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Abstract
Tackling emissions from hydrocarbon production is a necessity because hydrocarbon production will last for a prolonged 
time. As a popular hydrocarbon production method, waterflooding operation is energy-intensive and accounts for 
significant CO2 emissions. This article investigates the effect of CO2 tax level on recovery process of already producing 
fields with waterflooding. Our methodology is waterflooding optimization in reservoir simulation models, specifically 
optimizing well-controls. Unlike traditional studies, our optimization objective comprises two components: the profit-
ability of hydrocarbon production and an additional tax proportional to CO2 emissions. The associated CO2 emissions is 
estimated using a scheme developed upon an integrated model of reservoir, surface network, and topside facility. We 
examine our methodology on two cases with heterogeneous reservoir models. In each case, we optimize multi-scenarios 
enforcing different CO2 tax rates. The solutions indicate that imposing a higher CO2 tax rate reduces both emissions and 
hydrocarbon production. The fractional reduction of oil produced is however smaller than the emission reduction. While 
an increased tax rate drives the topside equipment to operate at higher efficiencies, the main effects of a higher tax 
rate are reduced water injection and more efficient subsurface drainage. There is a non-linear relationship between the 
reduced production and emissions. For increasing tax levels there are diminishing returns on lower emissions, reflect-
ing reduced opportunities for emission reduction by changes in the drainage strategy. Some increments on the tax rate 
will therefore have negligible impacts on the optimal drainage strategy, and hence an adverse effect on the profitability 
with negligible emission reduction.

Article highlights

•	 A methodology for reducing carbon emissions from water injection via well-control optimization is introduced.
•	 Higher CO2 tax rates result in optimal injection strategies that lower emissions with small reduction in production.
•	 The main effects of a higher CO2 tax rate are reduced water injection and more efficient subsurface drainage.

Keywords  Energy-efficient water injection · Well-control optimization · Augmented objective function · Reduction of 
carbon emissions · Effect of CO2 tax rate · Particle swarm optimization
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1  Introduction

We are in the middle of an energy transition away from 
fossil fuels. For decades hydrocarbons have been a prin-
cipal energy source. In 2018, oil contributed 31.6% of 
the total energy supply globally, higher than any other 
energy source [1]. Natural gas had the third largest por-
tion of the global energy mix that year by supplying 
22.8% [1]. The shares of oil and natural gas in the total 
energy supply did not change much from 1990 to 2018 
[2], and are likely to remain high in the near future [3]. 
Despite a slight drop in 2020 due to the pandemic, the 
Stated Policies Scenario defined by the International 
Energy Agency projects that the global energy demand 
will continue to grow, reaching about 10% higher than 
the 2019’s energy need by 2030 [3]. The upward trend of 
the total energy need implies that substantial amounts 
of oil and natural gas will be produced in the coming 
years.

Exploitation of hydrocarbon resources has severe envi-
ronmental impacts, and emissions from hydrocarbon 
extraction activities may constitute a substantial portion 
of domestic emissions [4]. Norway is such an example, 
where the petroleum sector accounted for 31% of the 
nationwide CO2 emissions in 2018 (see Fig. 1a), despite 
its CO2 emission intensity from oil and gas production is 
among the lowest in the world [4]. CO2 emissions from 
petroleum activities on the Norwegian Continental Shelf 
(NCS) stem primarily from the combustion of natural gas 
when running gas turbines. According to [5], gas turbines 
used for power generation in offshore platforms made up 
84% of the 13.65 million ton CO2 emitted by petroleum 
activities on the NCS in 2018 (see Fig. 1b). Electric power 
generated by gas turbines is mainly used for pumping, 
compression, and separation operations [6, 7]. The Sustain-
able Development Goals #13 outlines that the global net 
CO2 emissions must decrease by 45% between 2010 and 
2030, and reach net zero around 2050 in order to limit the 
global temperature increase below 1.5oC [8]. To support 
this emission reduction target, it is urgent to develop and 
deploy economically viable low-emission technologies for 
hydrocarbon extraction processes.

Except for an indirect penalty for emissions through the 
cost of energy use, emissions have traditionally received 
little focus in optimization of hydrocarbon production. 
However, with increasing CO2 tax on emissions, cost of 
emissions has to become an integral part of the optimi-
zation of hydrocarbon production. The natural reservoir 
energy can initially drive the hydrocarbons through the 
reservoir and the well to surface, and this is a common 
first stage of hydrocarbon production, typically denoted 
primary recovery [9, 10]. However, only a fraction of the oil 
in place can be extracted by primary recovery, thus addi-
tional energy has to be provided to increase the hydrocar-
bon production, i.e., secondary recovery. Water injection 
has been one of the most popular secondary recovery 
methods for increased production [9, 11, 12]. Water injec-
tion entails an introduction of external energy into the res-
ervoir through the injection of water, aiming to (i) maintain 
reservoir pressure and (ii) displace mobile oil left in the 
pore space towards production wells [9, 13]. Water injec-
tion or any other methods providing additional energy to 
the reservoir to support production come with associated 
emissions. In this article we will present how the inclusion 
of different levels of CO2 tax will yield different optimal 
solutions for the drainage of existing fields with limited 
opportunities for changing the production facilities. We 
will limit our focus to fields with water injection as this 
recovery method is the most widely used [14–16].

Water injection is attractive for several reasons; (i) pres-
sure maintenance to sustain high field production rates, (ii) 
a fairly high sweep efficiency, indicating a large the por-
tion of the reservoir volume is being swept by the injected 
water and this leads to a substantial increase in recovery, 
(iii) cost efficiency when water is in abundant supply, e.g., 
in offshore fields, and (iv) a relatively simple injection oper-
ation that can be scaled to large field cases [9–13]. Second-
ary recovery by injection of fluids into a reservoir is a very 
energy-intensive activity [17]. Water injection typically 
requires about one third of the electric power available 
on an offshore platform [18]. In some offshore platforms 
operating on the NCS, the energy allocation for water 
injection system could be higher than 50% [19]. Further-
more, energy use per unit oil produced and consequently 
CO2 emission intensity increase significantly as the field 

Fig. 1   Norway’s CO2 emissions 
in 2018, by source [ 109 kg CO2]. 
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production declines and the water cut rises above 90% [4, 
11, 20]. Considering its vast number of applications world-
wide and its high energy consumption, water injection is 
responsible for a considerable amount of CO2 emissions. 
Therefore, improvements in the water injection process 
might offer a notable global CO2 emission reduction.

Optimization is an important tool to improve a water-
flooding strategy. Multiple studies related to optimiza-
tion of water injection process have been carried out. 
From a reservoir management perspective, we organize 
studies considering waterflooding optimization into four 
categories depending on their decision variables: (i) well-
placement and -trajectory [21–25], (ii) well-control [26–33], 
(iii) coupled well-placement and well-control [34–38], and 
(iv) well with inflow control valves [39–41]. Moreover, the 
various studies employ different types of reservoir models, 
including numerical reservoir simulation models [25, 29, 
34], physics-based data-driven models [28, 32, 33], “pure” 
data-driven models [26, 27, 31], and streamline-based 
models [21, 30, 38]. Finally, geological uncertainty is 
typically taken into account by involving an ensemble of 
equiprobable realizations of the reservoir [23–25, 29]. A 
detailed review of water injection operation and optimiza-
tion is provided by [42].

Improvements to water injection can also be made at 
the surface or topside part. For instance, [43–45] optimize 
the structural design of centrifugal pumps (commonly 
used for water injection), whereas [46–48] optimize the 
pumping operational parameters, such as pump flow rate, 
speed, activation (on/off ), and valve opening. A method-
ology for designing energy-efficient offshore platforms is 
presented by [49]. This methodology optimizes both pro-
cess plant configuration and utility plant operation. Fur-
thermore, several works target optimizing subsea layout, 
in terms of pipeline routing and diameter, manifolds and 
riser locations, and well rate allocation [50, 51]. Finally, to 
more accurately represent production and injection sys-
tems, some optimization studies utilize integrated models 
that couple both subsurface and surface parts [52–56].

Most water injection optimization studies (especially if 
they model the subsurface reservoir) aim to maximize the 
profitability or oil recovery. These traditional optimization 
studies do not provide estimates for the CO2 emissions, 
and consequently will not include tax on CO2 emissions 
into the objective function. This requires a model for both 
the subsurface and surface parts, as the energy-intensive 
injection is dictated by the subsurface flow, while the 
emissions occur at the surface facilities. Before attempt-
ing to assess the impact of CO2 tax on emissions from 
water injection process, we need methods for quantifying 
the CO2 emissions associated with a certain water injec-
tion strategy. In the literature there are some relevant 
approaches.

One approach is based on exergy analysis which ena-
bles us to locate and quantify the thermodynamic imper-
fections of a system [57]. An exergy-based life-cycle assess-
ment of a water injection operation is proposed by [11]. 
The authors took into account several components that 
are directly influenced by the water injection process, such 
as water treatment, injection pump, oil transport, artificial 
lift, and oil heating. They pointed out that water pumping 
and treatment are the two most significant contributors 
to exergy loss. For the estimation of exergy destruction 
in injection pumps, the authors assume that the pressure 
boost, mechanical efficiency, hydraulic efficiency, and 
power plant efficiency are constant. This is notably dif-
ferent from the methods that will be introduced in this 
paper. Generic exergy analyses have also been performed 
for offshore oil and gas platforms in Brazil and the North 
Sea [6, 58, 59].

CO2 emissions due to water injection process can also 
be estimated using empirical models. Such an empirical 
model can be based on several inputs, e.g., field produc-
tion, original reserves, reservoir and water depths, oil price, 
CO2 tax rate, time, and other variables, as presented by [4]. 
In that work the authors employed yearly CO2 emission 
data for all Norwegian oil and gas fields between 1997 and 
2012. The model, however, did not consider water injec-
tion volume which is expected to impact significantly on 
the CO2 emission intensity. Nevertheless, the authors did 
note that there is a correlation between CO2 tax rate and 
emission intensity, where a higher CO2 tax rate reduces 
emission intensity.

Alternatively, CO2 emissions due to water injection 
can be estimated using the open-source software OPGEE 
(Oil Production Greenhouse Gas Emissions Estimator) 
proposed by [60]. OPGEE enables a rapid assessment of 
greenhouse gas emissions from crude oil production and 
includes an extensive number of processes in the O&G 
value chain that emit CO2 gas. Important simplifications 
are however made in the software, e.g., fluid production 
and injection rates are explicitly computed from the well 
productivity index and the water injection ratio provided 
by users. This work, in contrast, computes all fluid produc-
tion rates using full physics reservoir simulations. Moreo-
ver, optimization is enabled by determining various well-
control settings to manage injection and improve overall 
production.

In [20], the authors investigated three well-control 
optimizations implementing distinct objective functions: 
(i) maximizing the net present value, NPV, (ii) maximiz-
ing a net cumulative exergy which is defined as the dif-
ference between total exergy gained and invested, and 
(iii) maximizing a modified NPV with CO2 emission cost. 
The authors reported similar optimal solutions for these 
optimization scenarios. This contradicts observation which 
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will be presented in this article, where we find different 
optimal solutions for different CO2 tax rates.

This paper presents a methodology to optimize water 
injection process with inclusion of the CO2 emission cost 
into the optimization objective. In particular, this study 
optimizes well-control setting, i.e., well rates and/or bot-
tom-hole pressures, in a reservoir simulation model. The 
distinctive characteristics and contributions of this study 
are as follows:

–	 We propose a scheme that integrates a subsurface res-
ervoir simulation model, a surface network model, and 
a topside facility model. This scheme is developed for 
estimating the amount of CO2 gas emitted for a par-
ticular set of well-controls using simulation results of 
the corresponding production scenario. The integrated 
model considers the energy use for both pumping and 
water treatment systems, as these two systems con-
tribute significantly to the overall energy use for water 
injection.

–	 The scheme calculating CO2 emissions includes generic 
and typical performance characteristics for pumps and 
gas turbines. These performance attributes encompass 
the pump’s head and hydraulic efficiency curves, as 
well as the gas turbine’s part-load efficiency profile. The 
inclusion of these performance characteristics will help 
us identifying a more efficient strategy for operating 
the pumps and gas turbines. Furthermore, part of the 
calculation scheme involves solving sub-optimization 
problems to determine the optimal setting for the 
pumping system.

–	 The well-control optimization problem in this work has 
an objective function consisting of two components, 
i.e., the traditional part of the net present value consist-
ing of production revenue and operating costs, and an 
additional CO2 tax that depends on the amount of CO2 
emissions. In this study, the well-control optimization 
is solved for different CO2 tax rates, and the optimal 
solutions for the different tax rates are compared and 
analysed. The methodology is tested using two hetero-
geneous reservoir models.

With this methodology we are able to assess the effect of 
different CO2 tax levels on the energy use of the oil fields 
investigated in this article.

The article is structured as follows: Sect. 2 explains the 
developed methodology covering the formulation of the 
optimization problem, the calculations of the objective 
function components and its underlying assumptions, 
the software implementation, as well as the optimization 
algorithm. Section 3 provides descriptions of two reservoir 
simulation models employed for evaluating the presented 
methodology. Optimization results for two case studies are 

discussed in Sects. 4 and 5. Concluding remarks are given 
in Sect. 6, including suggestions on how to reduce CO2 
emissions from the petroleum sector.

2 � Methodology

To assess the effect of emission cost on water injection, we 
seek a methodology for finding the optimal well-control 
settings under different CO2 tax levels. Figure 2 outlines 
the optimization workflow to find the optimal well-control 
setting for a given tax rate. An algorithm in the optimiza-
tion loop chooses well-controls before letting the simu-
lator run the reservoir model. The simulation is the most 
computational costly part of the optimization loop. The 
simulation results are then used to compute the optimiza-
tion’s objective function.

Traditionally, either a net present value, NPV, or oil 
production objective function formulation is used for 
well-control optimization. As we want to infer the effect 
of emission cost, we will use an NPV approach, however, 
our NPV will be extended from the traditional formulation 
to also include a term accounting for the cost of the CO2 
emissions, hereby referred to as the emission term, ET . The 
augmented NPV formulation is used as objective during 
the optimization. The optimization algorithm system-
atically modifies the well-controls to improve the given 
objective. The optimization loop continues until optimality 
criteria for the objective or controls are met or other termi-
nation conditions, e.g., a maximal number of cost function 
evaluations, are reached.

The augmented objective is expressed as follows:

 where u⃗ is a vector of well-control variables, NPVt is the 
traditional net present value accounting for earnings from 

(1)

max
u⃗

(
NPV (u⃗)

)
= max

u⃗

(
NPVt(u⃗) − ET (u⃗)

)
s.t. u⃗lb ≤ u⃗ ≤ u⃗ub

Optimization algorithm

Reservoir

simulation

Production revenue

Operational costs

Emission term, ET

Objective

function

Well-controls

NPV

Fig. 2   A flow chart of the optimization loop. The blue box contains 
the traditional net present value terms, NPVt , while the red box 
indicate the additional emission term, ET , extending the traditional 
net present value to NPV = NPVt − ET
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hydrocarbon sales and operational costs, while NPV is the 
augmented net present value that also includes cost for 
the emissions (see Fig. 2). In this study, the well-control 
variables u⃗ are (i) bottom-hole pressure (BHP) targets for 
the producers, p̄ c

wf ,p
 , and (ii) water injection rate targets for 

the injectors, q̄ c
wi,i

:

 where

 and Mp , Mi , and Mc are the numbers of producers, injec-
tors, and control periods, respectively. The well-control 
variables are restricted to be within their lower and upper 
limits, u⃗lb and u⃗ub . The ET  and NPVt terms in Eq. (1) will be 
formulated in the next two subsections, while the soft-
ware and optimization algorithm employed are discussed 
in Sects. 2.3 and 2.4.

2.1 � Calculation of emission term, E
T

In contrast to traditional optimization of reservoir simula-
tion models, a prediction of the emission term ET  in the 
extended NPV requires a model of the surface facilities. The 
objective function calculation is therefore derived based 
on an integrated model that couples subsurface reservoir 
simulation, surface network, and topside facility models 
(see Fig. 3). The model considers two systems that con-
sume most of the energy for water injection process, i.e., 
pumping and water treatment systems [11]. The energy 
consumption for these two systems greatly influences the 

(2)u⃗ =

[
p̄ c
wf ,p

, q̄ c
wi,i

∈ ℝ

]

p ∈ {1,… ,Mp},

i ∈ {1,… ,Mi},

c ∈ {1,… ,Mc},

amount of CO2 emitted. Even though simplified, the inte-
grated model is sufficient to efficiently relate an injection 
strategy with its CO2 emissions. The simplifications and 
assumptions adopted for the model (as well as their impli-
cations) are thoroughly discussed later in this subsection.

As illustrated in Fig. 3, fluids from the producer flows to 
a separator on the platform. There, the oil is segregated 
from the produced water before it is transported or stored, 
while the produced water is re-injected into the reservoir. 
The volume of water being injected is typically larger than 
the volume of produced water. Therefore, some additional 
water will be taken from the sea. Before being injected into 
the reservoir, the water goes through a water treatment 
system. The treatment system removes large suspended 
particles or oil droplets that could clog near-wellbore 
pores and hence diminish well injectivity. A pumping 
system that is made up of several pumps is responsible 
for providing sufficient injection pressure and rate. From 
the pumping system, the injected water flows to an injec-
tion manifold located at the seafloor. From there, the 
injected water is distributed to the injectors. Each injector 
is equipped with a well-head valve. This valve adjusts the 
injection rate for an injector to its desired rate. Electricity 
for operating the pumping and water treatment system 
is generated from gas turbines. Natural gas is combusted 
when running the gas turbines, and CO2 gas is emitted as 
a byproduct of the combustion process. Note that the inte-
grated model is scalable. It can be made more complex by 
capturing more details in the production system, energy 
consumption, and CO2 emissions.

In this study, the reservoir and surface network models 
are weakly coupled, in the sense that the surface network 
model is not involved when performing reservoir simula-
tions. The surface network is only applied once the reser-
voir simulation is complete. The network model utilizes the 
reservoir simulation results to estimate pressures and rates 

Fig. 3   Integration of subsur-
face reservoir model, surface 
network, and topside facility 
models
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required from the pumping system. This coupling strategy 
is adequate for the present study as the well BHPs or injec-
tion rates are the only decision variables in the optimiza-
tion. If also, e.g., pressures at the injection manifold or at 
the pumping system outlet are considered as the decision 
variables, then a "strong" coupling between the reservoir 
and surface network models would be needed to capture 
the inter-dependencies between the systems. In contrast 
to the weaker coupling used in this work, a strong cou-
pling requires solving both the reservoir and surface net-
work models simultaneously at every simulation timestep. 
Some studies which implemented such strong coupling 
strategies are [53, 61, 62]. The main benefits of using a 
weakly-coupled system are a simpler implementation and 
a shorter simulation runtime. However, one consequence 
is that we need to assume each injector has a well-head 
valve. The well-head valve opening is regulated so that we 
have pressure continuity across the injection network. If 
not fully-opened, the well-head valve is a source of energy 
loss in the injection system.

Figure 4 outlines the procedure for calculating the emis-
sion term, ET . The calculation scheme is divided into seven 
steps (shown with the boxes in Fig. 4). The blue notations 
in the figure are the inputs for or outputs from each step. 
To compute the emission term, the scheme takes the res-
ervoir simulation results as its inputs, namely, the injector’s 
BHP, pt

wf ,i
 , and the injector’s water rate, qt

wi,i
 . As the calcula-

tion of the emission term ET through a coupled model of 

the reservoir and surface is novel, it will be described in 
detail in the next subsections.

2.1.1 � Calculating required head and flow rate 
from the pumping system

The first step in the emission term calculation is to esti-
mate head and flow rate that need to be provided by the 
water pumping system, ht

req
 and qt

req
 , respectively (t indi-

cates the timestep). To estimate the required head from 
the pumping system, we first compute the injector’s well-
head pressure, pt

wh,i
 , using the injector’s BHP, pt

wf ,i
 , data:

 where �wi is the density of the injected water, g is the 
acceleration of gravity, and Dtv,i is the true vertical depth 
between the well-head and bottom-hole. The values for �wi 
and g are provided in Appendix A. The subtracting term in 
Eq. (3) represents a hydrostatic pressure loss due to water 
column in the injector. In this study, the frictional pressure 
loss is assumed insignificant compared to the hydrostatic 
pressure loss, and therefore disregarded in Eq. (3).

Next, we determine pressure needed at the injection 
manifold so that each injector can operate at its required 
well-head pressure. Since the injected water is distributed 
from one injection manifold to all the injectors, the injec-
tion manifold’s pressure, pt

im
 , is determined as:

 Again, the frictions along the injection flowlines from the 
manifold to the well-heads are neglected.

After evaluating the required pressure at the injection 
manifold, we estimate the required head from the pump-
ing system, ht

req
 . In this study we neglect the frictional 

pressure losses in the injection pipeline that connects the 
pumping system with the injection manifold. With this 
assumption, the required pressure at the pumping sys-
tem’s outlet is equal to the required pressure at the injec-
tion manifold minus a hydrostatic pressure proportional to 
the water depth, hw . The required pressure at the pumping 
system’s outlet is then converted to ht

req
:

 where pps,in is the inlet pressure for the pumping system 
(given in Appendix A). The zero friction assumption is inva-
lid if the injection pipeline is long. In the following we will 
also omit the effect of water depth.

The consequence of neglecting frictional pressure 
drops along the injection pipeline, flowlines, and wells is 

(3)pt
wh,i

= pt
wf ,i

− �wi ⋅ g ⋅ Dtv,i

(4)pt
im

= max

((
pt
wh,i

)
i=1,2,…,Mi

)

(5)ht
req

=
pt
im
− pps,in

�wi ⋅ g
− hw

Fig. 4   Calculation scheme for the emission term
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that the required pressure at the pumping system’s outlet 
might be slightly underestimated, and so does the power 
consumption and CO2 emissions. In contrast, omitting the 
hydrostatic pressure from platform to seafloor works in the 
opposite direction.

The required flow rate from the pumping system, qt
req

 , 
is calculated as the total water rate for all the injectors:

2.1.2 � Determining optimal pumping system configuration

After evaluating the required head and flow rate from the 
pumping system, the next step in the emission term calcu-
lation is to determine the optimal setting for the pumping 
system. As illustrated in Fig. 5, this study assumes that the 
pumping system is composed of several water injection 
pumps. These pumps are installed in parallel and series, 
where Mt

pp
 and Mt

ps
 indicate the numbers of pumps run-

ning in parallel and in series, respectively, at time t. We 
assume that all the pumps running at a given time have 
a uniform operating point. This means that every running 
pump delivers the same head and flow rate.

Generic pump performance curves are defined and 
used for optimizing the pumping system configuration. 
The solid blue line in Fig. 6a shows how the head provided 
by a pump decreases as the pump runs at a higher flow 
rate. The solid blue line in Fig. 6b indicates the relationship 
between the pump’s flow rate and its hydraulic efficiency. 
Calculations for the pump’s head and hydraulic efficiency 
are provided in Appendix B. We assume that (i) all the 
pumps installed in the pumping system have identical 
performance characteristics, (ii) the pumps are operated 
with a fixed pump speed, and (iii) the pumps can deliver 
any rate that is less than or equal to the pumps’ maximum 
flow rate. These assumptions do influence the power 
consumption of the pumping system and thus affect the 
amount of CO2 emitted, as more degrees of freedom in the 

(6)qt
req

=

Mi∑
i=1

qt
wi,i

optimization, e.g., operating the pumps independently, 
can reduce the power consumption further.

Variables ht
ps

 and qt
ps

 denote the head and flow rate, 
respectively, provided by the pumping system. With 
the assumption that all the running pumps have a uni-
form operating point, we can define ht

ps
 as a product of 

the pumps’ head and Mt
ps

 , whereas qt
ps

 as a product of 
the pumps’ flow rate and Mt

pp
 . Since (i) the pumps’ head 

depends on the pumps’ flow rate and (ii) the pumps’ flow 
rate itself is computed as qt

ps
∕Mt

pp
 , the head ht

ps
 can be cal-

culated using a head function, fh:

Pumping system

Pump

Water

Inlet

Mt
pp

Mt
ps

htreq
qtreq

htps
qtps

Outlet

Discharge

Fig. 5   Illustration of the pumping system

Fig. 6   Pump performance curves that are employed to decide the 
optimal pumping system setting for given head and flow rate val-
ues
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 where the quantities within the parentheses indicate the 
function’s inputs. Curves in Fig. 6a represent the relation-
ship between qt

ps
 and ht

ps
 for nine combinations of Mt

pp
 and 

Mt
ps

.
Hydraulic efficiency of the pumping system, �t

ps
 , is deter-

mined by only the pumps’ hydraulic efficiency, which is a 
function of the pumps’ flow rate. As the flow rate is given 
by qt

ps
∕Mt

pp
 , the efficiency �t

ps
 can be computed using an 

efficiency function, f�:

 The qt
ps

 - �t
ps

 curves for different values of Mt
pp

 are provided 
in Fig. 6b.

The pumping system has to provide head and flow rate 
in excess of what are required from it. The excessive flow 
rate will be disposed, while the excessive head will be low-
ered using a control valve. As visualized in Fig. 6a, the red 
circle denotes the head and flow rate required from the 
pumping system while the purple rectangle indicates the 
head and flow rate provided by the pumping system. The 
purple rectangle theoretically can be placed on any curves 
in Fig. 6a as long as it is on the upper right side of the red 
circle. The choice of the pumping system’s operating point 
however affects the pumping system’s power consump-
tion, Pt

ps
 , that is calculated as:

 where �t
ps

 is the pumping system’s efficiency as plotted 
in Fig. 6b, while �m is the pumps’ mechanical efficiency. 
The mechanical efficiency used in this study is listed in 
Appendix A.

In this study, the pumping system’s operating points 
are optimized using a sequential approach. The approach 
implies that, for a given set of well-controls, we determine 
an optimal setting for the pumping system that is best-
suited to the corresponding reservoir simulation results. 
To find the optimal pumping setting, we solve multiple 
subproblems, where each subproblem is an optimization 
for one particular simulation timestep. The pumping sys-
tem configuration to optimize comprises of qt

ps
 , Mt

pp
 , and 

Mt
ps

 . Furthermore, the subproblem takes ht
req

 and qt
req

 as 
the inputs.

Every subproblem aims to minimize the power con-
sumption for the pumping system. The subproblem’s 
objective function is thus formulated as follows:

(7)ht
ps
= fh

(
qt
ps
,Mt

pp
,Mt

ps

)

(8)�t
ps
= f�

(
qt
ps
,Mt

pp

)

(9)Pt
ps
=

qt
ps
⋅ �wi ⋅ g ⋅ h

t
ps

�m ⋅ �t
ps

 The search space for the decision variables is bounded 
as follows:

 where qmax
pm

 is the pumps’ maximum flow rate, Mmax
pp

 is the 
maximum number of pumps running in parallel, and Mmax

ps
 

is the maximum number of pumps running in series. The 
values for qmax

pm
 , Mmax

pp
 , and Mmax

ps
 are provided in Appendix 

A. There are some operational constraints considered for 
the optimization. First, the pumping system must pro-
vide head and flow rate higher than or equal to what are 
required:

 Second, the pumps’ flow rate, qt
pm

 , must not exceed their 
maximum flow rate:

 In addition, pump manufactures often recommend to 
operate the pumps within a preferable range of flow 
rate, aiming to prolong the pumps’ lifetime. Even though 
not being considered in this study, supplementary con-
straints associated with the preferred range could be eas-
ily appended to the existing set of constraints given by 
Eqs. (11) to (16).

Optimization of the pumping system configuration 
is a computationally demanding task because the opti-
mization is performed for every simulation timestep in 
thousands of simulation cases, where each simulation 
case itself has hundreds of simulation timesteps. For this 
reason, we populate a lookup table for optimal pumping 
system configuration by performing an exhaustive search 
for 141 × 526 combinations of ht

req
 and qt

req
 . Figure 7 pre-

sents a visualization of the optimal solutions.
For every pair of ht

req
 and qt

req
 , we optimize the pump-

ing system setting using a population-based stochastic 
optimization technique, specifically the Particle Swarm 
Optimization (PSO) algorithm [63, 64]. A Python package 
called pyswarm [65] is employed for the optimizations, and 
the PSO’s parameters used are given in Appendix D. One 
subproblem optimization needs around 4 s to complete. 

(10)min
qt
ps
, Mt

pp
, Mt

ps

Pt
ps

(11)0 ≤ qt
ps
≤ qmax

pm
⋅Mmax

pp

(12)1 ≤ Mt
pp

≤ Mmax
pp

; Mt
pp

∈ ℤ

(13)1 ≤ Mt
ps
≤ Mmax

ps
; Mt

ps
∈ ℤ

(14)ht
req

≤ ht
ps

(15)qt
req

≤ qt
ps

(16)0 ≤ qt
pm

≤ qmax
pm
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Moreover, every optimization is run twice to ensure the 
consistency of the optimization results because of the sto-
chastic nature of the search algorithm.

2.1.3 � Ensuring that the injection operation is feasible

The gray-colored area in Fig. 8 indicates a region for which 
there is no combination of qt

ps
 , Mt

pp
 , and Mt

ps
 that will honor 

all the constraints given in Eqs. (11) to (16). The infeasi-
ble region for the operation of the pumping system will 
be denoted by IR . To ensure that the pumping system is 
always viable to operate, we introduce a simple penalty 
function as follows:

 where Vp is the penalty value, and L is an arbitrary large 
number (given in Appendix A). Later, the penalty value will 
be incorporated into the emission term, ET . If an injection 
strategy requires an infeasible operation of the pumping 
system, the corresponding objective function value will 
deteriorate, and consequently will not be selected by the 
optimization algorithm.

2.1.4 � Calculating total power consumption for the water 
injection process

After the optimal setting for the pumping system has 
been decided, the fourth step in the emission term 

(17)Vp

�
ht
req
, qt

req

�
=

⎧
⎪⎨⎪⎩

0 , if

�
ht
req
, qt

req

�
∉ IR

L , if

�
ht
req
, qt

req

�
∈ IR

calculation is to estimate power demand of the pumping 
and water treatment systems. The power consumption 
of these two systems is directly controlled by the injec-
tion strategy. Injection at a higher rate typically requires 
more power to run the pumping system and treat the 
injected water.

The pumping system’s power consumption is deter-
mined using Eq.  (9), while the power demand of the 
water treatment system, Pt

wt
 , is estimated as:

Fig. 7   Optimal pumping system configuration for various (ht
req
, qt

req
) combinations

Fig. 8   Infeasible region for the pumping system’s operation
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 where Ewt is the energy used for treating a unit volume 
of injected water. In this study we use the value provided 
in Appendix A. The injector’s water rate, qt

wi,i
 , is retrieved 

from the reservoir simulation results. The total power con-
sumption, Pt

tot
 , for operating both the pumping and water 

treatment systems is then given as:

2.1.5 � Configuring power generation system

The fifth step in the emission term calculation is to config-
ure power generation system that produces all the electric 
power needed to operate both the pumping and water 
treatment systems. The power generation system is made 
up of several gas turbines. The gas turbines convert ther-
mal energy of a combusted fuel, in particular the natu-
ral gas, into mechanical work. Generators then turn the 
mechanical energy into electric energy.

We assume that (i) all the installed gas turbines have 
identical designs, specifications, and properties, (ii) the 
electrical load for the water injection process is split evenly 
between the running turbines, and (iii) the gas turbine’s 
operation can be started or stopped immediately. With 
these assumptions, the number of gas turbines Mt

gt
 run-

ning at time t is determined as:

 where Pgt,fl is the power output of a gas turbine at full-load 
operation, and the bracket indicates a ceiling function. The 
value for Pgt,fl used in this study is provided in Appendix A.

As the electricity demand frequently varies, the gas tur-
bines often run at part-load conditions, at which condi-
tions they generate less power than their maximum capa-
bility [66]. The power output of a gas turbine at part-load 
operation, Pt

gt,pl
 , is regulated as:

 The gas turbines’ performance degrades when they run at 
part-load conditions, so efficiency of the gas turbines 
worsens as they are requested to deliver a lower power 
output [67–69]. We embed this gas turbines’ characteristic 
for the emission term calculation. In this study we use a 
relationship depicted in Fig. 9 to estimate the gas turbines’ 

(18)Pt
wt

= Ewt ⋅

(
Mi∑
i=1

qt
wi,i

)

(19)Pt
tot

= Pt
ps
+ Pt

wt

(20)Mt
gt
=

⌈
Pt
tot

Pgt,fl

⌉

(21)Pt
gt,pl

=
Pt
tot

Mt
gt

efficiency at part-load operation, �t
gt,pl

 . Calculation for �t
gt,pl

 
is detailed in Appendix C.

There are potential strategies for improving �t
gt,pl

 and 
hence reducing the amount of CO2 emissions. Installing 
several gas turbines of different sizes could enable the gas 
turbines to operate at higher power outputs and thus have 
higher part-load efficiencies [67]. Also installing a bottom-
ing cycle for the power generation system, where the bot-
toming cycle will utilize the gas turbines’ heat waste, could 
improve the net efficiency of the power generation system 
up to 50% [67, 70]. As we consider the effect of emission 
cost on producing fields where larger changes to the infra-
structure are often unfeasible, e.g., due to space or weight 
limitations on platform, such potential strategies are not 
studied in this work.

2.1.6 � Estimating total mass of CO2 emissions

After configuring the power generation system, the next 
step in the emission term calculation is to estimate total 
mass of CO2 emissions for a particular set of well-controls. 
For that, we first estimate mass flow rate of fuel combusted 
in the gas turbines, ṁt

f
 , as:

 Thereafter, mass flow rate of CO2 emitted from the gas 
turbines, ṁt

CO2

 , is approximated with the following linear 
function:

 Here Se and SCO2
 are the specific energy content and CO2 

emissions of the fuel, respectively. These two quantities 
reflect the amount of thermal energy released and CO2 gas 
emitted, respectively, from the combustion of a unit mass 
of the fuel. The values for Se and SCO2

 vary for different types 

(22)ṁt
f
=

Mt
gt
⋅ Pt

gt,pl

Se ⋅ 𝜂
t
gt,pl

(23)ṁt
CO2

= SCO2
⋅ ṁt

f

Fig. 9   Gas turbine performance curve. Adopted from [68]
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of fuel. For natural gas, representative values used in this 
study are given in Appendix A. The total mass of CO2 emis-
sions at the end of the field lifetime, mtend

CO2

 , is eventually 
computed as follows:

2.1.7 � Calculating emission term, E
T

After the total mass of CO2 emissions has been estimated, 
the emission term, ET , is finally computed as follows:

 The first right-hand side term in the above equation rep-
resents the CO2 tax that operating companies are subject 
to. Here, rCO2

 indicates the applied CO2 tax rate. The last 
term, Vp , is the penalty value from Eq. (17) ensuring the 
injection is feasible.

For the well-control optimization discussed in Sect. 2, 
rCO2

 can be viewed as a weighting factor that determines 
the level of importance between increasing the traditional 
net present value NPVt , dominated by the hydrocarbon 
production, or reducing CO2 emissions. Specifying a higher 
rCO2

 will emphasize lowering CO2 emissions compared to 
increasing the NPVt , and vice versa. In this study, we com-
pare the solutions of three optimization scenarios with 
different values for rCO2

 , i.e., 0.0, 0.0525, and 0.525 USD/
kg CO2. The middle value of rCO2

= 0.0525 USD/kg CO2 
reflects the current tax rate for O&G operators in Norway, 
i.e., around 500 NOK/ton CO2 [4, 71].

2.2 � Calculation of the traditional net present value, 
NPV

t

The traditional NPVt in Eq. (1) is calculated as a weighted 
sum of cumulative oil production, Ntend

p,f
 , cumulative water 

injection, Wtend
i,f

 , and cumulative fuel combusted in the gas 

turbines, mtend
f

 , at the end of the field lifetime:

 The weighting factors comprise oil price, Po , operating 
cost for treating the injected water, Cwi , and fuel cost, Cf  . 
Values for these weighting factors are provided in Appen-
dix A. The total fuel consumption for running the gas 
turbines, mtend

f
 , is obtained by taking an integral of ṁt

f
 in 

Eq. (22) over the field lifetime. As discussed in Sect. 2.1, ṁt
f
 

reflects the energy use for both the pumping and water 
treatment operations. Note that the NPVt calculation used 

(24)m
tend
CO2

= ∫
tend

0

ṁt
CO2

dt

(25)ET = rCO2
⋅m

tend
CO2

+ Vp

(26)
NPVt(u⃗) = Po ⋅ N

tend
p,f

(u⃗) − Cwi ⋅W
tend
i,f

(u⃗) − Cf ⋅ Se ⋅m
tend
f

(u⃗)

in this study is without a discount factor, however, the 
inclusion of a discount factor can easily be made without 
altering the overall methodology of this paper.

2.3 � Software implementation

This study is conducted using the FieldOpt open-source 
optimization framework [72]. FieldOpt is supported by a 
modular architecture that enables quick prototyping and 
testing of optimization methodologies for field develop-
ment problems [73]. To date, the framework facilitates 
optimization of well placement, completion design, and 
production schedule. In this study, the computation of 
CO2 emission term is introduced as a new feature within 
the objective function computation in FieldOpt’s opti-
mization module.

An industry standard reservoir simulator is used 
for simulations. When performing the simulations, 
the timestep size is kept below ten days to lessen the 
numerical dispersion effects on the objective function 
value. Besides the well-control search space given in 
Eq. (1), additional restrictions are imposed by the simu-
lator on the well-controls during simulation. These extra 
constraints are (i) the producers’ maximum liquid rate 
which is dictated by the topside fluid processing capac-
ity and (ii) the injectors’ maximum BHP to represent the 
formation fracture pressure. If the producer liquid rate 
reaches its maximum value, the producer will switch to 
liquid rate mode. In contrast, the injector control mode 
will switch to BHP mode if the injector BHP reaches its 
maximum value.

2.4 � Optimization algorithm

As previously mentioned, three optimization problems 
using different rCO2

 values are solved and compared in 
this study. Applying different tax rates implies that these 
problems have similar but different objective functions 
depending on the relative influence of the CO2 emis-
sion term. In this study, we employ an extended PSO 
algorithm that solves concurrently for the three prob-
lems using separate swarms but with the ability to share 
underlying simulation results to compute corresponding 
objective functions. This new algorithm and its advan-
tages will be described in detail in an upcoming paper. 
Parameters for the extended PSO algorithm are given in 
Appendix D. Twelve combinations of these parameters 
are examined, and the one providing the best perfor-
mance is presented here. Finally, because PSO is funda-
mentally a stochastic optimization technique, multiple 
runs are made to ensure consistency.
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3 � Reservoir models

The presented methodology is tested on two numerical 
reservoir simulation models: a 5-spot model and a cropped 
version of the Olympus model. This section provides 
descriptions on these two reservoir simulation models.

3.1 � 5‑spot model

The 5-spot model is a synthetic 2D reservoir model with 
60 × 60 grid blocks. The reservoir top extends horizontally 
at a depth of 1700 m below the seafloor, covering an area 
of 1.44 × 1.44 km

2 . The initial reservoir pressure at the 
datum depth (specified at the reservoir top in this model) 
is 1.7 × 107 Pa. The reservoir fluid properties are modeled 
using black oil correlations. No free gas is initially present 
in the reservoir model, and the oil contains a very small 
amount of dissolved gas. The oil has a very low bubble 
point pressure and remains at undersaturated conditions 
during simulations (dead oil). Thus only two immiscible 
phases are present throughout the simulations.

The 5-spot reservoir model has substantial heteroge-
neity in terms of porosity and permeability. These rock 
properties are cropped from a horizontal cross-section of 
the SPE 10 model [74], specifically Layer #21. As shown 
in Fig. 10, a highly permeable sand body extends diago-
nally from the northwest to southeast part of the reser-
voir model. To allow for higher injection rates, and thus 
more representative power consumption for an offshore 
platform, we scale the original permeability retrieved from 
the SPE 10 model by a factor of ten, resulting in a perme-
ability variation between 10 mD and 10 D. With uniform 
initial water saturation of 0.1 and clean-sand thickness 
of 100 m, the reservoir model has original oil-in-place of 

2.167 × 107 m3 . Supplementary fluid and rock properties 
are available in Appendix E.

There are five wells in the model: one producer located 
at the center and four injectors placed near the corners 
(see Fig. 10). The producer is drilled horizontally, penetrat-
ing three grid blocks with a total horizontal length of 72 
m. In contrast, all the injectors have a vertical well path 
with an identical true vertical depth from well-head to 
bottom-hole of 1700 m. The producer and injectors are 
primarily controlled with the BHP and water rate mode, 
respectively. The internal simulation constraints ensure 
that the producer’s liquid rate and injectors’ BHPs do not 
exceed 5.787 × 10−1 m3∕s and 3.5 × 107 Pa, respectively. 
The production period is defined to last for 15 years. This 
model is computationally light; one reservoir simulation 
needs approximately 4 s to finish on a single processor on 
a standard workstation.

3.2 � Cropped Olympus model

The Olympus model is a synthetic 3D reservoir model that 
is built for benchmarking studies of optimization methods 
applied for field development [75]. The reservoir consists 
of two zones (the upper and lower zones) that are sepa-
rated by an impermeable shale layer. The Olympus model 
has 50 realizations with different reservoir properties, 
such as facies, porosity, permeability, net-to-gross ratio, 
initial water saturation, and transmissibility across the 
faults [75]. As this study is not about optimization under 
geological uncertainty, we only employ one of the realiza-
tions, namely Realization #1. This model realization is also 
cropped (see Fig. 11) to reduce the computational cost 
for optimization. Even though only considering the upper 
reservoir zone, the cropped model still possesses complex 
geological features, such as faults and channelized sands. 
The channelized sands introduce potential high-connec-
tivity between wells, and thus possibly early water break-
through. These challenges are particularly relevant when 
designing a waterflooding strategy.

I1 I2

I3 I4

P1

Fig. 10   Permeability distribution in the 5-spot model

Fig. 11   Distribution of horizontal permeability [mD] in the cropped 
Olympus model (Layer #1). The base figure is created using ResIn-
sight [76]
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The cropped Olympus model has 39155 active grid 
blocks, roughly 20% of the total number of active cells 
in the Olympus model. These active grid blocks are 
divided into seven layers representing the upper reser-
voir zone. The oil-water contact lies at 2092 m below the 
seafloor, and the initial reservoir pressure at the contact 
depth is 2.05 × 107 Pa. In terms of reservoir fluids, only 
oil and water exist in the reservoir model. The behaviors 
of both fluids are represented using a black oil model, 
again assuming the oil is undersaturated all the time. 
The presence of channel sand bodies is evident from 
the permeability distribution shown in Fig. 11 as well as 
from the distributions of porosity and initial water satu-
ration provided in Appendix E. As in the 5-spot model, 
the original horizontal and vertical permeabilities are 
multiplied by a factor of ten. Moreover, the original 
grid block height is tripled, resulting in gross thickness 
of about 60 m for the cropped Olympus model. These 
modifications are intended to enhance water transmis-
sibility between the grid blocks, allowing us to inject 
at higher rates and thus operate at typical power con-
sumption values for an offshore platform. The cropped 
Olympus model has original oil-in-place of 5.215 × 107 
m 3.

Six new vertical wells comprising two producers and 
four injectors are defined for the cropped Olympus 
model. The well-placement illustrated in Fig. 11 is pre-
defined based on engineering judgment, considering 
the surrounding reservoir properties, connectivity with 
the adjacent wells, and well spacing. Each well is drilled 
penetrating all the seven layers of the reservoir model. 
True vertical depths of the injectors’ bottom-hole are 
2050.64, 2050.78, 2047.49, and 2062.89 m, for Injector I1 
to I4, respectively. Like the 5-spot model, the producers 
are primarily controlled by BHP, while the injectors are 
set to water rate control. Simulation-based constraints 
consist of a maximum liquid rate of 5.787 × 10−1 m3∕s 
for the producers and a maximum BHP of 4 × 107 Pa for 
the injectors. Simulation time frame is set to 15 years. 
The wall-clock time of one simulation is roughly 12 min 
on a single processor.

4 � Case study #1: optimization of 25 
well‑control variables on the 5‑spot model

4.1 � Description of optimization problems

In the first case study, we conduct numerical experiments of 
the well-control optimization described in Sect. 2 using the 
5-spot reservoir simulation model. The well-control variables 
encompass all the wells defined in the reservoir model, i.e., 
one producer (P1) and four injectors (I1 to I4). The producer 
BHP target, p̄ c

wf ,p
 , and the injector water rate target, q̄ c

wi,i
 , can 

be altered every three years, giving five control periods 
throughout the simulated field lifetime. Thus, this case study 
involves 25 variables. The search for optimal p̄ c

wf ,p
 is limited 

within a range of 0.8 ⋅ 107 to 1.8 × 107 Pa, whereas the search 
space for q̄ c

wi,i
 is bounded between 0 and 2.315 ⋅ 10−1 m 3/s. 

In this case study, three optimization scenarios are solved 
using different CO2 tax rates, rCO2

 . The different scenarios are 
summarized in Table 1 (see Scenario 1 - 3). The main goals of 
this case study are to (i) investigate the effects of raising CO2 
tax rate on the optimal solution and (ii) explore the relation 
between the tax rate and emissions.

4.2 � Assessment of optimization performance

Before comparing the solutions of the three optimiza-
tion scenarios, we will first evaluate the performance of 
the optimization algorithm in this subsection. Since we 
employ a stochastic search technique, the optimization 
run is repeated five times. For each scenario, we pick the 
best run which provides the highest objective function 
value, NPV. Figure  12 illustrates the evolution of NPV 
for the three scenarios. As shown in the figure, the NPV 
graphs show relatively small increments from the 100th 
iteration onward which indicates the solutions may have 
converged, possibly to local optima. Moreover, the NPV 
graphs are very similar in all five runs for Scenario 1 and 
2. In contrast, for Scenario 3, the NPV graphs have larger 
variations between the runs. This indicates that Scenario 3 
has perhaps a less smooth response surface than the other 

Table 1   Summary of all 
optimization scenarios

Scenario Reservoir simulation  model Number of well-control 
variables

r
CO2

 [USD/kg CO2]

1 5-spot 25 0.0
2 5-spot 25 0.0525
3 5-spot 25 0.525
4 Cropped Olympus 30 0.0
5 Cropped Olympus 30 0.0525
6 Cropped Olympus 30 0.525
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two scenarios. A single optimization run which involves 
60000 reservoir simulations (3 optimization scenarios × 50 
particles × 400 iterations) needs approximately 13 hours 
to finish using a 9-core workstation.

The optimal BHPs and injection rates for the three sce-
narios are presented in Fig. 13. In this figure we observe 
that the optimal well-control settings lie within the speci-
fied search space. For Injector I1 some injection rate tar-
gets are not achieved due to the enforcement of the BHP 
limit by the simulator. In Fig. 14, a sensitivity analysis is 
carried out on these optimal solutions with respect to 
the variation of CO2 tax rate, rCO2

 . For instance, the solid 
red line in Fig. 14 indicates how the NPV changes if we 

impose a different rCO2
 on the optimal solution for Sce-

nario 1. From the figure, we notice that, at rCO2
= 0.0 USD/

kg CO2, the optimal solution for Scenario 1 offers a higher 
NPV than the solutions for the other two scenarios. Like-
wise, the optimal solutions for Scenario 2 and 3 are better 
than the rest when rCO2

 equals to 0.0525 and 0.525 USD/
kg CO2, respectively. Also note that the slope of the curves 
decreases with increasing CO2 tax rate, as expected. Such 
type of plots could be instrumental for operational man-
agement when the CO2 tax rate is uncertain.

4.3 � Comparison of optimal solutions

Table 2 encapsulates main terms for comparing the opti-
mal solutions for the three scenarios. These terms are 
NPV, NPVt , cumulative oil produced, Ntend

p,f
 , cumulative 

water injected, Wtend
i,f

 , total fuel combusted, mtend
f

 , and total 

CO2 gas emitted, mtend
CO2

 , at the end of the field lifetime. We 
choose the solution for Scenario 1 as the baseline for 
comparison because it provides a higher NPVt while 
releasing more CO2 than the solutions for the other two 
scenarios. Setting rCO2

 to 0.0 USD/kg CO2 makes Scenario 

Fig. 12   Progression of objective function value, NPV, for the three 
different tax rate scenarios in case study #1

Fig. 13   Optimal well BHPs and injection rates for case study #1. 
Top-to-bottom: Producer P1, Injector I1, Injector I2, Injector I3, and 
Injector I4

Fig. 14   Sensitivity of NPV versus CO2 tax rate rCO2
 for the optimal 

solutions in case study #1

Table 2   Metrics of the optimal solutions for the 5-spot case

% change is relative to the optimal zero tax rate scenario.
* Tax rate in USD/kg CO2

Unit Scenario [ r ∗
CO2

]

1 [0.0] 2 [0.0525] 3 [0.525]

NPV 109 USD 4.963 4.885 ( −1.6%) 4.459 ( −10.2%)

NPVt 109 USD 4.963 4.960 ( −0.1%) 4.904 ( −1.2%)

N
tend
p,f

107m3 1.638 1.634 ( −0.2%) 1.595 ( −2.6%)

W
tend
i,f

108m3 2.435 2.332 ( −4.2%) 1.514 ( −37.8%)

m
tend
f

108 kg fuel 5.510 5.182 ( −5.9%) 3.088 ( −44.0%)

m
tend
CO2

109 kg CO2 1.515 1.425 ( −5.9%) 0.849 ( −44.0%)
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1 equivalent to traditional formulations that maximize 
NPVt only. As reflected in Table 2, the total volume of 
water injected is diminished by 4.2% and 37.8% in the 
solutions for Scenario 2 and 3, respectively. By cutting 
the total injection volume, the fuel consumption and 
CO2 emissions are lowered, though this to a certain 
extent also lessens the oil production and consequently 
the NPVt . Nevertheless, referring to Table 2, we observe 
that the reductions of oil production and NPVt are not as 
significant as the reductions of fuel consumption and 
CO2 emissions. The optimal solution for Scenario 2, for 
example, emits approximately 6% less CO2 while pruning 
the oil production and NPVt by only 0.2% and 0.1%, 
respectively. We also notice that the percentage of CO2 
emission reduction has roughly the same magnitude as 
the percentage of injection volume reduction. Further-
more, if applying a higher rCO2

 , the emissions are lowered 
like the solution for Scenario 3. From both economic and 
environmental perspectives (around 1% reduction in 
NPVt and 44% reduction in CO2 emissions), the optimal 
well-control setting obtained in Scenario 3 is a very 
attractive option.

In this study, the calculation of NPVt in Eq. (26) leaves 
out the discount factor. If included, the discount factor 
is used for discounting the value of future cash flow to 
its present value. Since the discount factor grows over 
time, the cash flow in the near future is more valuable 
than the later one. Therefore, the inclusion of discount 
factor in the NPVt calculation will produce optimal solu-
tions that might have higher production rates in the 
beginning of the field lifetime in order to boost the early 
cash flows. Even though the inclusion of discount factor 
will alter the optimal solutions, we could still derive the 
same conclusion, i.e., that the reductions of oil produc-
tion and NPVt are not as significant as the reductions of 
fuel consumption and CO2 emissions, because the inclu-
sion of discount factor will mainly accelerate the field 
production and/or injection. We have also assumed con-
stant oil price, Po , operating cost of the injected water, 
Cwi , and fuel cost, Cf  , in the NPVt calculation. Changes on 
these parameters will also change the optimal solution. 
For instance if the oil price, Po , is specified higher than 
the value listed in Appendix A, the optimal solutions 
found are likely less energy-efficient because the reve-
nue component in Eq.  (26), i.e., Po ⋅ N

tend
p,f

(u⃗) , will have 
dominance over the emission component, ET  , in the 
objective function given in Eq. (1).

Figure 15a portrays the total power requirement, Pt
tot

 , 
for running the water injection operation. As shown in 
the figure, the optimal injection strategy for Scenario 3 
demands less power than the other two scenarios. Over-
all, the total power demand in Scenario 3 is, most of the 

time, below the maximum power output of a single gas 
turbine at full-load condition, Pgt,fl . This means that for 
almost the entire life span of the field (see Fig. 15b) only 
one gas turbine is used, and this gas turbine produces 
electrical power relatively close to its maximum capabil-
ity. Consequently, with the correlation shown in Fig. 9, 
the gas turbine in Scenario 3 operates at higher efficien-
cies compared to the gas turbines in the other two injec-
tion strategies (see Fig. 15c). This is reflected by the dif-
ferent trends for oil-production Ntend

p,f
 and the traditional 

net-present-value NPVt versus tax rate (see Table 2); there 
is a smaller reduction in NPVt than Ntend

p,f
 due to a more 

efficient production of the oil. This production efficiency 
comes from two different sources; one is due to the low-
ered amount of water injection, the other is more effi-
cient operations of the gas turbines. This shows the 
importance of our introduced methodology which 
embeds representative gas turbine characteristics within 
the optimization loop. Our introduced coupled model is 
required to obtain more energy-efficient gas turbine 
operations under higher tax regimes.

The flow rates of water provided by the pumping sys-
tem, qt

ps
 , are presented in Fig. 15d. This figure also gives 

an indication of the total rates of water being injected 
into the reservoir, qt

req
 . We can see that less water is pres-

surized by the pumping system in the optimal injection 
scheme for Scenario 3. Figure 15e outlines the number 
of pumps running in parallel, Mt

pp
 . With lower injection 

rates, the injection scheme for Scenario 3 often runs fewer 
pumps in parallel compared to the injection schemes for 
the other two scenarios. In addition, all the optimal injec-
tion schemes operate only one pump in series, Mt

ps
= 1 , 

throughout the field lifespan (not exhibited in Fig. 15). 
This event is caused by the BHP limit enforcement for 
the injectors which maintains a low or not too high head 
requirement, ht

req
 . If one embeds a higher BHP limit for the 

injectors or installs smaller injection pumps, the injection 
schemes might operate more than one pump in series.

Looking at Eqs. (7), (8), and (9), the electrical power 
needed for running the pumps in the pumping system, 
Pt
ps

 , is essentially a function of qt
ps

 , Mt
pp

 , and Mt
ps

 . Fig-
ure 15f illustrates the profile of Pt

ps
 over time for the sce-

narios’ optimal injection schemes. Due to the lower rate 
qt
ps

 , the optimal injection strategy for Scenario 3 requires 
less power for pumping than the other two strategies. 
In addition, if we take a look at Fig. 13, particularly at 
the second and last control periods (year 3 - 6 and 12 - 
15), we notice that the rates of Injector I1 in Scenario 3 
are below the other two scenarios. Because Injector I1 is 
located in the less permeable area (see Fig. 10), decreas-
ing the injection rates for this well could considerably 
lower the injection pressure and thus affect the required 
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head, ht
req

 . This then might influence not only the pump-
ing system configuration ( qt

ps
 , Mt

pp
 , and Mt

ps
 ) but also its 

power consumption, Pt
ps

.

By combining Eqs. (21) and (22) into Eq. (23), the mass 
rate of CO2 emissions, ṁt

CO2

 , is in principle governed by 
the total power consumption, Pt

tot
 , and the gas turbine 

Fig. 15   Comparison on various aspects of the optimal solutions for the three tax rate scenarios



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:313  | https://doi.org/10.1007/s42452-022-05197-4	 Research Article

part-load efficiency, �t
gt,pl

 . With Pt
tot

 and �t
gt,pl

 shown in 
Figs. 15a and c, respectively, the plot for ṁt

CO2

 is given in 
Fig. 15g. Herein, we define the term emission intensity 
as the amount of CO2 gas emitted for producing a unit 
volume of oil. This term can be used as an indicator of 
how energy-efficient the oil recovery process is. The 
emission intensity is calculated by simply dividing ṁt

CO2

 
with the field oil production rate, qt

o,f
 . Figure 15h shows 

the emission intensity profile over the field’s lifetime. 
This figure denotes the emission intensity for Scenario 3 
being more or less half of the emission intensity for the 
other two scenarios. Moreover, we notice that the emis-
sion intensity has an overall ascending trend for all opti-
mal scenarios. This trend is consistent with results from 
[4].

In Fig. 15i, we plot the emission intensity against the 
field water cut for all scenarios. The figure shows the 
curves follow nearly the same path with different end-
points (highest in Scenario 1 and lowest in Scenario 3). 
One could interpret these endpoints as the "environ-
mental cost" for producing the "last" barrels of oil from 
the field. In agreement with studies conducted by [11, 
20], Fig. 15i indicates that emission intensity rises rapidly 
with increasing water cut, especially when the water cut 
is above 90%. This behaviour could advise when emission 
mitigation efforts should be prioritized.

4.4 � The influences of CO2 tax rate

CO2 tax rate, rCO2
 , plays an important role in the well-con-

trol optimization process. As mentioned, from the objec-
tive function formulation in Eq. (1), rCO2

 can be regarded 
as a weighting factor that helps drive the optimization 
towards a less-profitable-but-more-sustainable solution. 
To investigate this proposition further, we refine the case 
study described in Sect. 4.1 to include eleven tax rates 
instead of three, which are uniformly sampled between 
0.0 and 0.525 USD/kg CO2.

Figure 16 shows the eleven optimization results (some 
of them are overlapping, e.g., the results for rCO2

= 0.2625 
to 0.525 USD/kg CO2 ). Each point in this figure represents 
the total oil production, Ntend

p,f
 , and the CO2 emissions, mtend

CO2

 , 
associated with a given scenario over the defined range of 
rCO2

 (represented by the tax rate color bar). The figure 
shows a non-linear relationship between the total oil pro-
duction and CO2 emissions that is monotonically decreas-
ing. As expected, this implies that there is a trade-off 
between these two quantities. In other words, the efforts 
to mitigate the CO2 emissions will also reduce the oil pro-
duction. We can also see in the figure that the curve tem-
pers, especially when the optimal injection strategy 

becomes cleaner or greener. The tempering section indi-
cates a diminishing return on CO2 emission reduction 
when increasing tax rate. Further, while the use of a higher 
rCO2

 generally yields a more energy-efficient injection 
scheme, we notice that some increments on the rCO2

 do not 
alter the optimal solution significantly and hence do not 
provide a meaningful reduction on the CO2 emissions (e.g., 
when doubling the rCO2

 from 0.2625 to 0.525 USD/kg CO2). 
We note that this relationship is case-dependent and 
might be influenced by particular reservoir characteristics, 
well-control configuration, the variable search space, etc.

In Fig. 17 the CO2 emissions are plotted against NPV for 
different CO2 tax rates. The NPV indicates the operator’s 

Fig. 16   The influences of CO2 tax rate on the emissions, mtend
CO2

 , and 
oil production, Ntend

p,f

Fig. 17   The influences of CO2 tax rate on the emissions, mtend
CO2

 , and 
net-present-value, NPV 
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financial gain for a given rCO2
 and the corresponding 

optimal injection scheme. The figure shows that some 
rCO2

 escalations are not effective if the purpose of the tax 
is to lower emissions. For instance, raising the rCO2

 from 
0.2625 to 0.525 USD/kg CO2 only deteriorates operator’s 
profit without providing a meaningful reduction in CO2 
emissions.

5 � Case study #2: optimization of 30 
well‑control variables on the cropped 
Olympus model

5.1 � Description of optimization problems

In contrast to the simple 2D model considered in the previ-
ous section, the second case study employs the more real-
istic cropped Olympus model. The iterative optimization 
process intends to maximize the objective function 
expressed in Eq. (1) by adjusting the BHPs or injection rates 
for the six wells defined in the reservoir simulation model. 
Similar to the earlier case study, we split the field lifespan 
into five uniform control periods, which gives 30 well-
control variables for this problem. Search space for these 
variables is identical to the one reported in Sect.  4.1, 
except for the upper limit of BHP target, p̄ c

wf ,p
 , which is now 

set to 2.1 ⋅ 107 Pa. Again, three optimization scenarios are 
evaluated with different CO2 tax rates (see Scenario 4 - 6 in 
Table 1). The primary goal of this case study is to examine 
the presented methodology on a more realistic reservoir 
model. Additionally, this case enables us to verify observa-
tions and interpretations from the earlier case study.

5.2 � Comparison of optimal solutions

Evaluation of optimization performance is carried out as in 
Sect. 4.2. Due to the inclusion of a relatively complex res-
ervoir model, performing optimization on this case study 
incurs substantial computational cost. Even with a 35-core 
machine, one optimization run entails around 16 days to 
finish. For this reason, the optimization scenarios have only 
been solved twice. Besides, due to this high computational 
cost, figures like Figs. 16 and 17 have not been produced 
for case study #2.

Several aspects of the optimal solutions are summa-
rized in Table 3. The solution for Scenario 4 is used as 
reference for comparison. Similar to the previous case 
study, we observe that the injection strategy which 
consumes less fuel and emits less CO2 also has lower oil 
production and NPVt . The reductions of oil production 
and NPVt are, however, significantly smaller than the 

reductions of fuel consumption and CO2 emissions. The 
table also indicates that (i) the CO2 emissions are cor-
related with the volume of water injected, and (ii) the 
percentage of emission reduction is more or less the 
same as the percentage of injection volume reduction. 
As in case study #1, the equipment (pumps and gas tur-
bines) in Scenario 6 runs at higher efficiencies than in 
the other two scenarios in consequence of lowering the 
total injection rates. However, the increased efficiency of 
the equipment has a smaller contribution to the emis-
sion reductions than the reduced volume of injected 
water. In other words, the subsurface drainage offers 
larger opportunities for efficiency improvements than 
the topside facilities.

Further, while the use of a higher CO2 tax rate, rCO2
 , 

in the well-control optimization often promotes a more 
energy-efficient solution, an increment of rCO2

 from 0 to 
0.0525 USD/kg CO2 in case study #2 does not substan-
tially change the optimal solution and therefore does not 
reduce the emissions, oil production, and NPVt much. The 
current tax rate of 0.0525 USD/kg CO2 is hence deemed 
not effective to reduce emissions for this particular case 
study. This is different to what we observe in case study #1 
(see Table 2), where raising rCO2

 from 0 to 0.0525 USD/kg 
CO2 results in a solution with 5.9% reduced emissions. This 
does not mean that our presented methodology only 
works in case study #1, but this rather strengthens our ear-
lier statement in Sect. 4.4, i.e., the effect of changing rCO2

 is 
dependent on the case being evaluated. Referring to the 
reductions of production, NPVt , and emissions in Table 3, 
operators could consider implementing the optimal well-
control setting for Scenario 6. We observe that produc-
ing the "last" barrels of oil (to increase the production by 
about 0.6%) is a very energy-intensive effort which yields 
an increase in CO2 emissions of roughly 17%. This observa-
tion is also valid for the preceding case study (see Table 2). 

Table 3   Metrics of the optimal solutions for the cropped Olympus 
case

%change is relative to the optimal zero tax rate scenario.
* Tax rate in USD/kg CO2

Unit Scenario [ r ∗
CO2

]

4 [0.0] 5 [0.0525] 6 [0.525]

NPV 109 USD 6.80093 6.735 ( −1.0%) 6.237 ( −8.3%)

NPVt 109 USD 6.80093 6.80087 ( −0.001%) 6.780 ( −0.3%)

N
tend
p,f

107 m3 2.20811 2.20800 ( −0.005%) 2.194 ( −0.6%)

W
tend
i,f

108 m3 1.783 1.779 ( −0.2%) 1.526 ( −14.4%)

m
tend
f

108 kg fuel 4.544 4.539 ( −0.1%) 3.764 ( −17.2%)

m
tend
CO2

109 kg CO2 1.250 1.248 ( −0.1%) 1.035 ( −17.2%)
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The optimal injection strategies for the three scenarios in 
case study #2 are given in Appendix F.

6 � Conclusions

In this paper, we focus presenting a methodology for 
coupling models of surface facilities and subsurface 
reservoir simulation to enable the inclusion of CO2 tax 
into optimization of field operations. This work therefore 
employs an objective function consisting of two com-
ponents, i.e., the traditional net-present-value, NPVt , 
accounting for the earnings from hydrocarbon sales and 
the operating costs, and an additional emission term ET 
accounting for the tax on the CO2 gas emitted. The basis 
of the developed methodology is an optimization of 
waterflooding in a reservoir simulation model. The meth-
odology is focused on optimizing well-controls (well 
rates and/or bottom-hole pressures). When increasing 
the CO2 tax rate, the optimization procedure will design 
water injection strategies that emit less CO2 while sus-
taining the field production and economics.

To estimate the amount of CO2 emissions for a given set 
of well-controls, we present a calculation scheme that uses 
reservoir simulation results as its inputs. The calculation 
scheme integrates reservoir, surface network, and topside 
facility models and enables the evaluation of energy use 
for pumping and water treatment. Furthermore, the cal-
culation scheme (i) applies typical performance charac-
teristics for the pumps and gas turbines, and (ii) involves 
a step for optimizing the pumping system configuration.

The methodology has been tested using two hetero-
geneous reservoir models in a couple of case studies. 
For each case study, several optimization scenarios are 
solved using different CO2 tax rates. Comparisons of the 
optimal solutions lead to the following conclusions:

•	 While topside equipment efficiency improves with 
increased CO2 tax, the main contribution to reduced 
emissions is associated to lower water injection, i.e., 
a more energy-efficient drainage of the subsurface 
reservoir.

•	 Efforts to diminish CO2 emissions will lower both oil 
production and traditional NPVt . However, reductions 
in oil produced and NPVt are small compared to the 
corresponding reduction in emissions, as optimiza-
tion of our introduced coupled model obtains more 
energy-efficient operations under higher tax regimes.

•	 A non-linear relationship between CO2 emissions and 
oil production (see Fig. 16) indicates a diminishing 
decrease in emissions with decreasing oil produc-
tion. This reflects reduced opportunities for emission 
reductions by changes in the drainage strategy. Con-

sequently, the NPVt will stabilize while the Et will grow 
linearly with tax rate, thus lead to lower NPV without 
any associated reduction in emissions (see Fig. 17).

•	 In any optimal solution, emission intensity generally 
increases throughout the field lifetime (see Fig. 15h). 
The emission intensity also rises rapidly with the 
growth of water cut, especially when the water cut is 
above 90% (see Fig. 15i).

In early 2021, the Norwegian government communi-
cated an upcoming tax increase for CO2 emissions from 
the NCS production [77, 78]. Our work herein is relevant 
to assess the impact of such policy changes on a pro-
ject’s CO2 footprint, oil production, and operator profit 
for producing fields. Typically, government policies aim 
at retaining operators’ interests in exploiting hydrocar-
bon resources in a region, while at the same time pro-
moting significant CO2 emission reductions. Given such 
policy targets, from the presented case studies we infer 
an opportunity to reduce CO2 emissions while having 
relatively small reductions in oil production and the 
traditional NPVt . The non-linear relationship between 
tax rate, production profit, and emission reduction dis-
cussed in this paper implies that CO2 tax rates can be 
set to levels that effectively lower emissions with limited 
reduction in production. As a lower NPV is expected to 
hurt overall production, a small production reduction 
with a significant emission reduction can be obtained by 
relocating taxes from traditional taxes to CO2 taxes, thus 
maintaining NPV and production at lower emissions. In 
the context of reducing CO2 emissions and planing for 
future CO2 tax rates, both O&G operators and govern-
ment bodies could consider performing evaluations 
similar to those presented in this paper. An in-depth 
discussion on policy implications is beyond the scope 
of this paper and left out for future studies.
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Appendix A: Constants

See Table 4.

Table 4   Summary of all constants

Constant Notation Value Unit Comment

Density of the injected water �wi 1000 kg/m3

Acceleration of gravity g 9.81 m/s2

Inlet pressure for the pumping system pps,in 1.013 × 105 Pa Equivalent to the atmospheric pressure (1 atm).

Pump mechanical efficiency �m 0.95 fraction
Pump maximum flow rate qmax

pm 3.889 × 10−1 m3/s Equivalent to 1400 m 3 /h or 33600 m 3/d.
Maximum number of pumps running in parallel Mmax

pp
3

Maximum number of pumps running in series Mmax
ps

3
Arbitrary large number L 1.000 × 1012 USD

Energy used for treating a unit volume of 
injected water

Ewt 1.358 × 107 J/m3 Equivalent to 0.6 kWh/bbl. Retrieved from [79], 
assuming that the water treatment system 
adopts membrane treatment technologies. 
In specific, the water treatment system uses 
seawater reverse osmosis technology.

Gas turbine power output at full-load operation Pgt,fl 1.49 × 107 W Equivalent to 14.9 MW. Obtained from [67] for 
GE’s LM1800E aero-derivative gas turbine.

Gas turbine efficiency at full-load operation �gt,fl 0.341 fraction Taken from [67] for the LM1800E gas turbine.
Specific energy content of the fuel Se 5.544 × 107 J/kg fuel Equivalent to 15.4 kWh/kg fuel. Retrieved from 

[80] for natural gas (methane).
Specific CO2 emissions of the fuel SCO2

2.75 kg CO2/kg fuel Taken from [80] for natural gas.
Oil price Po 3.145 × 102 USD/m3 Equivalent to 50 USD/bbl. Obtained as a 1-year 

average (from August 2019 to August 2020) of 
Brent crude oil [81].

Cost for treating a unit volume of injected 
water

Cwi 5.031 × 10−1 USD/m3 Equivalent to 0.08 USD/bbl. Retrieved from [79], 
assuming that the water treatment system uti-
lizes the seawater reverse osmosis technology.

Fuel cost Cf 2.095 × 10−9 USD/J Equivalent to 2.21 USD/MMBtu. Set to an average 
of Equinor’s internal gas price in 2020 [82].

https://github.com/PetroleumCyberneticsGroup
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
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Appendix B. Pump performance 
characteristics

The pumps’ head, ht
pm

 , and hydraulic efficiency, �t
pm

 , are 
calculated as follows:

(27)

ht
pm

= a0 + a1 ⋅

�
qt
pm

− q̄

𝜎q

�

+ a2 ⋅

�
𝜔pm ⋅ qt

pm
− 𝜔q

𝜎𝜔q

�
+ a3 ⋅

��
𝜔pm

�2
− 𝜔2

𝜎𝜔2

�

+ a4 ⋅

��
𝜔pm

�3
− 𝜔3

𝜎𝜔3

�
+ a5 ⋅

⎛
⎜⎜⎜⎝

�
qt
pm

�3

− q̄3

𝜎q3

⎞
⎟⎟⎟⎠

(28)
�t
pm

= b0 + b1 ⋅ q
t
pm

+ b2 ⋅
(
qt
pm

)2

+ b3 ⋅ �pm ⋅

(
qt
pm

)2

+ b4 ⋅
(
�pm

)2
⋅ qt

pm

 where qt
pm

 and �pm are the pumps’ flow rate and speed, 
respectively. The values for �pm and other constants in 
Eqs. (27) and (28) are given in Table 5.

Appendix C. Gas turbine performance 
characteristic

The gas turbines’ efficiency at part-load operation, �t
gt,pl

 , is 
calculated as follows:

 where �t
gt,r

 is defined as follows:

 The values for Pgt,fl and �gt,fl are provided in Appendix A, 
while the values for other constants in Eq. (30) are given 
in Table 6.

Appendix D. Parameters for the optimization 
algorithms

Parameters for the PSO algorithm employed in solving the 
optimization of pumping system configuration are pro-
vided in Table 7. Parameters for the extended PSO algo-
rithm involved in solving the well-control optimization are 
given in Table 8.

(29)�t
gt,pl

= �gt,fl ⋅ �
t
gt,r

(30)

�t
gt,r

= c0 + c1 ⋅

(Pt
gt,pl

Pgt,fl

)
+ c2 ⋅

(Pt
gt,pl

Pgt,fl

)2

+ c3 ⋅

(Pt
gt,pl

Pgt,fl

)3

+ c4 ⋅

(Pt
gt,pl

Pgt,fl

)4

+ c5 ⋅

(Pt
gt,pl

Pgt,fl

)5

Table 5   Summary of all constants for the pumps’ head and hydrau-
lic efficiency calculations.

Constant Value Unit

�pm 4.674 × 103 rpm

a0 1.823 × 103 m

a1 −5.641 × 10 m
a2 6.409 × 10 m
a3 2.061 × 102 m

a4 1.712 × 102 m

a5 −1.868 × 102 m

q̄ 1.593 × 10−1 m3/s
𝜔q 7.068 × 102 rpm ⋅ m 3/s
𝜔2 1.942 × 107 rpm2

𝜔3 8.672 × 1010 rpm3

q̄3 7.922 × 10−3 m9/s3

�q 8.964 × 10−2 m3/s
��q 4.196 × 102 rpm ⋅ m 3/s
��2 3.681 × 106 rpm2

��3 2.407 × 1010 rpm3

�q3 9.304 × 10−3 m9/s3

b0 1.000 × 10−10

b1 9.641 s/m3

b2 −3.812 × 10 s2/m6

b3 5.741 × 10−3 s2/(m6 ⋅ rpm)
b4 −1.629 × 10−7 s/(m3 ⋅ rpm2)

Table 6   Summary of all 
constants for the gas turbines’ 
part-load efficiency calculation.

Constant Value Unit

c0 0.001
c1 3.165
c2 −5.723

c3 7.218
c4 −5.106

c5 1.445
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Appendix E. Supplementary reservoir 
properties

5‑spot model

Densities of the oil and water at surface conditions are 
786.51 and 1037.84 kg/m3 , respectively. Variations of the 
oil’s formation volume factor, Bo , and viscosity, �o , with 
respect to the oil phase pressure, po , are depicted in Fig. 18. 
At a reference pressure of 2.732 × 107 Pa, the water’s for-
mation volume factor, Bw , compressibility, Cw , and vis-
cosity, �w , are 1.029, 4.6 × 10−10 Pa−1 , and 3.1 × 10−4 Pa.s, 
respectively. Distribution of porosity in the 5-spot model 

is shown in Fig. 19. At a reference pressure of 1 × 105 Pa, 
the rock compressibility, Cr , is specified to be 4.409 × 10−10 
Pa−1 . Relative permeability curves used in the 5-spot model 
are provided in Fig. 20. Capillary pressure between the oil 
and water phases is neglected in this reservoir model.

Table 7   Parameters for the 
PSO algorithm

Parameter Value Description

swarmsize 100 Number of particles in the swarm
omega 0.9 Particle velocity scaling factor
phip 2 Scaling factor to search away from the particle’s best known position
phig 2 Scaling factor to search away from the swarm’s best known position
maxiter 1000 Maximum number of iterations for the swarm to search
minstep 10−8 Minimum step size of swarm’s best position before the search terminates

minfunc 10−8 Minimum change of swarm’s best objective value before the search terminates

Table 8   Parameters for the 
extended PSO algorithm

Parameter Value Description

#swarms 3 Number of swarms involved
swarmsize 50 Number of particles in each swarm
omega 1 Particle velocity scaling factor
phip 1 Scaling factor to search away from the particle’s best known position
phig 1 Scaling factor to search away from the global best known position
vscale 0.025 Scaling factor to regulate the particle’s maximum velocity
maxiter 400 Maximum number of iterations for the swarms to search

Fig. 18   Oil properties in the 5-spot model

I1 I2

I3 I4

P1

Fig. 19   Porosity distribution in the 5-spot model



Vol.:(0123456789)

SN Applied Sciences           (2022) 4:313  | https://doi.org/10.1007/s42452-022-05197-4	 Research Article

Cropped Olympus model

Distributions of porosity and initial water saturation in the 
cropped Olympus model are depicted in Figs. 21 and 22, 
respectively.

Appendix F. Optimal solutions for case study 
#2

See Fig. 23.
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