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Abstract. In this paper, we generalize the problem of single-index model
to the context of continual learning in which a learner is challenged with
a sequence of tasks one by one and the dataset of each task is revealed in
an online fashion. We propose a randomized strategy that is able to learn
a common single-index for all tasks and a specific link function for each
task. The common single-index allows to transfer the information gained
from the previous tasks to a new one. We provide a rigorous theoretical
analysis of our proposed strategy by proving some regret bounds under
different assumption on the loss function.
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1 introduction

Recently, studying of learning algorithms in the setting in which the tasks are
presented sequentially has received a lot of attention, see e.g. [17,7,2,10,16,9,22]
among others. This setting is often referred to as contunual learning, also called
as learning-to-learn or incremental learning [20,4,2]. Clearly, using information
gained from previously learned tasks is useful and important for learning a new
similar task. This is motivated from that human are able to learn a new task
quite accurately by ultilizing knowledge from previous learned tasks.

In order to reuse the information from previous tasks, the new task must
share some commonalities with previous ones. In this work, we consider that
different tasks share a common feature representation space. This direction has
been explored by various works, e.g. [19,18,2,22] and is natural for classification
and regression problem. More precisely, different predictor for each task is built
on top of a common representation in order to make predictions.

In this paper, we extend the single-index model [15] to the learning-to-learn
setting. More specifically, we assume that the tasks share a common single-index
in this problem. The predictor is constructed on top of this common single-index
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through a task-specific link functions. This grants the learner to reuse/transfer
the knowlegde (the commonality) learned from previous tasks to a new task
through the common single-index. Moreover, the learner still has the ability to
deal with the differency between tasks through a task-specific link function.

Continual learning can be casted as a generalization of online learning and
a standard way to provide theoretical guarantees for online algorithms is a re-
gret bound. This bound measures the discrepancy between the prediction error
of the forecaster and the error of an ideal predictor. We extend the EWA-LL
meta-procedure in [2] to our continual single-index learning problem. Through
this procedure, we provide the regret bounds for continual learning single-index.
These theoretical analysis show that it is possible to learn such model in a con-
tinual context.

Interestingly, as a by-product from our work that is to provide an example of a
within-task algorithm, we develop an online algorithm for learning single-index
model in an online setting. More specifically, it is based on the exponentially
weighted aggregation (EWA) procedure for online learning, see e.g. [6] and ref-
erences therein. We also provide a regret bound for this algorithm which is also
novel in the context of online single-index learning.

The paper is structured as follow. In Section 2 we introduce the continual
learning context and then extend the single-index model to this context. After
that, we present a meta algorithm for learning the continual single-index model
based on EWA-LL procedure. The regret bound analysis is given in Section 3.
A within-task online algorithm for single-index model and its regret bound is
presented in Section 4. Some discussion and conclusion are given in Section 5.
All technical proofs are given in Section A.

2 Continual single-index setting

2.1 Setting

We assume that, at each time step t ∈ {1, . . . , T}, the learner is challenged with
a task sequentially, corresponding to a dataset

St = {(xt,1, yt,1), . . . , (xt,nt , yt,nt)} ∈ (X × Y)nt , nt ∈ N.

Furthermore, we assume that the dataset St is itself revealed sequentially, that
is, at each inner step i ∈ {1, . . . , nt}:

– the object xt,i is revealed and the learner has to predict yt,i by ŷt,i;

– then yt,i is revealed and the learner incurs the loss ˆ̀
t,i := `(ŷt,i, yt,i).

Let f : X → Y be a predictor, where Y = R for regression and Y = {−1, 1}
for binary classification. Put ŷt,i := f(xt,i) denote the prediction for yt,i.

As we want to transfer the information (a common data representation)
gained from the previous tasks to a new one. Formally, we let Z be a set and
prescribe a set G of feature maps (also called representations) g : X → Z, and a
set H of functions h : Z → R. We shall design an algorithm that is useful when
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there is a function g ∈ G, common to all the tasks, and task-specific functions
h1, . . . , hT such that ft = ht ◦ g is a good predictor for task t, in the sense that
the corresponding prediction error (see below) is small.

Fig. 1. The predictor ft is built on top of a representation g and a task-specific function
ht.

In the single index model, let the set X = Z = Rd, and we define G = {x 7→
θ>x, θ ∈ Rd} linear functions on X . Furthermore, let H be a set of L2-Lipschitz
univariate measurable functions on R. Recall that our predictor here is of the
form

ft(xt,i) = ht(θ
>xt,i).

The goal is to learn the common single-index vector θ for all tasks and the link
function ht for each task t.

Remark 1. The predictor can be interpreted as: The predictor changes only in
the direction θ (single-index), and the way it changes in this direction is defined
by the link function ht.

Remark 2. The single-index model [15] is known as a particularly useful variation
of the linear model. This model has been applied to a variety of fields, such as
discrete choice analysis in econometrics and dose-response models in biometrics,
where high-dimensional regression models are often employed. See for example
[11,14,12,13].

Noted that the task t ends at time nt and the average prediction error at
that point is 1

nt

∑nt
i=1

ˆ̀
t,i. This process is repeated for each task t, so that at

the end of all the tasks, the average error is 1
T

∑>
t=1

1
nt

∑nt
i=1

ˆ̀
t,i. Our principal

objective is to design a procedure (meta-algorithm) that is able to learn the
common single-index vector θ for all tasks and the link function ht for each task
t and control the (compound) regret of our procedure

R :=
1

T

>∑
t=1

1

nt

nt∑
i=1

ˆ̀
t,i − inf

g∈G

1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`
(
ht(θ

>xt,i), yt,i
)
.
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2.2 A randomized strategy for continual single-index learning

The EWA-LL meta-algorithm proposed in [2] based on the exponentially weighted
aggregation (EWA) is a general procedure in lifelong learning. Here, we propose
an application of this algorithm to the context of single-index learning. The
details of our proposal algorithm is outlined in Algorithm 1.

Algorithm 1 EWA-LL for continual single-index learning

Data A sequence of datasets St =
(
(xt,1, yt,1), . . . , (xt,nt , yt,nt)

)
, 1 ≤ t ≤ T ; the points

within each dataset are also given sequentially.
Input A prior π1, a learning parameter η > 0 and a learning algorithm for each task

t which, for any single-index θ returns a sequence of predictions ŷθt,i and suffers a
loss

L̂t(θ) :=
1

nt

nt∑
i=1

`
(
ŷθt,i, yt,i

)
.

Loop For t = 1, . . . , T
i Draw θ̂t ∼ πt.
ii Run the within-task learning algorithm on St and suffer loss L̂t(θ̂t).
iii Update

πt+1(dθ) :=
exp(−ηL̂t(θ))πt(dθ)∫
exp(−ηL̂t(γ))πt(dγ)

.

More specifically, the algorithm 1 is based on the exponentially weighted
aggregation (EWA) procedure, see e.g. [6,3] and references therein. It updates
a probability distribution πt on the set of single-index representation G before
the encounter of task t. It is noticed that this procedure allows the user to freely
choose the within-task algorithm (step ii) to learn the task-specific link function
ht, which does not even need to be the same for each task.

Furthermore, the step i is crucial during the learning procedure, because to
draw θ̂t from πt is not straightforward and varies in different specific situation.
While the effect of Step iii is that any single-index θ which does not perform
well on task t, is less likely to be reused on the next task.

3 Regret bounds

3.1 Bound with expectation

We make the following assumptions on our model.

Assumption 1. We assume that ‖θ‖1 = 1 and ‖xt,i‖2 ≤M < +∞.

Assumption 2. We assume that the loss ` is L1-Lipschitz with respect to its
first component, i.e, there exists L1 > 0 such that

|`(a1, ·)− `(a2, ·)| ≤ L1|a1 − a2|.
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We further assume that `(x, ·) ∈ [0, C],∀x.

Assume that we have some within-task algorithms that learn ht at each time
t. And

β(nt) := sup
‖θ‖1=1

β(nt, θ) < +∞,

β(nt) being an upper bound of the within-task algorithm that learns ht. We will
detail one possible such algorithm in Section 4.

Let π1 be uniform on the unit `1-ball. We note that as Algortihm 1 is a
randomized algorithm, we first provide a bound on the expected regret. A simple
result for continual single-index learning is given in the following theorem.

Theorem 1. Under the Assumptions 1 and 2, we have

1

T

T∑
t=1

Eθ̂∼πt

[
1

nt

nt∑
i=1

ˆ̀
t,i

]
− inf
‖θ‖1=1

1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)

≤
c(L1,L2,C,M)d log(T ) + 2d log (d)

√
T

+
1

T

T∑
t=1

β(nt).

where c(L1,L2,C,M) is a universal constant that depends only on L1, L2,M and
C.

The proof relies on an application of Theorem 3.1 in [2]. We postpone the proof
to Section A.

3.2 Uniform bound

Now, under additional assumption that the loss function is convex with respect
to (w.r.t.) its first component, it is possible to obtain a uniform regret bound.

However, rather than using a random draw that θ̂t ∼ πt as in Step i of Algorithm
1, we need to consider an aggregation step for predicting that is

ŷt,i =

∫
ht(θ

>xt,i)πt(dθ). (1)

The unifrom regret bound is presented in the following theorem.

Theorem 2. Under the assumptions of Theorem 1 and the loss function is con-
vex w.r.t its first argument, we have

1

T

T∑
t=1

1

nt

nt∑
i=1

`(ŷt,i, yt,i)− inf
‖θ‖1=1

1

T

T∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)

≤
c(L1,L2,C,M)d log(T ) + 2d log (d)

√
T

+
1

T

T∑
t=1

β(nt).

where c(L1,L2,C,M) is a universal constant that depends only on L1, L2,M and
C.
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Proof. We have that

1

nt

nt∑
i=1

`(ŷt,i, yt,i) =
1

nt

nt∑
i=1

`

(∫
ht(θ

>xt,i)πt(dθ), yt,i

)
.

As the loss is convex w.r.t its first component, Jensen’s inequality leads to

1

nt

nt∑
i=1

`

(∫
ht(θ

>xt,i)πt(dθ), yt,i

)
≤
∫

1

nt

nt∑
i=1

`
(
ht(θ

>xt,i), yt,i
)
πt(dθ).

The proof completes by applying Theorem 1.

Remark 3. Our regret bound is typically at log(T )/
√
T order, which tends to 0

as the number of tasks, T increase.

Remark 4. Noted that if all the tasks have the same sample size, that is nt = n
for all t, then 1

T

∑T
t=1 β(nt) = β(n) and thus the analysis will not be changed.

Here after, to ease our presentation, we assume that all the tasks have the same
sample size, that is nt = n,∀t.

In practice, for an infinite set G we are not able to run simultaneously the
within-task algorithm for all single-index θ. So, we cannot compute the predic-
tion (1) exactly. A possible strategy is to draw N elements i.i.d. from πt, say

θ̂
(1)
t , . . . , θ̂

(N)
t , and to replace (1) by its Monte Carlo approximation

ŷ
(N)
t,i =

1

N

N∑
j=1

ht(θ̂
(j)>
t xt,i).

Let’s call MC-EWA this new version.

Algorithm 2 MC-EWA for continual single-index learning with convex loss

Data and Input as in Algorithm 1.
Loop For t = 1, . . . , T

i Draw θ̂
(1)
t , . . . , θ̂

(N)
t i.i.d from πt.

ii Run the within-task learning algorithm St for each θ̂
(j)
t and return as predictions:

ŷ
(N)
t,i =

1

N

N∑
j=1

ht(θ̂
(j)>
t xt,i).

iii Update πt+1(dθ) := exp(−ηL̂t(θ))πt(dθ)∫
exp(−ηL̂t(γ))πt(dγ)

.

In order to analyze the performance of this algorithm, we can directly use
Theorem 2. We only have to control the discrepancy between the theoretical
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integral with respect to πt and the corresponding empirical mean. Hoeffding’s
inequality leads to

1

N

N∑
j=1

L̂t(θ̂
(j)
t ) ≤ Eθ∼πt [L̂t(θ)] + C

√
log
(
1
δ

)
2N

with probability at least 1 − δ. A union bound over the T tasks leads to the
following result directly.

Corollary 1. Assuming that the assumptions of Theorem 2 are hold. Then, with

probability at least 1− δ over the drawing of all the θ̂
(j)
t ’s,

1

T

T∑
t=1

1

mt

mt∑
i=1

`
(
ŷ
(N)
t,i , yt,i

)
− inf
‖θ‖1=1

1

T

T∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)

≤
c(L1,L2,C,M)d log(T ) + 2d log (d)

√
T

+
1

T

T∑
t=1

β(nt) + C

√
log
(
T
δ

)
2N

.

In the next Section, we provide an example of a within task online algorithm
and derive its regret bound.

4 A within-task algorithm

4.1 EWA for online single-index learning

Here, we propose an online algorithm for learning within each task, detailed in
Algorithm 3. The algorithm is based on the EWA procedure on the space H ◦ g
for a prescribed single-index representation g ∈ G, with g(x) = θx.

Algorithm 3 EWA for online single-index learning

Data A task St =
(
(xt,1, yt,1), . . . , (xt,nt , yt,nt)

)
where the data points are given se-

quentially.
Input A learning rate ζ > 0;

a prior distribution µ1 on H.
Loop For i = 1, . . . , nt,

i Predict ŷθt,i =
∫
H h(θxt,i)µi(dh),

ii yt,i is revealed, update

µi+1(dh) =
exp(−ζ`(ŷθt,i, yt,i))µi(dh)∫

exp(−ζ`(u(θxt,i), yt,i))µi(du)
.



8 T.T.Mai

To learn ht, we use Algorithm 3 and consider a structure for H. We consider,
for a positive interger S, the link function

ht ∈ HS,C2+1 := {h ∈ H : h =

S∑
j=1

βjφj ,

S∑
j=1

j|βj | ≤ C2 + 1},

where {φj}∞j=1 is a dictionary of measurable functions, each φj is assumed to
be defined on [−1, 1] and to take values in [−1, 1]. The trigonometric system
[21] is an example for this kind of dictionary, that is φ1(z) = 1, φ2j(z) =
cos(πjz), φ2j+1(z) = sin(πjz) with j = 1, 2, . . . and z ∈ [−1, 1].

Let

BS(C2 + 1) := {(β1, . . . , βS) ∈ RS :

S∑
j=1

j|βj | ≤ C2 + 1}.

We define µ1(dh) on the set HS,C2+1 as the image of the uniform measure on

BS(C2 + 1) induced by the map (β1, . . . , βS) 7→
∑S
j=1 βjφj .

Remark 5. The choice of C2 + 1 instead of C2 in the definition of the prior
support is just convenient for technical proofs. This ensures that when the target
ht belongs to HS,C2 , then a small ball around it is contained in HS,C2+1.

Remark 6. The integer S should be understood as a measure of the “dimension”
of the link function ht; the larger S, the more complex the function.

Now, we are ready to provide a regret bound for Algorithm 3. Remind that
we assume that nt = n, ∀t.

Proposition 1. By choosing ζ =
√

8S
C2n , we have

1

n

n∑
i=1

ˆ̀
t,i − inf

ht∈HS,C2+1

1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i) ≤ a(L1,S,C,C2)

log(n)√
n

,

where a(L1,S,C,C2) is a universal constant that depends only on L1, S, C,C2.

As the proof of the Proposition 1 is not straightforward, we postpone the
proof to Section A.

4.2 A detailed regret bound

We are ready to provide a full regret bound for continual single-index learning.
The following result is obtained by plug in Proposition 1 into Theorem 2.

Corollary 2. Under the assumptions of Theorem 2 and Proposition 1, we have

1

T

>∑
t=1

1

n

n∑
i=1

ˆ̀
t,i − inf

‖θ‖1=1

1

T

>∑
t=1

inf
ht∈HS,C2+1

1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i)
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≤ a(L1,S,C,C2)
log(n)√

n
+
c(L1,L2,C)d log(T ) + 2d log (d)

√
T

,

where c(L1,L2,C,M) is a universal constant that depends only on L1, L2, C,M and
a(L1,S,C,C2) is a universal constant that depends only on L1, S, C,C2.

Typically, we obtain a regret bound at the order of log(n)/
√
n+ log(T )/

√
T .

5 Discussion and Conclusion

We presented a meta-algorithm for continual single-index learning and provided
for the first time a fully online analysis of its regret. We also provided an online
algortihm for learning within task and proved its regret bound. This is novel to
our knowledge.

A fundamental question is to provide a more computationally efficient algo-
rithm, such as approximations of EWA [8], or fully gradient based algorithms as
in [19,16].

A Proofs

First, we state the following result that is useful for our proofs.

Theorem 3. [2, Theorem 3.1] If, for any g ∈ G, `(x) ∈ [0, C] and the within-
task algorithm has a regret bound β(g,mt), then

1

T

>∑
t=1

Eĝt∼πt

[
1

mt

mt∑
i=1

ˆ̀
t,i

]
≤ inf

ρ

{
Eg∼ρ

[
1

T

>∑
t=1

inf
ht∈H

1

mt

mt∑
i=1

`
(
ht ◦ g(xt,i), yt,i

)
+

1

T

>∑
t=1

β(g,mt)

]
+
ηC2

8
+
K(ρ, π1)

ηT

}
,

where the infimum is taken over all probability measures ρ and K(ρ, π1) is the
Kullback-Leibler divergence between ρ and π1.

A.1 Proof of Theorem 1

Proof. Let θ∗ denote a minimizer of the optimization problem

min
‖θ‖1=1

1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i).

We apply Theorem 3.1 in [2] and upper bound the infimum w.r.t any ρ by an
infimum with respect to ρε in the following parametric family

ρε(dθ) ∝ 1{‖θ − θ∗‖2 ≤ ε}π1(dθ).
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where ε is a positive parameter. Note that when ε is small, ρε highly concentrates
around θ∗, but we will show this is at a price of an increase in K(ρε, π1). The
proof then proceeds in optimizing with respect to ε.

More specifically, Theorem 3.1 in [2] becomes

1

T

>∑
t=1

Eĝt∼πt

[
1

nt

nt∑
i=1

ˆ̀
t,i

]

≤ inf
ε

{
Eθ∼ρε

[
1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)+β(nt)

]
+
ηC2

8
+
K(ρε, π1)

ηT

}
.

Furthermore, using the notation

h∗t := arg inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i),

we get

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)−

1

nt

nt∑
i=1

`(h∗t (θ
∗>xt,i), yt,i)

≤ 1

nt

nt∑
i=1

`(h∗t (θ
>xt,i), yt,i)−

1

nt

nt∑
i=1

`(h∗t (θ
∗>xt,i), yt,i).

Under the condition on the loss, we have∣∣∣`(h∗t (θ>xt,i), yt,i)− `(h∗t (θ∗>xt,i), yt,i)∣∣∣ ≤ L ∣∣∣h∗t (θ>xt,i)− h∗t (θ∗>xt,i)∣∣∣
≤ L1L2|(θ − θ∗)>xt,i|
≤ εL1L2‖xt,i‖2.

We obtain an upper-bound

Eθ∼ρε
1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)

≤ inf
‖θ‖1=1

{
1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i) + ε L1L2

1

T

>∑
t=1

1

nt

nt∑
i=1

‖xt,i‖2

}
.

Now, dealing with the Kullback-Leibler, we have

K(ρε, π1) = − log π1({‖θ − θ∗‖2 ≤ ε}),

and

π1({‖θ − θ∗‖2 ≤ ε}) ≥
π(d−1)/2

Γ ((d+ 1)/2)
ε(d−1)

/
2d

d!
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≥ ε(d−1)√
π(d− 1)

(
2πe

d− 1

)(d−1)/2
/

2d

d!

≥ εd−12d−2
d!

(d− 1)d/2
.

Note that the first inequality follows by observing that, since π1 is the uniform
distribution on the unit `1 ball, the probability to be calculated is greater or equal
to the ration between the volume of the (d − 1)−ball radius ε over the volume
of the unit `1 ball. The second inequality is just using the Stirling formula.

Consequently, we obtain

K(ρε, π1) ≤ (d− 1) log(1/ε) + log

(
2d−2d!

(d− 1)d/2

)
.

Therefore, Theorem 3.1 in [2] leads to

1

T

>∑
t=1

Eθ∼πt

[
1

nt

nt∑
i=1

ˆ̀
t,i

]
− inf
‖θ‖1=1

1

T

>∑
t=1

inf
ht∈H

1

nt

nt∑
i=1

`(ht(θ
>xt,i), yt,i)

≤ inf
ε

{
ε L1L2M +

(d− 1) log(1/ε)

ηT

}
+

log
(

2d−2d!
(d−1)d/2

)
2ηT

+ β(nt) +
ηC2

8
.

The choices ε =
√

1
T and η = 2

C

√
1
T make the right-hand side becomes

L1L2M√
T

+
Cd log(T ) + log

(
2d−2d!

(d−1)d/2

)
+ C

4
√
T

+ β(nt).

The proof is completed by using the Stirling’s approximation that log(d!) ∼
d log(d).

A.2 Proof of Proposition 1

Proof. We follows the same steps as in the proof of Theorem 1 in [3]. First, we
have that

µi(dh) =
exp(−ζ`(h(θxt,i), yt,i))µi(dh)∫
exp(−ζ`(u(θxt,i), yt,i))µi(du)

. =
exp(−ζ`(h(θxt,i), yt,i))µi(dh)

Wi
.

(2)
where we introduce the notation Wi for the sake of shortness. We denote `(h) :=
`(h(θxt,i), yt,i)) and put

Ei =

∫
`(h)µi(dh) = Ehi∼µi [`(hi)].

Using Hoeffding’s inequality on the bounded random variable `(h) ∈ [0, C] we
have, for any i, that

Eh∼µi [exp {ζ(Ei − `(h)}] ≤ exp

{
C2ζ2

8

}
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which can be rewritten as

exp {−ζEh∼µi [`(h)]} ≥ exp

(
−C

2ζ2

8

)
Eh∼µi {exp [−ζ`(h)]} . (3)

Next, we note that

exp

{
−ζ

n∑
i=1

Eh∼µi [`(h)]

}

=

n∏
i=1

exp {−ζEh∼µi [`(h)]}

≥ exp

(
−nC

2ζ2

8

) n∏
i=1

Eh∼µi {exp [−ζ`(h)]} , using (3)

= exp

(
−nC

2ζ2

8

) n∏
i=1

∫
{exp [−ζ`(h)]}µi(dh)

= exp

(
−nC

2ζ2

8

) n∏
i=1

∫
exp {−ζ

∑n
u=1 `(hu)}

Wi
µ1(dh), using (2)

= exp

(
−nC

2ζ2

8

) n∏
i=1

Wi+1

Wi
= exp

{
nC2ζ2

8

}
Wn+1.

So

n∑
i=1

Eh∼µi [`(h)] ≤ − logWn+1

ζ
+
nC2ζ

8

= −
log
∫

exp [−ζ
∑n
i=1 `(hi)]µ1(dh)

ζ
+
nC2ζ

8

and finally we use [5, Equation (5.2.1)] which states that

−
log
∫

exp [−ζ
∑n
i=1 `(hi)]µ1(dh)

ζ
= inf

ν

{
Ehi∼ν

[
n∑
i=1

`(hi)

]
+
K(ν, µ1)

ζ

}
.

Therefore, for each t and given a θ, we obtain a general bound

1

n

n∑
i=1

ˆ̀
t,i ≤ inf

ν
Eht∼ν

{
1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i) +

ζC2

8
+
K(ν, µ1)

ζn

}
. (4)

Put

h∗t := arg inf
ht∈HS,C2+1

1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i).
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We define

‖h‖S =

S∑
j=1

j|βj |,∀h ∈ HS,C2+1.

and let

νγ = 1(‖h− h∗t ‖S ≤ γ)µ1(dh).

The bound in (4) becomes

1

n

n∑
i=1

ˆ̀
t,i ≤ inf

γ
Eht∼νγ

{
1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i) +

ζC2

8
+
K(νγ , µ1)

ζn

}
.

Under the condition on the loss, we have∣∣∣`(h∗t (θ>xt,i), yt,i)− `(ht(θ>xt,i), yt,i)∣∣∣ ≤ L1

∣∣∣h∗t (θ>xt,i)− ht(θ>xt,i)∣∣∣
≤ L1 sup

z
|h∗t (z)− ht(z)|

≤ L1γ.

Using the Lemma 10 in [1], we have

K(νγ , µ1) ≤ S log
(C2 + 1)

γ
.

Thus we obtain

1

n

n∑
i=1

ˆ̀
t,i − inf

ht∈HS,C2+1

1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i) ≤ inf

γ

{
L1γ +

ζC2

8
+
S log (C2+1)

γ

ζn

}
.

By choosing γ = 1/
√
n and then the optimum is reached at ζ =

√
8S
C2n

1

n

n∑
i=1

ˆ̀
t,i − inf

ht∈HS,C2+1

1

n

n∑
i=1

`(ht(θ
>xt,i), yt,i)

≤ L1√
n

+
C
√
S

2
√

2n
+
C
√
S log[(C2 + 1)

√
n]

2
√

2n
.

This completes the proof.
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