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Abstract: The development of bathymetric LiDAR technology has contributed significantly to both 

the quality and quantity of river bathymetry data. Although several bathymetric LiDAR sensors are 

available today, studies that evaluate the performance of the different bathymetric LiDAR sensors 

comparatively are still lacking. This study evaluates the performance of three bathymetric LiDAR 

sensors, CZMIL Supernova, Riegl VQ880-G, and Riegl VQ840-G, used with different acquisition 

approaches, in mapping Læ rdal River bathymetry in Norway. The performance was evaluated 

based on comparing the sensors against a multibeam echosounder (MBES), a terrestrial laser scan-

ner (TLS), and by an intercomparison between the individual sensors. The comparison was com-

pleted by comparing point clouds from the instruments and through the comparison of DEMs cre-

ated from the point clouds. For the comparison against the MBES, the results show that the median 

residuals range between 3 to 13 cm, while against the TLS the median residuals range between 0 to 

5 cm. The comparison of the CZMIL sensor against the two Riegl sensors shows median residuals 

of around 12 cm where the CZMIL map is shallower against the VQ880-G and deeper against the 

VQ840-G sensor. For the two Riegl sensors, the results show a median difference of 2 cm with the 

VQ880-G map deeper. We do observe that areas with high residuals are linked to river features such 

as large substrate variability, steep banks, and whitewater/turbulent flow. The study shows that all 

the LiDAR instruments provide high-quality representations of the river geometry and create a 

solid foundation for planning, modelling, or other work in rivers where detailed bathymetry is 

needed. 

Keywords: river bathymetry; airborne bathymetric LiDAR; ALB; LiDAR; topo-bathymetric;  

LiDAR acquisition 

 

1. Introduction 

Detailed river bottom geometry, commonly referred to as bathymetry, is a key factor 

within river management for studying a wide range of societal applications such as flood 

risk and climate mitigation, sediment transport and erosion, and ecosystem studies [1–4]. 

Bathymetric data collection has traditionally been conducted using differential global po-

sitioning system (GPS) and total stations in shallow wadable rivers and multibeam tech-

nology in deep non-wadable river sections [5–8]. However, applying such conventional 

methods for bathymetric surveys can be associated with many challenges ranging from 

health, safety, and environmental risks (HSE) associated with accessing the river, costs 
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related to time used in the field, and high economic costs [5,9–11]. The emergence of re-

mote sensing technology, however, has been a quantum leap in the field of bathymetry 

acquisition that resolves the majority of the ground survey challenges [12–14].  

Light detection and ranging (LiDAR) technology is one of the recent popular sources 

for river geometry acquisition that enables rapid and accurate 3D point cloud collection. 

The technology measures the distance to a target by detecting the time between the emis-

sion of a pulse of laser from a sensor and the time of detection of the reflected laser from 

the target [15]. Depending on the wavelength, two types of LiDAR sensors exist: topo-

graphic LiDAR and bathymetric LiDAR. Topographic LiDAR is associated with a laser of 

1064 nm that is unable to penetrate water bodies and therefore used mostly for topo-

graphic surface detection. Bathymetric LiDAR, on the other hand, is commonly character-

ized by a laser of 532 nm that penetrates the water and gives bottom detection [16]. The 

bathymetric LiDAR is the most widespread LiDAR type used in river studies that require 

high degrees of mapping accuracy such as environmental river studies [17–19], sediment 

transport studies [20,21], and flood modelling [22,23]. 

Today, a variety of bathymetric LiDAR sensors are commercially available, each de-

fined by their technical specifications such as the laser energy per pulse, the laser foot-

print, and the maximum detectable depth. The question of which sensor is most suitable 

for bathymetric mapping will primarily depend on project objectives, physical features of 

the area of interest such as water depths, river gradient and water turbidity, and sensor 

availability [24]. The Teledyne Optech CZMIL (Coastal Zone Mapping and Imaging Li-

DAR), for instance, is an airborne multi-sensor used for mapping topographic surfaces 

and coastal zones [25–27], and the high laser energy per pulse characteristic makes it suit-

able to map deep depths such as those in the coastal applications [26,28]. However, the 

high laser penetration in the CZMIL comes at the point density cost since the laser energy 

and the point density are negatively correlated [24]. Riegl VQ880-G, on the other hand, is 

an airborne topo-bathy sensor with lower laser energy per pulse and a smaller footprint, 

compared to the CZMIL, that can map with much higher point density but less water 

penetration [21,24,29]. Riegl VQ840-G is another topo-bathy sensor that is much lighter 

than the common bathymetric LiDAR sensors’ weight and, therefore, can be operated 

from an unmanned aerial vehicle or helicopters [30,31]. 

The evaluation of the performance of bathymetric LiDAR sensors is an important 

aspect within both coastal [28,32] and shallow fluvial mapping [3,21,30,33–35], especially 

when a high degree of accuracy is crucial such as for ecological assessment. In coastal 

applications, Costa et al. (2009) [28] have evaluated the performance of the Laser Airborne 

Depth Sounder (LADS) Mk II Airborne System in providing benthic habitat maps com-

pared to ship-based multibeam (MBES) Sound Navigation and Ranging (SoNAR) at the 

western coast of Puerto Rico. Cost and mapping-wise, they have found that the bathymet-

ric LiDAR works as an efficient alternative to the MBES in mapping and monitoring shal-

low water coral reef ecosystems at less than 50 m deep. In the fluvial mapping, many 

studies have evaluated the performance of different bathymetric LiDAR sensors deployed 

on airborne such as Aquarius [33,36], EAARL and EAARL-B [3,34,35], Lieca Chiroptera II 

[37,38], and Riegl VQ880-G [21,39], and sensors deployed on drone such as Riegl VQ840-

G [30], ASRTALiTe EDGE [40], and TDOT GREEN [41]. Fernandez-Diaz et al. (2014) [33] 

and Legleiter et al. (2016) [36] have evaluated the performance of the Aquarius sensor 

against DGPS and the Analytical Spectral Device (ASD) in mapping both clear and turbid 

rivers and reported a root mean square error (RMSE) of 0.13 m in a clear river and 0.24 m 

in a relatively turbid river. The studies of Kinzel et al. (2013) [3] and Tonina et al. (2019) 

[35] evaluated the performance of the EAARL and EAARL-B sensors in mapping various 

ranges of river sizes and concluded RMSE between 0.11 and 0.52 m where higher uncer-

tainties were associated with the existence of turbulence (whitewater) and turbidity. Yo-

shida et al. (2022) [37] have evaluated the Lieca Chiroptera II sensor in mapping a river in 

Japan and reported 10 cm accuracy against ground surveys and RMSE of 8 cm, 10 cm, and 

20 cm at the gravel bars, vegetated bed, and underwater bed, respectively. The 
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performance of the Riegl VQ880-G sensor has been evaluated in the studies of Mandl-

burger et al. (2015) [21] and Miller and Addy (2019) [39] and showed smaller bands of 

uncertainties (<0.10 m) and higher mapping resolutions (>20 points/m2) than the Aquarius 

and the EAARL sensors. For the drone-based bathymetric LiDAR sensors, the perfor-

mance of the Riegl VQ840-G has been evaluated in the study of Mandlburger et al. (2020) 

[30] and showed a close performance to the Riegl VQ880-G. The performance of the 

ASRTALiTe EDGE sensor has been evaluated in the study of Kinzel et al. (2021) [40] in 

the light of stream optical properties and suspended sediment concentration against RTK 

and MBES measurements. The study reported that the correspondence of LiDAR depths 

R2 varies between 0.60 to 0.97 against the RTK measurements and 0.72 against the MBES 

measurements. Moreover, the study shows that the sensor maps deeper in gravel-bedded 

rivers where suspended sediment concentration is less than in sand-bedded rivers. The 

study of Islam et al. (2022) [41] investigated the effect of seasonality on the mapping qual-

ity of the TDOT GREEN sensor. The study found that the LiDAR measurements produce 

higher errors (RMSE) in autumn measurements when higher suspended sediment con-

centration exists than in the winter season.  

Given the different specifications of the available bathymetric LiDAR sensors [42] 

and the various potential sources of uncertainties, a quantitative comparison study of dif-

ferent sensors applied in similar conditions may demonstrate differences in performance 

that helps in future applications and management use. However, to the authors’ 

knowledge, no comparative studies have been conducted in that respect in a river envi-

ronment. In this study, we present a comparative study of three different bathymetric Li-

DAR sensors, applied in a steep Norwegian river, and used with different acquisition ap-

proaches. The main objective is to conduct a quantitative assessment of their performances 

in mapping the river bathymetry under different morphological conditions and different 

acquisition approaches. We compare the river bathymetry (the elevation of the river bot-

tom) derived from the bathymetric LiDAR sensors CZMIL Supernova, Riegl VQ880-G, 

and Riegl VQ840-G against bathymetry data from a multibeam echosounder (MBES) 

(Norbit Winghead i77h) and a terrestrial laser scanner (TLS) (Leica ScanStation P50) in 

pre-defined sub reaches of the river Læ rdal in Norway. Both a comparison of point clouds 

from the instruments and a comparison of digital elevation models created from the point 

clouds were carried out. Three main objectives have been defined for the current study: 

1. Evaluate the differences in elevation between the bathymetric LiDAR point clouds 

and the MBES and TLS point clouds. 

2. Evaluate the differences in elevation of the bathymetric LiDAR point clouds against 

each other. 

3. Relating the differences to river features such as depth, steepness of banks, abrupt 

elevation changes, and whitewater locations. 

2. Data 

2.1. Study Site 

Læ rdal River is located in a steep mountainside valley in Sogn og Fjordane County 

at the west of Norway. The study reach (stretches for 15 km), shown in Figure 1, drains a 

mountainous catchment of 994 km2 with an unregulated daily mean discharge of around 

31 m3/s. The average width of the river ranges between 50 and 70 m linking flat banks of 

around 2.2 degrees of slope [22]. The longitudinal slope of the river is around 0.43 percent 

[22]. The dominant flood regime in the river is spring flood driven by rain events over 

snow melting events [43], and 72% percent of the adjacent areas are protected against 

those floods through embankments [22]. A series of weirs have been built along the river 

partly to compensate for the changes in the water-covered area due to the hydropower 

regulation of the river, and partly for improving recreational fishing for Atlantic salmon 

[44]. A survey was carried out for the reach from the Kuvelda tributary to the ocean (ap-

proximately the last two-thirds of the study reach) by Skår et al. (2017) [45] and found that 
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around 67% of the reach had smooth-flowing conditions, while 32% and 1% were rapid 

and whitewater conditions, respectively. The study also found that the stretch was largely 

dominated by cobbles (51% coverage of the total area). Gravel composed 25% of the re-

maining substrate, and boulders generally found along the riverbank and at the weir 

crests constitute 12% of the substrate. To our knowledge, no measurements for the water 

clarity, such as nephelometric turbidity units (NTU), were conducted for Læ rdal, how-

ever, the visibility of the bottom is very good indicating clear water.  

 

Figure 1. The study site location in Norway with the extent of the bathymetric LiDAR sensors, 

MBES, and TLS datasets. M and T denote the MBES and TLS datasets’ locations, respectively. The 

spatial coordinate system is WGS 84/UTM zone 32N. 

2.2. Bathymetric LiDAR Data 

The river bathymetry of Læ rdal was mapped in the fall of 2021 by three different 

bathymetric LiDAR sensors, CZMIL Supernova (fixed-wing aircraft), Riegl VQ880-G 

(fixed-wing aircraft) and Riegl VQ840-G (helicopter) (Table 1). The CZMIL and Riegl 

VQ880-G were applied for a continuous river mapping of the selected 15 km study reach 

whereas the Riegl VQ840-G was applied for a selected sub-reach in the study area (see 

Figure 1). The datasets were acquired and processed in accordance with the protocol “Pro-

duction of Basis Geodata” [46] and delivered according to the requirements stated in the 

specification FKB-Laser v3.0 [47]. The procurement of the data allowed for 2% of misclas-

sification in the delivered cloud. In general, the horizontal and vertical accuracies for all 

datasets were within 0.30 m and 0.10 m, respectively, achieved by utilising a set of 2 × 2 m 

control ground points (GCP) measured using RTK GNSS. The CZMIL and the Riegl 

VQ840-G datasets were acquired through regular patterns of crosslines with internally 

adjusting the strips before they adjusted to the GCPs. Although being a deep bathy (3 
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Secchi Depth) system, the CZMIL was operated in Shallow Bathy Mode for the Læ rdal 

survey, therefore, the analysis is thus not evaluating the sensor running in deep mode. 

The Riegl VQ880-G dataset, on the other hand, was collected using a different acquisition 

pattern than the traditional approach where the strip adjustment is performed together 

with the GCPs measured on the ground [48]. Figure 2 shows the different acquisition pat-

terns followed in the bathymetric LiDAR collection.  

Table 1. The specifications of the bathymetric LiDAR surveys. 

 CZMIL Supernova Riegl VQ880-G Riegl VQ840-G 

Sensor short name CZMIL VQ880 VQ840 

Sensor type Topo-Shallow Bathy (1) Topo-Bathy Topo-Bathy 

Weight (kg) 270 65 12 

Dimensions (cm) 
89 × 60 × 90—sensor head  

59 × 56.5 × 106—operation rack 
52 × 52 × 69 36 × 29 × 20 

Laser Channels (nm) 532/532/1064 532 532 

Camera Phase One iXM-RS150F RGB RGB 

Measurement rate (kHz) 180 up to 550 kHz 50–200 

Pulse Energy (mJ) 1.75 - - 

Pulse Duration (ns) 1.57 1.5 1.5 

Field of view (deg) ±20 ±20 ±20 

Beam divergence (mrad) 1.9 0.7–1.1 1–6 

Input optics diameter (mm) 200   

Nominal flying altitude (m) 400–600 400 50–150 

Laser footprint (cm) 75–112 50 @ 1.1mrad 5 to 90 

Scan pattern circular circular elliptical 

Depth performance @ 15% Bottom Re-

flectance (Secchi depth) 
2 1.5 2 

Acquisition Date 21 July 2021 26 September 2021 25 September 2021 

Discharge (m3/s) 20 15 15 

Flight Height (m AGL) ~400 ~400 ~95 

Laser footprint (cm) 75 40 21 

Flight Lines excluding turns (km) 45.3 332.3 9.1 

Coverage Topo-Bathy (km2) 3.6 3.6 0.2 

Efficiency Topo-Bathy (km / km2) 12.7 93.2 54.8 

Requested Density Bathy (point/m2) 5 5 5 

Actual Density Bathy (point/m2) 6 91 40 
(1) The CZMIL sensor was operated in shallow bathy mode only. 

 

Figure 2. The acquisition patterns for the three bathymetric LiDAR datasets. 
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2.3. MBES and TLS Datasets 

To evaluate the performance of the three bathymetric LiDAR sensors, we compared 

the river bottom (z level) measurements of the sensors against two sets of validation da-

taset, bathymetric data using Norbit Winghead i77h with integrated Applanix PosMV 

Oceanmaster [49,50] and terrestrial data at gravel bars using Leica ScanStation P50 laser 

scanner [51]. MBES data were collected on the 18th of November 2021 on a discharge of 

20 m3/s during the measurements. TLS data were collected on the 25th and 26th of March 

2022 and the corresponding discharges were 19 and 20 m3/s, respectively. The locations of 

the MBES and the TLS sites are shown in Figure 1. 

The MBES dataset was collected at three sites (M1–3) located in the lower 500 m of 

Læ rdal river (Figures 1 and A1). M1 is located near the river outlet, with an average depth 

of two meters. The site includes a submerged boulder weir with a downstream pool of 10 

m depth and protected riverbanks with pitched boulders. M2 is located upstream of a 

weir with an average and maximum water depth of 1.4 and 2.8 m, respectively. The flow 

pattern at the site could be described as a calm pool with uniformly gravel sediments and 

one side protected bank. M3 has an average and maximum water depth of 1.5 and 4.7 m, 

respectively, and contains scattered large boulders near the middle of the right bank, pos-

sibly remaining bank protections. The MBES dataset was acquired according to the Nor-

wegian Mapping Authority Hydrography standards [46]. At the maximum water depth 

of 10 m (Figure A1), the absolute horizontal accuracy of data acquired by MBES was ±0.66 

m, the absolute vertical accuracy was ±0.14 m, and the absolute water depth precision was 

±0.10 m.  

For the TLS datasets, the three sites consisted of uniform gravel sediments free of 

vegetation. At the T2 site, a pile of boulders exists of an old dry weir at the downstream 

right side. The TLS dataset was acquired with a bundle error below 8 mm, a cloud-to-

cloud error up to 1.1 cm, and a maximum target error of 6 mm. Absolute positioning for 

both MBES and TLS was achieved using the Norwegian Mapping Authority CPOS RTK 

network. 

3. Methodology 

The performance of the three bathymetric LiDAR sensors was evaluated by compar-

ing classified LiDAR and MBES point clouds, for the underwater geometry, and LiDAR 

and TLS point clouds, for the dry geometry. The evaluation of the point clouds was lim-

ited to the points classified as bare ground and water bathymetry. The differences (resid-

uals) between the two point clouds were calculated as follows: 

residual(i) = Zf(i) −  Z𝑏(i) (1) 

where Zf(i) denotes the MBES or TLS bed elevation and Zb(i) denotes the bathymetric Li-

DAR sensor bed elevation at the location i. Therefore, positive residual indicates that the 

bed elevation measured by the MBES or the TLS instruments is higher than the bathymet-

ric LiDAR sensor bed elevation, and therefore the bathymetric LiDAR sensor overesti-

mates the depth of the water. Conversely, negative residual indicates that the bed eleva-

tion of the MBES or the TLS instruments is lower than the bathymetric LiDAR sensor bed 

elevation, and hence the bathymetric LiDAR sensor underestimates the depth. 
The residuals between the point clouds of the three bathymetric LiDAR were calcu-

lated following the same approach as in Equation (1). For the comparison of the Riegl 

VQ880-G against the CZMIL, positive residual indicates the bed elevation of the Riegl 

VQ880-G is higher than the CZMIL elevation, and therefore the CZMIL mapped deeper. 

For the comparison of the Riegl VQ840-G against the Riegl VQ880-G, positive residual 

indicates the Riegl VQ880-G mapped deeper, and for comparison of the Riegl VQ840-G 

against the CZMIL, positive residuals indicate that the CZMIL mapped deeper.  

The residuals were calculated in two forms, cloud to cloud approach and raster to 

raster approach. For the point cloud approach, the Multiscale Model to Model Cloud 
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Comparison method (M3C2) implemented in the CloudCompare Software (version 

2.11.3) was used to estimate the residuals between the point clouds [52,53]. This method 

uses the 3D point cloud in estimating the distance between two clouds. The method is 

known for its advantages in eliminating meshing uncertainties and its robustness to miss-

ing data in comparing clouds with different roughness. The normal scale (D) and the pro-

jection scale (d) for the M3C2 were optimized based on the cloud with the least point 

density from the available datasets, following the recommendation criteria of Lague et al. 

(2013) [53]. The normal scale was set to 5 m, and the projection scale was set to 3 m, and 

both were found to be satisfactory for the analysis. Tests for the sensitivity of the overall 

results against the selected scales were carried out and found the differences to be negli-

gible. For the raster-based comparison, the digital elevation model of difference (DoD) is 

a common method in studying the sediment budget over a period of time (e.g., [21,54–

57]). In this study, a 0.5 m cell size of raster was created using GDAL python package and 

the mean elevation of the points lying within the raster was assigned as the elevation of 

the cell.  

The spatial distribution, the median, and the root mean squares (RMS) of the result-

ing residuals from the comparison approaches were examined as well as the frequency 

distributions of the residuals. To further investigate the characteristics of frequency dis-

tributions of the residuals, the skewness and kurtosis, were computed. Within the LiDAR 

applications, higher-order moment statistics (skewness and kurtosis) are usually used for 

filtering and classification of the LiDAR point cloud to classify the different objects (e.g., 

[58,59]). The mathematical expression for the skewness and the kurtosis can be summa-

rized as follows [59]: 

𝑀(𝑛) =  (
1

𝑁𝜎𝑛
 ∑(𝑥𝑖 −  𝜇)𝑛

𝑁

𝑖=1

)

1
𝑛⁄

 (2) 

where n = 3 for skewness and n = 4 for kurtosis, respectively; N is the number of points; 

𝑥𝑖 is the residual of the 𝑖th point; 𝜇 and 𝜎2 are the mean value and the variance of the 

residual population. The skewness measures the asymmetry of a population. A zero skew-

ness indicates a symmetrical distribution, negative skewness indicates a left-tailed distri-

bution, and positive skewness indicates a right-tailed distribution. The kurtosis is a meas-

ure of whether a distribution is heavy-tailed or light-tailed relative to a normal distribu-

tion (a kurtosis of 3). A larger kurtosis than 3 indicates a thin pointed distribution com-

pared to normal distribution while smaller kurtosis than 3 indicates broad flat distribution 

compared to normal distribution.  

Based on the linear error propagation of the expected vertical accuracy of the bathy-

metric LiDAR sensors, the MBES, and the TLS, acceptance limits of the residuals for the 

comparison scenarios were specified. For the comparison of the bathymetric LiDAR sen-

sors against the MBES, the acceptance limit of the residuals was set to ±0.20 m. For the 

comparison of the bathymetric LiDAR sensors against the TLS, since the vertical accuracy 

of the TLS is very small compared to the bathymetric LiDAR accuracy, the acceptance 

limit was fixed to the accuracy of the bathymetric LiDAR sensors, and hence ±0.10 m. For 

the comparison of the bathymetric LiDAR sensors against each other, the accuracy of each 

of the two sensors was included and therefore set to ±0.20 m. The percentage of the point 

cloud with residuals within the acceptance limits was computed and reported as the ac-

ceptance percentage. 

Finally, an evaluation of the locations of residuals higher than the acceptance limits 

was carried out and analysed. The high residual locations were investigated with respect 

to the water depth, the slope of the river banks, abrupt elevation change locations, and the 

whitewater locations.  

  



Remote Sens. 2023, 15, 263 8 of 21 
 

 

4. Results 

Correspondence between the bathymetric LiDAR sensors’ elevations and the MBES 

and the bathymetric LiDAR sensors’ elevations and the TLS instruments’ elevations are 

summarized in Figures 3 and 4. In general, the correspondences of the sensors with both 

instruments show high coefficients of determination (R2) being greater than 0.9 in all cases. 

The correspondence against the MBES shows a general trend of all the LiDAR sensors’ 

elevation to deviate from the MBES elevations by the same degree at higher elevations 

(upper right in Figure 3). Moreover, the Riegl VQ880 sensor showed some outliers at the 

M1 site (Figure 3a) at the lowest elevations from the MBES measurements that did not 

occur with the CZMIL sensor. This difference was not observed at any of the other MBES 

sites. The correspondence of the sensors to the TLS measurements shows similar high R2 

coefficients (greater than 0.9) as seen in Figure 4. The CZMIL showed a consistent fluctu-

ation trend at all TLS sites of underestimation of the TLS elevations at the lower elevations 

and overestimation at the higher elevations. The Riegl VQ880 sensor showed some high 

deviations from the TLS elevations at T3 site (Figure 4c). 

 

Figure 3. The correspondence between the MBES and the bathymetric LiDAR sensor elevations for 

the three MBES locations M1 (a), M2 (b), and M3 (c). 
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Figure 4. The correspondence between the TLS and the bathymetric LiDAR sensor elevations for 

the three TLS locations T1 (a), T2 (b), and T3 (c). 

An illustration of the spatial distribution of the residuals from the comparison of the 

bathymetric LiDAR sensors against the MBES and the TLS is shown in Figures 5 and 6. 

For the comparison against the MBES, the residuals showed to be consistent within the 

riverbed region and increased near the banks and at the top of the weir crest at the M1 site 

(Figure 5). The Riegl VQ880-G sensor generally reported overall shallower elevations than 

the MBES measurements at M1 and M2 (negative M3C2 residuals) and deeper elevations 

than the MBES at M3, while the CZMIL sensor showed consistent shallower elevations 

than the MBES data at all the sites. The small intersection of the Riegl VQ840-G with the 

MBES dataset at M2 showed overall shallower elevations. For comparison against the TLS 

dataset (Figure 6), the CZMIL sensor showed a systematic residual variation closer to the 

wetted area while the Riegl VQ880-G residuals showed to be distributed randomly. 
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Figure 5. Residual (M3C2) maps for the bathymetric LiDAR sensors comparison against the MBES 

from CloudCompare Software. The colour saturation is limited to ±0.5 m residual. For illustration 

purposes, the sizes of the points were increased and adjusted. 

 

Figure 6. Residual (M3C2) maps for the bathymetric LiDAR sensors comparison against the TLS 

from CloudCompare Software. The sizes of the cloud points were adjusted for the purpose of the 

illustration. The background drone aerial photo was collected during the TLS measurements. 
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A summary of the median and the root mean square (RMS) of the residuals and the 

percentage of the accepted point cloud are shown in Table 2. The median of residuals 

showed to be consistent with the trends of their spatial distributions (Figures 5 and 6). The 

comparison against the MBES showed maximum median of 8 cm for the Riegl VQ880-G, 

13 cm for the CZMIL, and 3 cm for the Riegl VQ840, where the maximums showed to be 

at M1 site. The minimum acceptance percentage of the point cloud, on the other hand, that 

showed residuals within 20 cm variations in the comparison against the MBES was 94% 

for all the sensors. The maximum RMS of the residuals in the point approach was 0.15 m, 

while almost double of that was found in the raster comparison.  

The comparison of the sensors against the TLS in the dry gravel bars indicated gen-

erally much smaller residual ranges compared to the MBES, with a maximum of 5 cm 

median residual encountered at T3. Moreover, due to the smaller ranges of residual com-

pared to the MBES, the residual patterns of the comparison against the TLS did not show 

a clear trend of over/underestimation in comparison with the TLS elevation, especially 

with CZMIL at T1 and T2 sites. In addition, for the T3 site, although the median error is 

only 4 cm of overestimation, the associated outliers larger than 10 cm was 29% of the point 

cloud.  

For the comparison of the bathymetric LiDAR sensors against each other, the com-

parison of the Riegl VQ880-G against CZMIL along the whole reach showed a deeper 

mapping of the Riegl over the CZMIL of around 10 to 12 cm median and 82% of the clouds 

were within 20 cm residuals. The comparison of the Riegl VQ840-G with the VQ880-G 

showed very small residuals of around 2 cm, while against the CZMIL, it showed a higher 

variation of around 13 cm where the CZMIL mapped deeper. 

Table 2. The median residual and the maximum root mean square of the residuals, in meters, for 

point and raster approaches together with the acceptance limit of the residuals and the percentage 

of the accepted point cloud for the comparison of the bathymetric LiDAR sensors against the MBES 

(M1–3), the TLS (T1–3), and against the sensors each other. 

 Location Comparison Scenario 
Median (1) RMS Acceptance 

Percentage (2) 

Acceptance 

Limit DEM M3C2 DEM M3C2 

MBES  

vs.  

ALB 

M1 

MBES vs. Riegl VQ880 −0.07 −0.08 0.23 0.12 96 

±0.20 

MBES vs. CZMIL −0.13 −0.13 0.22 0.15 94 

MBES vs. Riegl VQ840 (3) NA NA NA NA NA 

M2 

MBES vs. Riegl VQ880 −0.05 −0.03 0.11 0.08 97 

MBES vs. CZMIL −0.11 −0.11 0.15 0.12 96 

MBES vs. Riegl VQ840 (4) −0.03 −0.03 0.09 0.03 100 

M3 

MBES vs. Riegl VQ880 0.04 0.04 0.11 0.06 99 

MBES vs. CZMIL −0.09 −0.09 0.14 0.11 99 

MBES vs. Riegl VQ840 (3) NA NA NA NA NA 

TLS 

 vs. 

 ALB 

T1 
TLS vs. Riegl VQ880 0.00 −0.01 0.02 0.01 100 

±0.10 

TLS vs. CZMIL −0.02 −0.02 0.06 0.05 94 

T2 
TLS vs. Riegl VQ880 0.03 0.03 0.04 0.04 98 

TLS vs. CZMIL −0.02 −0.02 0.06 0.05 96 

T3 
TLS vs. Riegl VQ880 0.04 0.05 0.05 0.06 99 

TLS vs. CZMIL 0.04 0.04 0.08 0.08 71 

ALB 

 vs. 

 ALB 

Full Reach Riegl VQ880 vs. CZMIL −0.10 −0.12 0.21 0.16 82 

±0.20 VQ840 Extent Riegl VQ840 vs. Riegl VQ880 0.02 0.02 0.13 0.07 99 

VQ840 Extent Riegl VQ840 vs. CZMIL 0.13 0.12 0.27 0.22 82 
(1) Negative median residual in the comparison against the MBES and the TLS implies that the bath-

ymetric LiDAR is the shallower while in the comparison of the bathymetric LiDAR against each 

other, the first in comparison scenario is the shallower. (2) The acceptance percentage is calculated 

based on the resulted residuals of the point approach from the acceptance limit. (3) No intersection 
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between the MBES datasets and the Riegl VQ840-G sensor at these locations. (4) The corresponding 

values were calculated for the small intersection of the Riegl VQ840-G sensor with M2 (See Figure 

3). 

The frequency distributions of the residuals obtained from comparing bathymetric 

LiDAR against the MBES in point cloud and raster formats are shown in Figure 7. Overall, 

the residuals resemble single peak frequency distribution, and the two comparison ap-

proaches replicate similar residual distributions with minor differences across all MBES 

sites. Moreover, consistent with the general statistics in Table 2, the frequency distribution 

for Riegl VQ880-G showed the major frequencies in M1 and M2 sites to be shifted toward 

underestimation, while more toward overestimation in the M3 site, while for the CZMIL, 

the major frequencies indicate a consistent underestimation in all the sites, and the small 

intersection of M2 with the Riegl VQ840-G showed an overall underestimation in the fre-

quency distribution. 

 

Figure 7. Frequency distributions of the residuals for the comparisons of the bathymetric LiDAR 

sensors against the MBES. The bin size for all histograms is 5 cm. 

The frequency distributions of the residuals obtained by the comparison of the 

CZMIL and VQ880-G sensors against the TLS datasets are shown in Figure 8. The com-

parison against the VQ880-G sensor showed a single peak frequency distribution across 

all TLS sites, while the CZMIL showed a consistent double peak frequency distribution in 

T1 and T2, and T3 for the point comparison approach. The VQ880-G sensor showed a 

slight overestimation tendency for T2 and T3, while the double peak frequency distribu-

tions for the CZMIL make it difficult to draw similar conclusions from the distribution.  

The frequency distributions of the residuals obtained by comparing the bathymetric 

LiDAR sensors against each other are shown in Figure 9. The comparison of the VQ880-G 

against the CZMIL showed a clear tendency for the VQ880-G to map deeper in the two 

comparison approaches. For the two Riegl sensor comparisons, the frequency distribution 

resembles an almost symmetrical distribution around zero. For the CZMIL comparison 

against the VQ840, the frequency distribution shows a clear tendency of the CZMIL to 

map deeper. 
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Figure 8. Frequency distributions of the residuals for the comparisons of the bathymetric LiDAR 

sensors against the TLS. 

 

Figure 9. Frequency distributions of the residuals for the comparisons of the bathymetric LiDAR 

sensors against each other. 

The mean, standard deviation, skewness, and kurtosis for the distributions of the re-

siduals are summarized in Table 3. For all the comparison scenarios, the skewness results 

show asymmetrical distributions of the residual ranging from lightly skewed (less than ± 

0.5) to heavily skewed (larger than ±1.0) according to Bulmer (1979) [60]. The kurtosis sta-

tistics show peaked distributions of the residuals for both the comparison of liDAR sen-

sors against the MBES measurement and in the intercomparison scenarios (kurtosis larger 

than 3). However, for the TLS comparison, the Riegl VQ880 sensor show peaked distribu-

tions, consistent with the other comparison scenarios, while the CZMIL sensor results in 

broad flat distributions compared to the normal distribution. 



Remote Sens. 2023, 15, 263 14 of 21 
 

 

Table 3. Statistics of the residuals, mean, standard deviation, skewness, and kurtosis for the com-

parison of the bathymetric LiDAR sensors against the MBES (M1–3), the TLS (T1–3), and against the 

sensors each other for the M3C2 approach. 

 Location Comparison Scenario Mean 
Standard 

Deviation 
Skewness Kurtosis 

MBES 

vs.  

ALB 

M1 

MBES vs. Riegl VQ880 −0.06 0.10 1.01 67.82 

MBES vs. CZMIL −0.12 0.09 −0.73 22.06 

MBES vs. Riegl VQ840 (1) NA NA NA NA 

M2 

MBES vs. Riegl VQ880 −0.03 0.07 −2.67 15.54 

MBES vs. CZMIL −0.11 0.05 −1.54 13.51 

MBES vs. Riegl VQ840 (2) −0.02 0.03 1.28 13.98 

M3 

MBES vs. Riegl VQ880 0.04 0.05 −0.34 29.51 

MBES vs. CZMIL −0.09 0.05 −2.82 47.21 

MBES vs. Riegl VQ840 (1) NA NA NA NA 

TLS 

vs. 

ALB 

T1 
TLS vs. Riegl VQ880 0.00 0.01 0.71 2.98 

TLS vs. CZMIL 0.01 0.05 0.80 2.30 

T2 
TLS vs. Riegl VQ880 0.03 0.02 2.89 15.66 

TLS vs. CZMIL 0.01 0.05 0.60 2.07 

T3 
TLS vs. Riegl VQ880 0.05 0.02 1.77 11.48 

TLS vs. CZMIL 0.06 0.05 0.39 1.94 

ALB 

vs. 

ALB 

Full Reach Riegl VQ880 vs. CZMIL −0.12 0.12 −2.53 47.52 

VQ840 Extent Riegl VQ840 vs. Riegl VQ880 0.02 0.07 −2.61 68.78 

VQ840 Extent Riegl VQ840 vs. CZMIL 0.14 0.17 4.01 114.13 
(1) No intersection between the MBES datasets and the Riegl VQ840-G sensor at these locations. (2) 

The corresponding values were calculated for the small intersection of the Riegl VQ840-G sensor 

with M2 (See Figure 3). 

The analysis of the residual against the water depth for all the comparison scenarios 

shows no clear correlation between the residual magnitude and the depth. However, at 

the M1 site, the VQ880-G was not able to map depths of more than about 9 meters, while 

the CZMIL mapped the entire deep region. The relationship between the residual devel-

opment and the change in the bed slope of the river is shown in Figure 10. The boxplot 

shows that the inner quartile of the residuals increases with the increase in bed slope and 

hence the average of the residual. The slope also includes the abrupt elevation changes 

that occur due to a sudden substrate change in the river reach (high substrate size varia-

bility). From the comparisons of the cross sections that have abrupt changes due to boul-

ders, the VQ880 was found to detect the changes better than the CZMIL where the latter 

did not manage to capture the variability in the substrate, and therefore these areas 

showed high residuals between the two sensors.  

 

Figure 10. Boxplots for the residuals’ development against the bathymetry’s slope for the scenario 

of Riegl VQ880-G against CZMIL supernova in raster format. The blue line indicates a linear regres-

sion line of the average residual (red dots) at each slope category. 
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An illustration of the mapping abilities of the Riegl VQ880 and CZMIL sensors at 

whitewater locations is shown in Figure 11. Four sites where rapids and whitewater exist 

were selected. The comparison showed that the CZMIL seems to register points at the 

water surface as the bottom of the river, while the Riegl VQ880 seems less disturbed by 

the whitewater register deeper points.  

 

Figure 11. Cross-sectional illustration for the point cloud generated by the CZMIL and Riegl VQ880-

G at whitewater locations. The aerial photo was obtained during the survey with CZMIL sensors. 

5. Discussion 

The development of bathymetric LiDAR technology has contributed significantly to 

both quality and quantity of river bathymetry data. In this study, we evaluated the per-

formance of three different bathymetric LiDAR sensors, CZMIL Supernova, Riegl VQ880-

G, and Riegl VQ840-G, used with different acquisition approaches, against MBES and TLS 

instruments in mapping bathymetry in the Læ rdal river. Observed high residuals were 

evaluated with respect to their locations and examined against different river features 

such as water depth, bed slope, abrupt elevation changes, and locations of whitewater 

sections in the river. 

The results show that all sensors perform well and produce high-quality bathymetry 

with the RMSE ranging from 2 to 23 cm compared to the MBES and the TLS instruments. 

Studies have examined the performance of the EAARL-B and Aquarius topo-bathymetric 

sensors in fluvial applications and have reported RMSE ranging between 11 to 52 cm 

[3,33,35,36]. Hilldale and Raff (2008) [13] evaluated the performance of SHOALS sensor, a 

system comparable to the CZMIL sensor, against data points collected with an RTK GPS 

and reported a median error between 14 to 27 cm using the raster comparison approach. 

In Læ rdal, the range of the median error of the CZMIL sensor has shown to be between 0 

and 13 cm against the MBES and the TLS (Table 2). The study of Mandlburger et al. (2015) 

[21] used the Riegl VQ880-G sensor to map the riverbed of the Pielach River with a median 

error of 1 cm. In Læ rdal, the same sensor has shown median ranges between 3 to 8 cm 
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against the MBES and 1 to 5 cm against the TLS, and since the accuracy values for Mandl-

burger et al. (2015) [21] is more representative for a smooth riverbed they compare to the 

residuals of the TLS comparison in Læ rdal since the riverbed is composed of similar uni-

form gravels. The Riegl VQ840-G sensor was used in the study of Mandlburger et al. 

(2020) [30] and has shown an absolute accuracy of around 3 cm, and similar median re-

sidual has been found in the comparison of the same sensor against the MBES in Læ rdal. 

Moreover, the Riegl VQ840 sensor in Læ rdal has shown similar RMSE to the TDOT 

GREEN sensor performance in the study of Islam et al. (2022) [41] where they reported 

around 7 cm RMSE for the underwater geometry (similar to the 9 cm for the Riegl VQ840 

against the MBES). Therefore, in general, the performance of all the sensors lies within the 

accuracy ranges obtained in previous studies.  

The difference in the residual range between the bathymetric LiDAR sensors com-

pared with the MBES and the TLS has several potential explanations. First, the absolute 

horizontal and vertical accuracies for the MBES survey in Læ rdal were ±0.66 m and ±0.14 

m, respectively, and since most of the previous studies that have evaluated the perfor-

mance of the bathymetric LiDAR sensors used more accurate validation sources (such as 

RTK measurements) [3,30,33,35,36], it is likely that part of the residuals of the bathymetric 

LiDAR evaluation was introduced by the MBES system itself. This issue was also reported 

by Kinzel et al. (2021) [40] where they observed mismatches between the MBES measure-

ments and the bathymetric LiDAR measurements due to the uncertainties of the GNSS 

positioning system deployed with the MBES. On the other hand, the TLS survey in Læ rdal 

reported accuracies within ±0.01 m which is comparable to the accuracy of previous vali-

dation datasets used. Another potential reason is the difference in complexities between 

the MBES sites (M1–3) and the TLS sites (T1–3). The features of the bottom at the MBES 

locations are composed of variable grain sizes ranging from very fine sediments to large 

boulders varying abruptly at some locations, whereas the TLS sites are mostly gravel bars 

with uniform gravel sediments. For example, the M1 site has been shown to have the larg-

est median residuals and RMS both for the CZMIL and the Riegl VQ880-G sensors (Table 

2). The complexity of the site with the large, submerged weirs, the steep banks, the large 

boulders, and deep depths causes higher residuals compared to the other sites which are 

also encountered in the investigations of Kinzel et al. (2021) [40] and Islam et al. (2022) 

[41]. 

Despite the different CZMIL and Riegl VQ880-G acquisition approaches, the analysis 

shows that the acquisition patterns have little impact on the overall resulting residuals. In 

the MBES comparison, for example, The Riegl VQ880-G show variable overall residuals 

(underestimation at M1 and M2, and overestimation at M3) whereas the CZMIL has 

shown consistent underestimation across all the MBES sites (Figure 5). The tactical flying 

adopted in the Riegl VQ880-G mapping has allowed for maximising the illumination of 

the riverbed and better bottom detection. As a result, the strip adjustment technique 

needed for such kind of acquisition requires rigorous adjustment techniques that might 

lead to some challenges in the consistencies [48,61]. However, this has not affected the 

overall accuracy of the data. 

The comparison of the residual’s frequency distribution of the VQ880-G and the 

CZMIL sensors against the MBES and the TLS shows consistent single peak distributions 

for the VQ880-G sensor against the two instruments, while for the CZMIL sensors, it 

shows single peak distribution against the MBES and double peak distributions against 

the TLS (Figures 7 and 8). The CZMIL sensor is using two LiDAR sensors, a topo sensor 

with a wavelength of 1064 nm mainly used to map the dry terrain, and the other a bathy 

sensor with a wavelength of 532 nm (Table 1) to map sub-surface geometries. Addition-

ally, since the topo sensor is likely to be more accurately calibrated against the GCPs, the 

part of the gravel bars scanned by the topo sensor showed to have fewer residuals (the 

peak closer to the zero in Figure 8) than the parts scanned by the topo-bathy sensors (the 

peak of the higher residuals in Figure 8). Moreover, the high kurtosis values for the fre-

quency distributions of the residuals (Table 3) indicate that the share of the outliers (high 
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residuals) is significantly less compared to normal distribution outliers, which supports 

the acceptance percentage reported in Table 2.  

The comparison of the bathymetric LiDAR sensors against each other showed that 

since the two Riegl sensors share more or less similar characteristics with respect to the 

laser pulse strength and footprint size (Table 1), their comparison resulted in negligible 

deviations (Table 2 and Figure 9). On the other hand, the comparison of the CZMIL against 

the VQ840-G showed higher variations than against the VQ880-G (Table 2 and Figure 9) 

since the characteristics of the CZMIL sensor are further from the VQ840-G than the 

VQ880-G (Table 1) 

The analysis of the high residuals' relation to water depth has shown no clear corre-

lation between residuals and water depths, similar to what has been reported by others 

[11,33,35]. However, since there is a deep pool at the M1 site where the depth exceeds 9 

m, the low pulse strength sensor, the VQ880-G, misses that deep section, while the CZMIL 

sensor, a higher pulse strength sensor, captures that deep area very well. The point cloud 

resulting from the VQ880-G sensor started to shrink in terms of point density near 9 m, 

before totally missignaling at larger depths. The ASTRALiTe EDGE sensor in the study of 

Kinzel et al. (2021) [40] exhibited a similar issue with mapping depths higher than 9 m, 

and they suggested that this could be attributed to the extinction of the laser in deep water 

or due to unresolved positions from the river feature. The Riegl sensors, including the 

VQ840-G, share common characteristics with the ASTRALiTe sensor, and such perfor-

mance seems to be common within the peer sensors.  

The steep bank slopes and abrupt changes in bottom substrate size locations have 

shown high residuals, similar to what was reported by Kinzel et al. (2021) [40], Tonina et 

al. (2019) [35] and Hilldale and Raff (2008) [13]. The horizontal uncertainty, in such loca-

tions, can easily lead to high residuals since large elevation change occurs over short dis-

tances [13]. Across the different bathymetric LiDAR sensors, the footprint size parameter 

indicates the detailedness of the produced cloud where the smaller it is, the higher the 

sensor’s ability to capture the details [3,35]. Therefore, in Lærdal’s survey, since the foot-

print size of the two Riegl sensors is smaller than the CZMIL (Table 1), the Riegl is ex-

pected to capture the variation more accurately than the CZMIL.  

Mapping whitewater locations has been a challenge for all LiDAR sensors [62]. This 

is also the case in Læ rdal, where we particularly see less data in areas with riffles and 

outlets of weir basins. From the spatial distribution of the residuals between the CZMIL 

and the VQ880-G, large deviations have been observed between the sensors’ clouds in 

these locations. Additionally, since no other measurements exists to compare the two 

clouds, a visual inspection of the cross-sectional geometries of the two clouds was em-

ployed for the evaluation (Figure 9). The illustration shows that the VQ880-G has pro-

duced a more realistic bottom profile, whereas the CZMIL was found to be more vulner-

able to missing the river bottom at those locations and in some cases reported the water 

surface as the river bottom. The interference of the air entrainment with the laser pulse 

prevents the sensor from accurately measuring the bathymetry, and such an issue has 

been reported by Hilldale and Raff (2008) [13] from the SHOALS’ evaluation. In addition, 

with a significantly higher point density produced from the Riegl VQ880-G flight pattern, 

the chance of accurately detecting the bottom in the whitewater section is higher than for 

the lower point density dataset from the CZMIL. This higher point density cloud could 

help the automatic classification algorithm to classify the bottom easier than what is the 

case in a low-density cloud from the CZMIL. Vegetation is also a common problem that 

challenges the autoclassification algorithms [62]. In Læ rdal, high residuals have occurred 

on islands and in small streams covered with vegetation similar to what has been reported 

by Mandlburger et al. (2015) [21] and Tonina et al. (2019) [35]. Such areas will be associated 

with some level of uncertainties that one needs to be aware of when the LiDAR bathy-

metries are used. 

To conclude, rivers are under pressure globally and the need to protect and restore 

riverine habitats is increasing. To achieve this, a detailed bathymetry of the rivers can form 
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a basis for the analysis and modelling of impacts and restoration strategies. The bathy-

metric LiDAR sensors presented are capable of providing bathymetric data for rivers at 

an accuracy and level of detail that are beyond any other method we are currently deploy-

ing and could therefore provide highly important data for planning and creating detailed 

models. We, therefore, see this as a very useful method for providing the data needed for 

future work on river protection and restoration. 
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Appendix A 

Example of the bathymetric map at the MBES sites (M1–M3) for the Riegl VQ880-G 

sensor and the corresponding water depth.  

 

Figure A1. Bathymetric map at the MBES sites (M1–3) for the Riegl VQ880-G sensor and the corre-

sponding water depth. 
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