2016, pp. 1–5.

[20] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel,
“Distributed basis pursuit,” IEEE Transactions on Signal Processing,
vol. 60, no. 4, pp. 1942–1956, Apr. 2012.

[21] ——, “D-admm: A communication-efficient distributed algorithm for
separable optimization,” IEEE Transactions on Signal Processing,
vol. 61, no. 10, pp. 2718–2723, May 2013.

[22] H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
Models, limits, and algorithms,” IEEE Transactions on Signal Process-

ing, vol. 59, no. 1, pp. 386–398, Jan. 2011.
[23] J. Predd, S. Kulkarni, and H. Poor, “Distributed learning in wireless

sensor networks,” IEEE Signal Processing Magazine, vol. 23, no. 4, pp.
56–69, Jul. 2006.

[24] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” in Proc. 9th ACM International Conference

on Knowledge Discovery and Data Mining, 2003, pp. 206–215.
[25] O. L. Mangasarian, E. W. Wild, and G. M. Fung, “Privacy-preserving

classification of vertically partitioned data via random kernels,” ACM

Transactions on Knowledge Discovery from Data, vol. 2, no. 3, Oct.
2008.

[26] A. H. Sayed, “Adaptive Networks,” Proceedings of the IEEE, vol. 102,
no. 4, pp. 460–497, Apr. 2014.

[27] D. P. Bertsekas, Parallel and distributed computation : numerical

methods. Englewood Cliffs, N.J: Prentice-Hall, 1989.
[28] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge

University Press, 2004.
[29] T. Lin, S. Ma, and S. Zhang, “On the global linear convergence of

the admm with multiblock variables,” SIAM Journal on Optimization,
vol. 25, no. 3, pp. 1478–1497, Jan. 2015.

[30] K. Eriksson, Applied Mathematics: Body and Soul : Volume 1: Deriva-

tives and Geometry in IR3, 2004.

Distributed Learning over Networks with
Non-Smooth Regularizers and Feature Partitioning

Cristiano Gratton∗, Naveen K. D. Venkategowda†, Reza Arablouei‡, Stefan Werner∗
∗ Department of Electronic Systems, Norwegian University of Science and Technology, Trondheim, Norway

† Department of Science and Technology, Linköping University, Norrköping, Sweden
‡ CSIRO’s Data61, Pullenvale QLD 4069, Australia

Abstract—We develop a new algorithm for distributed learning
with non-smooth regularizers and feature partitioning. To this
end, we transform the underlying optimization problem into
a suitable dual form and solve it using the alternating direc-
tion method of multipliers. The proposed algorithm is fully-
distributed and does not require the conjugate function of any
non-smooth regularizer function, which may be unfeasible or
computationally inefficient to acquire. Numerical experiments
demonstrate the effectiveness of the proposed algorithm.

I. INTRODUCTION

An important issue associated with distributed learning is
how the data is distributed among the agents. Horizontal
partitioning of data refers to when subsets of data samples
with a common set of features are distributed over the
network. Examples of learning with horizontal partitioning
of data can be found in [1]–[4]. However, many regression
or classification problems encountered in machine learning
deal with heterogeneous data that do not contain common
features. These problems lead to the so-called feature (column)
partitioning of the data where subsets of features of all data
samples are distributed over the network agents. Distributed
learning problems with feature partitioning also arise in several
signal processing applications, e.g., bioinformatics, multi-view
learning, and dictionary learning, as mentioned in [5], [6].

There have been several attempts to solve learning problems
with feature partitioning of data, e.g., in [5]–[19]. However,
the algorithms in [8], [9] can only be used to solve the basis
pursuit and lasso problems, respectively, while the work in [10]
is based on assuming an appropriate coloring scheme of the
network and cannot be extended to a general graph labeling.
The algorithms developed in [6], [11], [12] are based on the
diffusion strategy. In contrast, the approaches in [5], [13] are
based on the consensus strategy. However, [5] is not fully dis-
tributed since the consensus constraints are imposed globally
across the entire network rather than being applied locally
within each agent’s neighborhood. Although the algorithm in
[13] is fully distributed, it assumes a specific structure for the
objective function and is only suitable for ridge regression.
The works of [14]–[17] consider distributed agent-specific
estimation. However, the objective functions considered in
these works are smooth. The authors of [18] propose a
coordinate-descent-based algorithm with an inexact update to
reduce communication costs for feature-partitioned distributed
learning. In [19], an asynchronous stochastic gradient-descent

algorithm was developed for distributed learning with feature
partitioning of data. However, none of the above-mentioned
algorithms consider distributed problems with general non-
smooth regularization and arbitrary graphs.

In this paper, we develop a new fully-distributed algorithm
for distributed learning with non-smooth regularizers and
feature partitioning of data. We consider a general regularized
learning problem whose cost function cannot be written as
the sum of the local agent-specific cost functions, i.e., it is
not separable. To achieve separability, we formulate the dual
problem associated with the underlying convex optimization
problem and exploit its favorable structure that, unlike the
original problem, allows us to solve it by utilizing the alternat-
ing direction method of multipliers (ADMM). By utilizing the
dual of the optimization problem associated with the ADMM
primal variable update step, we devise a new strategy that
does not require any conjugate function of the non-smooth
regularizers, which may be infeasible or hard to obtain in some
scenarios. The proposed algorithm is fully-distributed as every
agent communicates only with its neighboring agents and no
central coordinator is needed. Our simulation results show that
the proposed algorithm converges in various scenarios.

Notations: The operators (·)T and tr(·) denote transpose and
trace of a matrix, respectively. ‖·‖ represents the Euclidean
norm of its vector argument. In is an identity matrix of size
n, 0n is an n×1 vector with all zeros, 0n×p = 0n0

T
p , and | · |

denotes the cardinality if its argument is a set. For a function
f , f∗ denotes the conjugate function of f .

II. SYSTEM MODEL

We consider a network with N ∈ N agents and E ∈ N edges
that is modeled as an undirected graph G(V, E) with the set of
vertices V = {1, . . . , N} corresponding to the agents and the
set of edges E representing the bidirectional communication
links between the pairs of agents. Agent i ∈ V communicates
only with its neighbors specified by the set Vi.

Due to feature partitioning, the data of each agent i resides
in the matrix Ai ∈ RM×Pi and the response vector b ∈ RM×1

where M is the number of data samples and Pi the number of
features in each sample at agent i. The feature vector at agent
i that relates Ai and b is denoted by xi ∈ RPi×1.

We consider a regularized learning problem of form

min
{xi}

f
(∑N

i=1Aixi − b
)
+

N∑
i=1

ri(xi) (1)

where f(·) is the global cost function and ri(·), i = 1, . . . , N ,
are the agent-specific regularizer functions. The learning prob-
lem (1) pertains to several applications in machine learning,
e.g., regression over distributed features [5], clustering in
graphs [20], smart grid control [21], dictionary learning [22],
and network utility maximization [23]. In this work, we con-
sider learning problems where functions ri(·), i = 1, . . . , N ,
are convex, proper, and lower semi-continuous but not neces-
sarily smooth and f(·) = ‖·‖2. In the next section, we solve
(1) in a distributed manner, where each agent communicates
only with its neighbors.

III. DISTRIBUTED ALGORITHM FOR LEARNING WITH
FEATURE PARTITIONING

First, we present the reformulation of the considered non-
separable problem into a dual form that is separable and can be
solved in a fully-distributed fashion via the ADMM. Then, we
describe the new strategy that allows us to employ the ADMM
without computing any conjugate function of the non-smooth
regularizers explicitly.

A. Distributed ADMM for the Dual Problem

To develop a distributed solution, we introduce the auxiliary
variables {zi}Ni=1 and recast (1) as

min
{xi,zi}

f
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi)

s. t. Aixi = zi, i = 1, . . . , N.

(2)

The objective function in (2) is not separable among the
agents. Therefore, we consider the dual problem of (2). For
this purpose, we associate the Lagrange multipliers {µi}Ni=1

with the equality constraints in (2) and form the Lagrangian
function L({xi}, {zi}, {µi}). The dual function for problem
(2) is given by

d({µi}) = inf
{xi,zi}

L({xi}, {zi}, {µi})

=−
N∑
i=1

r∗i (−AT
i µi) + inf

zi

{
f(

N∑
i=1

zi − b)−
N∑
i=1

µT
i zi

} (3)

where r∗i is the conjugate function of r defined as

r∗i (y) = sup
x

yTx− ri(x).

Next, for the second infimum in (3), introducing

z =
N∑
i=1

zi

and its corresponding dual variable λ, and using the duality
theory, an alternate form of the dual function (3) is obtained
as

d̃({µi},λ) =

−f̃∗(λ)−
N∑
i=1

r∗i (−AT
i µi), λ = µi, ∀i ∈ V

−∞, otherwise
(4)

where
f̃∗(λ) = f∗(λ) + λTb.

Eliminating the redundant variable λ, the dual problem for
(2) can be expressed as

max
{µi}

− 1

N

N∑
i=1

f̃∗(µi)−
N∑
i=1

r∗i (−AT
i µi)

s. t. µ1 = µ2 = · · · = µN .

(5)

To solve (5) in a distributed fashion, we employ the ADMM
[24]. First, we recast (5) as a constrained minimization prob-
lem by imposing consensus constraints across each agent’s
neighborhood Vi as follows

min
{µi},{uj

i}

1

N

N∑
i=1

f̃∗(µi) +
N∑
i=1

r∗i (−AT
i µi)

s. t. µi = uj
i , µj = uj

i , j ∈ Vi, i = 1, . . . , N.

(6)

To facilitate a fully-distributed solution, we decouple the
constraints in (5) by introducing the auxiliary variables
{uj

i}j∈Vi
. Then, we generate the relevant augmented La-

grangian function by associating the Lagrange multipliers
{v̄j

i }j∈Vi
, {ṽj

i }j∈Vi
with the consensus constraints. In [24],

it is shown that, by setting

v
(k)
i = 2

∑
j∈Vi

(v̄j
i)

(k),

the Lagrange multipliers {ṽj
i }j∈Vi

and the auxiliary variables
{uj

i}j∈Vi are eliminated and the ADMM reduces to an itera-
tive procedure with two steps at each iteration as

µ
(k)
i =argmin

µi

{ 1

N
f∗(µi) +

1

N
µT

i b+ r∗i (−AT
i µi)

+ µT
i v

(k−1)
i + ρ

∑
j∈Vi

∥∥∥µi −
µ
(k−1)
i + µ

(k−1)
j

2

∥∥∥2},
(7)

v
(k)
i =v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j). (8)

where ρ > 0 is the penalty parameter.
Since ri(·), i = 1, . . . , N , are non-smooth, the minimization

problem in (7) can be solved by employing appropriate subgra-
dients or proximal operators [25], [26]. However, computing
the conjugate function of the regularizers in (7) may be
hard. To overcome this challenge, in the next subsection, we
describe a new procedure that does not require the explicit
calculation of any conjugate function.

B. ADMM with no Conjugate Function

In order to solve the problem in (7), we need to calculate
the conjugate function of r∗i . This can be difficult, especially
for non-smooth functions. We exploit the Fenchel-Moreau
theorem to eliminate the computation of conjugate function.

To that end, the problem in (7) can be restated as

min
{µi,νi}

f∗(µi) + µ
T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i + ρ̄i ‖µi‖22

s. t. AT
i µi + νi = 0

(9)
where

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j

and ρ̄i = ρ|Vi|. The Lagrangian function for (9) is

L(µi,νi,θi) =
f∗(µi) + µ

T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i

+ ρ̄i ‖µi‖22 + θ
T
i (A

T
i µi + νi)

(10)

where θi is the Lagrange multiplier vector associated with the
constraint in (9). Hence, the dual function for the objective in
(9) can be expressed as

δ(θi) = inf
{µi,νi}

L(µi,νi,θi)

= inf
νi

{r∗i (νi) + θTi νi}

+ inf
µi

{f∗(µi) + µ
T
i b

N
+ (c

(k−1)
i +Aiθi)

Tµi + ρ̄i ‖µi‖2
}

=− r∗∗i (−θi)

+ inf
µi

{f∗(µi)

N
+

(
c
(k−1)
i +Aiθi +

b

N

)T

µi + ρ̄i ‖µi‖2
}

(11)
where the last equality follows from the definition of conjugate
function.

For f(·) = ‖·‖2, the conjugate function is given by
f∗(µi) = ‖µi‖2 /4. Thus, the optimal value of second
infimum of the dual function in (11) is

−1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2
and the infimum is attained at the optimal point

µo
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

o
i + c

(k−1)
i +

b

N

)
(12)

where θoi = argmaxθi
δ(θi). Since ri(·) is convex, proper,

and lower semi-continuous, we have r∗∗i = ri due to the
Fenchel-Moreau theorem [27]. Therefore, the dual function
is given by

δ(θi) = −ri(−θi)−
1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2 .
(13)

Algorithm 1 Proposed algorithm for feature-partitioned dis-
tributed learning

At all agents i ∈ V , initialize µ(0)
i = 0, v

(0)
i = 0, and

locally run:
for k = 1, 2, . . . ,K do

Update θ(k)i via (14).
Update the dual variables µ(k)

i via (15).
Share µ(k)

i with the neighbors in Vi.
Update the Lagrange multipliers v

(k)
i via (16).

Update the auxiliary variables c
(k)
i via (17).

end for

Using (12) and (13), the ADMM steps in (7) and (8) can
be equivalently expressed as

θ
(k)
i = argmin

θi

{
ri(−θi)

+
1

4ρ|Vi|+ 1
N

∥∥∥∥Aiθi + c
(k−1)
i +

b

N

∥∥∥∥2} (14)

µ
(k)
i =

−2

4ρ|Vi|+ 1
N

(
Aiθ

(k)
i + c

(k−1)
i +

b

N

)
(15)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (16)

c
(k)
i = v

(k)
i − ρ|Vi|µ(k)

i − ρ
∑
j∈Vi

µ
(k)
j . (17)

The proposed algorithm is summarized in Algorithm 1. Note
that the minimization problem in (14) can be solved using
standard optimization techniques, or alternatively, subgradient-
based algorithms [28]. Regardless of the technique used to
solve (14), the proposed algorithm converges according to [28,
Section 3.6.2]. Convergence of Algorithm 1 follows from [1,
Proposition 2] and [29]. Moreover, due to the strong duality
theorem, we have θoi = xo

i , i.e., the optimal dual variable θoi
at agent i is the optimal estimate xo

i [30].

IV. SIMULATIONS

To illustrate the performance of the proposed algorithm, we
consider the elastic-net regression problem [31] and bench-
mark the proposed algorithm against a broadcast-based al-
gorithm for learning with distributed features [5]. The only
existing work considering non-smooth distributed learning
with feature partitioning over general graphs is [5]. Therefore,
we compared our algorithm only with this algorithm to provide
a comparison that is as fair as possible. In a centralized setting,
the optimal solution xc is obtained as

xc = argmin
x

‖Ax− b‖22 + η1 ‖x‖1 + η2 ‖x‖22 (18)

where
A = [A1,A2, . . . ,AN]

x =
[
xT
1 , x

T
2 , . . . ,x

T
N

]T
,

0 100 200 300 400 500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

Fig. 1. Normalized error of the proposed algorithm and the broadcast-based
algorithm of [5] with N = 20 agents and different values of Pi.

0 100 200 300 400 500

itearations

10
-4

10
-2

10
0

10
2

n
o

rm
a

liz
e

d
 e

rr
o

r

Fig. 2. Normalized error of the proposed algorithm and the broadcast-based
algorithm of [5] with Pi = 10 and different values of N .

and η1 ∈ R+ and η2 ∈ R+ are the regularization parameters.
In the distributed setting, we solve the problem (1) with

f(xi) =

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
2

,

ri(xi) = η1 ‖xi‖1 + η2 ‖xi‖2 .

We test the proposed algorithm on a multi-agent network
with a random topology, where each agent links to three other
agents on average. For each agent i ∈ V , we create a 2Pi×Pi

local observation matrix Ai whose entries are independent
identically distributed Gaussian random variables with zero

mean and unit variance. The response vector b is obtained as

b = Aω +ψ

where ω ∈ RP , P =
∑N

i=1 Pi, and ψ ∈ RM are drawn from
the distributions N (0, IP) and N (0, 0.1IM), respectively. The
regularization parameters are set to η1 = η2 = 1 and
penalty parameter to ρ = 1. The performance of the proposed
algorithm is evaluated using the normalized error ε(k) between
the centralized solution xc as per (18) and the solution from
Algorithm 1 at iteration k denoted by

xd(k)=
[
(x

(k)
1)T, . . . , (x

(k)
N)T

]T
.

The normalized error is defined as

ε(k) =

∥∥xd(k)− xc
∥∥2

‖xc‖2
.

The centralized solution xc is computed using the optimization
toolbox CVX [32]. Results are obtained by averaging over 100
independent trials.

Fig. 1 shows that, for N = 20 agents, the proposed
algorithm converges when the number of parameters at the
ith agent is Pi = 10 and Pi = 40, ∀i ∈ V . Fig. 2 shows
that the proposed algorithm converges when Pi = 10 and the
network consists of 20 or 50 agents. The faster convergence of
the broadcast-based algorithm of [5] is due to its centralized
processing.

V. CONCLUSION

We developed a fully-distributed algorithm for learning with
non-smooth regularization functions under distributed features.
We reformulated the underlying problem into an equivalent
dual form and used the ADMM to solve it in a distributed
fashion without using any conjugate function. To the best of
our knowledge, the proposed algorithm is the first of its kind
that solves the feature-distributed learning problems with non-
smooth regularizer functions over arbitrary graphs while not
relying on any conjugate function. We verified the convergence
of the proposed algorithm at all agents via simulation results.

REFERENCES

[1] G. Mateos, J. A. Bazerque, and G. B. Giannakis, “Distributed sparse
linear regression,” IEEE Trans. Signal Process., vol. 58, no. 10, pp.
5262–5276, Oct. 2010.

[2] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Consensus-based distributed total least-squares estimation using para-
metric semidefinite programming,” in Proc. IEEE International Con-
ference on Acoustics, Speech and Signal Processing, May 2019, pp.
5227–5231.

[3] ——, “Distributed learning with non-smooth objective functions,” in
Proc. 28th European Signal Processing Conference, Jan. 2021, pp.
2180–2184.

[4] A. Bertrand and M. Moonen, “Consensus-based distributed total least
squares estimation in ad hoc wireless sensor networks,” IEEE Transac-
tions on Signal Processing, vol. 59, no. 5, pp. 2320–2330, May 2011.

[5] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, Jan. 2010.

[6] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977–992, Feb. 2019.

[7] H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
Models, limits, and algorithms,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 1, pp. 386–398, Jan. 2011.

[8] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel,
“Distributed basis pursuit,” IEEE Transactions on Signal Processing,
vol. 60, no. 4, pp. 1942–1956, Apr. 2012.

[9] C. Manss, D. Shutin, and G. Leus, “Distributed splitting-over-features
sparse bayesian learning with alternating direction method of multipli-
ers,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2018, pp. 3654–3658.

[10] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “D-
ADMM: A communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no. 10,
pp. 2718–2723, May 2013.

[11] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Model-
distributed solution of regularized least-squares problem over sensor
networks,” in Proc. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, Apr. 2015, pp. 3821–3825.

[12] S. A. Alghunaim, M. Yan, and A. H. Sayed, “A multi-agent primal-dual
strategy for composite optimization over distributed features,” in Proc.
28th European Signal Processing Conference, Jan. 2021, pp. 2095–2099.

[13] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed ridge regression with feature partitioning,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, Oct. 2018.

[14] J. Szurley, A. Bertrand, and M. Moonen, “Topology-independent dis-
tributed adaptive node-specific signal estimation in wireless sensor
networks,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 1, pp. 130–144, 2017.

[15] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS for clustered
multitask networks,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2014, pp. 5487–5491.

[16] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
incremental-based LMS for node-specific adaptive parameter estima-
tion,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp.
5382–5397, 2014.

[17] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific adaptive parameter estimation,”
IEEE Transactions on Signal Processing, vol. 63, no. 13, pp. 3448–3460,
2015.

[18] B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient
distributed learning with feature partitioned data,” in 2018 52nd Annual

Conference on Information Sciences and Systems (CISS), Mar. 2018, pp.
1–6.

[19] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A collaborative machine
learning framework for distributed features,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2232–2240.

[20] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and
optimization in large graphs,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2015, p. 387–396.

[21] T. Chang, A. Nedić, and A. Scaglione, “Distributed constrained op-
timization by consensus-based primal-dual perturbation method,” IEEE
Transactions on Automatic Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[22] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over
distributed models,” IEEE Transactions on Signal Processing, vol. 63,
no. 4, pp. 1001–1016, 2015.

[23] D. P. Palomar and Mung Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[24] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting
Methods in Communication, Imaging, Science, and Engineering, ser.
Scientific Computation, R. Glowinski, S. J. Osher, and W. Yin, Eds.
Cham: Springer International Publishing, 2016.

[25] D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[26] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in Optimization, vol. 1, no. 3, p. 127–239, Jan. 2014.
[27] J. M. Borwein and A. S. Lewis, Convex analysis and nonlinear opti-

mization: theory and examples. Springer, 2006.
[28] Z. Han, M. Hong, and D. Wang, Signal processing and networking for

big data applications. Cambridge University Press, 2017.
[29] P. Tseng, “Convergence of a block coordinate descent method for

nondifferentiable minimization,” Journal of Optimization Theory and
Applications, vol. 109, pp. 475–494, Jan. 2001.

[30] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge
University Press, 2004.

[31] H. Zou and T. Hastie, “Regularization and variable selection via the
elastic net,” Journal of the Royal Statistical Society. Series B (Statistical
Methodology), vol. 67, no. 2, pp. 301–320, 2005.

[32] M. Grant and S. Boyd, “CVX: Matlab software for disciplined convex
programming, version 2.1,” http://cvxr.com/cvx, 2014.

1

Decentralized Optimization with Distributed
Features and Non-Smooth Objective Functions

Cristiano Gratton, Naveen K. D. Venkategowda, Member, IEEE, Reza Arablouei,
and Stefan Werner, Senior Member, IEEE

Abstract—We develop a new consensus-based distributed algo-
rithm for solving learning problems with feature partitioning and
non-smooth convex objective functions. Such learning problems
are not separable, i.e., the associated objective functions cannot
be directly written as a summation of agent-specific objective
functions. To overcome this challenge, we redefine the underlying
optimization problem as a dual convex problem whose structure
is suitable for distributed optimization using the alternating
direction method of multipliers (ADMM). Next, we propose a
new method to solve the minimization problem associated with
the ADMM update step that does not rely on any conjugate
function. Calculating the relevant conjugate functions may be
hard or even unfeasible, especially when the objective function
is non-smooth. To obviate computing any conjugate function,
we solve the optimization problem associated with each ADMM
iteration in the dual domain utilizing the block coordinate
descent algorithm. Unlike the existing related algorithms, the
proposed algorithm is fully distributed and does away with the
conjugate of the objective function. We prove theoretically that
the proposed algorithm attains the optimal centralized solution.
We also confirm its network-wide convergence via simulations.

Index Terms—Alternating direction method of multipliers,
distributed optimization, learning with feature partitioning.

I. INTRODUCTION

PERFORMING data analytic tasks at a central process-
ing unit in a distributed network can be infeasible due

to the associated computing/communication costs or privacy
issues. In addition, collecting all the data in a central hub
creates a single point of failure. Therefore, it is necessary to
develop algorithms that facilitate in-network processing and
model learning using data collected by nodes/agents that are
dispersed over a network [2]–[7]. Distributed optimization
problems pertain to several applications in statistics [2], [3],
signal processing [4], [5], machine learning, and control [6],
[7].

An essential aspect of distributed learning is how the data
is distributed among the agents that determines what each
agent intends to or is able to learn. Horizontal partitioning
of data refers to the case when the data samples containing

This work was partly supported by the Research Council of Noway. A
conference precursor of this work appears in the Proceedings of the European
Signal Processing Conference, Dublin, Ireland, August 2021 [1].

C. Gratton and S. Werner are with the Department of Electronic Sys-
tems, Norwegian University of Science and Technology, Trondheim, Norway
(email:cristiano.gratton@ntnu.no; stefan.werner@ntnu.no).

N. K. D. Venkategowda is with the Department of Science
and Technology, Linköping University, Norrköping, Sweden (email:
naveen.venkategowda@liu.se)

R. Arablouei is with the Commonwealth Scientific and
Industrial Research Organisation, Pullenvale QLD 4069, Australia
(email:reza.arablouei@csiro.au).

all features are distributed over the network. That is, all
the agents estimate the same common model. Examples of
learning with horizontal partitioning of data can be found in
[2], [4], [8], [9]. On the other hand, when subsets of the
features of all data samples are distributed over the network
agents, we have feature partitioning of the data and every
agent estimates a local model that is a part of the network-
wide model. In the machine learning terminology, features
are the descriptors or measurable characteristics of the data
samples. In regression analysis, they may be called predictors
or independent explanatory variables.

Several machine learning problems deal with heterogeneous
distributed data that common features cannot describe. For
example, in multi-agent systems, each agent may acquire data
to learn a local model and refrains from sharing the data with
other agents due to resource constraints or privacy concerns.
However, the aggregate data can be exploited to enhance
accuracy or augment inference due to the correlation of the
data across agents. In the Internet of things, a device may only
be interested in estimating its own local model parameters.
However, multiple devices distributed over an ad hoc network
may be able to collectively process the network-wide data and
enhance the estimation/inference quality. Distributed learning
problems with feature partitioning arise in several signal pro-
cessing applications, e.g., bioinformatics, multi-view learning,
and dictionary learning, as mentioned in [10], [11]. Data
with feature partitioning can also be referred to as attribute-
distributed data [12], vertically-partitioned data [13], [14], data
with column-partitioning [15], or heterogeneous data [12].

A. Related Works
Learning problems with feature partitioning of data have

been considered in [1], [3], [10], [11], [15]–[28]. The al-
gorithms proposed in [15], [16] solve the basis pursuit and
lasso problems, respectively. The work of [17] assumes an
appropriate coloring scheme of the network and cannot be
extended to a general graph labeling.

The algorithms proposed in [10], [18]–[21] are not fully
distributed since their consensus constraints involve the entire
network instead of each agent’s local neighborhood. Further-
more, the algorithms proposed in [18], [19] only solve the
ridge regression problem, while the works of [20], [21] assume
the cost function to be convex and smooth with Lipschitz-
continuous gradient. Both algorithms proposed in [20], [21]
can only be used for minimization problems with `2-norm
regularization (ridge penalty) and rely on the computation of
the conjugate of the cost function.

2

TABLE I
COMPARATIVE SUMMARY

fully
distributed

non-smooth
cost function

non-smooth
regularizer

no conjugate
function

[1] X X
[3] X
[10] X X
[11] X X
[15] X X
[16] X X
[17] X X
[18] X
[20]
[19] X
[21]
[22] X X X
[23] X X
[24] X X
[25] X
[26] X X
[27] X X
[28] X
[29] X X
[30] X X
[31] X X
[32] X X

proposed X X X X

The algorithms in [11], [22]–[24] are based on the dif-
fusion strategy, which is suitable when stochastic gradients
are available. Furthermore, the work in [11] assumes that the
cost function is convex and smooth with Lipschitz-continuous
gradient. The algorithm developed in [22] relies on the cal-
culation of the relevant conjugate functions. In addition, it
assumes that the cost function is convex and smooth, and
the regularization functions are strongly convex. The work of
[23] also assumes that the regularizer functions are smooth
and strongly convex. Moreover, it relies on the computation
of conjugate functions similar to the algorithms proposed in
[25], [26]. The diffusion-based algorithm proposed in [24]
only solves the ridge regression problem. The consensus-based
algorithm of [3] is also designed for ridge regression with
feature partitioning. It outperforms the algorithm proposed in
[24] in terms of convergence speed.

The algorithm proposed in [1] is designed for an `2-
norm-square cost function and hence cannot be extended
to general objective functions. The works of [29]–[32] con-
sider distributed agent-specific parameter estimation prob-
lem. However, the objective functions considered in these
works are smooth. The authors of [27] propose a distributed
coordinate-descent algorithm to reduce the communication
cost in distributed learning with feature partitioning. However,
the cost function in [27] is assumed to be strongly convex and
smooth. The work of [28] considers an asynchronous stochas-
tic gradient-descent algorithm for learning with distributed
features. However, the objective function in [28] is assumed
to be smooth.

None of the above-mentioned existing algorithms for dis-
tributed learning with feature partitioning is designed for opti-
mizing generic non-smooth objective functions over arbitrary
graphs without using or computing any conjugate function.

B. Contributions

In this paper, we develop a new fully-distributed algorithm
for solving learning problems when the data is distributed
among agents in feature partitions and computing the conju-
gate of the possibly non-smooth cost or regularizer functions
is challenging or unfeasible. We consider a general regularized
non-smooth learning problem whose cost function cannot be
written as the sum of local agent-specific cost functions, i.e.,
it is not separable as in (2) ahead.

To tackle the problem, we articulate the associated dual op-
timization problem and utilize the alternating direction method
of multipliers (ADMM) to solve it as, unlike the original
problem, its structure is suitable for distributed treatment via
the ADMM. We then consider the dual of the optimization
problem associated with the ADMM update step and solve
it via the block coordinate-descent (BCD) algorithm. In that
manner, we devise an approach that enables us to avoid the
explicit computation of any conjugate function, which may be
hard or infeasible for some objective functions. The proposed
algorithm is fully distributed, i.e., it only relies on single-hop
communications among neighboring agents and does not need
any central coordinator or processing hub. We demonstrate
that the proposed algorithm approaches the optimal centralized
solution at all agents. Our experiments show that the proposed
algorithm converges to the optimal solution in various scenar-
ios and is competitive with the relevant existing algorithms
even when dealing with problems that, unlike its contenders,
it is not tailored for.

In Table I, we provide a comparative summary of the
proposed algorithm with respect to the most relevant existing
ones in terms of the key features of being fully distributed,
ability to handle non-smooth cost or regularization functions,
and non-reliance on any conjugate function.

C. Paper Organization

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the distributed
learning problem with feature partitioning when both the
cost and regularizer functions are convex but not necessarily
smooth. In Section III, we describe our proposed algorithm
for solving the considered regularized learning problem in a
distributed fashion without computing any conjugate function.
Subsequently, we prove the convergence of the proposed
algorithm by confirming that both its inner and outer loops
converge in Section IV. We provide some simulation results
in Section V and draw conclusions in Section VI.

D. Mathematical Notations

The set of natural and real numbers are denoted by N and
R, respectively. The set of positive real numbers is denoted
by R+. Scalars, column vectors, and matrices are respectively
denoted by lowercase, bold lowercase, and bold uppercase
letters. The operators (·)T, det(·), and tr(·) denote transpose,
determinant, and trace of a matrix, respectively. The symbol
‖·‖ represents the Euclidean norm of its vector argument
and ⊗ stands for the Kronecker product. In is an identity

3

 , ,

3, , 3

2, , 2

4, , 4

5, , 5

Fig. 1. Distributed features over a network with five agents.

matrix of size n, 0n is an n× 1 vector with all zeros entries,
0n×p = 0n0

T
p , and | · | denotes the cardinality operator if its

argument is a set. The statistical expectation and covariance
operators are represented by E[·] and cov[·], respectively. For
any positive semidefinite matrix X, λmin(X) and λmax(X)
denote the nonzero smallest and largest eigenvalues of X,
respectively. For a vector x ∈ Rn and a positive semi-
definite matrix A, ‖x‖2A denotes the quadratic form xTAx.
The conjugate function of any function f is denoted by f∗.

II. SYSTEM MODEL

We model a network with N ∈ N agents and E ∈ N edges
as an undirected graph G(V, E) with the set of vertices V =
{1, . . . , N} corresponding to the agents and the set of edges
E standing for the bidirectional communication links between
the pairs of agents. Agent i ∈ V communicates only with its
neighbors specified by the set Vi.

Let us denote the network-wide data as an observation
matrix A ∈ RM×P and a response vector b ∈ RM×1 where
M is the number of data samples and P is the total number
of features across the network. As we consider the feature
partitioning of the data, we denote the observation matrix of
the ith agent by Ai ∈ RM×Pi and its local model vector by
xi ∈ RPi×1 where Pi is the number of features specific to
agent i. Accordingly, we have P =

∑N
i=1 Pi and A consists

of N submatrices Ai as

A = [A1,A2, . . . ,AN].

The network-wide model vector x ∈ RP×1 that relates A and
b is also a stack of N subvectors xi as

x =
[
xT
1,x

T
2, . . . ,x

T
N

]T
.

We give an example for feature partitioning of data in Fig. 1
where features are distributed over a network of five agents.

We consider a regularized learning problem consisting in
minimizing a global cost function f(·) that is a function of
the error Ax − b and is added by a regularization function
r(·). In the centralized approach, the optimal solution is given
by

xo = argmin
x

{
f (Ax− b) + r(x)

}
. (1)

Considering feature partitioning of the data, Ax can be
written as

Ax =
N∑
i=1

Aixi

and assuming that the regularizer function r(·) can be written
as a sum of agent-specific regularizer functions as

r(x) =
N∑
i=1

ri(xi),

the regularized learning problem (1) is of the following form

min
{xi}

f
(∑N

i=1Aixi − b
)
+

N∑
i=1

ri(xi). (2)

The learning problem (2) pertains to several applications
in machine learning, e.g., regression over distributed fea-
tures [10], clustering in graphs [33], smart grid control [34],
dictionary learning [22], and network utility maximization
[35]. Similar to most existing works, e.g., [10], [11], [36],
we consider learning problems where functions f(·) and
ri(·), i = 1, . . . , N , are convex, proper, and lower semi-
continuous. However, in this work, the objective functions are
not necessarily smooth or their conjugate functions known.
Therefore, we propose a novel algorithm that solves (2) in
a fully distributed fashion wherein each agent communicates
only with its neighbors without requiring the computation of
any conjugate function. In the next section, we describe our
proposed algorithm.

III. ALGORITHM

We first present the reformulation of the considered non-
separable problem into a dual form that can be solved in
a fully-distributed fashion via the ADMM. Subsequently, we
describe a new approach to perform the ADMM primal update
step without explicitly computing any conjugate function of
the cost or regularizer functions.

A. Distributed ADMM for the Dual Problem

To develop a distributed solution, we introduce the auxiliary
variables {zi}Ni=1 and recast (2) as

min
{xi,zi}

f
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi)

s. t. Aixi = zi, i = 1, . . . , N.

(3)

The cost function f(·) in (3) is not separable among the agents.
We consider the dual problem of (3) and exploit its separability
property, which is lacking in the primal domain, to solve it
by employing the ADMM. For this purpose, we associate the
Lagrange multipliers {µi}Ni=1 with the equality constraints in
(3) and state the related Lagrangian function as

L({xi}, {zi}, {µi})

=f
(∑N

i=1zi − b
)
+

N∑
i=1

ri(xi) +

N∑
i=1

µT
i (Aixi − zi)

=
N∑
i=1

(
ri(xi) + (AT

i µi)
Txi

)
+ f

(
N∑
i=1

zi − b

)
−

N∑
i=1

µT
i zi.

(4)

4

The dual function for problem (3) can be computed as

d({µi}) = inf
{xi,zi}

L({xi}, {zi}, {µi})

=−
N∑
i=1

r∗i (−AT
i µi) + inf

zi

f(

N∑
i=1

zi − b)−
N∑
i=1

µT
i zi

(5)

where r∗i is the conjugate function of r defined as

r∗i (y) = sup
x

yTx− ri(x).

Introducing auxiliary variable z that is defined as

z =

N∑
i=1

zi

and using the duality theory, an alternate form of the dual
function (5) is given by

d̃({µi},λ) = −f∗(λ)− λTb−
N∑
i=1

r∗i (−AT
i µi) (6)

when λ = µi ∀i ∈ V with λ being the dual variable corre-
sponding to z =

∑N
i=1 zi. Otherwise, we have d̃({µi},λ) =

−∞.
By eliminating λ, the dual problem for (3) can be expressed

as

min
{µi}

1

N

N∑
i=1

(
f∗(µi) + µ

T
i b

)
+

N∑
i=1

r∗i (−AT
i µi)

s. t. µ1 = µ2 = · · · = µN .

(7)

To facilitate a fully-distributed solution, we decouple the
constraints in (7) as

µi = uj
i , µj = uj

i , j ∈ Vi, i = 1, . . . , N (8)

where {uj
i}i∈V,j∈Vi are auxiliary variables that will eventually

be eliminated. We generate a new augmented Lagrangian
function by associating the new Lagrange multipliers {v̄j

i }j∈Vi

and {ṽj
i }j∈Vi with the consensus constraints in (8). By using

the Karush-Kuhn-Tucker conditions of optimality for (8) and
setting

v
(k)
i = 2

∑
j∈Vi

(v̄j
i)

(k),

it can be shown that the Lagrange multipliers {ṽj
i }j∈Vi

and
the auxiliary variables {uj

i}j∈Vi are eliminated [5]. Hence, the
ADMM to solve (7) reduces to the following iterative updates
at the ith agent

µ
(k)
i = argmin

µi

{ 1

N
f∗(µi) +

1

N
µT

i b+ r∗i (−AT
i µi)

+ µT
i v

(k−1)
i + ρ

∑
j∈Vi

∥∥∥µi −
µ
(k−1)
i + µ

(k−1)
j

2

∥∥∥2} (9)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (10)

where ρ > 0 is the penalty parameter and k is the iteration
index.

The objective function in (9) may be non-smooth as the
global cost function f(·) or the agent-specific regularizer
functions ri(·), i = 1, . . . , N , and consequently their conjugate
functions may be non-smooth. Thus, the minimization problem
in (9) can be solved by employing suitable subgradient meth-
ods or proximal operators [37], [38]. However, computing the
conjugate functions of the cost or the regularizer functions
in (9) may be hard or even unfeasible. To overcome this
challenge, in the next subsection, we describe a new approach
that does not require the explicit calculation of any conjugate
function.

B. ADMM without Conjugate Function

We rewrite the minimization problem in the ADMM primal
update (9) as

µ
(k)
i = arg min

{µi,νi,αi}

{f∗(µi) + µ
T
i b

N
+ r∗i (νi)

+ µT
i c

(k−1)
i + ρ̄i ‖αi‖2

}
s.t. AT

i µi + νi = 0

µi = αi

(11)

where ρ̄i = ρ|Vi| and

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j . (12)

The Lagrangian function related to (11) is stated as

Lk(µi,νi,αi,θ
(k)
i ,β

(k)
i) =

f∗(µi) + µ
T
i b

N
+ r∗i (νi) + µ

T
i c

(k−1)
i

+ ρ̄i ‖αi‖2 + (θ
(k)
i)T(AT

i µi + νi)

+ (β
(k)
i)T(µi −αi)

(13)
where θ(k)i and β(k)

i are the Lagrange multipliers associated
with the first and the second constraints in (11), respectively,
at iteration k.

Motivated by the close connection between a function and
its double conjugate (conjugate of conjugate), we express the
dual for the objective in (11) as

δk(θ
(k)
i ,β

(k)
i) = inf

{µi,νi,αi}
Lk(µi,νi,αi,θ

(k)
i ,β

(k)
i)

= inf
νi

{r∗i (νi) + (θ
(k)
i)Tνi}+ inf

αi

{ρ̄i ‖αi‖2 − (β
(k)
i)Tαi}

+ inf
µi

{f∗(µi)

N
+

(
c
(k−1)
i +Aiθ

(k)
i +

b

N
+ β

(k)
i

)T

µi

}
.

(14)
By employing the definition of conjugate function, the first
infimum in (14) is equal to −r∗∗i (−θ(k)i). The second infimum
in (14) can be easily obtained by noting that the function

lk(αi) := ρ̄i ‖αi‖2 − (β
(k)
i)Tαi

is quadratic in αi. Hence, this infimum can be calculated by
computing the gradient of lk(·) and equating it to zero, i.e.,

ρ̄i ‖αi‖2 − (β
(k)
i)Tαi = 0.

5

Solving this equation for αi gives

αo
i =

β
(k)
i

2ρ̄i
. (15)

This implies that the second infimum in (14) is attained at the
optimal value αo

i , which in turn means that it is equal to

lk(α
o
i) = −

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

.

In view of the definition and properties of the conjugate
function [39], the third infimum in (14) is given by

−Nf∗∗
(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

Therefore, we have

δk(θ
(k)
i ,β

(k)
i) =− r∗∗i (−θ(k)i)−

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

−Nf∗∗
(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

(16)
Since f(·) and ri(·) are convex, proper, and lower semi-
continuous, we know f∗∗ = f and r∗∗i = ri due to the Fenchel
Moreau Theorem [40]. Therefore, we have

δk(θ
(k)
i ,β

(k)
i) =− ri(−θ(k)i)−

∥∥∥β(k)
i

∥∥∥2
4ρ̄i

−Nf

(
−c

(k−1)
i −Aiθ

(k)
i − b

N
− β(k)

i

)
.

(17)
To find the optimal (θ

(k)
i ,β

(k)
i), we need to maximize

δk(θ
(k)
i ,β

(k)
i) or, equivalently, to minimize −δk(θ

(k)
i ,β

(k)
i).

Since this is a function of two variables θ(k)i and β
(k)
i ,

we employ the block coordinate descent algorithm (BCD)
to minimize −δk(θ

(k)
i ,β

(k)
i) and find the optimal values for

(θ
(k)
i ,β

(k)
i). The BCD steps are obtained by alternatively

minimizing −δk(θ
(k)
i ,β

(k)
i) with respect to θ(k)i and β(k)

i as
follows

θ
(k,t)
i = argmin

θ
(k)
i

{
ri(−θ(k)i)

+Nf

(
−c

(k−1)
i −Aiθ

(k,t)
i − b

N
− β(k,t−1)

i

)}
(18)

β
(k,t)
i = argmin

β
(k)
i

{ 1

4ρ̄i

∥∥∥β(k)
i

∥∥∥2
+Nf

(
−c

(k−1)
i −Aiθ

(t)
i − b

N
− β(k)

i

)}
(19)

where t is the BCD iteration index. If we assume that the
BCD algorithm converges after T iterations. The optimal
values of θ(k)i and β(k)

i can be denoted by θ(k,T)i and β(k,T)
i ,

respectively.
To update the Lagrange multipliers µ(k)

i we employ the
complementary slackness conditions, i.e.,

β
(k,T)
i (µ

(k)
i −αo

i) = 0 ∀i ∈ V .

Algorithm 1 The proposed algorithm for feature-partitioned
distributed learning with unknown conjugate functions

At all agents i ∈ V , initialize µ(0)
i = 0, v

(0)
i = 0, and

locally run:
for k = 1, 2, . . . ,K do

Run BCD loop
for t = 1, 2, . . . , T do

Update θ(k,t)i via (18).
Update β(k,t)

i via (19).
end for
Update the dual variables µ(k)

i = β
(k,T)
i /(2ρ̄i).

Share µ(k)
i with the neighbors in Vi.

Update the Lagrange multipliers v
(k)
i via (22).

Update the auxiliary variables c
(k)
i via (23).

end for

Since β(k,T)
i 6= 0, ∀i ∈ V , we have

µ
(k)
i −αo

i = 0 ∀i ∈ V .

Using (15), we can update µ(k)
i as

µ
(k)
i =

β
(k,T)
i

2ρ̄i
. (20)

Collating the expressions in (20), (12), (10), the ADMM steps
in (9) and (10) can be equivalently expressed as

µ
(k)
i =

β
(k,T)
i

2ρ̄i
(21)

v
(k)
i = v

(k−1)
i + ρ

∑
j∈Vi

(µ
(k)
i − µ(k)

j) (22)

c
(k−1)
i = v

(k−1)
i − ρ|Vi|µ(k−1)

i − ρ
∑
j∈Vi

µ
(k−1)
j (23)

where k is the ADMM iteration index. We summarize the
proposed algorithm in Algorithm 1.

Assuming that the ADMM outer loop converges after K

iterations, we denote the optimal dual variable θ(K,T)
i by θoi .

The estimate θoi at agent i is indeed the optimal solution to the
original problem (2), i.e., xo

i , as per the following theorem.

Theorem 1. For all agents i ∈ V , the optimal dual variable
θoi at agent i is equal to the optimal estimate xo

i , i.e., θoi = xo
i .

Proof. Since the optimization problem in (3) has a convex
objective and is feasible, the Slater’s condition is satisfied.
Therefore, due to the Slater’s theorem, strong duality holds
and θoi = xo

i , ∀i ∈ V [39].

IV. CONVERGENCE ANALYSIS

The convergence of the proposed algorithm can be proven
by corroborating that both the inner-loop BCD and outer-
loop ADMM iterations converge. First, the convergence of
the inner loop can be verified from results in [2] since all the
assumptions required for the convergence are satisfied, i.e.,
the function δ(·) is convex and the feasible sets RM and RPi ,
∀i ∈ V , are all convex. Assuming that the optimal solution βo

i

6

of the inner-loop BCD algorithm is attained for each i ∈ V ,
the dual variable µ(k)

i in the outer loop is updated accordingly.
Next, we prove that the estimates produced by the fully-

distributed ADMM outer loop, i.e., (9) and (10), approach
the optimal centralized solution at all agents. To present the
convergence result, we rewrite the constraints in (7) as follows

µi = ūj
i , µj = ŭj

i , ūj
i = ŭj

i , j ∈ Vi, i = 1, . . . , N.
(24)

Note that the constraints u ∈ Cu := {u : ūj
i = ŭj

i , i ∈ V , j ∈
Ni} are not dualized and are introduced only to present the
convergence result. Let us define the following vectors

µ =[µT
1 , . . . ,µ

T
N]T

u =[(u
a1(1)
1)T, . . . , (u

aN (|VN |)
1)T,

. . . , (u
aN (1)
N)T, . . . , (u

aN (|VN |)
N)]T

where ai(j) is the index of the jth neighbor of agent i.
The problem (8) with the constraints in (24) can be written

as
min
µ,u

G1(µ) +G2(u)

s.t. µ ∈ C1, u ∈ C2, Cµ = u
(25)

where C = [CT
1 ,C

T
2]

T, G2(u) = 0, C1 := RM , C2 := Cu,

C1 =

C11

...
C1N

 , C1i := (1|Ni|e
T
i)⊗ IM , i ∈ V

C2 =

C21

...
C2N

 , C2i :=

 eTii(1)
...

eTii(|Ni|)

⊗ IM , i ∈ V

G1(µ) =
1

N

N∑
i=1

(
f∗(µi) + µ

T
i b

)
+

N∑
i=1

r∗i (−AT
i µi),

and ei is the ith vector of the canonical basis of RM . The
convergence result relies on the following lemma.

Lemma 1. If G is a connected graph, then the local optimal
solution µo

i at agent i is equal to the optimal centralized
solution of (8), i.e., µo

i = µo, ∀i ∈ V , where

µo = argmin
µ

{
f∗(µ) + µTb+

N∑
i=1

r∗i (−AT
i µ)

}
.

Proof. Let i and i′ be arbitrary agents in G and p(i, i′) :
i, i1, i2, . . . , in, i

′ an arbitrary path on G that connects i and
i′. Since the adjacent agents in p(i, i′) are neighbors, we have

µi = µi1 = µi2 = . . . = µin = µi′ ,

which imply
µi = µi′ .

Since G is connected and the path is arbitrary, the local
constraints µi = µi′ can be removed and replaced by the
common constraint µi = µ. Hence, µo

i = µo ∀i ∈ V where

µo = argmin
µ

{
f∗(µ) + µTb+

N∑
i=1

r∗i (−AT
i µ)

}
.

We can now prove the convergence of the proposed algo-
rithm as per the following theorem.

Theorem 2. If G is a connected graph, then the proposed
algorithm converges to the optimal centralized solution, i.e.,

lim
k→∞

µ
(k)
i = µo, ∀i ∈ V . (26)

Proof. Thanks to Lemma 1, we only need to prove that

lim
k→∞

µ
(k)
i = µo

i .

For this purpose, we observe that (25) is in the same form as
[37, eq. 4.77, p. 255]. Furthermore, the following assumptions
are satisfied:

• G1(·) and G2(·) are convex functions;
• C1 and C2 are nonempty polyhedral sets;
• C is full column rank, hence, CTC is invertible.

Therefore, due to [37, Proposition 4.2, p. 256], we have

lim
k→∞

µ
(k)
i = µo, ∀i ∈ V .

V. SIMULATIONS

In this section, we present some simulation results to evalu-
ate the performance of the proposed algorithm. We first assess
the proposed algorithm considering a distributed elastic-net
regression problem with different numbers of local features,
samples, and agents as well as different network topologies.
Subsequently, we benchmark the proposed algorithm against
the most relevant existing algorithms considering distributed
ridge and lasso regression problems.

A. Distributed Elastic-Net Regression

To evaluate the performance of the proposed algorithm
in different scenarios, we consider the elastic-net regression
problem. The calculation of the conjugate function for the
objective function corresponding to this problem is practically
infeasible. In the distributed setting, we solve the elastic-net
regression problem by considering

f(xi) =

∥∥∥∥∥
N∑
i=1

Aixi − b

∥∥∥∥∥
2

ri(xi) = η1 ‖xi‖1 + η2 ‖xi‖2
(27)

where η1 ∈ R+ and η2 ∈ R+ are the regularization parame-
ters. We calculate the response vector b as

b = Aω +ψ (28)

where ω ∈ RP and ψ ∈ RM are independently drawn
from the multivariate normal distributions N (0, IP) and
N (0, 0.1IM), respectively. We set the regularization parame-
ters to η1 = 1, η2 = 1 and the penalty parameter to ρ = 2. We
use two iterations in the inner-loop BCD algorithm. We obtain
the results by averaging over 100 independent trials while
considering a multi-agent network with a random topology

7

0 500 1000 1500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

(a) different values of Pi

0 200 400 600 800 1000

iterations

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

(b) different values of M

Fig. 2. The misalignment of the proposed algorithm solving the distributed elastic-net regression problem with different values of Pi and M .

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n

t

(a) different values of N

0 200 400 600 800 1000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

line topology

ring topology

star topology

fully-connected network

centralized solution

(b) different topologies

Fig. 3. The misalignment of the proposed algorithm solving the distributed elastic-net regression problem with different values of N and different topologies.

where each agent links to three other agents on average. We
evaluate the performance of the proposed algorithm using the
misalignment metric that is defined as∥∥xd(k)− ω

∥∥2
‖ω‖2

where
xd(k)=

[
x
(k)T
1 , . . . ,x

(k)T
N

]T
and x

(k)
i ∀i ∈ V denotes the local estimate at agent i.

In Fig. 2(a), we plot the misalignment of the proposed
algorithm versus its outer-loop iteration index for different
values of Pi, i.e., Pi = 2, Pi = 10, Pi = 20, and Pi = 50

while M = 800, M = 1000, M = 1100, and M = 1500,
respectively. Fig. 2(a) shows that the proposed algorithm
converges faster as the number of local features Pi decreases.
In Fig. 2(b), we set Pi = 2 and use the same topology as in
Fig.2(a) but consider different values of M . Fig. 2(b) shows
that the proposed algorithm achieves higher accuracy as the
number of samples M increases. Note that we include the
misalignment of the centralized optimal solution in all figures.

In Fig. 3(a), we consider different values of N while Pi = 2,
M = 500, and the network topology is arbitrary but with
an average node degree of three. Fig. 3(a) shows that the
proposed algorithm converges faster as the number of agents
N decreases. In Fig. 3(b), we evaluate the proposed algorithm

8

0 500 1000 1500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n

t
DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

(a) Ridge regression with N = 10, M = 50, and Pi = 2.

0 200 400 600 800 1000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

(b) Ridge regression with N = 10, M = 200, and Pi = 2.

Fig. 4. The misalignment of the proposed algorithm and other considered algorithms for the ridge regression problems in different scenarios.

0 500 1000 1500 2000 2500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

diffusion-based [24]

D-Ridge

broadcast-based [10]

centralized solution

(a) Ridge regression with N = 20, M = 200, and Pi = 2

0 500 1000 1500 2000 2500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

diffusion-based [24]

proposed algorithm

D-Ridge

broadcast-based [10]

centralized solution

(b) Ridge regression with N = 10, M = 200, and Pi = 10

Fig. 5. The misalignment of the proposed algorithm and other considered algorithms for the ridge regression problems in different scenarios.

by setting N = 10, Pi = 2, M = 500 and considering four
different common simple topologies, i.e.,

• line: the agents are connected one after the other, hence,
|Ni| = 2 for 1 < i < N and |Ni| = 1 for i = 1 and
i = N

• ring: |Ni| = 2 for each i ∈ V
• star: |Ni| = N − 1 for i = 1 and |Ni| = 1 for i =

2, . . . , N
• fully-connected: each agent in the network is connected

to all the other agents.
In Fig. 3(b), we observe that the proposed algorithm converges
faster as the average number of links per agent increases, i.e.,
the average connectivity of the network increases.

B. Distributed Ridge Regression

Considering a distributed ridge regression problem, in
Figs. 4 and 5, we benchmark the proposed algorithm against
some existing baseline algorithms, namely, the broadcast-
based algorithm for learning with distributed features proposed
in [10], the dual consensus ADMM (DC-ADMM) algorithm
of [26], the consensus-based algorithm for ridge regression (D-
Ridge) introduced in [3], and the diffusion-based algorithm of
[24]. The algorithms proposed in [3], [24] are only for solving
the ridge regression problem. Here, we solve the problem
(2) with the objective function (27) and set the ith agent’s
regularizer to

ri(xi) = η ‖xi‖2

9

0 500 1000 1500

iterations

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

(a) Lasso regression with N = 10, M = 50, and Pi = 2

0 500 1000 1500

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

(b) Lasso regression with N = 10, M = 200, and Pi = 2

Fig. 6. The misalignment of the proposed algorithm and other considered algorithms for the lasso regression problems in different scenarios.

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

proposed algorithm

DC-ADMM

broadcast-based [10]

centralized solution

(a) Lasso regression with N = 20, M = 200, and Pi = 2

0 500 1000 1500 2000 2500 3000

iterations

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

m
is

a
lig

n
m

e
n
t

DC-ADMM

proposed algorithm

broadcast-based [10]

centralized solution

(b) Lasso regression with N = 10, M = 200, and Pi = 10

Fig. 7. The misalignment of the proposed algorithm and other considered algorithms for the lasso regression problems in different scenarios.

where η ∈ R+ is the regularization parameter.

We calculate the response vector b as in (28). As per [3],
[24], we set the regularization parameter to η = 0.001. We also
set the number of inner-loop BCD iterations of the proposed
algorithm to 2 and obtain the results by averaging over 100
independent trials. In Fig. 4(a), we set N = 10, M = 50,
and Pi = 2. In Fig. 4(b), the parameter setting is the same as
Fig. 4(a) except for the number of samples M being larger,
i.e., M = 200. In Fig. 5(a), we keep M = 200 and set the
number of agents to N = 20. In Fig. 5(b), we set N and M
to 10 and 200, respectively, while Pi = 10 ∀i ∈ V .

We observe in Figs. 4 and 5 that the proposed algorithm
outperforms the DC-ADMM algorithm. It also perform com-

petitively in comparison with the algorithms of [3], [24], which
are specifically tailored to the ridge regression problem. The
superior performance of the broadcast-based algorithm of [10]
is due to its centralized processing. We include it here only as
a reference.

C. Distributed Lasso Regression

In Figs. 6 and 7, we compare the performance of the
proposed algorithm with that of the broadcast-based algorithm
for learning with distributed features proposed in [10] and the
DC-ADMM algorithm of [26] considering a distributed lasso

10

problem. Hence, we solve the problem (2) with the objective
function (27) and set the ith agent’s regularizer to

ri(xi) = η ‖xi‖1
where η ∈ R+ is the regularization parameter.

We calculate the response vector b as in (28). As per [3],
[24], we set the regularization parameter to η = 0.001. We also
set the number of inner-loop BCD iterations of the proposed
algorithm to 2 and obtain the results by averaging over 100
independent trials. In Fig. 6(a), we set N = 10, M = 50,
and Pi = 2. In Fig. 6(b), the parameter setting is the same as
Fig. 6(a) except for the number of samples M being larger,
i.e., M = 200. In Fig. 7(a), we keep M = 200 and set the
number of agents to N = 20. In Fig. 7(b), we set N and M
to 10 and 200, respectively, while Pi = 10 ∀i ∈ V .

We observe in Figs. 6 and 7 that the proposed algorithm
performs very similar to the DC-ADMM algorithm as the
learning curves of the two algorithms almost overlap. Again,
the superior performance of the broadcast-based algorithm
of [10] is due to its centralized processing.

D. Discussion

The main advantage of the proposed algorithm is in its abil-
ity to solve generic feature-partitioned distributed optimization
problems without resorting to any conjugate function even
when the objective function is non-smooth. This is unique
to our proposed algorithm and, to the best of our knowledge,
there is no existing algorithm with the same utility. That is
why we do not compare the proposed algorithm with any
other existing algorithm in Section V-A where the problem at
hand is feature-distributed elastic-net regression. The existing
algorithms for feature-partitioned distributed optimization such
as DC-ADMM require the conjugate function of the objective
or regularization function. In the case of elastic-net regression,
calculating the conjugate function is impracticable.

The simulation results in Sections V-B and V-C are to pro-
vide a comparative study of the performance of the proposed
algorithm with respect to the other most relevant existing
algorithms. As evident by the results, the proposed algorithm’s
performance in solving the distributed ridge and lasso re-
gression problems is on par with those of its state-of-the-art
competitors, even those that have specifically been design to
solve these problems.

As seen in the figures, in all simulations, the network-
wide average estimate of the proposed algorithm converges
to the corresponding optimal centralized solution. Although
not shown here for conciseness, we have observed that the
estimates at all agents also converge to the optimal solution
in all the experiments corroborating our theoretical findings in
Section IV.

In all simulations, we utilize only two BCD iterations with
no extra inter-agent communication overhead. Therefore, the
computational complexity and communication requirements of
the proposed algorithm are of the same order as those of the
related existing algorithms such as DC-ADMM. Indeed, we
did not observe any significant difference in the per-iteration
run time of the proposed and DC-ADMM algorithms.

VI. CONCLUSION

We proposed a distributed algorithm for learning with non-
smooth objective functions under distributed features. We
reformulated the considered non-separable problem into a
dual form that is separable and solved it via the ADMM.
Subsequently, we devised an approach based on articulating
the dual of the dual problem to overcome the challenge
of computing the involved conjugate functions, which may
be hard or even infeasible with some objective functions.
We employed the BCD algorithm to solve the dual of the
dual problem. Therefore, unlike most existing algorithms
for solving learning problems with feature partitioning, the
proposed algorithm does not require the explicit calculation
of any conjugate of the objective function. We verified the
convergence of the proposed algorithm to the optimal solution
through both theoretical analysis and numerical simulations.

REFERENCES

[1] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning over networks with non-smooth regularizers and
feature partitioning,” in Proc. European Speech and Signal Processing
Conference, Aug. 2021.

[2] Z. Han, M. Hong, and D. Wang, Signal processing and networking for
big data applications. Cambridge University Press, 2017.

[3] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner, “Dis-
tributed ridge regression with feature partitioning,” in Proc. Asilomar
Conference on Signals, Systems, and Computers, Oct. 2018.

[4] ——, “Consensus-based distributed total least-squares estimation using
parametric semidefinite programming,” in Proc. IEEE International
Conference on Acoustics, Speech and Signal Processing, May 2019,
pp. 5227–5231.

[5] G. B. Giannakis, Q. Ling, G. Mateos, and I. D. Schizas, Splitting
Methods in Communication, Imaging, Science, and Engineering, ser.
Scientific Computation, R. Glowinski, S. J. Osher, and W. Yin, Eds.
Cham: Springer International Publishing, 2016.

[6] D. Hajinezhad, M. Hong, and A. Garcia, “ZONE: Zeroth-order non-
convex multiagent optimization over networks,” IEEE Transactions on
Automatic Control, vol. 64, no. 10, pp. 3995–4010, Oct. 2019.

[7] A. Nedic and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Transactions on Automatic Control, vol. 54,
no. 1, pp. 48–61, Jan. 2009.

[8] C. Gratton, N. K. D. Venkategowda, R. Arablouei, and S. Werner,
“Distributed learning with non-smooth objective functions,” in Proc.
28th European Signal Processing Conference, Jan. 2021, pp. 2180–2184.

[9] A. Bertrand and M. Moonen, “Consensus-based distributed total least
squares estimation in ad hoc wireless sensor networks,” IEEE Transac-
tions on Signal Processing, vol. 59, no. 5, pp. 2320–2330, May 2011.

[10] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Foundations and Trends in Machine Learning, vol. 3,
no. 1, pp. 1–122, Jan. 2010.

[11] B. Ying, K. Yuan, and A. H. Sayed, “Supervised learning under
distributed features,” IEEE Transactions on Signal Processing, vol. 67,
no. 4, pp. 977–992, Feb. 2019.

[12] H. Zheng, S. R. Kulkarni, and H. V. Poor, “Attribute-distributed learning:
Models, limits, and algorithms,” IEEE Transactions on Signal Process-
ing, vol. 59, no. 1, pp. 386–398, Jan. 2011.

[13] O. L. Mangasarian, E. W. Wild, and G. M. Fung, “Privacy-preserving
classification of vertically partitioned data via random kernels,” ACM
Transactions on Knowledge Discovery from Data, vol. 2, no. 3, Oct.
2008.

[14] J. Vaidya and C. Clifton, “Privacy-preserving k-means clustering over
vertically partitioned data,” in Proc. 9th ACM International Conference
on Knowledge Discovery and Data Mining, 2003, pp. 206–215.

[15] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel,
“Distributed basis pursuit,” IEEE Transactions on Signal Processing,
vol. 60, no. 4, pp. 1942–1956, Apr. 2012.

[16] C. Manss, D. Shutin, and G. Leus, “Distributed splitting-over-features
sparse bayesian learning with alternating direction method of multipli-
ers,” in 2018 IEEE International Conference on Acoustics, Speech and
Signal Processing, 2018, pp. 3654–3658.

11

[17] J. F. C. Mota, J. M. F. Xavier, P. M. Q. Aguiar, and M. Puschel, “D-
admm: A communication-efficient distributed algorithm for separable
optimization,” IEEE Transactions on Signal Processing, vol. 61, no. 10,
pp. 2718–2723, May 2013.

[18] N. Kashyap, S. Werner, Y.-F. Huang, and R. Arablouei, “Privacy
preserving decentralized power system state estimation with phasor
measurement units,” in Proc. 2016 IEEE Sensor Array and Multichannel
Signal Processing Workshop, Jul. 2016, pp. 1–5.

[19] C. Heinze-Deml, B. McWilliams, N. Meinshausen, and
G. Krummenacher, “LOCO: Distributing ridge regression with random
projections,” 2015. [Online]. Available: http://arxiv.org/pdf/1406.3469

[20] C. Heinze, B. McWilliams, and N. Meinshausen, “DUAL-LOCO: Dis-
tributing statistical estimation using random projections,” in Proc. 19th
International Conference on Artificial Intelligence and Statistics, vol. 51,
May 2016, pp. 875–883.

[21] C. Heinze-Deml, B. McWilliams, and N. Meinshausen, “Preserving
differential privacy between features in distributed estimation,” 2017.
[Online]. Available: http://arxiv.org/abs/1703.00403

[22] J. Chen, Z. J. Towfic, and A. H. Sayed, “Dictionary learning over
distributed models,” IEEE Transactions on Signal Processing, vol. 63,
no. 4, pp. 1001–1016, 2015.

[23] S. A. Alghunaim, M. Yan, and A. H. Sayed, “A multi-agent primal-dual
strategy for composite optimization over distributed features,” in Proc.
28th European Signal Processing Conference, Jan. 2021, pp. 2095–2099.

[24] R. Arablouei, K. Doğançay, S. Werner, and Y.-F. Huang, “Model-
distributed solution of regularized least-squares problem over sensor
networks,” in Proc. 2015 IEEE International Conference on Acoustics,
Speech and Signal Processing, Apr. 2015, pp. 3821–3825.

[25] V. Smith, S. Forte, C. Ma, M. Takáč, M. I. Jordan, and M. Jaggi,
“CoCoA: A general framework for communication-efficient distributed
optimization,” J. Mach. Learn. Res., vol. 18, no. 1, p. 8590–8638, Jan.
2017.

[26] T. Chang, M. Hong, and X. Wang, “Multi-agent distributed optimization
via inexact consensus ADMM,” IEEE Transactions on Signal Process-
ing, vol. 63, no. 2, pp. 482–497, 2015.

[27] B. Zhang, J. Geng, W. Xu, and L. Lai, “Communication efficient
distributed learning with feature partitioned data,” in 2018 52nd Annual
Conference on Information Sciences and Systems (CISS), Mar. 2018, pp.
1–6.

[28] Y. Hu, D. Niu, J. Yang, and S. Zhou, “FDML: A collaborative machine
learning framework for distributed features,” in Proceedings of the 25th
ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, 2019, pp. 2232–2240.

[29] J. Szurley, A. Bertrand, and M. Moonen, “Topology-independent dis-
tributed adaptive node-specific signal estimation in wireless sensor
networks,” IEEE Transactions on Signal and Information Processing
over Networks, vol. 3, no. 1, pp. 130–144, 2017.

[30] J. Chen, C. Richard, and A. H. Sayed, “Diffusion LMS for clustered
multitask networks,” in 2014 IEEE International Conference on Acous-
tics, Speech and Signal Processing, 2014, pp. 5487–5491.

[31] N. Bogdanović, J. Plata-Chaves, and K. Berberidis, “Distributed
incremental-based LMS for node-specific adaptive parameter estima-
tion,” IEEE Transactions on Signal Processing, vol. 62, no. 20, pp.
5382–5397, 2014.

[32] J. Plata-Chaves, N. Bogdanović, and K. Berberidis, “Distributed
diffusion-based LMS for node-specific adaptive parameter estimation,”
IEEE Transactions on Signal Processing, vol. 63, no. 13, pp. 3448–3460,
2015.

[33] D. Hallac, J. Leskovec, and S. Boyd, “Network lasso: Clustering and
optimization in large graphs,” in Proceedings of the 21th ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining,
2015, p. 387–396.

[34] T. Chang, A. Nedić, and A. Scaglione, “Distributed constrained op-
timization by consensus-based primal-dual perturbation method,” IEEE
Transactions on Automatic Control, vol. 59, no. 6, pp. 1524–1538, 2014.

[35] D. P. Palomar and Mung Chiang, “A tutorial on decomposition methods
for network utility maximization,” IEEE Journal on Selected Areas in
Communications, vol. 24, no. 8, pp. 1439–1451, 2006.

[36] M. Fukushima, “Application of the alternating direction method of
multipliers to separable convex programming problems,” Computational
Optimization and Applications, vol. 1, pp. 93–111, 1992.

[37] D. Bertsekas, Nonlinear programming. Athena Scientific, 1999.
[38] N. Parikh and S. Boyd, “Proximal algorithms,” Foundations and Trends

in Optimization, vol. 1, no. 3, p. 127–239, Jan. 2014.
[39] S. Boyd and L. Vandenberghe, Convex optimization. Cambridge

University Press, 2004.
[40] J. M. Borwein and A. S. Lewis, Convex Analysis and Nonlinear

Optimization, Theory and Examples. Springer, 2000.

ISBN 978-82-326-5563-2 (printed ver.)
ISBN 978-82-326-6584-6 (electronic ver.)

ISSN 1503-8181 (printed ver.)
ISSN 2703-8084 (online ver.)

Doctoral theses at NTNU, 2023:12

Cristiano Gratton

Privacy-preserving distributed
machine learning for artificial
intelligence of thingsD

oc
to

ra
l t

he
si

s

D
octor al theses at N

TN
U

, 2023:12
Cristiano G

ratton

N
TN

U
N

or
w

eg
ia

n
U

ni
ve

rs
ity

 o
f S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Th

es
is

 fo
r t

he
 D

eg
re

e
of

Ph
ilo

so
ph

ia
e

D
oc

to
r

Fa
cu

lty
 o

f I
nf

or
m

at
io

n
Te

ch
no

lo
gy

 a
nd

 E
le

ct
ric

al
En

gi
ne

er
in

g
D

ep
ar

tm
en

t o
f E

le
ct

ro
ni

c
Sy

st
em

s

	Blank Page

