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Abstract. In this paper, we generalize the problem of single-index model
to the context of continual learning in which a learner is challenged with
a sequence of tasks one by one and the dataset of each task is revealed in
an online fashion. We propose a randomized strategy that is able to learn
a common single-index for all tasks and a specific link function for each
task. The common single-index allows to transfer the information gained
from the previous tasks to a new one. We provide a rigorous theoretical
analysis of our proposed strategy by proving some regret bounds under
different assumption on the loss function.
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1 introduction

Recently, studying of learning algorithms in the setting in which the tasks are
presented sequentially has received a lot of attention, see e.g. [17,7,2,10,16,9,22]
among others. This setting is often referred to as contunual learning, also called
as learning-to-learn or incremental learning [20,4,2]. Clearly, using information
gained from previously learned tasks is useful and important for learning a new
similar task. This is motivated from that human are able to learn a new task
quite accurately by ultilizing knowledge from previous learned tasks.

In order to reuse the information from previous tasks, the new task must
share some commonalities with previous ones. In this work, we consider that
different tasks share a common feature representation space. This direction has
been explored by various works, e.g. [19,18,2,22] and is natural for classification
and regression problem. More precisely, different predictor for each task is built
on top of a common representation in order to make predictions.

In this paper, we extend the single-index model [15] to the learning-to-learn
setting. More specifically, we assume that the tasks share a common single-index
in this problem. The predictor is constructed on top of this common single-index
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through a task-specific link functions. This grants the learner to reuse/transfer
the knowlegde (the commonality) learned from previous tasks to a new task
through the common single-index. Moreover, the learner still has the ability to
deal with the differency between tasks through a task-specific link function.

Continual learning can be casted as a generalization of online learning and
a standard way to provide theoretical guarantees for online algorithms is a re-
gret bound. This bound measures the discrepancy between the prediction error
of the forecaster and the error of an ideal predictor. We extend the EWA-LL
meta-procedure in [2] to our continual single-index learning problem. Through
this procedure, we provide the regret bounds for continual learning single-index.
These theoretical analysis show that it is possible to learn such model in a con-
tinual context.

Interestingly, as a by-product from our work that is to provide an example of a
within-task algorithm, we develop an online algorithm for learning single-index
model in an online setting. More specifically, it is based on the exponentially
weighted aggregation (EWA) procedure for online learning, see e.g. [6] and ref-
erences therein. We also provide a regret bound for this algorithm which is also
novel in the context of online single-index learning.

The paper is structured as follow. In Section 2 we introduce the continual
learning context and then extend the single-index model to this context. After
that, we present a meta algorithm for learning the continual single-index model
based on EWA-LL procedure. The regret bound analysis is given in Section 3.
A within-task online algorithm for single-index model and its regret bound is
presented in Section 4. Some discussion and conclusion are given in Section 5.
All technical proofs are given in Section A.

2 Continual single-index setting

2.1 Setting

We assume that, at each time step ¢t € {1,...,T}, the learner is challenged with
a task sequentially, corresponding to a dataset

S = {(xt,l,yt,l)» . (th,nt,yt,nt)} e (X x )", ny e N.

Furthermore, we assume that the dataset S; is itself revealed sequentially, that
is, at each inner step i € {1,...,m;}:

— the object x; ; is revealed and the learner has to predict y; ; by 9.4
— then y; ; is revealed and the learner incurs the loss ¢ ; := (94, Y1)

Let f: X — Y be a predictor, where ) = R for regression and Y = {-1,1}
for binary classification. Put g, ; := f(x¢,) denote the prediction for y; ;.

As we want to transfer the information (a common data representation)
gained from the previous tasks to a new one. Formally, we let Z be a set and
prescribe a set G of feature maps (also called representations) g : X — Z, and a
set H of functions h : Z — R. We shall design an algorithm that is useful when
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there is a function g € G, common to all the tasks, and task-specific functions
h1,...,hy such that f; = hy o g is a good predictor for task ¢, in the sense that
the corresponding prediction error (see below) is small.

praw

X 2

Fig. 1. The predictor f; is built on top of a representation g and a task-specific function
hy.

In the single index model, let the set X = Z = R?, and we define G = {z
07 z,0 € R?} linear functions on X'. Furthermore, let H be a set of Lo-Lipschitz
univariate measurable functions on R. Recall that our predictor here is of the
form

fe(es) = ht(eT-rt,i)-

The goal is to learn the common single-index vector 6 for all tasks and the link
function h; for each task ¢.

Remark 1. The predictor can be interpreted as: The predictor changes only in
the direction 6 (single-index), and the way it changes in this direction is defined
by the link function h;.

Remark 2. The single-index model [15] is known as a particularly useful variation
of the linear model. This model has been applied to a variety of fields, such as
discrete choice analysis in econometrics and dose-response models in biometrics,
where high-dimensional regression models are often employed. See for example
[11,14,12,13].

Noted that the task ¢ ends at time n; and the average prediction error at
that point is n% it Le ;. This process is repeated for each task ¢, so that at
the end of all the tasks, the average error is % 2;1 n% 27;1 £; ;. Our principal
objective is to design a procedure (meta-algorithm) that is able to learn the
common single-index vector 6 for all tasks and the link function A, for each task
t and control the (compound) regret of our procedure
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2.2 A randomized strategy for continual single-index learning

The EWA-LL meta-algorithm proposed in [2] based on the exponentially weighted
aggregation (EWA) is a general procedure in lifelong learning. Here, we propose
an application of this algorithm to the context of single-index learning. The
details of our proposal algorithm is outlined in Algorithm 1.

Algorithm 1 EWA-LL for continual single-index learning

Data A sequence of datasets Sy = ((z¢,1,Ye.1), - -, (Tt,nes Yen,)), 1 < t < T the points
within each dataset are also given sequentially.

Input A prior 71, a learning parameter 17 > 0 and a learning algorithm for each task
t which, for any single-index 6 returns a sequence of predictions g]f,i and suffers a

loss -
f/t(e) = nit Zf (th,uyt,i) .
1

Loop Fort=1,...,T
i Draw ét ~ Tt.
ii Run the within-task learning algorithm on S; and suffer loss f/t(ét)
iii Update .
7Tt+1(d9) — eXp(_nLj(e))ﬂ-t (de) .
[ exp(=nLe(7))me(dv)

More specifically, the algorithm 1 is based on the exponentially weighted
aggregation (EWA) procedure, see e.g. [6,3] and references therein. It updates
a probability distribution m; on the set of single-index representation G before
the encounter of task t. It is noticed that this procedure allows the user to freely
choose the within-task algorithm (step ii) to learn the task-specific link function
h¢, which does not even need to be the same for each task.

Furthermore, the step i is crucial during the learning procedure, because to
draw 6, from 7 is not straightforward and varies in different specific situation.
While the effect of Step iii is that any single-index 6 which does not perform
well on task ¢, is less likely to be reused on the next task.

3 Regret bounds

3.1 Bound with expectation
We make the following assumptions on our model.
Assumption 1. We assume that ||0]1 =1 and ||z ;|| < M < 4o0.

Assumption 2. We assume that the loss £ is Li-Lipschitz with respect to its
first component, i.e, there exists Ly > 0 such that

[€(ay,) — laz,")| < Lilay — azl.
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We further assume that ¢(x,-) € [0, C], V.

Assume that we have some within-task algorithms that learn h; at each time
t. And

B(ne) :== sup B(ne,0) < +oo,
61l =1
B(ny) being an upper bound of the within-task algorithm that learns h;. We will
detail one possible such algorithm in Section 4.
Let m; be uniform on the unit ¢;-ball. We note that as Algortihm 1 is a
randomized algorithm, we first provide a bound on the expected regret. A simple
result for continual single-index learning is given in the following theorem.

Theorem 1. Under the Assumptions 1 and 2, we have

1 T
T Z ]Eé’\‘ﬂt
t=1

ne T

1
™ > i

i=1

1

~oinf 4 'ffléheTi i
Helll\?:th:1 hltIéH ny Z (he (0 @t,6), yr,i)

C(Ly,La,c, ) dlog(T') + 2dlog (d

< T TZﬂ”t

where (1, 1,,c,0m) 15 a universal constant that depends only on Li, Lo, M and

C.

The proof relies on an application of Theorem 3.1 in [2]. We postpone the proof
to Section A.

3.2 Uniform bound

Now, under additional assumption that the loss function is convex with respect
to (w.r.t.) its first component, it is possible to obtain a uniform regret bound.
However, rather than using a random draw that 6, ~ 7, as in Step i of Algorithm
1, we need to consider an aggregation step for predicting that is

G = / ha (07 21, 5)my(d0). 1)

The unifrom regret bound is presented in the following theorem.

Theorem 2. Under the assumptions of Theorem 1 and the loss function is con-
vex w.r.t its first argument, we have

T ng

N 1 1
- iy 2 f T ff Eh 9 7 [
z::” z:: Pt ¥ = i T 2 ntz (0 i), )

T
< C(Ll,Lz,C,M)dlog(T) + 2dlog (d) N 1 Zﬁ o

’ﬂ \

- VT =

where ¢(r,,,1,,c,M) 18 @ universal constant that depends only on Ly, La, M and

C.
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Proof. We have that

1 vt R 1 ne
TTt ;e(yt,iayt,i) = ;t ;£ (/ ht(eTZ‘t,i)Trt(dHLyt}i) .

As the loss is convex w.r.t its first component, Jensen’s inequality leads to

Zf(/ht((? x¢4)m(dB), y“> /nt ZE he (0T 204, v i) T (do).

i=1

The proof completes by applying Theorem 1.

Remark 3. Our regret bound is typically at log(T")/v/T order, which tends to 0
as the number of tasks, T" increase.

Remark 4. Noted that if all the tasks have the same sample size, that is ny = n
for all ¢, then + Zle B(ny) = B(n) and thus the analysis will not be changed.
Here after, to ease our presentation, we assume that all the tasks have the same
sample size, that is ny = n, Vt.

In practice, for an infinite set G we are not able to run simultaneously the
within-task algorithm for all single-index 6. So, we cannot compute the predic-
tion (1) exactly. A possible strategy is to draw N elements i.i.d. from 7, say

é,gl), cel, 9t(N), and to replace (1) by its Monte Carlo approximation

N
ytz - E xtz~

Let’s call MC-EWA this new version.

Algorithm 2 MC-EWA for continual single-index learning with convex loss

Data and Input as in Algorithm 1.
Loop Fort=1,...,T
i Draw 9<1) G(N i.i.d from ;.

ii Run the Wlthln—task learning algorithm S; for each éﬁj ) and return as predictions:

N

g = Z 097 3,

ex L(0))m(dO
iii Update m¢41(d0) := je:p(( nant(“){;);t((dﬂ)Y)

In order to analyze the performance of this algorithm, we can directly use
Theorem 2. We only have to control the discrepancy between the theoretical
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integral with respect to m; and the corresponding empirical mean. Hoeffding’s
inequality leads to

1 o j9)) log (3)
NZ ((0)) < Egrn, [Le(0)] + C RN

with probability at least 1 — 4. A union bound over the T tasks leads to the
following result directly.

Corollary 1. Assuming that the assumptions of Theorem 2 are hold. Then, with
probability at least 1 — § over the drawing of all the étm ’s,

T mye

1 1 N) .

N z((,l)f £ £ =S 00T 20d), yes
thzlmt; Yea Ut ||91\|11:1Tzh1tré7-tntz (07 20i), 1)

C(Ly,Ls,c,0m)d1og(T) + 2dlog (d) N 1 ET:

é —
JT T & 2N

In the next Section, we provide an example of a within task online algorithm
and derive its regret bound.

4 A within-task algorithm

4.1 EWA for online single-index learning

Here, we propose an online algorithm for learning within each task, detailed in
Algorithm 3. The algorithm is based on the EWA procedure on the space Hog
for a prescribed single-index representation g € G, with g(x) = fz.

Algorithm 3 EWA for online single-index learning

Data A task S; = ((xm,yt,l), ooy (Tt yt,nt)) where the data points are given se-
quentially.
Input A learning rate ¢ > 0;
a prior distribution pq on H.
Loop Fori=1,...,n,
i Predict §¢,; = [,, h(0xe:)pi(dh),
ii y:, is revealed, update

exp(—Ce(97 i, ye.i))pi(dh)

pi+1(dh) = Jexp(—=Cl(u(0xt,i), yr,i))pi(du)
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To learn h;, we use Algorithm 3 and consider a structure for H. We consider,
for a positive interger S, the link function

S S
hi € Hscori={h €M :h=> Bid;, > jlBi| <Ca+1},

Jj=1 Jj=1

where {¢;}52, is a dictionary of measurable functions, each ¢; is assumed to
be defined on [—1,1] and to take values in [—1,1]. The trigonometric system
[21] is an example for this kind of dictionary, that is ¢1(z) = 1,¢9,(2) =
cos(mjz), paj+1(2) = sin(mjz) with j =1,2,... and z € [-1,1].

Let

S
Bs(Co+1):={(B1,...,Bs) R j|B;| < Cy+1}.

j=1
We define 1 (dh) on the set Hg c,+1 as the image of the uniform measure on
Bs(Cy + 1) induced by the map (B, ..., 8s) = Y7, B;6;.

Remark 5. The choice of Cs 4+ 1 instead of Cy in the definition of the prior
support is just convenient for technical proofs. This ensures that when the target
h: belongs to Hs,c,, then a small ball around it is contained in Hg,c,+1.

Remark 6. The integer S should be understood as a measure of the “dimension”
of the link function h;; the larger S, the more complex the function.

Now, we are ready to provide a regret bound for Algorithm 3. Remind that
we assume that n; = n, Vt.

Proposition 1. By choosing ( = C?fn , we have
1N 1 & log(n)
= by - inf =Y l(he(0 zei) i) < a —==,

where a(r,, 5,c,0,) 1S a universal constant that depends only on Ly, S, C, Cs.

As the proof of the Proposition 1 is not straightforward, we postpone the
proof to Section A.

4.2 A detailed regret bound

We are ready to provide a full regret bound for continual single-index learning.
The following result is obtained by plug in Proposition 1 into Theorem 2.

Corollary 2. Under the assumptions of Theorem 2 and Proposition 1, we have

1 T
T2
t=1

n

T n
. 1 1
0, — inf = inf =Y C(he(0 T 20s), v
Z Y 6= T tzzlhteﬂs,cﬁl n ; (he(0 @¢,0), yei)

i=1

3|
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<4 log(n) N C(Ly,Ly,c)d10g(T) + 2dlog (d)
= 411.5.0.02) " JT ;

where ¢(1,,,1,,c,0m) 18 @ universal constant that depends only on Ly, Ly, C, M and
acr,,s,c,c.) 18 a universal constant that depends only on Ly, S, C,Cs.

Typically, we obtain a regret bound at the order of log(n)/v/n +log(T)/v/T.

5 Discussion and Conclusion

We presented a meta-algorithm for continual single-index learning and provided
for the first time a fully online analysis of its regret. We also provided an online
algortihm for learning within task and proved its regret bound. This is novel to
our knowledge.

A fundamental question is to provide a more computationally efficient algo-
rithm, such as approximations of EWA [8], or fully gradient based algorithms as
n [19,16].

A  Proofs

First, we state the following result that is useful for our proofs.

Theorem 3. [2, Theorem 3.1] If, for any g € G,{(x) € [0,C] and the within-
task algorithm has a regret bound (g, m:), then

T me T me
1 1 A . 1
T2t [m D] : “%f{% O LT
T
1 nC*  K(p,m)

where the infimum is taken over all probability measures p and K(p,m1) is the
Kullback-Leibler divergence between p and 7.

A.1 Proof of Theorem 1

Proof. Let 8* denote a minimizer of the optimization problem
1 1
in — f —> 4(h(0"
HéﬂlmlTZhlféH " Z (0 Tei),Yri)-

We apply Theorem 3.1 in [2] and upper bound the infimum w.r.t any p by an
infimum with respect to p in the following parametric family

pe(d0) o< 1{[0 — 07 > < e} (d6).
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where € is a positive parameter. Note that when e is small, p. highly concentrates
around 6*, but we will show this is at a price of an increase in I(p., ). The
proof then proceeds in optimizing with respect to e.

More specifically, Theorem 3.1 in [2] becomes

. 1 C? K(pe,m
< 1r€1f {EQNPE [T inf —ZZ he( 9 Tti), yt2)+5(nt)} 778 +(pnTl)}
t=

Furthermore, using the notation

* : 1 S T
hy = arghlféfyn*t;g(ht(e xt,i)ayt,i)y

Nt

1
inf —Zé (a0 2,0), y0) = — > A (0% T01.0), y1.0)
ti=1

1
- Z E(h: (G*T‘Tt,i)v ytz)

n
ti=1

< — Zg(h:(eth,i),yt,i) —

ng =
Under the condition on the loss, we have
< LI (0T wei) — hi(0F Tay )
< LyLo|(0 — 6%) Ty 4
< eLy Lol 4|2

f(hz (9T$t,i)a yt,i) - E(h: (H*Txt,i>7 yt,i)

We obtain an upper-bound
E lszizehew) )
O~pe T — heet ny 4 t t,i)s Yt,i

-
<|9i||nf—1{ ! Z inf —Z( hi(0"244),yei) + € L1 Lo Z ZmeHz}

Now, dealing with the Kullback-Leibler, we have
K(pe,m) = —logm ({[|6 — 07 [|2 < €}),

and

p@-v/2 od

m{le ="l <D > gy /@
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eld=1) o2 (d-1)/2 od

m(d—1) (d—l) /d!
d!

(d— 1)

Note that the first inequality follows by observing that, since m; is the uniform

distribution on the unit ¢; ball, the probability to be calculated is greater or equal

to the ration between the volume of the (d — 1)—ball radius € over the volume

of the unit ¢; ball. The second inequality is just using the Stirling formula.
Consequently, we obtain

> 6d712de

d—2
K(pe;m) < (d = 1)log(1/e€) + log ((;—1)62/2) .

Therefore, Theorem 3.1 in [2] leads to

1 T
72 Eonr,
t=1
2d—2 g1

d!
| (d-Dlog(1/) 108 (@Fn#s) nc?
< _—

nt Nt

.
1 » 1 1

—E bi| — inf =) 'f—E:Eh 0 2 4), Y.
ny & t,z] \|91|\I}:1Tt:1 hlfIéH ne & (t( It,z)ayt,z)

=1

The choices € = \/; and n = %\/; make the right-hand side becomes

d—2
LyLoM . Cdlog(T) + log (ﬁ) +C
VT AT

The proof is completed by using the Stirling’s approximation that log(d!) ~
dlog(d).

A.2 Proof of Proposition 1

Proof. We follows the same steps as in the proof of Theorem 1 in [3]. First, we
have that

Al = (U)o ) Wi

exp(=Cl(h(0zi), yei))pi(dh) — exp(=Cl(h(0x1i), ye.i))pi(dh)

(2)
where we introduce the notation W; for the sake of shortness. We denote £(h) :=
£(h(074,i), yt,:)) and put

B = [ hps(ah) = B [0,

Using Hoeflding’s inequality on the bounded random variable ¢(h) € [0,C] we
have, for any 4, that

B o0 (5 — 000} < exp { S
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which can be rewritten as

o5 (=GB 0]} 2 exp (~ S5 ) B femp ).

Next, we note that

So

an

n

> exp ( no% ) 1B, (expl-GeOR i 9

n

exp (-2 )H [ (e l-cemy utan)
(- nc2<2)ﬁ JEIS >RSI —
(-55)

HOQQ‘Z ﬁ Wi_t,_l — exp { TLC’QCZ
Wi

} Wn+1~

=1

- log W, nC?¢
ZE}LNFM ] S - C + =+ S
_log e [-CTL AR (a)
¢ 8

d finally we use [5, Equation (5.2.1)] which states that

log Jexp [~¢ 300, H(ha)l pu(dh) _ . . {Ehwy lz": fh

¢

Therefore, for each t and given a 6, we obtain a general bound

1. . 1 & T cc? K(v, 1)
ﬁ;ft,i < IBfEhwu{n ;é(ht(ﬁ Tii),Yri) + 5 + -

Put

hi:=arg inf Zf (he (0" e4), ye.a)-

hi€Hs,cot1 T
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We define

S
Ihlls = ilB;l,Vh € Hs o1

j=1
and let
=1(l[h = hills < v)pi(dh).
The bound in (4) becomes
lzn:zf < infE lzn:e(h(eT ) )+C -
- i S milp,~p § — Tt,i)s Yt,i — —
n - t, n hi~v. n - t t,i)s Yt, 3 n

Under the condition on the loss, we have

007 (07 2,0),1.0) = £ (07 205),91.)

< Lo [ 07 1) = 0T 1)
< Lysup |hy(2) — he(2)]

< Ly7.
Using the Lemma 10 in [1], we have

1
K(vy, 1) < Slog @

Thus we obtain

Ly~ C? SlogM
ﬁ;&,i inf ZE (he(0" Tt4), Yii) <1nf{L17+<+7 .

hi€Hs, Co+1 M 8 CTL

By choosing v = 1/4/n and then the optimum is reached at ¢ =

1 .
— b i — f (h 9 i)Yt
nz t, hte?-llrslc2+1nz +(0 @ > Yt, )

Ly  CVS C\/EIOg[(Cerl)\/ﬁ].

<=Ly

=V T ovan ' 22

This completes the proof.
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