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A B S T R A C T   

Robertson-Stiff rheological model has been recently shown to provide a more accurate description of a drilling 
fluid than the Herschel-Bulkley model. In this short communication, a relation between the pressure gradient and 
the average fluid velocity in a fracture is derived for the Robertson-Stiff model. Practical use of the model is 
demonstrated using an example of one-dimensional radial flow with a Robertson-Stiff fluid displacing a New
tonian fluid in a horizontal fracture.   

1. Introduction 

Lost circulation has been a known drilling problem for decades 
(Onyia, 1994). This problem becomes steadily more common and more 
expensive as the drilling depth increases and the mud weight window 
becomes narrow, e.g. in deepwater drilling and infill drilling (Lavrov, 
2016). Theoretical studies of mud losses are often based on numerical 
modelling of drilling fluid invasion in natural fractures (Lavrov, 2005). 
In such models, the drilling fluid is represented as a generalized New
tonian fluid with a yield stress. Typically, Bingham or Herschel-Bulkley 
rheology is assumed for drilling fluids (Caenn et al., 2011; Majidi et al., 
2008, 2010a; Rodríguez de Castro and Radilla, 2017). The validity of 
Herschel-Bulkley rheology for drilling fluids was recently reviewed in 
(Cayeux, 2020). It was found that the results of rheometric measure
ments on drilling fluid samples can be fitted with the Herschel-Bulkley 
model at low shear rates. A better fit to the experimental data in the 
entire range of shear rates can, according to (Cayeux, 2020), be obtained 
by using the Robertson-Stiff rheological model (Robertson and Stiff, 
1976). 

In a simple shear flow, the relationship between shear stress and 
strain rate in the Robertson-Stiff model is expressed by 

τ =A(|γ̇| + C)
B (1)  

where τ is the shear stress; γ̇ is the shear rate; A, B, C are fitting pa
rameters. From Eq. (1), the yield stress is equal to ACB. Thus, Eq. (1) can 
be re-written as follows: 

τ = τY

(
|γ̇|
C

+ 1
)B

(2)  

where τY is the yield stress. When τ < τY , the shear rate is zero, γ̇ = 0. 
In a general type of flow of a generalized Newtonian flow, the shear 

stress tensor, S, is related to the shear rate tensor, D, as follows (Irgens, 
2008): 

S= 2μa(Γ)D (3)  

where Γ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅
2D : D

√
is a shear rate measure; μa is the apparent viscosity, 

for the Robertson-Stiff model given by: 

μa =
τY

Γ

(Γ
C
+ 1

)B
(4) 

For comparison, the apparent viscosity for a Herschel-Bulkley fluid is 
given by: 

μa =KΓn− 1 +
τY

Γ
(5)  

where K is consistency index; n is the flow index; τY is the yield stress. In 
a simple shear flow, the shear stress vs shear rate relationship for a 
Herschel-Bulkley fluid is given by: 

τ= τY + K|γ̇|n (6) 

To illustrate the Robertson-Stiff and Herschel-Bulkley models, the 
shear stress vs shear rate curves for both are shown in Fig. 1. The 
following rheological properties were used in Fig. 1: Herschel-Bulkley 
fluid: τY = 10 Pa, n = 0.8, K = 0.01 Pa s0.8; Robertson-Stiff fluid: τY 
= 10 Pa, B = n = 0.8, C = (τY/K)1/n

= 5623 s− 1. It is evident from Fig. 1 
that, with the above choice of rheological properties, the Herschel- 
Bulkley model has a slightly larger apparent viscosity than the 
Robertson-Stiff fluid. This is as expected since, for 0 < n < 1, 
(|a| + |b|)1/n

≤ |a|1/n
+ |b|1/n. 
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When computing fluid flow in a rock fracture, a relationship between 
the pressure gradient and the flow rate (or fluid velocity averaged across 
the fracture aperture) is used. Such a relationship is usually derived 
assuming that the lubrication theory approximation is valid (Zimmer
man et al., 1991). In particular, the flow is Stokes flow (Re → 0), and 
fracture faces are sufficiently smooth. Under these assumptions, the 
average fluid velocity of e.g. a Herschel-Bulkley fluid in a fracture of 
aperture w is given by (Morris et al., 2015):  

where ∇P is the pressure gradient in the plane of the fracture defined by 
Cartesian coordinates x1, x2. The third coordinate axis, x3, is directed 
normal to the fracture plane; x3 = 0 defines the center plane between the 
fracture faces. It should be noted that v is understood as the velocity 
averaged across the fracture aperture, i.e. it is the flow rate divided by 
the fracture aperture, w. 

The objectives of this study are (i) to derive a relationship between 
the average fluid velocity, v, and the pressure gradient, ∇P, in fracture 
flow for the Robertson-Stiff model [similar to Eq. (7) for Herschel- 
Bulkley fluid], and (ii) to demonstrate practical use of this relation
ship in a 1D simulation of fluid flow and displacement from a borehole 
into a horizontal fracture. 

It should be noted that an attempt to derive a relationship between 
the average fluid velocity and the pressure gradient in fracture flow for 
the Robertson-Stiff model was made already in the original paper by 
Robertson and Stiff. Unfortunately, a mistake was made in their deri
vation: The authors did not recognize the existence of the unyielded 
zone around the fracture’s mid-plane. Consequently, the published re
sults are incorrect (more exactly, they are correct only in the asymptotic 
case of |∇P|→∞). The present contribution aims to rectify this issue. 

2. Lubrication flow with Robertson-Stiff rheological model 

Assuming the lubrication theory approximation conventionally used 
in fracture flow modelling (Zimmerman et al., 1991), the flow is 
laminar, the fluid velocity normal to the fracture plane is zero, and the 
strain rate tensor is thus given by: 

D =
1
2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0
∂u1

∂x3

0 0
∂u2

∂x3

∂u1

∂x3

∂u2

∂x3
0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(8)  

where u1 and u2 are the in-plane components of the fluid velocity. 
The stress tensor is given by 

S =

⎡

⎣
0 0 τ13
0 0 τ23
τ13 τ230

⎤

⎦ (9) 

Combining Eqs. (8) and (9) with Eqs. (3) and (4) yields:  

τ13
τ23

}

= τY

{
1
C

[(
∂u1
∂x3

)2
+
(

∂u2
∂x3

)2
]1/2

+ 1
}B

[(
∂u1
∂x3

)2
+
(

∂u2
∂x3

)2
]1/2 ⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂u1

∂x3

∂u2

∂x3

(10) 

Momentum conservation under the assumptions of the lubrication 
theory approximation reduces to the following two equations (Majidi 
et al., 2010a; Morris et al., 2015): 

τ13
τ23

}

= x3⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P
∂x1

∂P
∂x2

(11) 

After some algebra, Eqs. (10) and (11) yield: 

∂u1

∂x3

∂u2

∂x3

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭

= −
C

|∇P|

[(

−
x3|∇P|

τY

)1/B

− 1

]

⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P
∂x1

∂P
∂x2

(12) 

When a yield-stress fluid flows in a fracture, a plug of unyielded 
material is formed around the center plane of the fracture (i.e. around x3 

= 0) where (τ2
13 + τ2

23)
1/2

< τY. The thickness of the unyielded plug is 
given by 2τY/|∇P|. Thus, in order to have flow, the pressure gradient 
must be greater than 2τY/w. 

Integrating Eq. (12) over half of the fracture aperture (x3 < 0) and 
using the no-slip boundary condition at the fracture wall, i.e. u1 = u2 =

Fig. 1. Flow curves for a Herschel-Bulkley fluid with τY = 10 Pa, n = 0.8, K = 0.01 
Pa s0.8 and a Robertson-Stiff fluid with τY = 10 Pa, B = n = 0.8, C = (τY/K)1/n

=

5623 s− 1. 

v=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |∇P|<
2τY

w

2n
n+1

∇P
K1/nw|∇P|2

[
n

2n+1
1

|∇P|

(
w|∇P|

2
− τY

)(2n+1)/n

−
w
2

(
w|∇P|

2
− τY

)(n+1)/n
]

if |∇P|>
2τY

w

(7)   
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0 at x3 = − w/2, yields the following velocity profile outside the 
unyielded plug region, − w /2 < x3 < − τY /|∇P|:  

Within the unyielded plug, the velocity is constant and can be obtained 
from Eq. (13) by substituting x3 = − τY /|∇P|. Thus, at − τY /|∇P| <
x3 < 0, the fluid velocity is equal to (subscript “p” stands for “plug”): 

up1
up2

}

=
C

|∇P|

[
w
2
−

B
B+1

τY

|∇P|

(
w|∇P|

2τY

)(B+1)/B

−
τY

(B+1)|∇P|

]

⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P
∂x1

∂P
∂x2

(14) 

Flow rate is obtained by integrating the velocity from x3 = − w/2 to 
x3 =0 and multiplying the result by two. Dividing the result by w yields 
the following average velocity for fracture flow of a Robertson-Stiff 
fluid:   

If the flow is along one of the in-plane coordinate axes, e.g. x1, the 
average velocity is given by:   

As an example of fluid velocity vs pressure gradient for a fracture 
with w = 1 mm is shown in Fig. 2. The fluid properties are the same as 
those in Fig. 1. Since the Herschel-Bulkley fluid has a higher apparent 
viscosity than its Robertson-Stiff counterpart (Fig. 1), the dashed line in 
Fig. 2 runs lower than the solid line. 

3. Application example: one-dimensional radial flow and 
displacement in a horizontal fracture 

As an example application of the Robertson-Stiff fluid flow in a 
fracture, we consider a radial, one-dimensional problem in which a 
yield-stress fluid displaces a Newtonian fluid. A horizontal infinite 

fracture is penetrated by a borehole, and a radial flow of drilling mud 
from the borehole into the fracture ensues. 

Theoretical models of mudlosses often assume that only one fluid is 
flowing in the fracture, namely the yield-stress fluid invading the frac
ture (Majidi et al., 2008, 2010a). This assumption might be valid when 
the formation fluid is a gas. The validity of this assumption in the case 
when the formation fluid is water or oil is less obvious. An example of a 
more realistic work where two fluids were properly considered is (Majidi 
et al., 2010b). Following the same path, we assume that, prior to dril
ling, the fracture was filled with a Newtonian fluid of viscosity μ. This 
fluid is called “fluid in place”, or “fluid 1” below. The invading fluid is a 
yield-stress fluid described by the Robertson-Stiff model and is called 
“invading fluid” or “fluid 2”. We assume laminar incompressible flow. 
We further assume that the overbalance pressure remains constant 
during the simulation since our goal here is simply to demonstrate the 
application of the model rather than to study a realistic operational 
scenario where the borehole pressure, Pw, would be varying over time. 

The fracture is circular in plane; the borehole meets the fracture in 
the center of the fracture. The external radius of the fracture is Rext (the 
“reservoir radius”). Constant fluid pressure P0 is assumed at the external 
boundary; the initial formation pressure is equal to P0. The radius of the 

borehole is Rw. 
Mass balance equation for radial flow is given by 

∂
∂r

(rv)= 0 (17)  

where r is the radial coordinate; u is the (radial) average fluid velocity. 
Solution to Eq. (17) is given by 

v=
Cv

r
(18)  

where Cv is an integration constant. In order to find Cv, we assume that 
pressure is continuous across the interface between the invading fluid 
and the fluid in place, i.e. the interfacial tension pressure is equal to zero. 

u1
u2

}

=
C

|∇P|

[
w
2
−

B
B + 1

τY

|∇P|

(
w|∇P|

2τY

)(B+1)/B

+ x3 +
B

B + 1
τY

|∇P|

(

−
x3|∇P|

τY

)(B+1)/B
]

⋅

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

∂P
∂x1

∂P
∂x2

(13)   

v=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if |∇P| <
2τY

w
[

Cw
4|∇P|

−
Cτ2

Y

(2B + 1)w|∇P|3
−

BCτY

(2B + 1)|∇P|2

(
w|∇P|

2τY

)(B+1)/B
]

∇P if |∇P| >
2τY

w

(15)   

v1 =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 if
⃒
⃒
⃒
⃒
∂P
∂x1

⃒
⃒
⃒
⃒ <

2τY

w
[

Cw
4|∂P/∂x1|

−
Cτ2

Y

(2B + 1)w|∂P/∂x1|
3 −

BCτY
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2

(
w|∂P/∂x1|

2τY

)(B+1)/B
]

∂P
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⃒
⃒
⃒
⃒
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2τY

w

(16)   
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Denote the radial position of the interface R̃ and the pressure at the 
interface P̃. Then, at r > R̃, the fracture is filled with the Newtonian 
formation fluid, and the averaged fluid velocity is given by the cubic 
law: 

v=
w2

12μ
P̃ − P0

r log(Rext/R̃)
at r > R̃ (19) 

Combining Eqs. (18) and (19) yields: 

Cv =
w2

12μ
P̃ − P0

log(Rext/R̃)
(20) 

The interface pressure can be obtained by integrating the pressure 
gradient from r = Rw to r = R̃: 

P̃=Pw +

∫̃R

Rw

∂P
∂r

dr (21) 

The advancement of the interface is given by an ordinary differential 
equation stating that the interface advances with the velocity equal to 
the averaged fluid velocity at the interface (since the fracture has 
porosity equal to 1): 

dR̃
dt

=
w2

12μ
P̃ − P0

R̃log(Rext/R̃)
(22) 

Initial condition for the pressure is given by: 

P=P0 at Rw < r < Rext, t = 0 (23) 

Initial condition for the interface position is given by: 

R̃=Rw + εΔr0 at t = 0 (24)  

where ε is a small number (10− 4); Δr0 is the distance between the two 
grid nodes closest to the borehole wall (the node on the wall, at r = Rw, 
and the next node, at r = Rw + Δr0). Setting the initial interface position 
exactly at the borehole wall, i.e.R̃ = Rw, would cause a numerical error 
since the interface must be located between two grid nodes in order to be 
identified. 

Boundary conditions are given by: 

P=P0 at r = Rext (25)  

P=Pw at r = Rw (26) 

The above equations are solved numerically at each timestep as 
follows:  

1) The velocity integration constant, Cv, is found by solving Eqs. (20) 
and (21) simultaneously, by using the bisection method. The pres
sure gradient for yield-stress fluid in Eq. (21) is found from Eq. (16) 
by Newton’s method; Eq. (21) is integrated numerically by trape
zoïdal rule.  

2) Velocity is updated at each node and at r = R̃ by using Eq. (18).  
3) The position of the interface, R̃, is updated by the predictor-corrector 

(Heun’s) method. It was shown earlier that predictor-corrector pro
vides a reasonable trade-off between accuracy and computational 
cost in one-dimensional flows where a yield-stress fluid displaces a 
Newtonian fluid (Lavrov, 2021). 

Logarithmic grid is used, with progressive refinement towards the 
borehole wall. 

It should be noted that our solution procedure is slightly different 
from the one used in (Majidi et al., 2010b). Namely, an infinite fracture 
was assumed in (Majidi et al., 2010b), with the solution for fluid 1 given 
by an integral. Fluid 1 was assumed compressible (Majidi et al., 2010b). 

An example of the calculation is given in Fig. 3, alongside with a 
similar calculation for a Herschel-Bulkley fluid. The following input data 
were used: fracture aperture w = 1 mm; overbalance 1 kPa; Rext = 100 m; 
Rw = 0.1 m. Viscosity of the formation fluid was μ = 0.001 Pa s (water). 
Properties of the invading fluid are given in the caption to Fig. 1. Since 
the Herschel-Bulkley fluid has a higher apparent viscosity than its 
Robertson-Stiff counterpart (Fig. 1), the dashed line in Fig. 3 is running 
below the solid line, i.e. the advancement of the interface is slower for 
the former. 

4. Discussion 

The Robertson-Stiff model is one of the few non-Newtonian rheo
logical models that admit analytical, closed-form solution for the flow 
rate as a function of the pressure gradient in fracture flow. Other such 
models are Herschel-Bulkley, power-law, and Bingham models. A 
closed-form solution speeds up computations where it is used as a 
closure law, e.g. in hydraulic fracturing simulations or in a mud loss 
model like the one used in Section 3. Using rheological models for which 
a closed-form solution is not available is still possible but entails extra 
compute time or requires approximating the rheological model, e.g. as 
was suggested in (Wrobel, 2020). The closed-form solution derived for 
the Robertson-Stiff model in this article makes a useful contribution to 
the bank of available non-Newtonian fluid models that can be employed 
in fracture flow simulations. One such application is provided by the 
demonstration example in Section 3. 

It should be noted that the application example provided in Section 3 
is intended for demonstration purposes only. It is not an advanced fluid 

Fig. 3. Position of fluid interface between the invading yield-stress drilling 
fluid and the Newtonian formation fluid (water) vs time. Fracture aperture: w 
= 1 mm. Overbalance 104 Pa. Fluid properties are given in the caption to Fig. 1. 

Fig. 2. Average fluid velocity in a fracture of aperture w = 1 mm vs pressure 
gradient. The fluid properties are given in the caption to Fig. 1. 
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loss model. A number of additional factors should be considered when 
constructing more advanced models of that sort, e.g. arbitrary fracture 
inclination (with the resulting gravity effects), fracture compressibility, 
and fracture roughness. 

5. Conclusion 

Relation between the pressure gradient and the average fluid ve
locity has been derived for the Robertson-Stiff rheological model for 
both one-dimensional and two-dimensional fracture flow. An example 
application for 1D radial flow with a Robertson-Stiff fluid displacing a 
Newtonian fluid in a horizontal fracture has been presented. 
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