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Abstract— Blade icing detection plays an important role
in wind turbine protection and maintenance. Employing well
trained deep learning model is a promising method for blade
ice detection but needs effective neural networks for sensors
data analysis. In this paper, we propose a GRU-gated Convolu-
tional Neural Network (GCNN) to better fuse the information
between sensors and temporal information for icing detection.
Specifically, with the powerful feature extraction capability,
Convolutional Neural Network (CNN) can effectively extract
the correlation information of multiple sensors data. Then GRU
fuses the temporal information of the feature extracted by CNN
to perform the gate of the CNN layer to control the information
passed on for icing detection. The proposed method is evaluated
on monitoring data generated from 25 wind turbines by two
wind farms. The experimental results verify the feasibility and
effectiveness of the proposed GCNN.

I. INTRODUCTION

Wind turbine blades are prone to accumulate ice in the
environment with low temperatures and high humidity. The
icing on the blades will not only affect the power generation
performance of the wind turbine, but also cause damage to
the wind turbine itself, and may even bring safety problems
near the power plant. Therefore, measures for wind turbine
blade icing are of great significance.

Nowadays, anti-icing [1] methods and deicing [2] methods
are used to deal with blade icing problem. The anti-icing
technology and deicing technology are generally combined
to mitigate blade icing problem due to the poor anti-icing
ability of passive anti-icing technology in extreme weather.
However, prompt initiation of the deicing procedure relies
on timely and accurate icing detection. Conventional icing
detection methods estimate ice acceleration according to
physical properties [3] of ice or the changes of machine
behavior [4]. But these methods are limited by high costs
or are insensitive to small amounts of ice [5].

Data-driven methods based on wind turbine monitoring
data, especially deep learning methods, have recently at-
tracted lots of attention for achieving high accuracy [6].
In addition, end-to-end models can be trained by suitable
datasets and then implemented on real-time sensors data in
a real-time way [7]. As one of the most popular neural
network for deep learning, Convolutional Neural Networks
(CNN) are widely used to process images [8], language [9],
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and time-series data due to their powerful feature extraction
capability. CNN is also used for wind turbine blade icing
detection [10]. Sensors data collected from wind turbines
are multivariate time series data. CNN can effectively fuse
the correlation between time series and extract more detailed
local abstract features. Nevertheless, CNN cannot fuse the
long-term temporal information of sensors data which is
critical for time series data analysis.

Recurrent neural network (RNN) has received an exten-
sive concern for processing sequence data well. The most
commonly used RNN variants are long short-term memory
(LSTM) [11] cell and gated recurrent unit (GRU) [12],
which are investigated to better overcome vanishing gradients
problem by introducing a gate mechanism. Their success in
analyzing sequence data is often linked to their capability to
capture long-term dependencies. Thus, these RNN variants
can be leveraged to capture the long-term temporal informa-
tion of time series data. Compared with LSTM, GRU does
not maintain a cell state and has lesser gates, meaning that
GRU has fewer parameters and faster training speed.

The models that combine CNN and RNN can analyze
multivariate time series data from feature and temporal
aspects, and the inputs of CNN and RNN layers are usu-
ally the outputs of each other in addition to the original
input data. While this can take both of the detailed local
abstractive features and long-term temporal dependency into
consideration, the effect of fusing these information are not
considered and investigated.

To effectively explore and leverage the deep representa-
tions and temporal information of the sensors data, GRU-
gated Convolutional Neural Network (GCNN) is proposed
for wind turbine blade icing detection, in which a gating
mechanism is employed to control the deep information ex-
tracted by CNN passed on according to the temporal informa-
tion of sensors data. Additionally, to verify the effectiveness
of the proposed model, a complete framework for wind
turbine blade icing detection is investigated including data
preprocessing, GCNN module training and real-time icing
detection. The contribution of this work can be summarized
as follows:

1) We propose a GCNN for wind turbine blade icing de-
tection, which can effectively extract the deep features
and time information of multi-sensor data and can be
fused through a gating mechanism.

2) Based on the proposed GCNN, a wind turbine blade
icing detection framework is proposed and evaluated
on sensors data generated from 25 wind turbines by
two wind farms.



The rest of the paper is structured as follows. The overview
of the literature on wind turbine blade icing detection is
illustrated in Section II. Section III describes the proposed
model GCNN. Section IV evaluates the proposed model
through comprehensive experiments. Section V summarizes
the whole paper.

II. RELATED WORK

Data-driven methods for wind turbine blade icing detection
mainly include shallow machine learning methods and deep
learning methods. Shallow machine learning approaches such
as k-Nearest Neighbors [13], Support vector machine [14]
were employed for wind turbine icing failure detection. In
addition, generalized linear models, random forests, and arti-
ficial neural networks are used in [15] for wind turbine con-
dition monitoring. Nevertheless, the deep learning method
has attracted much more attention as it can automatically
learn high-level representations of sensors data and achieve
superior performance. Cheng et al. proposed a novel CNN
model for wind turbine icing detection, with a novel temporal
attention module helping to determine the importance of
sensors and timesteps [5]. And they further investigated
a semi-supervised learning based version for blade icing
detection [16]. Yuan et al. introduced a wavelet-based CNN
model for blade icing detection, which can obtain better
performance than conventional machine learning approaches
[10]. Tian et al. combined the discrete wavelet decomposition
with a multilevel convolutional recurrent neural network for
blade icing detection [17]. However, the further fusion of
the high-level representations and the temporal information
of sensors data are not considered in these methods, which
is critical for time series data analyzing.

III. GRU-GATED CONVOLUTIONAL NEURAL NETWORK
FOR ICING DETECTION

A. Overview

The proposed framework consists of three components:
data preprocessing, the GCNN model, and real-time icing
detection, as shown in Fig. 1. The data preprocessing is
first conducted to obtain clean data, which is then processed
to be suitable for model analysis. Second, the processed
sensor data sent to the GCNN is first processed by the CNN
module to obtain high-level abstractive features. Then GRU
is added to obtain the temporal information of the extracted
features. To effectively fuse the deep representations with the
temporal information of the sensor data, a gating mechanism
is introduced to control the discriminative deep features
propagate. Further, the fused information is utilized for icing
detection. Finally, the optimal GCNN models trained offline
are employed to calculate the icing probability in real-time
sensor data for icing estimation.

B. Data preprocessing

1) Missing value processing: Raw data collected from
sensors in wind turbines are inevitably subject to missing
due to various factors such as unexpected system error or
human error. General solutions for missing value include

data imputation and data substitution. However, unlike the
intuitively interpretable images and natural language data,
time series data cannot visually check the completion effect
or the error caused after completion treatment, so the missing
values are dropped.

2) Data split and labeling: In order to meet the input
requirements of the proposed model, the discrete sensor
data need to be split into fixed time steps. We leverage
sliding window sampling to split the sensor data. The sliding
window sampling method is generally used for time series
data oversampling of the minority class because some data
points may still appear in the later data fragments after
sliding window sampling. Although duplicate data points
exist in each segment, the characteristics of segments are
unique because they are composed of all time points in each
fragment. So the sliding window sampling method can be
used for splitting all the icing and normal data.

3) Data normalization: Data normalization is essential for
data preprocessing. The normalization of data is to scale the
data into a specific interval to remove the unit limitation
of the data and convert it into dimensionless pure value,
which can help the simultaneous analysis of indicators with
different units.

C. GRU-gated convolutional neural network

The proposed GCNN consists of three parts: CNN, GRU
and a gating mechanism. The detailed introductions of each
module are as follows.

1) CNN module: Sensor data of wind turbine is prone to
have diverse and complex characteristics as wind turbines
generally operate in fickle circumstances. Thus, CNN is
leveraged for its competitive feature extract capability to
capture the discriminative features of sensor data. In GCNN,
there have three basic CNN blocks comprised of a convolu-
tional layer, a batch normalization (BN) layer, and a ReLU
layer. BN is employed to accelerate the training process and
improve the model generalization. The ReLU layer is added
to mitigate model overfitting. In our model, we represent
the input of CNN as X , X ∈ Rt×c, where t represents the
timestamp of the input time series fragment, and c denotes
the channel of the data. The basic CNN block is defined as:

Xi = ReLU(BN(W ∗Xi−1 + b)), i = 1, 2, 3. (1)

where i is the layer number of CNN, and Xi represents the
feature map output by i − th CNN layer. ’∗’ represent the
convolutional operation. The parameters learned by the layer
are defined as W and b. As shown in Fig. 1, there are three
CNN blocks in the GCNN. We define the CNN blocks with
the filter sizes of 128, 256, 128, and the kernel sizes of 7,
5, 3, respectively.

2) GRU module: GRU was proposed to capture long-time
dependencies of series data. In this work, GRU is leveraged
to catch the temporal correlations of the data points in time
series data generated by wind turbine sensors. The input of
GRU is the deep representation of the sensor data extracted
by CNN instead of the raw input data of the proposed model.
Compared to LSTM, GRU has fewer parameters because it
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Fig. 1. Overall structure of the proposed method.

only consists of two gates: update date and reset gate, and
does not contain a cell state. As shown in Fig. 1, the input
of the GRU layer is the feature map of the final CNN layer.
We define the input of GRU as X3 = [x0, x1, x2, ..., xt]

T ,
where x ∈ R1×c. The GRU can be formulated as follows:

rt = σ(Wrxt + Urht−1)

zt = σ(Wzxt + Uzht−1)

ht = tanh(Wxt + U(rt ⊗ ht−1))

ht = (1− zt)ht−1 + ztĥt

(2)

where r and z are the reset gate and update data, respectively.
r can control the reset condition of the value in the GRU
unit and z determines the update degree of the activation
information. ĥ represents the candidate hidden layer, and h
represents the hidden layer. W∗ and U∗ are the weight matrix
of GRU. σ represents the logical sigmoid function and ⊗
represents the element multiplication operation.

3) Gating mechanism: Gating mechanisms is helpful to
control the information passed on in LSTM and GRU cells.
Aiming at effectively fuse the features between sensors and
temporal dependence of wind turbine monitoring data, we
use the temporal information of sensor data as the gate of
high-level representations extracted by CNN to control the
information propagates for icing detection. So the gating
mechanism is added at the end of the proposed neural
network. As illustrated in Fig. 1, the gating mechanism fuse
the outputs of the CNN module and the GRU layer, so the
proposed gate can be defined as: can be computed as:

XFused = XCNN ⊗ σ(XGRU ) (3)

where the ’⊗’ is the element-wise product operation. σ is
the sigmoid function.

D. Classifier

The deep features and temporal information fused by the
gate unit is then input in the classifier for icing detection.
The classifier is used to calculate the icing probability of each
time-series fragment. In this work, the feature representations
obtained by the GCNN are input to a global average pooling
layer, followed by a linear layer combined with the softmax
function to calculate the probabilities of icing or not of each
sample. The classifier can be computed as follows:

y1 = AveragePooling(XFused) (4)

y2 = Linear(y1) (5)

y3 = Softmax(y2) =
exp(y2)∑K
k=1 exp

yk
2

. (6)

where y∗ represents the output of each layer. XFused is the
feature map output by gating mechanism.

E. Loss function

The cross entropy (CE) loss function is employed to
optimize the proposed model. The CE loss function can be
defined as:

CE = −ylog(ŷ) + (1− y)log(1− ŷ) (7)

where y represents the true label of the data, and the
positive/negative samples are denoted as 1/0. ŷ denotes the
probabilities of each class predicted by the model.



F. Real-time icing detection

As shown in Fig. 1 (c), the optimized GCNN model can be
utilized to conduct real-time icing detection. Since the input
of the GCNN is fixed length data segments, the data detected
in real-time should be data streams of the same mode with
the training data. The result output by the optimized GCNN
model is the probability of blade icing, so it is necessary to
set a threshold k to determine whether the blade is frozen.
Then the real-time icing detection result is then visualized
for real-time observation.

IV. EXPERIMENTS

A. Experiments settings

1) Dataset: In this work, the sensor data are generated
by wind turbines of two wind farms in Shanxi and Henan
Provinces of China. The data is collected by Supervisory
Control And Data Acquisition system equipped with hun-
dreds of sensors to monitor the wind turbine conditions. The
experts identified 16 variables helping to conduct blade icing
detection, as shown in Table I. We define the dataset came
from Shanxi Province as dataset 1, and the dataset collected
from Henan as dataset 2, both of which covered half a month
with an interval of 30 seconds for each data point. The raw
sensor data inevitably includes noise value, missing values,
etc., so we clean up the data before input to the proposed
model. The three steps of data preprocessing are described
in Section III B.

2) Metrics: We employ F1-score, Area Under Curve
(AUC) and Matthews correlation coefficient (MCC) to eval-
uate the models. The definitions are as follows:

F1− score =
2× TP

2× TP + FN + FP
(8)

AUC =

∑
i∈positiveClass ranki −

M(M+1)
2

M ×N
(9)

MCC =
TP × TN − FP × FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(10)

where TP , FP , FN , and TN represent true positive,
false positive, false negative, and true negative, respectively.
ranki denotes the number of the i − th sample. M and
N represent the number of positive samples and negative
samples, respectively.

B. Baseline comparison

We compare the proposed GCNN with four time series
baselines on dataset 1 and dataset 2. The time steps of
dataset 1 and dataset 2 are 32 and 256, respectively. The
details of the baseline networks are as follows.

1) LSTM: LSTM is a commonly used tool for time-
series data analyzing. The LSTM employed in this paper
for comparison is only one layer with 128 hidden units.

2) GRU: GRU is a simpler variant of LSTM with lesser
parameters and faster training speed. The GRU employed for
comparison is only one layer with 128 hidden units.

TABLE I
SPECIFICATION OF SENSOR DATA

No. Variable name Description
1 wind speed Wind speed
2 wind direction Wind direction
3 generator speed Generator speed
4 power Active power
5 yaw position Yaw position
6 environment temp Environment temperature
7 internal temp Internal temperature of nacelle
8 pitch1 angle Angle of pitch 1
9 pitch2 angle Angle of pitch 2

10 pitch3 angle Angle of pitch 3
11 pitch1 speed Speed of pitch 1
12 pitch2 speed Speed of pitch 2
13 pitch3 speed Speed of pitch 3
14 pitch1 moto tmp Temperature of pitch motor 1
15 pitch2 moto tmp Temperature of pitch motor 2
16 pitch3 moto tmp Temperature of pitch motor 3

TABLE II
COMPARISON OF TIME SERIES BASELINE ON DATASET 1

LSTM GRU FCN MLSTM-FCN GCNN
F1-score 70.9184 69.8734 82.0253 82.3245 85.0856

AUC 86.875 87.45 91.925 91.425 93.275
MCC 68.3132 66.9091 80.2606 80.5441 83.5825

3) FCN: FCN is used for time series classification with
competitive performance [18]. The hyper-parameter settings
are the same as the original paper.

4) MLSTM-FCN: MLSTM-FCN integrates LSTM and
FCN for multivariate time series classification [19].

The comparison results are shown in Table II and Table III.
In Table II, the GCNN outperforms all the baseline models
and achieves 2.77%, 1.86% and 3.04% higher scores on the
three metrics, respectively. As shown in Table III, although
the result on AUC is suboptimal, the GCNN gets the highest
F1-score of 85.71% and the best MCC of 84.34%. These
results suggest that the proposed model can achieve better
performance on sensor data collected from different wind
farms.

C. Comparison on different model variants

We compare the GCNN with three model variants on
dataset 1 and dataset 2 to investigate how can each compo-
nent of the proposed model obtain the greatest performance.

1) GCNN-V1: GCNN-V1 is the GCNN with LSTM for
gating to replace the GRU layer.

2) GCNN-V2: GCNN-V2 is the gating mechanism added
following the first CNN layer.

3) GCNN-V3: GCNN-V3 is the gating mechanism added
following the second CNN layer.

TABLE III
COMPARISON OF TIME SERIES BASELINE ON DATASET 2

LSTM GRU FCN MLSTM-FCN GCNN
F1-score 75.555 75.5556 81.6327 85.1852 85.7143

AUC 85.8 83.4 90.4 94.8 93
MCC 73.9488 73.9488 79.8571 83.8651 84.3389



TABLE IV
COMPARISON OF DIFFERENT MODEL VARIANTS ON DATASET 1

GCNN-V1 GCNN-V2 GCNN-V3 GCNN
F1-score 79.2079 81.6121 80.2005 85.0856

AUC 89.85 90.325 90.5 93.275
MCC 77.1106 79.7913 78.2263 83.5825

TABLE V
COMPARISON OF DIFFERENT MODEL VARIANTS ON DATASET 2

GCNN-V1 GCNN-V2 GCNN-V3 GCNN
F1-score 79.2453 70.8333 78.4314 85.7143

AUC 90.6 84.4 90.2 93
MCC 77.1913 68.3462 76.2457 84.3389

The results of different model variants comparison on the
two datasets are presented in Table IV and V. In table IV,
the GCNN can achieve much better performance than the
GCNN-V1 on dataset 1, meaning that GRU can do better
in gating mechanism than LSTM. Further, the GCNN-V2
and the GCNN-V3 obtain similar scores of all the metrics.
However, the results in terms of F1-score, AUC and MCC
are 2.95% 5.35% lower than the GCNN. We believe that
the reason for this is that, compared to the first two CNN
layers, the features extracted by all the three CNN layers
are much discriminative for icing detection. The results on
dataset 2 shown in Table V are similar to dataset 1. Thus,
the rationality and superiority of the GCNN structure are
proved.

D. Ablation study

The ablation study is performed to investigate the impor-
tance of the proposed gating mechanism. In the ablation
study, GCNN-nogate is the GCNN without gating mech-
anism. The results of the ablation study on dataset 1 and
dataset 2 are presented in Fig 2. As illustrated in the figure,
the GCNN can obtain better performance in terms of all
the three metrics on the two datasets. For dataset 1, the
GCNN achieves 3.09% and 4.94% higher on average of
the three metrics than GCNN-nogate, showing a significant
improvement with gating mechanism. The results show that
the proposed gating mechanism can fuse the feature between
sensors and temporal information of the data with competi-
tive capability.

E. Sensitivity analysis

To investigate the influence of window size of data, the
performance of the GCNN is compared on two datasets with
the segmentation window size is set to 32, 64, 128, 256, re-
spectively. The comparison results on dataset 1 are presented
in Fig. 3 (a). It can be seen from the figure, the GCNN
with window size of 32 achieves optimal results compared
with the other three window sizes. The performance of the
GCNN shows a downward trend with the increase of window
size. For the comparison on dataset 2, the GCNN can obtain
higher scores with 32 window size data than with 64 and 128
window size data. However, when the window size is 256, the
performance of the model is significantly improved, which is

(a) (b)

Fig. 2. Ablation experiments on (a) dataset 1, and (b) dataset 2

even better than the performance of the proposed model with
window size of 32. The explanation of the different results
between the two datasets could be that the operation state
of wind turbines might be affected by different geographical
environments, resulting in different data characteristics.

F. Real-time detection

The real-time blade icing detection scheme is investigated
to provide wind turbine blade icing conditions. After the
training phase, the optimal GCNN can be employed to
conduct online icing detection. Consistent with the data
during the training phase, the available new sensor data
streams move forward in sliding window mode to form
fixed window size fragments. Then the optimal model output
predicted the probability of blade icing on each new sensor
data fragment. To further illustrate the results of real-time
detection, the visualized probabilities are presented in Fig.
4. As shown in the figure, the blue dotted line indicates
the probability threshold of icing and normal. In this paper,
the threshold is set to 0.5 for simulation. While in the real
scenario, the threshold can be further determined according
to the relationship of the real-time detection results and icing
conditions. As shown in Fig. 4 (a), the icing area can be
successfully detected. While in Fig. 4 (b), there’s a false
icing alarm in the non-icing area. This is inevitable when
wind turbines operate in the real time. So as just mentioned
above, the threshold setting for icing determination can be
further investigated to reduce the false alarm rate.

V. CONCLUSION

In this paper, we introduced a novel GRU-gated convo-
lutional neural network for ice accumulation detection on
wind turbine blades. The proposed GCNN can fuse CNN
with GRU effectively to obtain the discriminative sensor
and temporal information of wind turbine monitoring data.
The GCNN was evaluated on the datasets collected from 25
wind turbines of two different wind farms. Compared with
four state-of-the-art baselines, the GCNN achieve significant
improvement in terms of F1-score, AUC and MCC. In
addition, the proposed model was compared with three model
variants to show the superiority of the GCNN structure.
The proposed gating mechanism was further verified by



(a) dataset 1 (b) dataset 2

Fig. 3. Comparison on (a) dataset 1, and (b) dataset 2 with different window sizes.

(a) dataset 1 (b) dataset 2

Fig. 4. Real time detection on these two datasets.

conducting ablation study. The practicability of the proposed
model was illustrated by real-time detection.
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