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Abstract: Geoacoustic inversion is important for seabed geotechnical applications. It can be for-
mulated as a problem that seeks an optimal solution in a high-dimensional parameter space. The
conventional inversion approach exploits optimization methods with a pre-defined search strategy
whose hyperparameters need to be fine-tuned for a specific scenario. A framework based on the
deep-Q network is proposed in this paper and the environment and agent configurations of the
framework are specially defined for geoacoustic inversion. Unlike a conventional optimization
method with a pre-defined search strategy, the proposed framework determines a flexible strategy
by trial and error. The proposed framework is evaluated by two case studies for estimating the
shear wave velocity profile. Its performance is compared with three global optimization methods
commonly used in underwater geoacoustic inversion. The results demonstrate that the proposed
framework performs the inversion more efficiently and accurately.

Keywords: geoacoustic inversion; shear wave velocity profile; deep reinforcement learning;
deep-Q network

1. Introduction

Shear wave velocity estimation is an important geoacoustic inversion task for seabed
geotechnical applications since shear wave velocity can provide a good indicator of sed-
iment rigidity and characterization [1,2]. The seabed shear wave velocity profile can be
estimated from the dispersion curve of the seismoacoustic interface waves, which is a
convenient and low-cost approach compared to the direct approach (e.g., coring). Here, the
interface waves refer to Scholte waves since in most underwater and seismic experiments
sources are deployed in the water column and only Scholte waves can be generated [2].

There are two approaches for geoacoustic inversion [3]: the optimization-based ap-
proach and the machine learning (ML)-based approach. The optimization-based approach
exploits the optimization method for determining a set of geoacoustic parameters that best
fit the measured data. Based on the previous reviews [4,5], some optimization methods
have been demonstrated to perform well for geoacoustic inversions, such as the genetic
algorithm (GA) [6], differential evolution (DE) [7], and adaptive simplex simulated anneal-
ing (ASSA) [8]. On the other hand, with the development of ML, studies for geoacoustic
inversion based on ML have appeared. Most of the studies are based on supervised learn-
ing, which aims to train a deep neural network for inversion based on a vast dataset [9–12].
This type of approach normally consists of the following steps: (1) creating a simulation
dataset based on a physical forward model; (2) training a deep neural network based on the
simulation dataset; (3) exploiting the trained neural network for the real-world inversion.

These two approaches can both provide acceptable performances for geoacoustic
inversion. However, they also have some drawbacks. Since the prevalent optimization
methods are not specifically designed for geoacoustic inversion, they may incur some
limitations and difficulties to be applied in this specific field, such as difficulties in choosing
the hyperparameters required by the algorithm, which may incur more time–costs. The
ML-based approach introduces a drawback that the trained neural network cannot interact
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with the physical forward model. The procedure of creating the simulation dataset has to
be repeated when the ocean environment changes significantly.

To avoid the drawbacks and keep the interactive ability of the optimization-based
approach and the learnability of the ML-based approach, deep reinforcement learning
(DRL) could become a potential option. Unlike supervised learning, DRL learns by trial
and error, which iteratively updates the model by interacting with the environment to
achieve good data fitting [13]. Its potential for geoacoustic inversion can be intuitively
interpreted. The physical forward model role, e.g., the environment, can create a replica
according to a set of geoacoustic parameters input by the DRL model. The DRL method
can update the model by iteratively modifying the replica to obtain the best fit of the
measured data.

DRL has been widely used as an intelligent controller for different purposes, including
robotics [14], electronic sports [15], automatic controlling [16–23], etc. Specifically, Gu
et al. demonstrated the effectiveness of DRL for controlling physical robots [14]. Joo et al.
proposed a green signal time allocation system based on a deep Q-network (DQN) for
reducing the standard deviation of each lane at an intersection [16]. Zhou et al. modeled
penetration testing as a Markov decision process and exploited DQN for autonomous
penetration testing [17]. Park et al. exploited a DRL-based DQN agent for a visual object-
tracking task in a virtual environment. It has been demonstrated that the proposed agent
outperforms some conventional methods of two public databases [18]. Gao et al. proposed
a DRL-based method to solve the relay selection problem in the decode and forward relay-
aided free-space optical communication system [19]. Guan et al. designed a DRL-based
spectrum allocation algorithm for the internet of vehicles discriminating services. It has
been proven that the designed method allocates spectrum resources quickly and efficiently
in a highly dynamic environment [20]. Zhao et al. utilized DQN for controlling the
autonomous walking of an underground load–haul–dump machine and demonstrated the
effectiveness of the proposed DQN-based method through experimental verification [21].
Qin et al. proposed a hierarchical DQN-based path-planning method for controlling the
long-term data collection of unmanned aerial vehicles in dynamic scenarios [22]. Asaf et al.
exploited DRL to set optimal contention windows under different network conditions for
wireless LAN performance enhancement [23].

Even though it has been illustrated that the DRL outperforms to control the agent’s
behavior for performing well in a specific environment, the application of DRL still needs
a specific configuration of the environment, action space of the agent, and reward. For
instance, Wang et al. proposed a stochastic inversion of magnetotelluric data based on
DRL [24], in which the environment state is defined as the layer information and the
resistivity, and the agent space includes three linear operations (addition, subtraction,
and keeping no variation). However, the problem of magnetotelluric inversion is quite
different from the geoacoustic inversion. Moreover, the parameter space of the latter is
a high-dimensional space, which means that the naive linear operations (e.g., addition
or subtraction) are inefficient for the agent to explore in the space and determine the
optimal solution. To the best of our knowledge, DRL has not been used for geoacoustic
inversion. Therefore, our motivation is to investigate the potential of DRL and define a
useful configuration of the environment and agent for the field.

In this paper, we propose a geoacoustic inversion framework based on a popular
method of DRL and the DQN for estimating shear wave velocity from the dispersion data of
interface waves. In the framework, a carefully designed configuration for the environment
and agent is also proposed. A comprehensive performance analysis is presented to compare
the proposed framework with three popular optimization methods (i.e., GA, DE, and ASSA)
widely used for geoacoustic inversion.

The remainder of this paper is organized as follows. Section 2 states the considered
problem. The theories of DRL and DQN are introduced in Section 3. Section 4 describes the
proposed framework for geoacoustic inversion. A comprehensive performance analysis is
presented in Section 5. Finally, the conclusions are given in Section 6.
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2. Problem Formulation

The definition of the forward problem can be expressed as

d = F(m) (1)

where F and d refer to the physical forward model and the observed data, respectively. m is
a set of geoacoustic parameters standing for one ocean environment and seabed condition.

The inversion problem aims at inferring the set of geoacoustic model parameters
generating the observed data and can be expressed as:

m = F−1(d) (2)

where F−1 refers to the inversion operation.
The ocean environment and seabed can be parameterized as an N-layered structure

with four geoacoustic parameters (layer thickness, density, compression wave velocity, and
shear wave velocity): m = [hi, ρi, Vpi, Vsi]

N
i=0.

A general workflow of inversion is illustrated in Figure 1. The terminologies are
introduced as follows:

• The environment consists of a physical forward model for calculating the replica,
the observed data, and a misfit function for measuring the mismatch between the
observed data and the replica. It receives a set of selected parameters from the agent
and provides feedback to the agent.

• An agent is an operator that samples from the parameter space following its search
strategy and interacts with the environment. During each iteration of inversion, the
agent will log the feedback from the environment, the instant best solution, and the
related information.

• A parameter space is a multi-dimensional space defined by the search bounds.

Figure 1. The general workflow of geoacoustic inversion.

The inversion is an iterative process. It starts with an initialization that defines a prior
geoacoustic model and the original search bounds based on prior knowledge. During each
iteration, the agent will sample from the parameter space. The environment will receive the
selected parameters, correspondingly create a replica, and provide the misfit as feedback
for the agent. The iteration stops once the termination criteria are met.
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As shown in Figure 1, the existing optimization methods (GA, DE, and ASSA) role as
the search strategy for controlling the agent to explore the parameter space and determine
the best solution at the end. Specifically, GA [6] and DE [7] are two heuristic search
algorithms inspired by the evolution of natural species. ASSA [8] is a hybrid optimization
method that combines the downhill simplex and the simulated annealing methods. More
details about GA, DE, and ASSA can be found in [6–8], respectively.

3. Theories of DRL and DQN

DRL is used to solve a type of task that controls an agent to iteratively interact with the
environment, and maximize future rewards. This task can be formulated as a finite Markov
decision process [25] and be achieved by the DQN algorithm [13]. DQN is derived from
Q-learning and can learn an optimal strategy by estimating the Q-value, which expresses
the quality of executing an action a given a certain environment state s. The Q-value can be
iteratively updated by the following formula and converge to the optimum.

Q(s, a) = Q(s, a) + α(r + γmaxa′Q(s + 1, a′)−Q(s, a)) (3)

where Q(s, a) expresses the Q-value at the current environment state, α is the learning
rate, r is the current reward, γ is the discount factor, and maxa′ Q(s + 1, a′) represents the
maximum Q-value in the next environment state s + 1.

The conventional Q-learning needs to create a Q-table for saving and updating the
Q-value at each environment state, which can be intractable to build a table when the
environment state number is huge. To mitigate this problem, the DQN algorithm utilizes
a neural network instead of a Q-table for estimating the Q-value. The DQN algorithm
introduces a replay memory D = {ex1, . . . , ext} to save the agent’s experience at different
iterations, where ext = [st, at, rt, st+1] is the experience at t iteration. During the training
stage, the DQN randomly selects a mini-batch from the replay memory for minimizing a
loss function L:

L = (Q(s, a)− (r + γmaxa′Q(s + 1, a′)))2 (4)

where the meanings of symbols are the same as in Equation (3).
Given a specific configuration of the environment and agent, the training process of

DQN is expressed in Algorithm 1 [13].

Algorithm 1 Training procedure of DQN

1: Initializing the parameters of DQN and the replay memory D.
2: for Epoch from 1 to M do
3: repeat
4: Collecting the initial environment state s1.
5: With a preset probability selecting a random action at otherwise selecting the

at = argmaxaQ(st, a).
6: Executing action at and receiving feedback from the environment. The feedback

includes the reward rt and the new environment state st+1.
7: Saving the experience ext = [st, at, rt, st+1] in the replay memory D.
8: Randomly sampling a mini-batch of experience [si, ai, ri, si+1]

Nmini
i=1 from D where

Nmini is the size of the mini-batch.
9: Setting

yi = ri , if si+1 is the termination state
yi = ri + γmaxaQ(si+1, a) , otherwise

(5)

10: Minimizing the loss function L = 1
Nmini

∑Nmini
i=1 (yi − Q(si, ai))

2 and updating the
parameters of DQN.

11: until the termination criteria are met.
12: end for
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4. Geoacoustic Inversion Framework Based on DQN

In this section, the DQN-based framework for geoacoustic inversion is presented from
the DRL perspective (namely, the DQN framework).

4.1. Environment Configuration

As shown in Figure 1, the environment intakes the selected parameters and provides
feedback for the agent to update the search results. During each iteration, the agent inputs
k sets of selected parameters and the environment provides feedback to the agent.

The configuration of the environment for the DQN framework is listed as follows:

• The physical forward model: a theoretical program for calculating the replica.
• Observed data: the measured data or the data derived from the measured data.
• Misfit function: the root mean squared error (RMSE) measures the difference between

the observed data and replica.
• Environment state: a special item for the DQN framework, which indicates the

progress of the inversion. The environment state is formulated as:

Si = [min(Ei), mean(Ei), std(Ei), ∆min(E), ∆mean(E), ∆std(E)] (6)

where i refers to the ith iteration, min(.), mean(.), and std(.) are operators for calcu-
lating minimum, mean, and standard deviation, respectively. E = [E1, . . . , Ek]/Enorm
refers to the normalized misfit values corresponding to k sets of parameters, where
Enorm is the minimum misfit value in the initialization stage and acts as the normaliza-
tion factor. ∆ is an operator for calculating the difference from the last iteration, e.g.,
∆min(E) = min(Ei−1)−min(Ei).

• Termination criteria: whenever one of the conditions expressed below is satisfied, the
iteration stops.

Condition 1: i = imax

Condition 2: min(Ei)× Enorm <= ethreshold

Condition 3: 2abs(
max(Ei)−min(Ei)

max(Ei) + min(Ei)
) <= εconvergence

(7)

where imax is the maximum iterations, ethreshold is a preset threshold of misfit, and
εconvergence is a preset threshold for convergence.

• Reward: a special item for the DQN framework, which is a signal for guiding the
agent to learn a search strategy. For obtaining a fast and accurate search strategy, the
reward rules are defined as:

reward =
ethreshold −min(Ei)× Enorm

ethreshold
× 100 , iteration terminated

reward = −1 , otherwise
(8)

• Feedback: the feedback includes misfit values Ei, the environment state Si and
the reward.

4.2. Agent and Action Space

Action space consists of all the potential actions that may be selected by the agent
during each iteration. For instance, the action space of GA consists of reproduction,
crossover, and mutation [6]. The configuration of the agent for the DQN framework is
listed as follows:

• Agent state: during each iteration, the agent updates the agent state based on the
feedback from the environment. The agent state is formulated as

Sagent
i = [Bi, mi, mi

mean, mi
std] (9)
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where B refers to the search bounds of the parameters, m is a set of parameters with the
lowest misfit value among the k-selected sets. mmean and mstd are mean and standard
deviation values of the parameters, respectively, whose misfit values are the first 30%
lowest values among the k-selected sets.

• Action space: the agent has two actions for sampling from the parameter space. Each
action consists of a sampling operation and an update rule.

– Action 0 samples with the uniform distribution from the search bounds B and
iteratively searches the solution by compressing B.
More specifically, during each iteration, the agent conducts two steps:

1. At beginning of the ith iteration, the search bounds are compressed as follows:

Bi = mi × i
imax

+ Bi−1 × (1− i
imax

) (10)

2. After updating the search bounds, k sets of parameters are sampled with
a uniform distribution from the updated search bounds Bi. The selected
parameters are fed into the environment and the corresponding feedback is
received by the agent. The agent state is updated accordingly.

– Action 1 samples with the Gaussian distribution and iteratively searches the
solution by updating mmean and mstd of the selected k sets.
More specifically, during each iteration, the agent conducts the following steps:

1. At the beginning of the ith iteration, k sets of parameters are sampled with a
Gaussian distribution defined by [mi−1

mean, mi−1
std ]. Note that the operation of

sampling needs to be repeated when any of the selected parameters exceed
the original search bounds or the bounds of [0.5Bi

low, 1.5Bi
up], where the sub-

scripts low and up refer to the lower and upper bounds of Bi, respectively.
2. The selected parameters are fed into the environment and the corresponding

feedback is received by the agent. The agent state, except for the search
bounds B, will be updated accordingly.

3. In the received feedback, if abs(max(Ei)−min(Ei)

max(Ei)+min(Ei)
) <= εconvergence, the expan-

sion is activated for jumping out of the local minimum. The expansion is
conducted as follows:

(a) mi
std=10mi

std
(b) k = 2k
(c) Repeating steps 1 and 2.

4.3. DQN-Based Search Strategy

The search strategy acts as a guide that leads the agent to iteratively select an action
from the action space according to the feedback from the environment. For instance, the
search strategy of GA consists of a series of pre-defined rules that leads the agent of GA to
find the optimal solution.

Unlike the existing optimization methods, which have a pre-defined search strategy,
the DQN framework learns the strategy for controlling the agent defined in Section 4.2 by
iteratively interacting with the environment defined in Section 4.1 to find a set of parameters
corresponding to the lowest misfit value as quickly as possible.

The DQN-based search strategy is shown in Figure 2, where the architecture of the
neural network is expressed in Table 1. The neural network has three dense layers followed
by the ReLU activation function with the exception of dense layer 3. The input for dense
layer 1 is the current environment state Si, a vector consisting of six components. The
output by dense layer 3 is a two-component vector expressing the Q-values corresponding
to the possibilities of executing actions, and the agent will execute the action with a larger
Q-value.
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Table 1. Architecture of the neural network in the DQN framework.

Name Input Channel Output Channel

Dense layer 1 6 1024
ReLU - -

Dense layer 2 1024 1024
ReLU - -

Dense layer 3 1024 2

Figure 2. DQN-based search strategy.

4.4. Inversion Workflow

The inversion workflow based on the DQN framework is expressed in Algorithm 2:

Algorithm 2 Inversion workflow based on the DQN framework.

1: Initializing the observed data, geoacoustic model, and original search bounds.
2: Executing Action 0 with the constrain of the original bounds and initializing the

environment state as S1 = [Enorm/Enorm, Emean/Enorm, Estd/Enorm,−1,−1,−1].
3: repeat
4: Obtaining the current environment state Si.
5: Passing Si into the network of the DQN framework and collecting the suggested

action.
6: Executing the suggested action and passing the k sets of parameters into the environ-

ment.
7: until the termination criteria shown in Equation (7) are satisfied.

Output: Inversion result mend.

In the initialized environment state S1, Enorm, Emean, and Estd are the minimum, mean,
and standard deviations of the misfit values (with a dimension that depends on the inverse
problem) among the k selected sets. Specifically, Enorm involves the normalization factor,
and each item of the environment state is a percentage.

4.5. Implementation

Upon the environment and agent defined in Sections 4.1 and 4.2, the DQN framework
is trained following the procedure in Section 3.

Hyperparameters of the implementation are shown in Table 2.
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Table 2. Hyperparameters of the DQN framework.

Item Value

Mini-batch size 32
Memory size 100,000

Update frequency 4
Discount factor 0.9
Learning rate 0.0001

Factor in greedy strategy 0.9
Training epoch 300

5. Numerical Experiments

In this paper, the DQN framework is applied to estimate the shear wave velocity based
on the dispersion data of interface waves. The inversion performances of the proposed
DQN framework and three alternative methods (GA, DE, and ASSA) are examined in
two numerical experiments. Two geoacoustic models based on real scenarios in [2,26] are
defined to increase the reality of the simulation. To increase the reliability of the evaluation,
the inversion results discussed in this section are averaged over 100 independent inversions.
A forward model DISPER80 [27] based on the Thomson–Haskell matrix method [28,29] is
used for calculating the simulated dispersion curve based on the given geoacoustic model.

5.1. Experiment Setup

The numerical experiments were conducted on a server with Intel Core i7-9700K
CPU @ 3.60 GHz, 8 cores, 64 G memory, and 1 T hard drive. Inversions of GA and
DE were implemented based on a GitHub repository scikit-opt. The inversion of ASSA
was implemented based on the algorithm proposed in [8]. The DQN framework was
implemented based on PyTorch [30]. Preset parameters of the candidate methods are
shown in Table 3, where item All refers to the parameters applicable for all the candidate
methods.

Table 3. Preset parameters of the candidate methods.

Algorithm Description Value

All

Maximum of iteration (imax) 100
Number of sampling per iteration (k) 200

Threshold of misfit (ethreshold) 10 (m/s)
Threshold of convergence (εconvergence) 0.1

GA and DE Mutation rate 0.001
Population size 200

ASSA Temperature reduction factor 0.995

The metrics for evaluation are the misfit value, the running time per independent
inversion and the relative error (namely, RE) formulated in Equation (11).

RE =
abs(mtrue −minversion)

mtrue
× 100% (11)

where minversion is the estimated value of one geoacoustic parameter and mtrue is the
corresponding ground truth.

5.2. Case 1

Case 1 defines a six-layer geoacoustic model referenced from the inversion results in
the Grane field [26], as shown in Table 4. The phase velocity dispersion curves for the first
five modes of the Scholte waves are calculated in the frequency range from 0 to 5 Hz as the
ground truth.
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Table 4. Geoacoustic model for Case 1.

Layer h (m) ρ (kg/m3) V p (m/s) Vs (m/s)

0 (Ocean) 125 1.0 1490 0
1 35 1.5 1750 365
2 89 1.8 2000 696
3 125 2.0 3500 878
4 224 2.2 3750 1060

5 (Half-space) 956 2.1 3250 1140

The density and compression wave velocities are considered as known since they are
not sensitive to the dispersion property of the Scholte wave [1]. The original search bounds
for Case 1 are shown in Table 5.

Table 5. Search bounds for Case 1.

Layer h (m) Vs (m/s)

0 (Ocean) - -
1 [10, 70] [100, 500]
2 [40, 120] [250, 850]
3 [50, 350] [500, 1200]
4 [50, 650] [800, 1500]

5 (Half-space) - [700, 1800]

The estimated dispersion curves with the ground truth are shown in Figure 3, where
the black dots are the ground truth. The blue, green, yellow, and red lines express the
estimated dispersion curves by the GA, ASSA, DE, and DQN framework, respectively.

Figure 3. The estimated dispersion curves with the ground truth in Case 1.

The estimated shear wave velocity profiles with the ground truth are shown in Figure 4,
where the black line refers to the ground truth. The blue, green, yellow, and red lines express
the estimated shear wave velocity profiles by the GA, ASSA, DE, and DQN framework,
respectively.
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Figure 4. The estimated shear wave velocity profiles with the ground truth in Case 1.

The performance analysis for Case 1 is shown in Table 6, in which the bold fonts refer
to the lowest relative error, misfit value, or running time over each row.

Table 6. Performance analysis for Case 1.

GA ASSA DE DQN Framework

h1 3.27% 2.21% 2.17% 0.39%
h2 7.26% 0.56% 3.28% 2.05%
h3 10.31% 0.68% 2.72% 0.16%
h4 11.38% 14.30% 20.36% 4.83%

Vs1 2.03% 1.03% 1.21% 0.61%
Vs2 0.26% 0.14% 0.08% 0.87%
Vs3 1.98% 0.31% 0.52% 0.04%
Vs4 1.00% 0.40% 0.59% 0.06%
Vs5 1.06% 1.84% 2.49% 0.61%

Misfit (m/s) 17.60 12.46 15.72 6.03
Running time (s) 181.03 876.29 371.01 112.70

The following phenomena are revealed based on Figures 3 and 4, and Table 6:

• At the low frequency of the fundamental mode, the estimated errors by ASSA and DE
are larger than that by the GA and DQN framework.

• For all candidate methods, the relative errors of the shear wave velocity in all layers
are lower than that of thickness. Both the shear wave velocity and layer thickness are
sensitive to the dispersion properties of Scholte waves. However, in some cases, one
can be more sensitive than the other.

• The low-to-high ranking for misfit values is the DQN framework, ASSA, DE, and
GA. It is the same as the low-to-high ranking for the relative error of each geoacoustic
parameter with a few exceptions of h1, h2, h4, and Vs2. This illustrates that the
misfit value has a partly positive correlation with the overall relative errors, which is
significant since the ground truth of a field survey is mostly unknown and the misfit
value is the only metric.

• The DQN framework attains the lowest misfit and the shortest running time over
others. Furthermore, the DQN framework has the lowest relative errors of all estimated
geoacoustic parameters with a few exceptions of h2 and Vs2.

Two geoacoustic parameters are picked for further statistical analysis since the DQN
framework performs the best inversion on Vs3 and does not perform the best on h2. The
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statistical analyses of geoacoustic parameters Vs3 and h2 are shown in Figure 5 and Figure 6,
respectively. In the figures, the red dashed curve illustrates the distribution of the estimated
parameter over 100 independent inversions. The gray block, the purple line, and the black
line correspond to the histogram, averaged value over 100 independent inversions, and the
ground truth, respectively. Intuitively, the closeness between the purple and black lines
indicates the inversion performance (the closer, the better). In addition, the distribution
of the estimated parameter corresponds to the uncertainty of the inversion results. A
narrower distribution means a lower uncertainty. The DQN framework has the narrowest
distribution, which leads to the lowest uncertainty of the inversion result compared to the
other methods.

Figure 5. Statistic analysis of Vs3 over the candidate methods.

Figure 6. Statistic analysis of h2 over the candidate methods.
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5.3. Case 2

Case 2 considers another geoacoustic model from the inversion results in the North
Sea [2]. The geoacoustic model consists of a sediment layer with a linear velocity gradient
over a continuous half-space (namely, LC introduced in [1]). The model parameters listed
in Table 7 are used to generate phase velocity dispersion curves in the frequency range of 3
to 18 Hz. Five modes are selected as the ground truth. Vst and Vsb refer to the shear wave
velocities at the top and bottom of the sediment layer, respectively.

Table 7. LC model for Case 2.

Layer h (m) ρ (kg/m3) V p (m/s) Vst (m/s) Vsb (m/s)

Ocean 364 1.0 1490 0 0
Sediment 49 1.8 1700 28 385

Half-space 200 1.8 2000 385 385

The search bounds of the sediment parameters H (m), Vst (m/s), and Vsb (m/s) are
[0, 150], [10, 100], and [100, 500], respectively.

The estimated dispersion curves and shear wave velocity profiles are shown in
Figure 7 and Figure 8, respectively. Their legends are the same as in Figure 3 and Figure 4,
respectively.

Figure 7. The estimated dispersion curves with the ground truth in Case 2.

The performance analysis for Case 2 is shown in Table 8, in which the bold fonts refer
to the lowest relative error, misfit value, or running time over each row.

From Figures 7 and 8, and Table 8, the following points can be found:

• The low-to-high ranking for the misfit values is the DQN framework, DE, ASSA, and
GA. The ranking is consistent with the low-to-high ranking for the overall relative
error. This trend is already found in Table 6.

• The DQN framework attains the lowest misfit, the shortest running time, and the
lowest overall relative error compared to other candidate methods.
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Figure 8. The estimated shear wave velocity profiles with the ground truth in Case 2.

Table 8. Performance analysis for Case 2.

GA ASSA DE DQN Framework

H 6.74% 2.74% 1.85% 1.22%
Vst 1.48% 0.58% 0.40% 0.32%
Vsb 5.24% 2.18% 1.50% 0.89%

Misfit (m/s) 4.24 1.92 1.37 1.24
Running time (s) 176.92 340.60 468.13 53.78

5.4. Discussion

Since the ground truth information is not available in many real scenarios, Table 9
expresses the performance comparison based on the metrics of misfit and running times
and concludes the analysis in Sections 5.2 and 5.3.

Table 9. Overall performance analysis.

GA ASSA DE DQN Framework

Case 1 Case 2 Case 1 Case 2 Case 1 Case 2 Case 1 Case 2

Misfit (m/s) 17.60 4.24 12.46 1.92 15.72 1.37 6.03 1.24
Running time (s) 181.03 176.92 876.29 340.60 371.01 468.13 112.70 53.78

Table 9 demonstrates that the proposed framework performs a faster and lower
misfit inversion (highlighted with bold fonts) compared to other methods. Furthermore,
Figures 5 and 6 illustrate that the proposed framework provides the inversion results with
relatively lower uncertainties than other methods.

As mentioned in Section 4.2, Action 0 explores the parameter space more roughly
since it compresses the search bounds in a relatively fast way. On the other hand, Action 1
is more suitable for finely exploring one local area in the parameter space. To understand
the learned search strategy of the DQN framework, Figure 9 exhibits how the actions are
executed by the DQN framework in an independent inversion for Case 1, where the blue
star, the orange dot, and the black curve refer to Action 0, Action 1, and the relative misfit
as a function of iteration numbers, respectively.
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Figure 9. Action execution by the DQN framework in an independent inversion.

As shown in Figure 9, the agent executes Action 0 at the early stage of iterations and
mainly executes Action 1 after that. This pattern can be interpreted as the DQN framework
executing Action 0 at the early iterations to locate the rough area of the solution in the
parameter space and executing a finer exploration (i.e., Action 1) after that to determine the
final solution.

Note that we do not need to set a hard threshold for the agent to change the action
from Action 0 to Action 1 because each independent inversion is initialized randomly.
Furthermore, the relative misfit can exceed 100% at the first several iterations since the
normalization factor Enorm is defined by a random initialization.

6. Conclusions

In this paper, a DQN-based framework for geoacoustic inversion is proposed. The
framework can be defined as an optimization-based inversion method with a learnable
search strategy, which keeps both advantages of optimization-based and ML-based ap-
proaches. Its performance is assessed by two numerical cases for estimating the shear
wave velocity profile based on Scholte wave dispersion curves and compared with that
of three popular optimization methods. Compared to the fastest conventional method,
the running time of the proposed framework can be further reduced by 37.7% (Case 1)
and 68.9% (Case 2), respectively. Compared to the best conventional method, the misfit
of the proposed framework can be further reduced by 51.6% (Case 1) and 9.4% (Case 2),
respectively. The results demonstrate the potential of DRL for geoacoustic inversion and
the superior performance of the proposed framework. More specifically, the proposed
framework can provide a faster, lower misfit, lower relative error, and lower uncertainty
inversion. Please note that the application scope of the proposed framework is the whole
geoacoustic inversion field. The proposed framework can easily be applied to different
inversion tasks by using an appropriate forward model.

The future research direction will focus on the representation of the misfit space (i.e.,
the environment state) and the design of new available actions in the action space for the
agent to explore the parameter space.

Implementation code availability: The code will be made available for the peer review-
ers and the public upon request after the manuscript is published.
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ML machine learning
GA genetic algorithm
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RMSE root mean squared error
RE relative error
LC linear velocity gradient over a continuous half-space
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