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Highlights 
 

• Functional precision medicine are strategies to support clinical decisions on 
personalized treatment of cancer patients using functional tests on live patient cells, 
for example testing of cell viability after exposure to drugs. 

• For hematological cancers, methods and test platforms have matured to a stage 
where drug sensitivity testing is being implemented in prospective clinical trials as a 
stratification tool, complementing genomic and transcriptomic information. 

• For solid tumors, there is increasing evidence from co-clinical trials using a breath of 
test systems for assessing drug sensitivity of patient cells coupled to clinical 
outcome. This allows for validation of the tests.   

• The field of functional testing in precision cancer medicine is thus moving towards its 
implementation as experimental diagnostics to provide more information to molecular 
tumor boards. 

 

Abstract 

Functional precision medicine is a new, emerging area that can guide cancer treatment by 

capturing information from direct perturbations of tumor-derived, living cells, such as by drug 

sensitivity screening. Precision cancer medicine as currently implemented in clinical practice 

has been driven by genomics, and today’s molecular tumor boards rely extensively on genomic 

characterization to advise on therapeutic interventions. Genomic biomarkers can, however, 

guide treatment decisions only for a fraction of the patients. Herein we discuss the state-of-the-

art for functional precision cancer medicine and the potential for new methods to stratify 

patients to different treatments beyond the current practice of mutational analysis.  
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1. Functional precision medicine 

Functional precision medicine (see Glossary) is a rapidly advancing strategy to inform 

personalized treatment decisions for cancer patients based on functional readouts, such as direct 

drug sensitivity testing of the patient’s cancer cells (Box 1) [1]. This approach was introduced 

more than four decades ago [2,3], but initial reports found functional assays to be too premature 

for clinical implementation, in part due to the low fraction of tumor samples that could 

successfully be cultivated and tested for drug sensitivity in the lab [4,5]. For solid tumors, 

studies have so far mostly been conducted retrospectively, and prospective evidence, key to 

fully adopting such technologies in clinical decision making, is still lacking. The field is more 

mature for liquid tumors, in which some prospective trials have already been published on the 

performance of functional assays for therapy response prediction [6,7] (Tables 1 and 2). This 

was preceded by retrospective studies also in hematological cancers, demonstrating that ex vivo 

drug sensitivity is associated with clinical responses to therapy [8-10]. While functional 

precision medicine has proven valuable for patient stratification to treatments in clinical trials 

and in some real-world case reports, considerable efforts are still required before it can be 

implemented in routine clinical practice. Now, improved cell culturing protocols have 

advanced functional precision medicine to a point where we must explore its potential to guide 

treatment decisions in clinical trials (Table 1) [1,11,12]. In this review, we discuss the current 

state of functional precision medicine, the advances for drug sensitivity screening enabled by 

cell culture models, and how artificial intelligence can be coupled to functional precision 

medicine to guide patient stratification. 

 

 



 

4 

2. The current standing of functional precision medicine 

The evidence level for functional precision medicine is now being transformed from 

retrospective trials to prospective study designs, see Tables 1 and 2 for prospective trials in 

hematological malignancies, and retrospective trials in solid tumors, respectively. This is 

exemplified in a study by Malani et al, where a multidisciplinary functional precision medicine 

tumor board was created to guide clinical decisions for patients with acute myeloid leukemia 

(AML) (Table 1) [11]. The authors reported that actionable drugs were identified for 97% of 

the patients. Treatment recommendations were implemented for 37 individuals with a 59% 

objective response rate [11]. The EXALT trial guided treatment of 56 heavily treated patients 

with advanced hematologic malignancies based on drug testing (Table 1) [12]. Clinical benefit 

was defined as minimum 1.3-fold prolonged progression-free survival relative to that obtained 

on the previous line of therapy. Thirty patients (54%) achieved this at a median follow-up of 

23.9 months [12]. The ongoing EXALT-2 trial (NCT04470947) is comparing treatment guided 

by functional drug screening, genomic profiling and physician’s choice. The results from this 

study promise to add new insights into the strategies for next-generation clinical decision 

support.  

 

3. Advances in functional precision medicine enabled by cell 

culture models 

Recently, cell culturing models have been developed for a variety of different cancer types, 

which has enabled the field of functional precision medicine to move to combining the best 

features of each of these models through a series of advances. Suspension-based models, for 

example, were initially developed for cultivating primary cells from hematologic cancers in 

growth-supporting solutions, while tissue architecture-preserving models have been developed 

to mimic and study intact solid tumors and, optionally, parts of their microenvironment (Figure 
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1). Current efforts have focused on applying suspension-based techniques to solid tumor 

organoids, which can potentially advance throughput in drug screening by bypassing some of 

the cumbersome steps associated with solid substrates for organoid growth [13,14]. 

Conversely, co-culture methods, originally developed in solid tumor assays, are now 

implemented in suspension-based protocols [15,16], which is hoped to increase relevance of 

the readout to drug responses in vivo, since tumor cells are known to extensively communicate 

with a variety of host cells. In the following subsections, we will review recent advancements 

in cancer drug sensitivity screening technology models.  

 

3.1 Suspension-based models are compatible with high throughput drug screens 

Hematological cancers appear as single-cell suspensions when obtained from blood samples or 

bone marrow draws. This appearance makes them readily dispensable and highly compatible 

with existing high-throughput drug screening protocols, for characterization against larger 

compound libraries [17] [18]. One group recently carried out ex vivo drug sensitivity testing of 

63 drugs on blood cancer samples from 246 patients. They showed that the malignancies, which 

could not be identified from genomic biomarkers based on target vulnerabilities, could be 

stratified into subgroups based on therapy responses. The ex vivo drug sensitivities in drug 

response-defined subgroups were associated with treatment outcome [17]. Another group 

identified treatment-induced changes in vulnerabilities, which could inform individualized 

combination regimens using single-cell, image-based sensitivity profiling (pharmacoscopy) of 

paired samples. In this group’s study, the samples were collected before and during treatment 

with the Bruton’s tyrosine kinase (BTK) inhibitor ibrutinib, from chronic lymphocytic 

leukemia (CLL) patients [18]. However, the study was performed on non-proliferating cells 

without stimuli from the tumor microenvironment in the bone marrow and with only 18 h of 

drug exposure as it has remained a challenge to cultivate CLL cells for longer periods of time, 
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which could reduce the clinical relevance of drug sensitivity readouts. Since CLL cells undergo 

spontaneous cell death when they are cultured ex vivo, several culturing models have been 

developed to mimic the CLL tumor microenvironment. A key component for culture success 

is that of signals provided by T cells (CD40L, cytokines) and nurse-like cells (APRIL, BAFF), 

which are both found in the microenvironment of CLL [15,19]. Importantly, drug sensitivity 

testing on CLL cells that were pre-cultured with these microenvironmental factors over longer 

time periods (≥72 h, allowing for the relatively slow proliferation rate of CLL cells) has been 

used to guide personalized treatment of relapsed CLL (Table 1) [6,20]; and protocols have also 

been developed to sustain viability and proliferation of multiple myeloma (MM) cells for 

functional testing [21,22]. 

 

3.2 Suspension-based models can be studied by flow cytometry protocols              

In addition to drug sensitivity, suspension-based high throughput drug screens can inform on 

single-cell protein profiles by flow cytometry protocols, which can then be applied in 

biomarker discovery pipelines [23-25]. As an example, Melvold et al studied mechanisms of 

disease-specific sensitivities to MEK inhibitors in CLL, MM, and mantle cell lymphoma 

(MCL) cell lines by flow cytometry-based protein profiling [26]. We found association 

between high expression levels of Myeloid cell leukemia sequence 1 (Mcl-1) or B-cell 

lymphoma - extra large (Bcl-xL) with low sensitivity to the MEK inhibitor trametinib when 

combined with the Bcl-2 antagonist, venetoclax. Interestingly, we demonstrated that the low 

sensitivity could be overcome by exposing the cells to an Mcl-1 or Bcl-xL inhibitor [26]. The 

same flow cytometry-based approach has also been used to map drug synergies at high 

resolutions [27]. Combined treatment of CLL cells with ibrutinib and venetoclax induced 

apoptosis in a synergistic manner at doses that are much lower than what is currently 

recommended in clinical practice. This suggest that it is possible to reduce established 
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treatment doses ensuring efficacy and decreased toxicity. Indeed, retrospective studies have 

shown that dose adjustments of CLL therapies did not compromise treatment outcomes [28-

32].  

 

3.3 Standardized solid cancer cell lines represent a compromise between 

suspension-based models and tissue-architecture preserving models 

For solid tumors, standardized single-cell type and two-dimensional cell line models do 

not reflect the three-dimensional architecture or multi-cell constituents of the tumor of origin, 

and are therefore not considered good models to predict individual patient treatment responses 

[33]. Nonetheless, the use of cell lines may still provide valuable information. One obvious 

advantage with standardized cell lines is that access to material is not a limiting factor for larger 

experimental setups, as nicely demonstrated in a study on cell lines from breast, colon and 

pancreatic cancers, where the effects of 2025 drug combinations were analyzed [34]. A study 

of this type would likely not be possible using patient material, due to limited availability, but 

does provide important knowledge that can be used for characterizing novel drug combinations 

and linking drug responses to biomarkers for the tested cell lines. However, the loss of tissue 

architecture, and the evolutionary selection pressure set forth in the cultivation of planarly 

grown cells, are considered to negatively influence the relevance of cancer cell line 

observations with respect to predicting individual patient therapy responses. To address this 

limitation, diverse tissue architecture-preserving models have been developed to facilitate 

functional analyses of the three-dimensional tumor in its microenvironment (Figure 1). 

 

3.4 Tissue architecture-preserving models for solid tumor assays  

Three-dimensional models for solid tumors can retain tissue architecture and multi-cell 

composition of the cancer. Such lab systems span from simpler setups for studies of only the 
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pharmacodynamic properties of a drug in lab-cultivated primary cancer cells, to more 

sophisticated setups that can include host factors and allow the study of pharmacodynamic-

pharmacokinetic properties [35]. However, with increasing complexity, throughput and clinical 

applicability generally decreases. This calls for assays that are as complex as necessary for their 

clinical relevance, and as simple as possible to deliver robust results in a clinically actionable 

time frame. In the following sections we will discuss protocols for cancer organoids and 

spheroids, xenografts and implantable drug reservoirs, that are all developed to predict drug 

responses in solid tumors. 

 

3.5 Cultivation of tumor cells in xenograft models 

Xenografted tumors represent a highly complex platform to probe therapy responses, which 

also enables the study of certain drug pharmacokinetic properties in the recipient animal host, 

including distribution, metabolism and elimination (Figure 1). However, since xenograft 

models do not contain the immune component of the tumor microenvironment, they cannot 

fully recapitulate the in vivo situation.  Furthermore, success rates for PDX engraftments have 

been reported to be around 10-30% for major tumor types [36], indicating that such setups will 

only be informative for a fraction of all cancer patients. In addition, the time required to grow 

tumors for drug testing may be too long for the method to deliver results in a clinically 

actionable time frame. The animal host size is one important factor that determines time to 

grow testable tumors and assay throughput, and may range from patient-derived xenografts 

(PDX) in zebrafish embryos contained in 96-well plates for drug screening to PDX models in 

mice. Generally, smaller animal host size requires shorter time to grow tumors and allows 

higher throughput. It has been shown that successful engraftment in recipient animals is an 

independent negative prognostic factor for certain cancer diagnoses, suggesting that more 

aggressive tumor types are also those where information that can support clinical decision-
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making is most likely obtained [37,38]. High costs, complex experimental conditions, and the 

time required before a conclusion can be made based on the findings, are factors that need to 

be considered for the implementation of these models in clinical diagnostics.  

 

3.6 Cancer organoids 

 Cancer organoids (Figure 1) represent a compromise between two-dimensional models 

and xenografts, in which tissue architecture is retained to some extent by allowing isolated 

tumor cells to grow into three-dimensional structures. For many solid tumors, this will improve 

cultivation success and allow the representation of inter-cell signaling, and of physiologically 

relevant chemical gradients [39]. Organoid models also have the advantage that they allow use 

of patient-matched normal tissue to grow organoids, and these may serve as a control for 

toxicity to normal tissue. Similar to suspension-based models, organoid cultures enable 

extensive pharmacodynamic profiling, as demonstrated by Bruun et al in their characterization 

of drug responses to 40 drugs across 22 patients [40]. Cancer organoids have been studied as a 

diagnostic test for numerous solid tumor types, with the majority of trials performed co-

clinically or retrospectively matched with a recorded clinical outcome, and with an emphasis 

on colorectal cancer (CRC), breast cancer and ovarian cancer [41]. The test sensitivity and 

specificity to predict therapy responses have been highest for CRC, pancreatic cancer, and 

head-and-neck cancer squamous cell carcinomas. While small numbers of patients preclude 

firm conclusions for individual cancer types, an overall cross-tumor type sensitivity of 0.81 

(95% CI 0.69-0.89) and specificity of 0.74 (95% CI 0.64-0.82) clearly invigorates future 

research for solid tumor functional precision medicine (see Table 2 for examples). Moreover, 

in another study it was shown, that cancer organoid setups perform better for chemotherapies 

than for other therapies [42]. Ooft et al found a good correlation between irinotecan-based 

therapy and organoid responses to its active metabolite SN-38 in colon cancer patients [42], 
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but no correlation between responses to targeted therapies in organoid cultures and patients 

[43], and these observations calls for additional investigations to cultivation, drug exposure 

protocols and experiment readouts to identify causes for the discrepancy. 

One approach to improve cultivation protocols involves optimization to the solid 

substrate on which cells are grown in the lab. Common to all protocols for cultivation of tumor 

cells on solid supports is the use of protein-rich substrates that favor growth of cells that in vivo 

is surrounded by a proteinaceous gel and other cell types. One drawback with systems based 

on cultivation of cells in animal-derived extracellular matrix hydrogels, such as Matrigel, is 

that inter-batch variations influence the reproducibility. Additionally, scarcity of animal-

derived matrix proteins further limits the scaling of most organoid-based methods. Together, 

these drawbacks argues for synthetic replacements to animal-derived matrix hydrogels [44].  

Another approach to improve cultivation protocols for cancer organoids is the 

introduction of additional cell types found in the tumor microenvironment, such as fibroblasts 

and immune cells [45,46]. One limitation with many of the organoid-based assays is that tumor 

microenvironment components are isolated and artificially reintroduced to the generated 

microenvironment. Air-liquid organotypic models allow the characterization of cancer 

organoids with immune cells that are endogenously incorporated in to the stroma for studies of 

cancer immunotherapy responses [47,48], and could represent a way to preserve parts of the 

microenvironment. 

 In order to bypass experimentally controlled organoid cell type composition in the 

microenvironment, tumor specimens can be grown as intact micro-dissected tissues, where 

tissue components and cell-cell interactions are preserved (Figure 1) [49,50]. Such setups, 

often referred to as spheroid or explant cultures, retain a  number of cell types in addition to 

the cancer cells, such as endothelial cells, immune cells, and cancer associated fibroblasts [51].  
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As new and effective targeted therapies continue to enter the clinic at an increasing rate 

(see Attwood et al [52] for a nice overview of the progress over the past 25 years), efforts must 

be directed at identifying assays, culture conditions and readouts that are informative for drug 

responses in patients. Cancer organoid-, explant- and spheroid-protocols are fairly manageable 

for expert users, provide readouts in a matter of a few weeks, and can be subjected to medium 

throughput drug screening, where at least a few dozen therapies can be tested for individual 

patients. These characteristics, coupled with the preliminary evidence from small-scale co-

clinical trials (Table 2), render these setups tangible for next-generation companion diagnostics 

at tumor-boards. However, evidence from prospective clinical trials, already available for 

several functional precision medicine frameworks for hematological malignancies, are still 

missing for solid tumor assays. 

 

3.7. Miniaturized, microfluidic assays for functional precision medicine 

While suspension-based and solid tumor models have been extensively characterized 

with protocols developed and optimized for medium to high throughput drug screens, it still 

takes time to grow organoids and to have results from drug sensivity screening in a clinically 

actionable time frame. This calls for faster methods also to assess functional features.  

With improved miniaturization technologies, microfluidic platforms (Figure 1) have 

been developed during the past decades, and have changed the paradigm for miniaturization of 

biological assays. In particular, droplet microfluidics supporting manipulation of miniature 

droplets such as merger, splitting, recombination, detection, incubation, sorting and other 

processes, can be combined to support workflows for developments towards diagnostics for 

individually tailored cancer therapy. Yet another approach may involve rapid miniaturized 

assays on cell suspensions directly from a solid tumor. This approach may maintain the 

epigenetic imprinting and “memory” of the three-dimensional context for some hours, allowing 
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functional screens to characterize cells; for example, by dosing drugs to individual or small 

groups of cells, and to bring cancer cells and immune cells from the tumor microenvironment 

together with or without therapeutic interventions [53-55]. Such emerging methods may deliver 

results from functional testing much faster and allow testing of drug combinations. 

 

3.8 Implantable drug reservoirs can identify drug responses in vivo 

 Lastly, efforts to test multiple therapies in the patient to which the therapy can be 

described, are being developed. In order to test drug sensitivity in vivo in candidate patients, 

implantable drug reservoirs (Figure 1) are inserted in to the patient’s tumor and can release 

drugs in a spatially and temporally controlled manner [56]. Two separate studies reported that 

up to 8 or 16 different drugs or drug combinations could be assessed simultaneously [57,58]. 

The local drug delivery may allow identification of optimal therapy prior to systemic exposure. 

In early models, a biopsy from the drug delivery site was needed to assess drug effects. To 

overcome this limitation, a more recent study demonstrated the development of a so-called 

“lab-in-a-tumor” implantable microdevice, which, in addition to the drug, delivers a fluorescent 

cell-death assay. This is then detected by an integrated fluorescence imaging probe, allowing 

for real-time drug response analysis [59].  

 While technology is now in place to model drug sensitivity in a variety of cancer types, 

a pressing challenge relates to handling of the large data-sets that are being produced, and how 

to optimally use the information to stratify patients for appropriate treatments. 

  

4. Artificial intelligence-guided patient stratification  

To develop next-generation patient stratification of high accuracy, the integration of both 

laboratory/clinical, genomic and functional data should jointly contribute towards new 

algorithms to identify multi-marker panels for prediction of treatment responses (Figure 2) 
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[60]. Such an approach is put to work in the ERA PerMed CLL-CLUE consortium1. The study 

aggregates available data-sets from CLL patients who have been treated with targeted therapies 

in clinical trials1, and for which the treatment outcomes are known [61,62]. The aim is to test 

predictions in prospective clinical trials on CLL. Similarly, the ERA PerMed project 

ONCOLOGICS2 benchmarks evolution-based machine learning algorithms for their predictive 

capacity for targeted drugs. The final algorithms are aimed at identifying responders and non-

responders to anti-cancer drugs for patients that have received therapy at molecular tumor 

boards at Institut Curie or at Charité Comprehensive Cancer Centre. Functional precision 

medicine models provide additional insights into mechanisms that can explain prediction 

successes and failures beyond what is captured in genomic assays, and can include also data 

collected upon drug perturbations to optimize the machine learning algorithms.  

Artificial intelligence-guided patient stratification is implemented in some prospective 

clinical trials, but is not yet the norm in clinical practice [63]. The PreVent-ACaLL trial 

(NCT03868722) employs the machine-learning model CLL-TIM to identify newly diagnosed 

CLL patients with high risk of severe infection and/or treatment within two years of diagnosis 

[64]. These patients are allocated to a combination treatment with acalabrutinib (BTK inhibitor) 

plus venetoclax [65], rather than watch-and-wait, which is the standard of care for these 

patients. The intention of the study is to reduce the risk of infection, which can lead to fatal 

outcomes in this patient group [66]. These models are developed based on patient 

characteristics collected before treatment initiation. For a more dynamic prediction of treatment 

outcome, an alternative is to take into consideration data collected over time. The Continuous 

Individualized Risk Index (CIRI) uses the same principle as “win probability” models in 

 
1 www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-

medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/tailoring-the-targeted-

treatment-of-chronic-lymphocytic-leukemia 
2 https://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-

medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/computational-modelling-

and-functional-validation-platform-for-personalised-colorectal-cancer-clinical-therapy-decision-support 

http://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/tailoring-the-targeted-treatment-of-chronic-lymphocytic-leukemia
http://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/tailoring-the-targeted-treatment-of-chronic-lymphocytic-leukemia
http://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/tailoring-the-targeted-treatment-of-chronic-lymphocytic-leukemia
https://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/computational-modelling-and-functional-validation-platform-for-personalised-colorectal-cancer-clinical-therapy-decision-support
https://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/computational-modelling-and-functional-validation-platform-for-personalised-colorectal-cancer-clinical-therapy-decision-support
https://www.era-learn.eu/network-information/networks/era-permed/multidisciplinary-research-projects-on-personalised-medicine-2013-pre-clinical-research-big-data-and-ict-implementation-and-user2019s-perspective/computational-modelling-and-functional-validation-platform-for-personalised-colorectal-cancer-clinical-therapy-decision-support
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other fields, i.e. sports, by integrating risk assessments throughout the disease course [67]. The 

model was generated for breast and hematologic cancers, and resulted in improved outcome 

predictions compared to existing prediction algorithms [67]. This is not surprising, given that 

current models are based on the “average” patient. 

Drug combinations are expected to improve cancer therapy responses [52], and is the 

focus of recent drug screening projects [34]. A challenge for machine learning algorithms that 

predict combination responses is the availability of training data required for such algorithms. 

In fact, the prediction of drug combinations encompassing three-way, four-way and higher 

order combinations cannot realistically be trained by data complexity similar to that being 

predicted, since the number of experiments increases exponentially with the number of single 

drugs available. For example, a drug panel of 150 drugs corresponds to over 10,000 pairwise 

combinations and over half a billion 5-way combinations, effectively prohibiting patient-

specific observations to be generated due to scarcity of available material, and due to enormous 

experimental setups. Rather, efforts will have to focus on prediction of higher-order 

combinations from marginal spaces, i.e. from baseline states or potentially from single drug 

responses [68-70]. Recent advances have gone from effectively finding and describing drug 

synergies in data mathematically to predict synergies (and evade toxicities) using random forest 

algorithms and Bayesian models, the latter also including uncertainty estimates [71,72]. In 

parallel, precision pharmacovigilance is developed to assess drug safety for the individual 

patient [73]. A combination of computer-assisted individualized pre-selection of drug 

combinations and testing in functional assays can be one way of advancing multi-drug 

combinations to patients.  

 

5. Concluding remarks and future perspective 



 

15 

Functional precision medicine has a proven value in clinical decision-making through 

multiple clinical trials, especially within hematological cancers, complementing genomic 

information. The technological developments now also provide solutions suited for solid 

tumors, as well as scalability with regard to number of drugs, manageable platforms and 

methodology for measurements. An increasing number of platforms and approaches are well 

suited to deliver complementary diagnostic approaches in addition to genomics and 

transcriptomics to guide treatment recommendation, but are still not applicable in routine 

diagnostics (see Outstanding questions).  

The diagnostic infrastructure must allow for dynamic implementation of technological 

refinements to provide solutions securing optimal conditions for all cell types, and time-frames 

must align with clinical needs. Clinical decision-making utilizing information from functional 

assays should in the future be part of modern molecular tumor boards. Implementing and 

integrating novel and comprehensive diagnostic tests as decision support in tumor boards will 

be demanding. Traditionally, implementation of predictive biomarkers requires evidence 

provided by prospective clinical trials. Now, as precision medicine trials need an increasing 

range of tests to identify and/or stratify patients into treatment groups, the performance and 

validation must be assessed in novel ways. This will ensure a trans-disciplinary structure, where 

novel diagnostics accompanied by tailored interpretation tools provide a link to systems that 

can continuously integrate new knowledge generated by incoming data that is associated to 

clinical outcome information. Implementing the emerging functional analyses as prospective 

stratification tools for different cancers will be an important first step in this direction.  

Before functional analyses can be fully utilized in a routine diagnostic setting, platform 

validation, compatibility with local infrastructure, standardization of measurements and 

validation of threshold for treatment recommendations must be performed. To test and validate 

the functional assay readouts, clinicians and researchers must conduct prospective clinical 
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trials, and compare the performance of functional precision medicine guided therapy choices 

to other decision support algorithms. For trials in which each patient has received a completely 

individualized therapy, and where no other patient has received the same therapy, trials can be 

designed to compare clinical benefit for algorithm A vs algorithm B.  In contrast to randomized 

two-arm trials, the trial design in precision medicine studies offer the opportunity to feed back 

information about response and outcome to treatment decision support platforms, which can 

improve the treatment match and response predictions. Recording observed therapy responses 

in the clinic for the involved patients, and continuous monitoring by centralized computer 

algorithms can allow ineffective therapy suggestions to be quickly dismissed, and effective 

therapies to be quickly brought forward. In addition, feed-back of clinical observations will 

allow rapid identification of detrimental side-effects.  

Drug toxicities from use on novel indications and in novel combinations can also be 

modelled by machine learning/AI. Machine learning approaches benefit significantly from 

large datasets. The generation of such datasets from clinical and translational studies comes 

with the responsibility to render the findings into improved patient management. A requirement 

for achieving this goal, is the application of interoperability measures such as the use of 

community-defined and adopted standards for phenotypic, genomic and drug response data, 

along with available infrastructure for FAIR (Findability, Accessibility, Interoperability, and 

Reuse) sharing, with consolidated ethical and legal frameworks, and with protocols for 

computations across datasets. The definition of data formats that can capture both perturbation 

data and baseline data in a standardized way will improve the use of such data as it becomes 

available to molecular tumor boards. However, the requirements for standardization and 

interoperability aspects are currently open challenges.  
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Glossary 

Artificial intelligence: The ability of a computer or machine to mimic the problem-solving 

and decision-making abilities otherwise typically requiring human intelligence. 

Continuous Individualized Risk Index (CIRI): A Bayesian framework to dynamically determine 

outcome probabilities for individual patients over time. 

Diagnostic test: A generic term for any approach used in clinical practice to identify the nature 

or severity of a condition or disease. 

Drug sensitivity testing: Exposure of cells to drugs followed by assessment of cell viability. 

Functional precision medicine: A strategy to inform personalized treatment decisions based 

on a cell-perturbation read-out such as drug sensitivity testing of the patient’s cancer cells. 

Machine learning: An application of artificial intelligence that allows computer algorithms to 

automatically improve by adapting to new data without human intervention 

Microsatellite instability: A characteristic of certain DNA repair defects, where short 

sequences of repeated bases (microsattelites) are different in cancer cells compared to healthy 

cells in the same individual. 

Organoid: A three-dimensional tissue culture generated from primary stem or cancer cells that 

is intended to mimic the properties of its organ of origin. 

Patient stratification: The distribution of patients into subgroups based on similar 

characteristics. 

Molecular tumor board: Multidisciplinary meeting to review diagnostics for referred 

patients, and recommend anti-cancer therapy based on advanced diagnostics. Board members 

typically include medical doctors, pathologists, molecular biologists, geneticists and other 

disciplines. Tumor boards are established at leading cancer centers worldwide. 

Xenograft: The transplant of an organ, tissue, or cells to a recipient of a different species 
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Text boxes 

Box 1: Functional precision medicine  

Functional precision medicine is a diagnostic discipline that takes into account cell and 

tissue responses to perturbations. This is in contrast to traditional pathology diagnostics, 

which focuses on static conditions of cells and tissues at specific timepoints and locations 

of the disease [1,74]. Perturbations represent controlled modulation of culture conditions, 

and can include drug exposure, immune stimulation, temperature control, gene 

expression modulation etc. Readouts span all measurements that can reliably be collected 

from cultures, and can include viability or other measured states, such as proteomics, 

transcriptomics, and metabolomics [1]. Cells under study can include single cell types, 

e.g. cancer cells, or specified multiple cell types, e.g. cancer-immune cell co-cultures, or 

unspecified multi-cell cultures such as microtissue collections derived directly from 

tumors or other tissues of interest [35]. 

 

Box 2: Genomic precision medicine cannot advise on therapy for all patients 

The Human Genome Project [75], which was declared completed in 2001, greatly accelerated 

both drug discovery targeting specific molecular aberrations in cancer, and the efforts to 

identify biomarkers that predict drug responses [76]. A number of single genetic-based 

biomarkers have since been identified and approved for clinical decision support. For example, 

BCR-ABL1 (breakpoint cluster region gene – Abelson proto-oncogene) fusion in chronic 

myelogenous leukemia (CML) is strongly linked to sensitivity to imatinib and its derivatives. 

For solid tumors, the BRAF (v-raf murine sarcoma viral oncogene homolog B1) V600E 

mutations in malignant melanoma and lung cancer, are prominent examples of biomarkers that 

can select patients for therapy with drugs inhibiting BRAF/MEK (mitogen-activated protein 

kinase kinase) signaling [77,78].  In general, overall therapy responses to a particular drug have 
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proven difficult to infer based on single genomic alterations. The basis for effective 

personalized treatment decisions is therefore shifting from single, ‘static’ genetic biomarkers 

to encompass a global assessment of the cancer omics data. Examples of more complex 

genetics-based biomarkers include genome-wide assessments of tumor mutation burden 

(TMB) and microsatellite instability (MSI).  

With decreasing costs and higher throughput, transcriptomics-based readouts have been 

tested for their aptitude, not only in reporting static traits of tumor cells and tissues, but for 

capturing the phenotypic properties of a tumor sample. Gene-expression profiling has revealed 

subtypes within tumor types that do not reflect histologically recognized entities. The readouts 

of multiple gene transcripts can therefore yield “signatures” or “profiles” that correlate with 

clinical behavior and/or treatment responses beyond what can be predicted from histology-

based diagnostics alone. For instance, several multi-transcript tests are now implemented in the 

diagnostics of breast cancer; as they provide prognostic information which can also be used for 

patient stratification. In the WINTHER trial [79], where transcriptomics were included in one 

arm as decision support for intervention, the percentage of patients that could be matched with 

a potentially effective therapy increased to about 35%, compared to 23% for the arm that solely 

used genome-informed stratification . While  DNA-based markers can assume that the detected 

mutations come from cancer cell DNA, and not from other cell types, this is not generally true 

in transcriptome-based analyses. Gene expression readout represents an average across the 

tumor and its microenvironment; that is across cell cycle phases and cell types. A key challenge 

in assessing the transcriptome of multi cell-type specimens, such as biopsies, is to deconvolute 

the signal into the contributing individual cell types so that activities in cancer cells can be 

distinguished from activities in other cell types, such as immune cells or fibroblasts [80].  
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Tables 

Table 1. Prospective studies in hematological cancers using functional assays to guide cancer therapy. 

Reference Cancer type Patients included in the study Functional approach Clinical response to treatment 

Kornauth et al, 2022 [12] Hematologic cancers 143 patients; 56 (39%) patients 

received treatment  

Image-based single-cell 

drug profiling 

30 patients (54%) achieved 

more than 1.3-fold enhanced 

progression-free survival 

compared with their previous 

line of therapy 

Malani et al, 2022 [11] AML 186 patients; 37 patients (20%) 

received treatment 

Drug sensitivity testing Clinically meaningful complete 

or partial responses in 17 of 29 

patients (59% objective 

response rate). 

Leonard et al, 2016 [7] Mediastinal germ cell 

tumor and AML 

1 relapsed/refractory patient Drug sensitivity testing Stable disease (AML), relapse 

of metastatic germ cell tumor 

after 5 months of therapy 

Skånland et al, 2022 [6] CLL 1 relapsed/refractory patient Drug sensitivity testing Partial response 

Yin et al, 2022 [20] CLL 1 relapsed/refractory patient Drug sensitivity testing Partial response 

AML, acute myeloid leukemia; CLL, chronic lymphocytic leukemia;  
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Table 2. Co-clinical trials in patients with solid tumors and matching functional testing with clinical outcome.  

Reference Cancer type Patients included in the study Functional approach Clinical response to treatment 

     

Ooft et al, 2019 [38] CRC 32 patients; 12 received FOLFIRI, 

10 received irinotecan, 10 

received FOLFOX 

Drug sensitivity testing For predicting patient responses 

to FOLFIRI, the test had 100% 

specificity, 83% sensitivity. The 

test was not effective for 

predicting responses for the 

other tested chemotherapy 

regimens.  

     

Wang et al, 2021 [81] CRC 30 patients in pilot; 71 patients in 

blinded study 

Drug sensitivity testing 63% sensitivity, 94% 

specificity 

Chalabi et al, 2020 [82] CRC 11 patients Drug sensitivity testing 50% sensitivity; 100% 

specificity 

Yao et al, 2020 [83] Locally advanced 

rectal cancer 

80 patients; all received 

chemoradiotherapy in a 

neoadjuvant setting, organoids 

were tested against 5-FU, 

irinotecan, radiation, or 

chemoradiation 

Drug- and radiotherapy 

sensitivity testing 

For chemoradiation 78% 

sensitivity and 92% specificity 
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Li et al, 2018 [84] Esophageal 

adenocarcinomas 

10 patients; patients received the 

ECX regimen (epirubicin, 

oxaliplastin, capecitabine), CF 

(cisplatin, 5-FU), or no 

chemotherapy 

Drug sensitivity testing For the organoid cultures that 

were considered insensitive to 

drugs prescribed to patients, the 

drug resistance matched the 

high tumor regression grades 

(TRG) found  

Sachs et al, 2018 [85] Breast cancer 12 patients with clinical follow-up 

data 

Drug sensitivity 

screening 

Tamoxifen was the only drug 

for which differential responses 

were recorded (1 sensitive, 1 

insensitive, rest undetermined), 

and the organoid observed drug 

sensitivity matched clinical 

observations 

Vlachogiannis et al, 2018 

[86] 

Gastrointestinal 

cancer 

11 patients with CRC; 4 patients 

with gastroesophageal cancer 

Drug sensitivity 

screening for a number 

of chemotherapies and 

targeted drugs, 

including paclitaxel, 

regorafenib, cetuximab, 

and investigational 

compounds 

For the therapies administered 

to organoids and to patients, the 

organoid assays demonstrated a 

predictive performance of 

100% sensitivity, 93% 

specificity, 88% positive 

predictive value and 100% 

negative predictive value, when 
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compared to clinical response 

data 

Driehus et al, 2019 [87] Head and neck 

squamous cell 

carcinoma 

7 patients for which radiotherapy 

testing was done and compared 

with clinical responses 

Drug- and radiotherapy 

sensitivity screening 

Correlation between relapses 

and therapy sensitivity reported; 

of four organoid least sensitive 

to therapy, three patients 

experienced a relapse, while for 

the three most sensitive 

organoids no patients 

experienced a relapse within the 

observed period 

de Witte et al, 2020 [88] Ovarian cancer 5 patients with drug sensitivity 

testing and clinical follow-up 

data.-  For two patients, two 

organoids were derived. 

Drug sensitivity testing 3 patients with organoids 

sensitive to therapy achieved 

stable disease. 2 patients with 

least sensitive organoids, had 

progressive disease 

Grossman et al, 2022 [89] Pancreatic cancer 11 patients with matched organoid 

and clinical outcome data 

Drug sensitivity testing Organoids from 4 patients were 

found to be insensitive to all 

tested drugs and patients from 

whom these were derived 

experienced progressive disease 
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upon therapy with the same 

drug cocktail. For the organoids 

from 7 patients that were 

sensitive to at least one drug in 

the tested drug combination, all 

7 patients experienced stable 

disease or better. 

Kong et al, 2018 [90] Locally advanced 

rectal cancer 

17 patients with matched organoid 

and clinical outcome data 

Functional 

immunotoxicity assay  

All six patients who were 

classified as complete 

responders were correctly 

classified based on tumor-

infiltrating lymphocyte scoring 

CRC, colorectal cancer. Where available, test sensitivity and specificity are reported for the organoid platform’s performance in predicting 

clinically observed patient responses. 
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Figure 1 
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Figure 2 
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Figure legends 

Figure 1. Ex vivo and in vivo models for functional precision medicine. 

a) Available models for functional precision medicine include two-dimensional models 

(upper row; cell lines and primary cells), three-dimensional models (middle row; 

organoids, microfluidics and microtissue), and in vivo models (lower row; xenograft and 

implantable microdevice). The models have different strengths and weaknesses related to 

throughput, cost, speed and incorporation of tumor microenvironment (right column). The 

estimated time required to perform and analyze the experiments is indicated for each 

model (wks, weeks; mnts, months). 

b) Strengths and limitations of genomic analysis and functional approaches for 

implementation of precision cancer medicine. 

 

Figure 2. Model of a future dynamic precision medicine pipeline which integrates 

laboratory/clinical, genomic and functional data. 

Different data-sets collected describing the patient’s disease, including laboratory/clinical 

data, genomic data, and functional data. (1). Available data are integrated in machine learning 

models to identify multi-marker panels for prediction of treatment responses (2). The findings 

are considered by a clinical decision support system and a molecular tumor board (3) to guide 

treatment decisions for the individual patient (4). The disease is monitored continuously, and 

new data are fed back to the machine learning model to adapt the therapy during the course of 

the disease for optimal treatment. 
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