
Software Development and Integration of a
Hyperspectral Imaging Payload for HYPSO-1

Sivert Bakken1, Evelyn Honoré-Livermore2, Roger Birkeland2, Milica Orlandić2, Elizabeth F. Prentice1,
Joseph L. Garrett1, Dennis D. Langer3, Cecilia Haskins4, and Tor A. Johansen1

Abstract— This paper presents the software architecture,
development, and integration of a Commercial Off-The-Shelf
(COTS) based hyperspectral imaging payload onboard the
HYPerspectral Smallsat for Ocean observation (HYPSO-1)
CubeSat. The chosen service-oriented software architecture
provides a modular design that is planned to aid future
development. The image processing onboard HYPSO-1 will be
updated in-flight. We discuss here the strengths and weaknesses
of our development procedures for software. The issues reported
during development were analyzed and categorized, and the
findings from these issues indicate the importance of early
testing, code reviews, and the continuous availability of target
hardware for successful software integration when relying on
a modular design. A perspective of the benefits of the software
architecture for a CubeSat subsystem is also given.

I. INTRODUCTION
A. HYPSO-1 Project Overview

The HYPSO-1 CubeSat, with the Flight Model (FM) given
in Fig. 1 and 2 is the first scientific satellite developed by
the NTNU SmallSat Lab and is currently scheduled to be
launched in December 2021. The HYPSO-1 mission deploys
a 6U CubeSat with a pushbroom hyperspectral imager as
primary payload [1], which captures wavelengths in the range
of 400 to 800 nm, with a bandpass of 3.33 nm and a swath
width of 70 km [2]. The hyperspectral images will be used to
monitor spatio-temporal processes, specifically using ocean
color.

The throughput of hyperspectral data is often limited
(due to its size) by the available communication links.
Thus, an On-board Processing Unit (OPU) with a Field-
Programmable Gate-Array (FPGA) that allows for a modular
architecture is used to process the hyperspectral image more
efficiently in terms of data size reduction, power consump-
tion, and operational time, when compared to just using a
Central Processing Unit (CPU). The goal of the hyperspectral
image processing pipeline is to:

• Reduce the data volume to be downloaded, both with
and without loss, while retaining important spatial-
spectral information,

*This work is supported by the Norwegian Research Council (grant no.
270959), the Centre of Autonomous Marine Operations and Systems (NTNU
AMOS, grant no.223254), the Norwegian Space Center, and the European
Space Agency (PRODEX - 4000132515). NO Grants 2014 – 2021, under
Project ELO-Hyp, contract no. 24/2020.

1 Norwegian University of Science and Technology (NTNU), Department
of Engineering Cybernetics

2 NTNU, Department of Electronic Systems
3 NTNU, Department of Marine Technology
4 NTNU, Department of Mechanical and Industrial Engineering
Corresponding Author: sivert.bakken@ntnu.no

• Deliver different data products depending on end-user
needs rapidly,

• Utilize collected data from other assets [1], [3].

The payload is developed in-house, and consists of an
optical telescope with a COTS camera unit, a COTS pro-
cessing unit, an electronics interface board, an electrical
harness, configurable software to control the payload and
image processing, as well as a mechanical support structure
acting as the mechanical interface to the satellite bus [2].

Next, we briefly describe the software development and
integration of the payload which contains the OPU with an
hyperspectral imager (HSI) and a Red-Green-Blue (RGB)
imager.

B. HYPSO-1 Project Organization

By the definition used in Berthoud et. al.[4], HYPSO-1 is
a university space project. Student continuity is often stated
as a major challenge for university-led CubeSat projects [4],
[5]. Within the HYPSO-1 project students from different
BSc. and MSc. programs provide contributions to the project
mainly as part of their thesis, curricular projects, and as
summer interns. The team also consists of Ph.D. candidates
and researchers, who partake in managing, developing, and
testing and provide continuity. There is a need for project
management support when developing CubeSats [4], which
includes crucial documentation to transfer knowledge and
extensive reviews, in addition to the development.

Fig. 1: Partially assembled CubeSat (NanoAvionics M6P
platform) FM.



Fig. 2: Fully assembled CubeSat (NanoAvionics M6P plat-
form) FM.

C. Scientific Software Development

Scientific software is used for the “analysis, design, test-
ing, and deployment of software applications for scientific
purposes [6, p. 1]”. Software applications are developed in
tandem with the research case study, algorithm develop-
ment, or experiment, although some scientists may lack the
necessary training in software engineering practices. This
can hinder the effectiveness of the effort spent [6], [7].
Heaton et al. [7] reviewed scientific software development
practices and highlighted that scientific software is often
large, complex, and long-lived and may outlast the researcher
— leading to problems with knowledge management caused
by turnover. These challenges may be mitigated using best
practices for software development, such as documentation
[8], refactoring [8], [9], issue tracking, version control [9],
peer code reviews, and design patterns.

Surveys from other university CubeSat projects recog-
nize that software development and integration is often a
challenging and time-consuming activity [4]. Reconciliation
of software development with system engineering practices
requires a conscious effort, and choosing and implementing
the correct system lifecycle model can be challenging [10].

D. CubeSat Software Architectures

Software architectures can generally be divided into: state-
machine types, centralized architectures, and distributed
architectures using messaging systems, as described in the
CubeSat flight software architecture review in [11].

State-machine type solutions offer a simplified implemen-
tation of the flight software when the functional require-
ments are well defined, but a change in requirements or
a discovery during development can affect the states and
transitions in unforeseen ways and it can be difficult to
retain modularity [11]. Centralized architectures are used
when there are hard real-time requirements [12], [13]. The
HYPSO-1 CubeSat is constrained by the Application Pro-
graming Interface (API) available for the COTS camera,
which requires an embedded Linux Operating System (OS)
[13]. This OS is not designed to have real-time processing
capability, and does not guarantee that certain processes

are completed within a given deadline or at a specific
time. Distributed architectures such as a Service-Oriented
Architecture (SOA) are more flexible solutions to support an
incremental development or changes in requirements, when
the services are independent [11]. For SOAs, the request-
response pattern is common when developing CubeSat Space
Protocol (CSP) applications[13], and adds more flexibility
and demands less coupling between modules compared with
centralized architectures [11], [13]. The requirements for the
HYPSO-1 software system are detailed in Tab. I. The system
needs to be modular and extensible to be able to fully utilize
the available contributors, and this led to the decision to use
a SOA.

E. Contribution

The remainder of this paper presents the HYPSO-1 mis-
sion perspective which determined how the software archi-
tecture was designed and developed to accommodate the
requirements. The corresponding management model was
adapted to support the development and integration-related
challenges. We tailored digital engineering practices to suit
the university context [14]. In addition, we chose an archi-
tecture to enable development of the software as modules
of services and features, and focused on early integration of
these. This software development approach demonstrates one
way of developing a CubeSat Payload with similar resources
and challenges as found in the HYPSO-1 mission.

II. SOFTWARE DEVELOPMENT PROCESS FOR
HYPSO-1

The mission/software development was distributed be-
tween the satellite bus manufacturer and the NTNU team.
Because of this, the satellite bus manufacturer provided a
remote FlatSat [4]. A FlatSat is used to mimic the hardware
and software of the actual CubeSat. This remote FlatSat
was used to integrate with on their premises, such that
the integration and testing of the payload with the other
subsystems could continue during the lockdown imposed
by the covid-19 pandemic [14]. Partly as a result of the
pandemic, remote software development and testing were
facilitated for target hardware of the payload while it was
connected with other subsystems of the 6U satellite bus
through the remotely connected FlatSat. Due to the already
planned infrastructure for remote integration, this eased the
consequences of the pandemic for the software development,
when compared to the hardware development which was
more affected [14].

Specifically, multiple replicas of the OPU were connected
to a FlatSat with the same electrical interfaces to be used
in the Final FM of the CubeSat. This enabled development
and rapid testing on target hardware in an environment
that provided continuous integration. Testing is repeatedly
emphasized as a high priority activity when developing
CubeSats [4], as it helps reduce the time from initial code
development to deployment and testing. A more detailed
description of the testing setup is not given here.



TABLE I: Requirements for HYPSO-1 CubeSat software system based on [11].

Feature Need
Extensibility The HYPSO software system shall allow for the addition of new functionality through in-orbit upgrades.
Modularity The HYPSO software system shall allow for separation of functionality to enable concurrent development amongst the team

members.
Reusability The HYPSO software system and modules shall be reused on different assets (such as unmanned aerial vehicles (UAVs)

and multiple spacecraft).
Testability The HYPSO software system shall enable compilation for different CPU architectures
Reliability I The HYPSO flight model installation shall have a “golden image” with basic functionality that is redundantly distributed on

the payload hardware, for recovery from software failures.
Reliability II The system shall have watchdogs supported by the spacecraft bus in case of Single Event Effects (SEEs) or other temporary

malfunctions.
Reliability III The boot loader shall be protected against accidental modification.

The details on how digital engineering tools were used
during software development are given in [14]. In short,
the adapted agile practices have relied on a tailored Scrum
approach. This was enabled using digital engineering tools
provided by GitHubTM. The sharing of experiences and
knowledge management, coupled with a simple and well-
defined workflow enabled improved verification, validation,
and integration activities. However, some of the challenges
typical for university-led satellite projects, specifically re-
source management with the presence of multiple competing
objectives, were still prevalent, but less so. By using the
digital engineering tools the different activities, both devel-
opment and academic work, were given a common source,
helping to compare and prioritize among them.

A. Software Lifecycle

The HYPSO mission is intended to span several years,
during which multiple satellites will be deployed in a
constellation. As a result the software development must
continue over that period, to enable both bug-fixing and
added functionality through updates in-flight. The choice
of software architecture needs to enable both. The benefits
of developing reusable software are significant. The basic
software lifecycle from ISO 24748 [15] and the different
phases for our project are shown in Fig. 3.

CONCEPT

DEVELOPMENT

RETIREMENT

UTILIZATION AND
SUPPORT

DATA USE EXPERIENCE

HYPSO-1

HYPSO-2

UAVs

FUTURE
SATELLITES

Lessons learned from HYPSO-1 to
improve development for other

assets. 
New development tested on

operational HYPSO-1

SCIENTIST/
END-USER

Fig. 3: Software lifecycle based on ISO 24748 with intended
use shown [15].

a) Software Concept Phase: The operators and scien-
tists provide the functionality requirements of the software
system. For example, scientists expressed needs for specific
validated data products that were allocated to functions such

as camera parameter configurability and choice of specific
obip-services [1]. The operators of the satellite were
not involved early in the concept phase, but joined the
project after the software development had begun. Their
needs resulted in interface and functional changes, which
were tested and refined as a part of the workflow described
in [14]. The obip-services are intended to be updated
during the mission.

b) Software Development Phase: Capstone projects
were derived from the requirements found in the concept
phase to support assignments to the development team [14].
These capstone projects were further divided into tasks for
the Scrum sprints used to guide development. Development
included implementing new features as their need became
apparent, bug-fixing as errors were discovered, and refactor-
ing when appropriate.

Through bi-weekly sprints [14], the developers needed
to resolve that each identified issue or task was estimated,
and goals for the following sprint were set. At the end of
each sprint the progress was reviewed and a new sprint was
planned for the next period.

c) Software Utilization and Support Phase: Not all
incremental software improvements result in a set of services
that will be used in-flight. Nevertheless, there is an under-
lying goal of doing rudimentary testing of each proposed
code contribution so that the most recent version of the
payload software is working. More extensive testing, with all
available subsystems, is performed before making a flight-
viable release. In this process we are utilizing semantic
versioning [16], namely a standardized method for docu-
menting changes between versions. This provides a high-
level description of the changes that can be more easily
communicated to other team members and software users.

d) Software Retirement Phase: It is foreseen that some
modules will be reused in other systems, and the knowl-
edge management in GitHubTM can support this. With the
high personnel turnover often found in CubeSat projects
it is important to have good knowledge transfer to ensure
progress [4], such that modules can be re-used and the same
functionality is not developed multiple times. To facilitate
this, the future systems are planned to utilize the same or
similar COTS components, while only making incremental
improvements.



B. Payload Software Architecture

As defined earlier, HYPSO-1 employs a SOA. This allows
for services to be provided by application components to
other components (both within the same subsystem, and with
other subsystems) via network communication. A service is
here defined as a set of related functionality that can be
requested from the user [17].

To interface with the chosen COTS camera, the supplier’s
official closed source API is used, which constrains the
selection of an OS to be an Embedded Linux system.
However, this OS is a well-established and widely used OS,
and does not come with the unknown bugs of a custom
build OS, which can be common for CubeSats. The OS
image of the payload is therefore built using the open-source
PetaLinux build system from Xilinx to deploy an Embedded
Linux system [12]. The chosen Zynq 7030 System-on-Chip
(SoC) with the FPGA used for the on-board data handling
is supported by PetaLinux [13]. The build system was
customized to include the payload application, and necessary
drivers, as applications within the OS image [12]. Wtih a
backup of the OS image

The software is here defined as executable applications
started on boot. These applications are the service providers
of the payload, as shown in the simplified diagram of Fig. 4,
and they are planned to be updated in-flight. The File
Transfer (FT) service is made to interface with the satellite
provider’s API and Interface Control Document (ICD), and
is compatible with both the payload and the rest of the
satellite bus subsystems. The HSI and RGB services send
commands to the respective cameras. The CSP and OS
communicates with the other processes and provide Linux
commands respectively. The Telemetry service logs the state
parameters of the payload over time.

By separating the functionality as a stand-alone executable
we can restart the subsystem into a known state at each power
on. There is no persistence in the OS image, so it will expe-
rience a fresh start at each boot. In addition, the executable
service provider can be hot-swapped during execution. This
means that we can update the software by simply uploading a
new file without altering the booting sequence. This enables
us to have multiple versions of the service provider available
during operations. This addresses the first requirement in
Tab. I about extensibility, an uncommon feature of traditional
spacecraft systems.

Firmware is defined as the system image, or
opu-system, which consists of the kernel, device
tree, root file system, and the FPGA programmable logic
bitstream [12]. An updatable primary image is stored on
an SD-card, and a backup is stored in embedded memory.
This backup shall not be changed after FM assembly.
The difference between the firmware and software update
process is primarily due to the amount of data that needs to
be transmitted for an update, and the level of risk associated
with performing their updates. Backward error recovery
for firmware updates is done by restoring the image from
embedded memory, if the primary image fails to load after

attempting to boot a set number of times.
The root file system is always loaded from the boot image.

This ensures that the system enters a known state after boot.
Payload data and different versions of software applications
are stored on an SD-card, and can be taken into use at run-
time. The planned updates will add new versions of the
service providers [1] with new algorithms and bug fixes.

The opu-services application/executable is the min-
imum viable product. This application captures, com-
presses [18] and transfers hyperspectral and RGB images,
communicates with other subsystems, provides telemetry
information and provides remote shell access to the OPU. A
version of opu-system and opu-services that passed
all our tests were integrated in the payload FM and shipped
to the satellite bus provider for integration with the rest of
the satellite bus during the early summer of 2021. Software
intended to expand the capabilities of the payload will be
added during the mission lifespan.

A planned future application is the On-board Image Pro-
cessing (OBIP), which will process and derive high-level
low-latency data products from the captured data [1], [3],
such as results from classification and target detection. The
application is marked in red to indicate that it is a part of
a future extension of the opu-system in Fig. 4. With this
proposed SOA, we expect to be able to update only the
software containing the services available from the payload
with low risk to the mission, when compared to updating
the entire system image. With this modular and extensible
design code contributors can add to the system in the form
of a single application or by expanding the services available
from an existing application on the platform. Updating the
opu-services application entails risks that are necessary
to meet changing processing requirements.

The application repository (hypso-sw), in addition to de-
ploying the payload executable known as opu-services,
also builds the hypso-cli. hypso-cli is the Command
Line Interface (CLI) used to send commands via CSP packets
that will be propagated from the mission operator to the

M6P Satellite Bus
CSP via CAN

Payload

opu-system
opu-services

Telemetry
Service

OS
Service

File Transfer
Service

CSP
Service

RGB
Service

HSI
Service

ueye
Camera
Drivers

Payload
Controller

Electronic
Power System

S-band
Radio

FPGA
Config FPGA

RGB
Camera

HSI
Camera

HYPSO-1 Simplified Payload Space Segment

...

Payload Hardware

External Driver

Service Provider

Service Thread

Other Subsystem

Bus

OBIP
Services

S19

F20

S19 S19

S19

S20

S20
S20

Fig. 4: Simplified overview of the HYPSO-1 payload with
dashed boxes as software components and solid boxes as
hardware components. The season and year for integration
of the module are given as blue text.



satellite bus, and subsequently to the payload subsystem [13],
as indicated by Fig. 4. CSP is a lightweight network protocol,
resembling IP, that can be used as a network layer between
both physical subsystems and between different software ser-
vices internal to one subsystem. CSP supports several hard-
ware layers, where HYPSO-1 relies on Controller Area Net-
work (CAN) and Universal Synchronous and Asynchronous
Receiver-Transmitter (USART). The opu-system starts
the opu-services in the version packaged into the image
on boot [12]. The system supports having multiple versions
of opu-services in non-volatile memory (SD-card) and
can change between them at runtime. New versions, with bug
fixes, can then be added without compromising old ones.

III. SOFTWARE ISSUE ANALYSIS

We aim to better understand what kind of problems
occurred in the development and integration process of the
satellite and how we solved a subset of them. To do so, we
encouraged the team to document discovered bugs, desired
features, and other proposed changes as GitHubTM “issues”.
Then we surveyed all open and closed issues labeled as bug
that resided in the repositories and separated these into four
categories based on how they were discovered:

• When interfacing between subsystems (Sub.),
• When testing the internal functions of a module or

interfacing between services for the payload (Mod.),
• When considering scientific data handling (Sci.),
• or miscellaneous (Misc.).
The categorization was done in two rounds; first inde-

pendently by three of the authors, and then as a group
with a clarification of interpretations of the categories. The
bugs related to FT, use of external drivers with their un-
derlying errors, and general subsystem communication from
the perspective of the payload were classified as Sub. bugs.
Issues related to the functional behavior of modules and their
internal communication were classified as Mod. bugs. Issues
related to data handling were classified as Sci. bugs. The
issues that did not fit any of these categories, e.g., virtual
build environment, were classified as Misc. bugs.

TABLE II: Categorized issues labeled as bugs.

Repository # of issues % Closed Sub. Mod. Sci. Misc.
hypso-sw 78 76.92 27 39 2 10
opu-system 22 100.00% 2 15 0 5

The findings from over the course of 2 years are given
in Tab. II, and show that most of the issues reside in the
hypso-sw repository. This is also the repository that has
had the most contributors. Here, the issues are found mainly
in Sub. and Mod. bugs, with the other categories being
less prominent. For the Mod. bugs detected, the FT service
is a frequent source of discovered bugs. This FT service
was developed at an early stage of the project, as seen in
Fig. 4, and has been invoked frequently when testing the
functionality of other services as well.

The HSI functionality was developed as a standalone
subroutine before being integrated as a service within

opu-services. If the focus had been on earlier integration
of the HSI service, there would probably have been fewer
challenges to resolve during integration. The CSP and OS
services rely on third-party implementations with larger
communities, and fewer or no bugs are related to these. The
RGB service is smaller/simpler and has been invoked less
during testing and has fewer bugs related to it. The telemetry
service is a late addition to opu-services, and it is not
invoked by other services, and few bugs are related to this
service.

Automated tests helped discover many issues. However,
most of the issues reported were not related to the code under
review directly. That is, the exploratory nature of manual
testing made it possible to discover issues beyond the scope
of what was initially supposed to be tested.

Other issues in hypso-sw are related to feature requests
and other enhancements.

IV. REFACTORING AND FUTURE MISSIONS

In software development, refactoring is defined as “a
change made to the internal structure of the software to
make it easier to understand and cheaper to modify without
changing its observable behavior.” [19, p. 565] This is
an enhancement activity that has been performed to make
the code base more maintainable and accessible for future
contributors. As an example, the HSI service has been
refactored multiple times to better divide its functional parts
into smaller, more maintainable functions. This has made it
easier to understand without changing its behavior. By this
refactoring, the performance of some routines was improved,
thereby providing performance gains for the arguably most
important service of the payload, and thus delivering a more
capable mission.

A second satellite is planned, namely HYPSO-2 [20].
This satellite is intended to feature an additional secondary
payload, a Software Defined Radio (SDR). While this pay-
load also is based upon a similar hardware platform as the
OPU, it will have its separate system image and application
image. Parts of the codebase have been refactored to better
support the hypso-sw for multiple payloads. This relates
to the application services that integrate the payload with
the bus, such as shell, CSP and FT services in addition to
the telemetry services. The SOA and a common OS running
on both payloads made this possible. Successfully supporting
this development within the existing hypso-sw repository is a
demonstration of the extensibility, modularity, and reusability
of the software as specified in Tab. I.

The chosen SOA provides a high-level abstraction that
enables further development of the service modules of
hypso-sw and development of new services for future
satellites. The first satellites will also benefit from future
development as they can be updated. Modularization, refac-
toring, and generalization have been the key principles used
to meet the driving needs that are defined in Tab. I [20].
Through the refactoring process, several common factors
for future payload were identified to further ease future
development.



V. DISCUSSION AND CONCLUSION

The software development process for the HYPSO-1
project provided insight into how such systems could better
be developed and integrated in the future.

Relevant literature emphasizes the importance of testing
[4]. Experiences from developing the HYPSO-1 software
made it clear that testing and integration will help with dis-
covering errors, as more testing of a given service uncovers
more bugs. It can be challenging to find the human resources
to test extensively, and this activity can be challenging to
motivate in a university setting [4], [14]. Integration with
other modules or subsystems is also prone to introduce new
insight. The analysis of issues registered for the HYPSO-
1 software given in Sec. III, with a focus on those labeled
as bugs, also substantiates frontloading of testing, and early
integration, as recommended by [4].

The choice of software architecture made it possible to
develop functionality as independent components or services.
This helped to generate several contributions from multiple
contributors with high turnover, without adversely affecting
the functionality or development cycle.

The separation of platform and application, Embedded
Linux OS and opu-services respectively, was done to
make it possible to perform in-orbit upgrades with lowered
risk to the mission. Upgrades of the system and software
have yet to be demonstrated in-orbit. However, this upgrade
functionality has been tested extensively, e.g. as a part of
software development itself. That is, new software contribu-
tions were regularly developed on the target hardware, and
the upgrade functionality was used to deploy and test them.

The development and integration of future services for
new payloads have demonstrated the perceived benefits of
the chosen software architecture [20]. The SOA enables the
reuse of code for future development.

These experiences will aid in the development of future
satellites that are planned by the NTNU SmallSat Lab, and
can be scaled to other similar systems as well.

REFERENCES

[1] M. E. Grøtte, R. Birkeland, E. Honoré-Livermore,
S. Bakken, J. L. Garrett, E. F. Prentice, F. Sigernes,
M. Orlandić, J. T. Gravdahl, and T. A. Johansen,
“Ocean Color Hyperspectral Remote Sensing With
High Resolution and Low Latency–The HYPSO-1
CubeSat Mission,” IEEE Transactions on Geoscience
and Remote Sensing, pp. 1–19, 2021. DOI: 10.1109/
TGRS.2021.3080175.

[2] E. F. Prentice, M. E. Grøtte, F. Sigernes, and T. A.
Johansen, “Design of a hyperspectral imager using
COTS optics for small satellite applications,” in Inter-
national Conference on Space Optics — ICSO 2020,
B. Cugny, Z. Sodnik, and N. Karafolas, Eds., Interna-
tional Society for Optics and Photonics, vol. 11852,
SPIE, 2021, pp. 2172–2189. DOI: 10.1117/12.
2599937.

[3] J. L. Garrett, S. Bakken, E. F. Prentice, D. Langer,
F. S. Leira, E. Honoré-Livermore, R. Birkeland, M. E.
Grøtte, T. A. Johansen, and M. Orlandić, “Hyperspec-
tral Image Processing Pipelines on Multiple Platforms
for Coordinated Oceanographic Observation,” 11th
Workshop on Hyperspectral Image and Signal Pro-
cessing: Evolution in Remote Sensing (WHISPERS),
2021.

[4] L. Berthoud, M. Swartwout, J. Cutler, D. Klumpar,
J. A. Larsen, and J. D. Nielsen, “University cube-
sat project management for success,” Proceedings of
the AIAA/USU Conference on Small Satellites, 2019.
DOI: https://digitalcommons.usu.edu/
smallsat/2019/all2019/63/.

[5] J. Grande, R. Birkeland, A. Gjersvik, and C. Staus-
land, “Norwegian student satellite program - lessons
learned,” in Proceedings of The 68th International
Astronautical Congress, 2017.

[6] E.-M. Arvanitou, A. Ampatzoglou, A. Chatzigeorgiou,
and J. C. Carver, “Software engineering practices
for scientific software development: A systematic
mapping study,” Journal of Systems and Software,
vol. 172, p. 110 848, 2020. DOI: 10.1016/j.jss.
2020.110848.

[7] D. Heaton and J. C. Carver, “Claims about the use
of software engineering practices in science: A sys-
tematic literature review,” Information and Software
Technology, vol. 67, pp. 207–219, 2015, ISSN: 0950-
5849. DOI: 10.1016/j.infsof.2015.07.011.

[8] Y. Li, “Reengineering a scientific software and lessons
learned,” in Proceedings of the 4th International Work-
shop on Software Engineering for Computational Sci-
ence and Engineering, Waikiki, Honolulu, HI, USA:
Association for Computing Machinery, 2011, pp. 41–
45. DOI: 10.1145/1985782.1985789.

[9] K. S. Ackroyd, S. H. Kinder, G. R. Mant, M. C.
Miller, C. A. Ramsdale, and P. C. Stephenson, “Sci-
entific software development at a research facility,”

https://doi.org/10.1109/TGRS.2021.3080175
https://doi.org/10.1109/TGRS.2021.3080175
https://doi.org/10.1117/12.2599937
https://doi.org/10.1117/12.2599937
https://doi.org/https://digitalcommons.usu.edu/smallsat/2019/all2019/63/
https://doi.org/https://digitalcommons.usu.edu/smallsat/2019/all2019/63/
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1016/j.jss.2020.110848
https://doi.org/10.1016/j.infsof.2015.07.011
https://doi.org/10.1145/1985782.1985789


IEEE Software, vol. 25, no. 4, pp. 44–51, 2008. DOI:
10.1109/MS.2008.93.

[10] M. W. Maier, “System and software architecture
reconciliation,” Systems Engineering, vol. 9, no. 2,
pp. 146–159, 2006.

[11] C. E. Gonzalez, C. J. Rojas, A. Bergel, and M. A.
Diaz, “An architecture-tracking approach to evaluate
a modular and extensible flight software for cubesat
nanosatellites,” IEEE Access, vol. 7, pp. 126 409–
126 429, 2019. DOI: 10.1109/ACCESS.2019.
2927931.

[12] J. A. Gjersund, “A reconfigurable fault-tolerant on-
board processing system for the hypso cubesat,” M.S.
thesis, NTNU, 2020.

[13] M. Hov, “Design and implementation of hardware and
software interfaces for a hyperspectral payload in a
small,” M.S. thesis, NTNU, 2019.

[14] E. Honoré-Livermore, R. Birkeland, S. Bakken, J. L.
Garrett, and C. Haskins, “Digital Engineering Man-
agement in an Academic CubeSat Project,” Special
Issue on Systems Engineering Challenges in Journal
of Aerospace Information Systems, 2021.

[15] International Organization for Standardization,
ISO/IEC/IEEE 24748-1:2018(E) Systems and
Software engineering life cycle management, 2018.

[16] Semantic versioning 2.0.0 — semantic versioning,
https : / / semver . org/, (Accessed on
07/29/2021).

[17] M. Papazoglou, “Service-oriented computing: Con-
cepts, characteristics and directions,” in Proceedings
of the Fourth International Conference on Web Infor-
mation Systems Engineering, WISE2003, 2003, pp. 3–
12. DOI: 10.1109/WISE.2003.1254461.

[18] M. Orlandić, J. Fjeldtvedt, and T. A. Johansen, “A
Parallel FPGA Implementation of the CCSDS-123
Compression Algorithm,” Remote Sensing, vol. 11,
no. 6, 2019, ISSN: 2072-4292. DOI: 10 . 3390 /
rs11060673.

[19] S. McConnell, Code complete. Pearson Education,
2004.

[20] T. O. Moxnes, “A common software framework for a
cubesat with multiple payloads,” M.S. thesis, NTNU,
2021.

ACKNOWLEDGMENT

The authors would like to thank all the MSc. students
contributing to opu-system and hypso-sw, especially M.
Danielsen, M. Hov, T. O. Moxnes, and J. A. Gjersund.
We thank the numerous reviewers and are grateful for the
participation of NanoAvionics and their continuous feedback
throughout the project.

https://doi.org/10.1109/MS.2008.93
https://doi.org/10.1109/ACCESS.2019.2927931
https://doi.org/10.1109/ACCESS.2019.2927931
https://semver.org/
https://doi.org/10.1109/WISE.2003.1254461
https://doi.org/10.3390/rs11060673
https://doi.org/10.3390/rs11060673

	INTRODUCTION
	HYPSO-1 Project Overview
	HYPSO-1 Project Organization
	Scientific Software Development
	CubeSat Software Architectures
	Contribution

	SOFTWARE DEVELOPMENT PROCESS FOR HYPSO-1
	Software Lifecycle
	Payload Software Architecture

	SOFTWARE ISSUE ANALYSIS
	REFACTORING AND FUTURE MISSIONS
	DISCUSSION AND CONCLUSION

