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Yaolin Ge ∗ André Julius Hovd Olaisen ∗ Jo Eidsvik ∗
R. Praveen Jain ∗∗ Tor Arne Johansen ∗∗

∗ Department of Mathematical Sciences, Norwegian University of
Science and Technology (NTNU) (email: {yaolin.ge, andre.j.h.olaisen,

jo.eidsvik}@ntnu.no.)
∗∗ Department of Engineering Cybernetics, NTNU (email:

{ravinder.p.k.jain, tor.arne.johansen}@ntnu.no.)

Abstract: We apply non-myopic informative path planning in a simulated river plume case
study with several constraints on our agent. A cost valley philosophy is proposed to guide the
agent through the field. The purpose of this path planner is to reveal the river plume front with
the long-horizon while safely returning home in time. Among others, we employ RRT*, a variant
of RRT (rapidly-exploring random trees), as the path planner to determine the least-cost path
between locations. The distance budget from start to end destination, the obstacle constraint,
and directional change are penalties, whereas the reduced variance of the field and an excursion
set are the two rewards. The cost valley is then computed by superimposing those five fields. The
simulation results demonstrate the efficiency of such a strategy. They show that the suggested
approach balances exploitation and exploration while bearing in mind the go-home constraint.
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1. INTRODUCTION

Autonomous Underwater Vehicles (AUVs) have been used
extensively for the investigation of different oceanographic
phenomena (Hwang et al., 2019). AUV adaptive sam-
pling has gained more interest in oceanographic survey-
ing (Zhang et al., 2020; Fossum et al., 2019). Plume
and ocean front investigation with AUVs has formed sce-
narios to validate adaptive sampling methods and algo-
rithms (Fossum et al., 2021; Berget et al., 2018; Fossum
et al., 2018). In using only one AUV to conduct the
adaptive sampling, dominating methods can be grouped
into either myopic (greedy) or non-myopic approaches.
Myopic schemes guide the agent (AUV) towards the most
informative location selected from a subset of candidate
locations within the myopic neighborhood radius (Fossum
et al., 2021; Berget et al., 2018). The greediness of such
algorithms can make it too short-sighted, and it can fail
at revealing other interesting areas. Non-myopic strategies
can alleviate such challenges by expanding its horizon to
a longer-stage (Bai et al., 2021). Xiao and Wachs (2022)
show the effectiveness of such algorithms in a small-scale
case where the shapes of the unknown objects are revealed
by a robot arm, using global kriging variance reduction
as the main criterion. However, the computational cost
associated with such non-myopic algorithms is usually
very high, and it might not apply to larger-scale onboard
computation in the ocean. Suh et al. (2017) provide an
idea of using cost-aware RRT* to generate sampling paths
using cross-entropy as the cost function.

In our case, we want the agent to continuously determine
a path for collecting valuable information from the salinity

field to reveal the river plume front, with the goal being
to map unknown ocean properties while considering the
remaining distance budget and avoiding the potential risks
of collision with mapped obstacles. Going beyond common
pre-scripted planners and greedy strategies, we propose
a long-horizon path planner to solve this problem by
constructing a cost valley built on multiple penalty and
reward fields.

In Section 2 we describe the background and the simula-
tion case which motivates the study of long-horizon path
planning for sampling the river plume front. In Section 3
we outline our modeling approach and the statistical meth-
ods for informative sampling with operational constraints.
In Section 4 we present the algorithms associated with
long-horizon path planning. In Section 5 we show results
from a simulation study comparing standard pre-scripted
lawnmower and myopic (greedy) strategies. In Section 6
we conclude and point to future research directions.

2. PROBLEM STATEMENT

We consider the challenge of AUV adaptive sampling to
map a spatial salinity field to uncover the river plume
front in a specified domain. The focus is on the ability
of the AUV to conduct adaptive sampling when there are
constraints at the start and end point of the deployment,
limited distance budget for the mission, and static obsta-
cles in the field.

In this simulated case, we consider a two-dimensional do-
main. The variable of interest is salinity, which is assumed
to vary smoothly in the domain. Fig. 1 illustrates a syn-



Fig. 1. Exemplary true salinity field on the unit square
domain. The starting point is (0, 0) and the endpoint
is (0, 1). The obstacle is in the center, marked by red
dashed lines.

thetic case for the unit square domain. Here, the surface
salinity field is generated from a Gaussian random field
(GRF) model. In this salinity realization, there is a very
low salinity region to the east and also some low salinity
values to the north. In a practical case, such regions could
represent water masses from river plumes. The red polygon
inside the field shows an obstacle that might represent an
island. The agent is deployed at the red dot in the south-
west corner (coordinates (0, 0)), and one must retrieve
the agent after a certain time at the black star in the
north-west corner (coordinate (0, 1)). The perimeter of the
domain is 4 units, and the distance budget for the AUV is
set to be 5 units. To achieve its task, the agent needs to
conduct adaptive path-planning and make sure that it is
maximizing information-gathering objectives while getting
back to the desired destination in time and avoiding the
collision.

3. STATISTICAL MODELS AND METHODS FOR
AUV SAMPLING

3.1 On-board computing with GPs

We denote the salinity variable by ξu, with spatial variable
u ∈ M ⊂ R2, where M denotes the domain of interest.
We assume that the salinity field is represented by a GRF.
Similar assumptions of Gaussianity on salinity variables
have been used in e.g. Das et al. (2013) and Binney
et al. (2010). The initial specification then includes the
estimation of underlying trends, variability, and spatial
dependence. We assume that they can be extracted from
ocean model data (Slagstad and McClimans, 2005).

The GRF modeling assumptions enable fast onboard
data assimilation and AUV adaptive sampling efforts.
For onboard implementation and computing, the domain
is M which is discretized to a set of n grid locations;
{u1, . . . ,un}. The prior GRF model at these grid locations
is denoted by

ξ = (ξu1 , . . . , ξun)
T , ξ ∼ N(μ,Σ), (1)

with mean vector μ and covariance matrix Σ. We assume
a Matern correlation function so that Σ(i, i′) = σ2(1 +
φh(i, i′)) exp(−φh(i, i′)), with variance σ2, correlation de-

cay parameter φ and Euclidean distance h(i, i′) between
sites ui and ui′ .

The measurement yj at each stage j = 1, . . . , Nsteps is

modeled by

yj |ξ ∼ N(fT
j ξ, r

2), (2)

where the vector f j defines the sampling indices at this
stage of operation and r is the salinity measurement noise
standard deviation. The sampling design Dj at this stage
j, say directions north, east, west, or south, determines the
0 and 1 structure in vector f j because it directly defines
the measurement location. This aspect will be important
for design evaluation in what follows.

Starting with m0 = μ and S0 = Σ, Bayes’ rule is used
to achieve data assimilation at stages j = 1, . . . , Nsteps.

This gives the updated Gaussian model with mean and
variance given by

Gj = Sj−1f j(f
T
j Sj−1f j + r2)−1

mj = mj−1 +Gj(yj − fT
j mj−1)

Sj = Sj−1 −Gjf
T
j Sj−1.

(3)

3.2 Information criterion for sampling

Based on our problem statement in Section 2, we have cho-
sen to use numerous information criteria in the objective
function which determines the AUV sampling design. The
overall function is defined by a sum of normalized versions
of the following criteria that we describe next:

Integrated variance reduction (IVR) uses the latter
part of the posterior covariance calculation in (3). As an
information criterion, the goal now is to provide maximum
reduction of the marginal variances at all spatial locations
in the grid, see also Binney et al. (2010) and Fossum
et al. (2018). For a particular AUV sampling design Dj ,
defined via the sampling design vector f , the variance
reductions at this stage are given by the diagonal entries
of Rj = Sj−1f j(f

T
j Sj−1f j + r2)−1fT

j Sj−1. The sum of
these represents an information measure.

Expected integrated Bernoulli variance reduction
(EIBV) uses the classification of salinity above and below
a threshold t according to an excursion set ES = {u ∈
M : ξu ≤ t}, and the goal is to increase the classification
accuracy of salinity levels according to this threshold.
The Bernoulli variance (BV) at location u is pu(1 − pu),
pu = P (ξu ≤ t), which we aim to reduce by the data
gathering. The goal of a sampling design for data yi is then
to minimize the expected spatially integrated Bernoulli
variance, and for the Gaussian model, there is a closed-
form solution (Fossum et al., 2021).

Obstacle avoidance ensures that the AUV does not
crash into land or islands. There is an infinity cost penalty
if the AUV runs into an obstacle. In practice, a finite cost
penalty can be applied to account for uncertainty.

Directional change sets a penalty for sharp AUV turns.
Beyond the 90o limit, there is an increasing penalty for
high turning angles, so only very rarely (in situations with
conflicting objectives), will we see abrupt angle changes in
the AUV path.



Budget limitations include constraints that make sure
that the AUV gets to its destination in time. The budget
penalty will start when the mission approaches the end,
and form an elliptical region away from the current AUV
location towards its destination. There is infinity loss
outside this region. The cost can be finite in practice as
mentioned above.

The objective function guiding the AUV sampling is com-
posed of all these measures. In doing so, we aim to balance
exploration for uncertainty and salinity boundaries with
operational constraints for the vehicle. At each stage j =
1, . . . , Nsteps, the AUV updates its calculation of a Cost

Valley based on evaluating all these criteria for feasible
designs. The results are used to compare designs and for
selecting the optimal sampling design Dj at the current
stage. The procedures involving model updating, design
criterion calculation, and data gathering are summarized
in Algorithm 1.

Algorithm 1 Informative sampling algorithm

Require: Initial mean m0 and covariance S0

Set start waypoint D1 = {u1}
Y0 = ∅
j = 1
while j ≤ Nsteps do

Act :
Go to waypoint Dj .

Sense :
Gather data yj . Yj = (Yj−1, yj).

Gj = Sj−1f j(f
T
j Sj−1f j +Rj)

−1

mj = mj−1 +Gj(yj − fT
j mj−1)

Sj = Sj−1 −Gjf
T
j Sj−1

j = j + 1
Plan :
Budget = Budget - ||Dj −Dj−1||2
CV = updateCostValley(mj ,Sj ,Budget,uj ,uj−1)
uj = argminu∈M(CV)
T j = RRT*(CV,Dj−1,uj)
Dj = T j1

end while

4. PATH PLANNER

We design a path planning algorithm to find the cheapest
path through a cost valley. This path should take the
AUV from the current location to the lowest point in
the cost valley. The cost valley is defined by combining
information criteria, direction criteria, and budget limita-
tions. The cost valley is updated with data as the AUV
gathers salinity information from the field. The cost valley
philosophy relies on a long-horizon path plan, which is
not only considering the next step but anticipating future
steps.

We build such a cost valley based on the overlay of five
different information criteria. The weights among them
are equal, but before merging them, all the costs are
normalized to be within range [0, 1], except those costs
which are ∞. The RRT* path planner, see e.g. Karaman
and Frazzoli (2011) and Hollinger and Sukhatme (2014),
is used to determine the optimal least-cost path from
the current AUV location to the end destination. From

this calculation, the agent selects the next optimal design
location. It measures the salinity yj at this design location
and the entire GRF model is updated. This means that
the cost valley is also updated, and hence the new starting
location will be fed to the RRT* path planner.

The building blocks of the core algorithm are presented in
Algorithm 2-8.

Algorithm 2 RRT*, called by Algorithm 1

Require: CV,Dj−1,uj

for k ∈ 1 . . .K do
Generate random location urand within constraints.
unearest ← Nearest(G = (V,E),urand)
unew ← Steer(unearest,urand)
if ObtacleFree(unearest,unew) then

Unear ← Near(G = (V,E),unew, R)
Add new node: V → V ∪ {unew}
umin ← unearest

cmin ← getPathCost(CV,umin,unew)
end if
for unear ∈ Unear do

cnear ← getPathCost(CV,unear,unew)
if cnear < cmin then

umin ← unear

cmin ← cnear
end if

end for
Add new edge: E ← E ∪ {(umin,unew))}
for unear ∈ Unear do

ctemp ← getPathCost(CV,unew,unear)
if ctemp < cnear then

cnear ← ctemp

uparent ← Parent(unear)
E ← (E\{(uparent,unear)})∪{(unew,unear)})

end if
end for
if isArrived then

Parent(uj) ← unew

end if
end for
T = []
while Parent(uk)! = ∅ do

T .append(Parent(uk))
uk = Parent(uk)

end while
return T

Algorithm 3 getPathCost, called by Algorithm 2

Require: CV,u1,u2

Cost1 = CV(u1)
Cost2 = CV(u2)
Costpath = Cost(u1)+||u1−u2||2+(Cost1+Cost2)/2·
||u1 − u2||2

5. SIMULATION RESULTS

To present the performance of the algorithm, we dis-
cuss the step-wise behavior of the algorithm to better
demonstrate the capability of achieving the information-
gathering goal while keeping an eye on the remaining
distance budget and avoiding obstacles throughout the
entire process.



Algorithm 4 updateCostValley, called by Algorithm 1

Require: mj ,Sj ,Budget,uj ,uj−1

CostEI = getEIField(mj ,Sj)
CostBudget = getBudgetField(Budget,uj)
CostObstacle = getObstacleField
CostDirection = getDirectionalField(uj ,uj−1)
CostValley =

∑
CostEV,Budget,Obstacle,Direction

return CostValley

Algorithm 5 getEIField, called by Algorithm 4

Require: mj ,Sj

EIBV = 0n×1

IVR = 0n×1

for i ∈ 1 . . . n do
f j = 0n×1, and f j [i] = 1

Rj = Sj−1f j(f
T
j Sj−1f j + r2)−1fT

j Sj−1

IVR[i] =
∑n

i=1 diag(Rj)

EIBV[i] =
∑n

i=1 Φ2

([
t
−t

]
;

[
mj−1(i)
−mj−1(i)

]
,W j(i, i)

)
,

where, W j(i, i) =

[
T (i, i) −Rj(i, i)

−Rj(i, i) T (i, i)

]

given, T (i, i) = Sj−1(i, i) +Rj(i, i)
end for
CostEI = norm(EIBV) + 1− norm(IVR)
return CostEI

Algorithm 6 getBudgetField, called by Algorithm 4

Require: Budget,uj

Form a budget ellipse with a, b, c
a = Budget/2
c = ||ugoal − uj ||2/2
b =

√
a2 − c2

CostBudget = ∞n×1

for i ∈ 1 . . . n do
ω = uix

a
2 +

uiy

b

2

if ω <= 1 then CostBudget[i] = 0
end if

end for
return CostBudget

Algorithm 7 getObstacleField, called by Algorithm 4

Costobstacle = ∞n×1

for i ∈ 1 . . . n do
if ui ∈ Cfree then

Costobstacle[i] = 0
end if

end for
return Costobstacle

We first show the results of the algorithm for one realized
salinity field. We then study the performance of the algo-
rithm over replicate data from the GRF model, where we
also compare results with that of a lawnmower algorithm
and a myopic exploration algorithm with time operation
constraints.

5.1 Simulation setup

The prior mean is produced by Equation (4), with a lower
expected salinity near location u = (u1, u2) = (1, 0.5)

Algorithm 8 getDirectionalField, called by Algorithm 4

Require: uj−1,uj

b1 = uj − uj−1

Costdirection = 10n×1

for i ∈ 1 . . . n do
b2 = ui − uj

if b1 · b2 >= 0 then
Costdirection[i] = 0

end if
end for
return Costdirection

Fig. 2. The prior mean of the salinity at the initial stage.

and visualized in Fig. 2. At each step, the cost valley will
be reconstructed based on the overlay of five cost fields
including the EIBV cost field, IVR cost field, directional-
changing cost field, budget cost field, and obstacle cost
field. Then a new tree will be built based on the new cost
valley. The ending location will be the place where it has a
minimum value in the cost valley. Then the path planner
will decide where to go next.

μ0(u) = 31− exp (− (u1 − 1)2 + (u2 − 0.5)2

0.07
) (4)

5.2 Simulation results

In this part, the ground truth is as shown in Fig. 1. Results
at several stages of the AUV operation are displayed in
Fig. 3 ∼ Fig. 5. In each figure, four illustrations are
showing various parts of the cost valley calculation. The
conditional mean in salinity is shown to the left (in
[mg/g]). The normalized cost field based on EIBV and the
normalized cost field based on IVR are in the middle. The
cost valley with random tree paths for the RRT* algorithm
is shown to the right. Over the different data gathering
stages j = 1, . . . , 55, the sequence of figures shows the
balance between different cost fields contributing to the
cost valley calculations. The EIBV and IVR cost fields are
important when there are no obstacles nearby or still much
budget left. EIBV plays a more important role than IVR
sometimes when it is more important to exploit, whereas
IVR plays a more important role than EIBV when it is
more important to explore. When the budget is running
out, the other parts of the cost valley calculation are
undoubtedly dominating, since it has ∞ penalty outside



the budget region. The directional change penalty plays
a continuous role in path planning since it guides the
agent to move forward with a smooth path, such path
planning can avoid sharp turns in practice and hence
reduce navigational inaccuracy.

5.3 Replicate study

To remove random effects, 50 replicated simulation results
are averaged and shown in Fig. 6. During each iteration,
IBV, RMSE, and EV (Expected Variance) are monitored
for the comparison of the three strategies including my-
opic(greedy), RRT*, and pre-scripted lawnmower. Myopic
strategy and the RRT* both choose the next candidate
locations based on the cost associated with them from the
cost valley, whereas the pre-scripted lawnmower just moves
along according to its pre-designed paths. The result shows
that the RRT* planner outperforms the other two, and all
the indicators for RRT* including IBV, RMSE, and EV
decrease fastest among the others.

6. CONCLUSION

In our simulated case, the agent can explore the field
adaptively, and it achieves low spatial variance and pre-
cise river plume water classification while avoiding the
island obstacle and reaching the destination in time. Via
comparison with existing approaches, we learned that the
suggested approach has good-quality performance metrics
and it satisfies our goal of achieving exploratory path
planning with a constraint.

In the future, we aim to conduct similar experiments in the
field. This entails fine-tuning the non-myopic path plan-
ning strategies requiring faster computation and cautious
implementation of such algorithms with a need to be well
designed onboard the AUV.
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Fig. 3. Step 1, at first, the agent believes the northeast side has very interesting information and hence plans a long
almost straight path towards the hotspot. At this step, both EIBV and IVR cost fields play important roles to
guide the agent. The trees are distributed in a way that the major stems tend to align along with the low-cost
areas.

Fig. 4. Step 43, at this stage, the agent moves towards the home direction while still trying to collect as much information
as it can. So it tries to reach the boundary since it still has a low cost. The red ellipse shows the remaining distance
budget. The penalty outside this budget is infinity, which induces the chaotic behavior of the trees, whereas the
trees inside the boundary remain optimally distributed.

Fig. 5. Step 55, the agent finally decides to go home, and there appears to have a sharp turn in the trajectory since it
has to prioritize the mission of going home rather than getting a high penalty from the directional restrictions.

Fig. 6. Simulation results compare myopic, RRT*, and pre-scripted lawnmower strategies in terms of IBV, RMSE, and
EV. RRT* performs better than the other two in all of those metrics.


