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1 Abstract

In this project, deep learning models were trained on the Youtube-8M dataset, which is a large-
scale benchmark for multi-label video classification, and evaluated using the F1-score metric. The
trained models used different methods for representing video based on its frames, and a compar-
ison was made between them. The methods used in the project were Recurrent Neural Networks,
Transformer based networks, average pooling, and learnable pooling such as Deep Bag of Frames,
Net Vectors of Locally Aggregated Descriptors, and Net Fisher Vectors. Experiments with hy-
perparameter tuning, network architecture, regularization and adding a learnable non-linear unit
called Context Gating were performed in order to improve the F1-score of the individual models.
The results showed that for sequential models, Recurrent Neural Networks were outperformed by
Transformer based models, which again were outperformed by every pooling model except of Deep
Bag of Frames, where the model having the highest test F1-score was based on Net Vectors of
Locally Aggregated Descriptors.

2 Introduction

The lack of a large labeled video dataset has for a long time been a big obstacle to rapid im-
provements in video understanding research. To that end, Google’s release of the Youtube-8M
dataset[33] and making it open source was a large step to kickstart innovation within this field. In
addition Google has hosted three different competitions on the kaggle website, that challenged the
public to develop classification algorithms which accurately assign video- and segment-level labels
[9][31][32].

A video can contain multiple topics not characterized by the uploader. Extracting this information
can benefit various applications like video search, video recommendations, video summarization,
video content safety, and much more. Furthermore, such research will also help broaden the know-
ledge about machine learning as new algorithms and architectures are developed. The Youtube-8M
dataset describes videos using a numeric representation of all its frames and audio, and is accessible
at three levels [16]. In this project, due to storage limitations, only a 400GB subset of the originally
1.2TB frame-level dataset is used, in addition to the whole video-level dataset. The sheer size of
the dataset used in this project introduces a minor challenge, which is time and computational
resources required for processing.

The goal of this project is to implement and experiment with different types of deep learning
models that can learn from the Youtube-8M dataset, and compare their performances.

3 Theory

In the Youtube-8M dataset, a video can have several labels associated with it, making it a multi-
label classification problem.

3.1 Multi-label classification

Classification in machine learning is a supervised learning approach where a computer program
learns from observing labeled data, and based on that experience can predict labels of new unlabeled
data.

Multi-label classification is when a given observation can belong to one or more classes. This is
different than the classical multi-class classification where each observation can belong to only one
of the available classes.
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3.1.1 Multi-hot encoding

Multi-hot encoding is a way of numerically representing an array of labels. The representation
consists of a 0 or 1 value for each possible label, 0 meaning that the label is absent and 1 meaning
that it is present. As an example let there be 4 possible labels apple, banana, orange and strawberry
in this specific order. If a vector contains apple and orange, the multi-hot encoding becomes 1,0,1,0.

3.2 Loss function

A loss function is a function that evaluates the goodness of fit of a machine learning model, by
comparing the model prediction with the expected output.

For each task there can be multiple loss functions to choose from. In the case of multi-label
classification problems, where the output is multi-hot encoded, one such useful loss function is
binary cross-entropy [20].

Loss = − 1

N

∑
yi log ŷi + (1− yi) log(1− ŷi), (1)

where ŷi is value number i of the model output, yi is the corresponding correct target value, and
N is the number of values in the model output. Note the logarithm expression in the formula.
This could be problematic, but ŷi is the outcome of a sigmoid function so ŷi ∈ (0, 1).

3.3 Optimizers

To find the minimum of the previously mentioned loss function, an efficient numerical optimizing
algorithm is preferred. The optimizer used on all models used in this project will be described.

3.3.1 Adam

Adam stands for Adaptive Moment Estimation. The algorithm for updating weights is as fol-
lows[11].

wt = wt−1 − η
m̂t√
v̂t + ϵ

, (2)

where

m̂t =
mt

1− βt
1

, (3)

v̂t =
vt

1− βt
2

, (4)

and lastly

mt = β1mt−1 + (1− β1)gt, (5)

vt = β2vt−1 + (1− β2)g
2
t , (6)

where β1 and β2 are scalar numbers called forgetting parameters.

Adam’s way of converging to the minimum is described as a ball with both momentum and fric-
tion[3].
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3.4 Evaluation metric

To evaluate the performance of a machine learning model, it is important to have a suitable
evaluation metric. One of many suitable metrics could be the F1-score [23]. Before defining the
F1-score, precision and recall are defined.

3.4.1 Precision

Precision can be used as a machine learning metric in itself, but it also takes part in computing
the F1-score. Precision is defined as follows.

Precision =
Number of True Positives

Number of True Positives + Number of False Positives
. (7)

What these values mean can be seen in a confusion matrix.

actual
value

Prediction outcome

True
Positive

False
Negative

False
Positive

True
Negative

Table 1: Confusion matrix

When the prediction outcome and actual value coincide we get that it is true, otherwise it is false.
Also when referring to a positive and negative outcome, in terms of binary classification it means
a predicted outcome of 1 and 0 respectively.

So precision gives us the percentage of true positive predictions among all positive predictions. A
precise model may not find all the true positive outcomes, but the ones that the model does deem
to be positive are likely to be true, while a model with low precision may have a lot of positive
predictions, but a lot of those predictions are not actually positive.

3.4.2 Recall

Recall can also be used as a machine learning metric and takes part in computing the F1-score.
Recall is defined as follows.

Recall =
Number of True Positives

Number of True Positives + Number of False Negatives
. (8)

Recall can be interpreted as measuring how many true positive outcomes did the model find out
of all the outcomes that the model deemed to be positive. So a model with high recall is likely to
find all the true positive cases, although it may also wrongly identify true negative outcomes as
positive, while a model with low recall is not able to find a large part of the true positive outcomes.

3



3.4.3 F1-score

Now the F1-score combines precision and recall in the following way.

F1-score = 2 · Precision · Recall
Precision + Recall

. (9)

This metric gives equal weight to precision and recall, and is useful when dealing with imbalanced
data because it can distinguish between specific types of errors.

3.5 Multinomial logistic neural network

Deep learning[8] is a subfield of machine learning that learns representations from data with an
emphasis on learning successive layers of increasingly meaningful representations. These layered
representations are learned using models called neural networks.

The introduction of neural network models used in this project starts with an explanation of the
general idea of a baseline neural network for classification [37]. A simple neural network structure
is presented in figure 1.

Figure 1: Base neural network

Neural network structure with only an input layer with 5 input nodes (blue) and 1 bias node (red),
and an output layer with 3 nodes (green).
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In figure 1 we see the two main components.

• The input layer: Being where the model receives the input containing n number of features
x1, x2, ..., xn = x of an observation.

• The output layer: Being where the nodes from the input layer are transformed into output,
which in this case are the video labels.

The above-mentioned transformation is given by

ŷik(xi) = ϕo(w0 + w1xi1 + ...+ wnxin) k ∈ C, (10)

where ŷik(xi) is prediction number i given feature number i belonging to class k given that the
output can be one of a number of C classes, ϕo is the so called activation function of the output
layer that is chosen when designing the network, and lastly the weights w0, w1, ..., wn that are
scalar numbers. Note the weight w0. This is called the bias, which is a scalar number analogous
to the intercept in a regression model[38].

An useful activation function for multi-label classification problems is the sigmoid function [19]

S(x) =
1

1 + e−x
∈ (0, 1), (11)

also shown in the figure below.

Figure 2: Sigmoid function

The sigmoid function maps input to an output ranging from 0 to 1 that can represent probability
of a label being correct. A value > 0.5 represents the presence of a label while a value ≤ 0.5
represents its absence. For small input (< −5), the sigmoid returns a value close to 0, and for
large inputs (> 5), it returns values close to 1. This function is often used for binary classification,
but since several output values are independent of each other, it is also suitable for multi-label
classification.

Having no other layers except the input and output layers, makes this a linear model, because the
output always depends on the product of the inputs and their weights. Linear models are inflexible
models, which means that they can not identify nonlinear dependencies between the input data,
and the output. Consequently, an inflexible model will likely underfit if used on this type of data.
The complexity of this model can be increased by adding a variety of hidden layers using a variety
of activation functions.

3.6 Recurrent Networks

Recurrent neural networks [18], RNNs for short, are a family of neural networks for processing
sequential data. The key idea in RNNs is that the neurons maintain an internal state which is

5



updated at each timestep t as a sequence of inputs [x1, ..., xt, ..., xT ] is processed. Structurally, a
RNN is divided into cells, where one cell processes one sequence. During processing of a sequence,
a RNN cell computes a cell state at time t denoted as ht given by

ht = fW (xt, ht−1), (12)

where fW i a function parameterized by a set of trainable weights W . These weights are what
the RNN is trying to learn over the course of training using a variation of the backpropagation
algorithm [12] called back propagation through time [13], BPTT for short. Given this, the output
of a RNN cell at a timestep t is given as a function of the current input xt, and the past memory
ht−1.

3.6.1 Gated RNNs

In a basic RNN, it is easy for the internal state which remembers past information, to forget
information after a couple of timesteps, resulting in short memory. In addition the computations
inside a basic RNN include many matrix multiplications when computing how to change the
internal state, in other words when computing the gradient with respect to the internal state. This
introduces two problems. The first one is that there being many values larger than 1 present in the
multiplications, causes the exploding gradients problem [5] which makes the optimization difficult.
The second problem is the opposite. There being many values less than 1 may lead to vanishing
gradients [5], which makes it harder to backpropagate the error from the loss function back to the
distant past.

To make the RNNs less susceptible to these problems and more robust, a more complex recurrent
unit is introduced by using gated cells. The gates consist of a standard neural network layer using
the sigmoid activation function and a pointwise multiplication. The function of these gates is to
selectively add or remove information from the cell state ht. Some common and effective sequence
models, used in practical applications are called gated RNNs [18][8],[25]. These include the long
short-term memory(LSTM) networks and networks based on the gated recurrent unit(GRU). The
LSTM uses three gates inside a recurrent cell:

• An input gate that decides what information will be stored in the cell state by filtering
information from the current input xt.

• A forget gate that selects which information should be kept or discarded from the previous
cell state.

• Lastly, an output gate that controls what information is encoded in the cell state and passed
to the next timestep, and what the output of the cell will be at a given timestep.

While the GRU uses two gates:

• A reset gate that decides how much of the previous cell state should be kept.

• An update gate that decides whether the cell state should be updated using the current
timestep.

Summarizing, the gated RNNs use a more complex neuron structure that lets them combat the
gradient problems, and better maintain long term dependencies in the data by utilizing special
gates that control the flow of information.

3.7 Transformers

Transformer-based models [8],[36] are another type of sequential models that combat some of the
limitations of RNNs which are:

6



• The encoding bottleneck in the form of information possibly being lost when a lot of data is
condensed into a representation that can be used by a RNN for prediction.

• Slow training speed due to the requirement of information being processed sequentially, which
is inefficient on modern GPU hardware.

• A memory that does not scale well when the length of sequences are in the thousands.

Transformers have been recently introduced in [30], and have been overtaking RNNs across most
natural language processing tasks. The architecture was originally developed as a sequence-to-
sequence [7] model, but can be modified for video classification.

One of the key elements of Transformers is that they remove the sequential processing of the
input, by using positional embedding. Positional embedding preserves the position information by
computing an embedding that captures the positional information, and adding it to the input.

Transformers use the concept of self-attention, which reflects the ability to take an input, identifying
which parts to attend to and extract those features with high attention. This is conceptually similar
to a search. For example, when searching for a video, we type a query Q into the YouTube search
bar. Each video in the YouTube database has key information K about the video, which can for
example be the title of the video. To search for a video using the query Q, one can compute the
similarity between the query and the keys. This similarity measure, is then used to extract the
information that is searched for, denoted as the value V , which is the video itself.

Since the model has some notion of position from the input due to the positional embedding, the
task now is to figure out what in the input to attend to. For this, the idea of self attention is used.
Transformers create three new unique transformations of the embedded input, which are the query
Q, key K, and value V . This is done by making three copies of the positional embedding, and
multiplying each with a separate and different linear layer.

The next task is to compute the attention weighting, which represents how much attention should
be given to certain features. This is done in the same way as in the mentioned YouTube search ex-
ample. By computing the similarity between Q and K. This similarity, called attention weighting,
is computed by using the dot product

σ(
Q ·KT

√
dk

), (13)

and scaling it down as in [30] using
√
dk, where dk is the dimension of K, and σ is the softmax

function [48]. This weighting matrix is then used to extract features from V with high attention
by

Attention(Q,K, V ) = σ(
Q ·KT

√
dk

) · V. (14)

This result reflects the features that correspond to high attention. These operations form what is
called a self attention-head. A neural network using the transformer encoder can have multiple
self attention-heads that attend to different parts of the input.

3.8 Pooling

The previously explained RNN and Transformer models capture the temporal structure of a video
when extracting features. The motivation for the models that will be discussed next is the hypo-
thesis that it is not necessary for a good classification performance to treat the video as a sequence
if all relevant information about the video labels rely on the static visual and audio cues. The
focus of these models is on capturing the distribution of features in the video, without including
information about their temporal ordering. In deep learning, pooling [4] describes methods for
down sampling feature maps by summarizing the presence of features in the feature map. An
example is average pooling, which was used in the process of making the video-level dataset. The
pooling was done by adding correspondent features in all frames of a video, and dividing these
sums by the number of frames in that video.
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3.8.1 Learnable pooling models

Unlike, average pooling, the models presented next learn a pooling method to create a video
representation based on its frames.

3.8.2 NetVLAD - Net Vectors of Locally Aggregated Descriptors

NetVLAD is based on Vector of Locally Aggregated Descriptors[34] which is a descriptor pooling
method used in image classification, where the term descriptor refers to the image features. This
is a clustering based method that captures information about the statistics of local descriptors
aggregated over an image or also in this case audio, and stores the difference vector between the
descriptors and their corresponding cluster centres.

We have N D-dimensional frame descriptors xi as input, and K cluster centres ck as VLAD
parameters. For convenience, we denote the output of VLAD as a matrixV with dimensionsK×D.
This matrix is converted to a vector and after normalization, is used as the video representation.
Element vj , k of V is given as follows

vj,k =

N∑
i=1

ak(xi)(xi,j − ck,j), (15)

where ak(xi) denotes the membership of descriptor xi to the k-th cluster, meaning that it is equal
to 1 if cluster ck is the closest cluster to xi and 0 otherwise. This means that each column of
V stores the sum of residuals (xi − ck) of descriptors which are assigned to cluster ck. V is
then L2-normalized [46] column wise, before being converted to a vector and L2-normalized in its
entirety.

The NetVLAD architecture [27] reproduces the VLAD encoding in a differentiable manner, such
that the clusters can be learned using the backpropagation algorithm[12]. This is done by by
writing ak(xi) as a soft assignment

ak(xi) =
ew

T
k xi+bk∑K

l=1 e
wT

l xi+bl
, (16)

where w and b are learnable parameters. This means that instead of being either 0 or 1, ak(xi) is
now a number between 0 and 1 proportional to how close the descriptor xi is to cluster ck.

3.8.3 DBoF - Deep Bag of Frames

The Deep Bag of Frames model is based on the Bag of Words [44] model, which is a model used for
extracting features from text by describing the occurrence of certain words within a text. It involves
a vocabulary of known words, and a measure of the presence of these words. The motivation for
this type of model is the idea that similar texts have similar contents. So we can use the content
of a text to check the similarity to other known texts. One downside with this model is that any
information about the structure of the text is discarded since the model is not concerned where in
the text known words appear, but only about if they actually appear, hence use of ”bag” in the
name Bag of Words.

This method has also been extended to problems like image classification[26] where instead of
searching for specific words in text, a set of key visual features or visual words is defined. This set
is used to recognize how often each visual feature is present in an image, and to classify the image
based on that.

For this classification task the model is called Deep Bag of Frames [33][1]. In classical Bag of Words
and Bag of Visual Words approaches, the set of key features or the ”bag” of features were usually
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found using k-means clustering and a hard assignment to cluster ck, denoted as ak(xi), where xi

is the i-th D-dimensional frame descriptor. The Bag of Words representation is then written as

BoW (k) =

N∑
l=1

ak(xi). (17)

Since the DBoF approach is used as a Deep Learning model, the representation needs to be
differentiable such that it can be learned using the backpropagation algorithm. This is done the
same way as for NetVLAD, by defining ak(xi) as a soft assignment of descriptors to clusters given
by equation (16).

3.8.4 NetFV - Net Fisher Vectors

NetFV is based on the Fisher Vector encoding [21][15] which is an extension of the Bag of Words
representation, and stems from the Fisher Kernel[29], which is a function from statistical classi-
fication used for measuring the similarity between objects. In image classification, the encoding
represents how the distribution of features of an image differs from the distribution fitted to the
features of all training images.

The Fisher Vector encoding, which we denote as ϕ, of a set of descriptors xi is based on fitting a
parametric generative model to the feature, and then encoding the derivatives of the log-likelihood
of the model with respect to its parameters. In the case where the parametric generative model
is the Gaussian Mixture Model[24] with diagonal covariances, the representation of the average
first and second order differences between the features and the Gaussian Mixture Model centres
becomes

Φ
(1)
k =

1

N
√
πk

N∑
i=1

ak(xi)

(
xi − µk

σk

)
, Φ

(2)
k =

1

N
√
2πk

N∑
i=1

ak(xi)

(
(xi − µk)

2

σ2
k

− 1

)
, (18)

where k ∈ [1,K], πk are the mixture weights, µk are the mixture means and σk are the mixture
diagonal covariances of the Gaussian Mixture Model. ak(xi) is again the soft assignment given by
(16). The Fisher Vector encoding is represented by stacking the differences as follows

ϕ =
[
Φ

(1)
1 ,Φ

(2)
1 , ...,Φ

(1)
K ,Φ

(2)
K

]
. (19)

The NetFV method[1] imitates the Fisher Vector encoding by representing the first- and second-
order statistics in matrix form as

Φ
(1)
NetFV (j, k) =

N∑
i=1

ak(xi)

(
xi,j − ck,j

σk,j

)
, Φ

(2)
NetFV =

N∑
i=1

ak(xi)

(
(xi,j − ck,j)

2

σ2
k,j

− 1,

)
(20)

where σk is now the diagonal covariances of cluster ck.

3.9 Context Gating

As mentioned, gates in RNNs are used to selectively pick the information from an input. The
winning team [1] of the first Youtube-8M understanding challenge [9] suggested adding this gating
mechanism to pooling methods. Context Gating is used to re-weight the output features of the
pooling methods and the output labels, such that the resulting features and labels represent the
subset of objects and events that are most relevant to the context of the video. In [1] an example
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is mentioned where, in a skiing video, the network activations corresponding to tree features may
be high. But since trees is not an important feature based on the context of the video, the visual
network activations of trees are down-weighed by Context Gating. Another motivation for Context
Gating is that it can be used for modeling biases in label annotations by creating dependencies
among output labels when applied after the classification layer of the network.

In short, Context Gating transforms its input X ∈ Rn into a new representation Y given by

Y = σ(WX + b) ◦X, (21)

Where σ is the element-wise sigmoid activation, ◦ is element-wise multiplication, W ∈ Rn×n

and b ∈ Rn are trainable parameters. Consequently, σ(WX + b) represents a set of learnable
gates applied to the dimensions of the input feature X. This transformation introduces non-
linear interactions among activations of the input representations, and reevaluate the strengths of
different activations of the input through a self-gating mechanism.

3.10 Regularization

Deep learning [8] can be seen as curve fitting, and a curve fitting model needs to be trained on a
dense sampling of its input space to perform well. This means that one of the best ways to improve
a deep learning model is to train it on more data or better data. But often it is not possible to
obtain more data, and while excessive training on the same dataset can increase training accuracy,
it happens often at the expense of a lower testing accuracy. This is because the network essentially
memorizes the training cases, which hinders its ability to generalize to new cases. This phenomenon
is called overfitting.

The term regularization [8],[14] in deep learning refers to a set of techniques that actively impede
the model’s ability to fit perfectly to the training data, preventing overfitting. In the following
subsections, the regularization techniques applied in this project are presented.

3.10.1 Early Stopping

A practical and commonly used form of regularization is early stopping. This method requires a
separate subset of the dataset called a validation set. The model does not use the validation set
for learning, but instead during training of a deep learning model, the loss on the validation set
is computed after a predetermined number of epochs. Early stopping stops the training if this
validation loss stops decreasing.

3.10.2 Dropout

Dropout is one of the most commonly used regularization techniques for neural networks. Large
deep learning models tend to be so overparameterized that imposing constraints, like for example
L2 regularization [14], on weight values has low impact on model performance and generalization.
In such cases, dropout is a preferred regularization technique.

Dropout applied to a neural network layer consists of randomly dropping out a number of the
output features of a neural network layer during training at a rate called the dropout rate. At test
time, nothing is dropped out, but instead the layer’s output is scaled down by a factor equal to
the dropout rate. This is done to balance for the fact that more units are active than at training
time. During training, neurons of a layer may change in a way to fix the mistakes of a preceding
layer. This may lead to co-dependencies between layers that do not generalize to unseen data.
Dropout effectively adds noise to the training process, making it harder for the model to learn
these co-dependencies, and thus making the model more robust.
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4 Data

The dataset used for this project is the Youtube-8M dataset, which is a large-scale benchmark for
general multi-label video classification. The dataset contains more than six million Youtube videos
with high-quality machine-generated annotations from a vocabulary of 3862 visually identifiable
labels. On the official website there are three versions of the dataset where the features are either
frame-level, segment-rated frame-level or video-level. The original size of the video dataset would be
impractical to process, so before it was published, there was a substantial amount of preprocessing
done [33]. Ultimately, the frame image information has been generalized to 1024 numeric features
per frame, and similarly the audio information was generalized to 128 numeric features per frame,
and the frames were sampled at a rate of one frame per second of a video. Each video contains a
varying amount of labels, averaging to around 3 per video as seen in tables 2,3.

In this project, both the video-level and frame-level datasets are utilized, where video-level means
that videos in the dataset are represented by an average of its frames(average pooling), while the
frame-level dataset contains videos represented by a list of frames. On the source website for the
dataset [16], three subsets of the dataset are available for download: a train set, a validation set
and a test set. In addition a vocabulary mapping label id’s in the dataset to their respective names
and information is available. The target labels for the test set have not been published so for this
project only the train set and validation set were used.

4.1 Video-Level Dataset

For video-level modeling, the downloaded validation set was used as the test set, while the train
set was split such that 80% of the data was used for training and the rest for validation.

No extensive exploratory data analysis was performed because it was judged to be unnecessary
given the nature, quality and size of the dataset. When making the training and validation splits,
the tfrecord [45] files that make up the downloaded training dataset were shuffled before splitting
into a training part and a validation part in case the downloaded data had an unintended dis-
tribution of labels across videos. The following histograms show the distribution of labels in the
video-level train, validation and test sets.

Figure 3: Frequency-barplot for the video-level train set

Bar plot featuring label frequencies of the video-level train set, transformed using logarithm with
base 10, against label id’s.
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Figure 4: Frequency-barplot for the video-level validation set

Bar plot featuring label frequencies of the video-level validation set, transformed using logarithm
with base 10, against label id’s.

Figure 5: Frequency-barplot for the video-level test set

Bar plot featuring label frequencies of the video-level test set, transformed using logarithm with
base 10, against label id’s.

Table 2: Video-Level Dataset Statistics

statistic train dataset validate dataset test dataset

video count 3888919 3111135 777784

max frequency 630259 158029 225529

min frequency 98 17 26

average label count 3 3 3

Various video-level dataset statistics.

Luckily, all possible labels appear in all of the three video-level dataset-splits and the distributions
seems to coincide well across splits as well. Although, notice that the distribution of labels is by
no means equal. A large difference in frequency is observed between the most and least frequent
labels, meaning that this is an imbalanced dataset. For example the most frequent label, being
”Game”, appears in 630259 videos in the training dataset, while the least frequent label ”Cylinder”
appears only in 98 videos.
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4.2 Frame-Level Dataset

For frame-level modeling, due to storage limitations, only 30% of the frame-level dataset was used.
Since the video data was split into 3844 tfrecord files containing a varying number of videos each,
it was difficult to modify the distribution of video labels contained in the chosen subset of data.
As mentioned, figure 5 showcases the frequency of labels in the appointed test set for video-level
models, which is originally the downloaded validation set. It can be seen that it has a similar
distribution as the train set showed in 3. Because of this, the downloaded validation set was used
as part of the training set. The rest of the available storage space was filled by 10% of the training
dataset. This chunk was then randomly distributed such that in total, 80% of data was used for
training, 10% was used for validation, and lastly 10% was used for testing. The distributions of
these sets are shown in 6,7,8.

Figure 6: Frequency-barplot for the frame-level train split

Bar plot featuring label frequencies of the frame-level train dataset, using logarithm transformation
with base 10, against label id’s.

Figure 7: Frequency-barplot for the frame-level validation split

Bar plot featuring label frequencies of the frame-level validation dataset, using logarithm trans-
formation with base 10, against label id’s.
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Figure 8: Frequency-barplot for the frame-level test split

Bar plot featuring label frequencies of the frame-level test dataset, using logarithm transformation
with base 10, against label id’s.

Table 3: Frame-Level Dataset Statistics

statistic train dataset validate dataset test dataset

video count 1181805 159991 160908

max frequency 239528 32517 32416

min frequency 28 0 1

absent labels None Cadillac CTS, Dream Club None

average label count 3 3 3

average frame count 230 230 230

Various frame-level dataset statistics.

4.3 Preprocessing

The datasets are stored in the tfrecord format [45], so the tensorflow dataset API [41] was used to
parse the data into the correct structure. As 8 bit quantization [6] was used to compress the visual
and audio features in the frame-level dataset, a dequantization function had to be implemented
and applied on the features of the frame-level dataset. Furthermore, since we are performing multi
label classification, the labels were multi-hot encoded.

The videos are of varying lengths, which can be a problem as most neural networks require input
of uniform shape. Since RNN implementations in tensorflow support masking [39], the parsing
process included the option for the data to be padded with zeroes such that all videos had an equal
length of 300 frames. For learnable pooling, models implemented in this project do not support
masking, so instead, data augmentation in the form of random sampling with replacement was
used during training such that each video would have a slightly different representation in each
epoch. Although, it was made sure that during evaluation, all frames of the videos would appear
at least once in this representation.
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5 Method

5.1 Model implementation details

All models were implemented in python using the keras functional API [43] in tensorflow 2, and the
computations were ran using NTNU’s computational sever markov [17]. The sole optimizer used
for all models was the Adam optimizer and the common batch size was 128. Training performance
was monitored using tensorboard [40]. Every model used early stopping that monitors the loss on
the validation set during training. A model was forced to stop if for 3 epochs, the validation loss
did not decrease by more than 0.000001.

The RNN and learnable pooling network architectures used in this project were inspired by the
various works previously done with this dataset: [33],[1],[10],[35],[22]. As the goal of this project is
to compare the performances of various models, and the time being limited, extensive hyperpara-
meter optimization was omitted by recreating some of the successful hyperparameter combinations
used in previous works with this dataset.

5.1.1 Average pooling models

The average pooling models were fitted on both the whole video-level dataset, and the frame-level
dataset subset. The choices for learning rate and batch size were based on project work during the
previous semester. These were a batch size of 128 and a learning rate of 0.0001. The work started
by fitting a logistic regression model on the datasets. The simple architecture is shown in figure 9.

Figure 9: Logistic network architecture

Simplified illustration of the logistic regression model.
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Afterwards, experimentation with adding a varying amount of hidden layers of varying widths was
done. These layers were the keras implementation of dense layers, and ReLU(Rectified Linear
Units) [2] was used as the activation function. The reason for using the ReLU activation in all
dense layers is that it is simple, fast and empirically seems to work well in most situations. As
the models presented in the following subsections create different types of video representations,
they would use one of the models from this section as a video-level module for final classification,
to make them comparable. The model chosen based on its runtime and performance was a model
consisting of two dense layers with ReLU activations and 2048 and 1024 units respectively, followed
by a dense layer with sigmoid activation function, and number of units equivalent to the number
of labels in the vocabulary.

5.1.2 Sequential Models

The work started with the implementation of RNN architectures with only one LSTM layer with
a few units per cell. After noticing that the RNN models were quite slow, the strategy changed
to implementing the best performing RNN architecture from previous works, which is shown in
figure 10.

Figure 10: LSTM model architecture

RNN architecture using LSTM layers.
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This project uses the built in keras implementations of LSTM and GRU layers.

For models using the transformer encoder, two custom layers had to be implemented. A positional
embedding layer and a transformer encoder layer. This was done by following chapter 11.4 in [8]
and [28]. The architecture can be seen in 11.

Figure 11: Transformer model architecture

Neural network architecture using the transformer encoder.

Since the TransformerEncoder layer returns full sequences, a global pooling layer was used to
reduce each sequence to a single vector for classification. A dropout layer with a dropout rate
of 0.35 was included for better generalization of the model. The hyperparameters tuned for this
model were the number of units in the dense layers inside the transformer encoder, and the number
of self-attention heads. While tuning the transformer models, the video classification module was
excluded, and only 2 epochs were trained to save computation time.

The mentioned sequential models were expected to require a lot of time to train. To speed up the
learning process, an initial learning rate of 0.001 was used that is decreased exponentially [42] with
the factor of 0.95 every 1500000 samples. In addition to early stopping, a limit was set such that
a single model could not train more than five days. This decision was made so other models could
be explored in the limited time for this project.
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5.1.3 Learnable Pooling models

The learnable pooling models were implemented based on the tensorflow 1 implementation in [1].
Since this project uses tensorflow 2, and the functional API, custom keras layer implementations
of DBoF and NetVLAD, NetFV were used from the open source project [49].

The hyperparamenter tuned for these models is the number of clusters. A visual example of the
network architecture is shown in figure 12.

Figure 12: Learnable pooling architecture

Example of a two stream learnable pooling architecture.

To speed up the learning process, an initial learning rate of 0.001 is used that is decreased expo-
nentially [42] with the factor of 0.95 every 1500000 samples.

5.2 Additional experiments

The following experiments were performed in addition to model-specific hyperparameter tuning.
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5.2.1 Average pooling on more data

Since the video-level dataset is the result of average pooling applied to the whole frame-level
dataset, average pooling models with similar architectures were trained on both the frame-level
and the video-level datasets to observe the difference in performance resulting in going from training
on all videos to training on around 30% of the videos.

5.2.2 Dropout

Observing that some of the average pooling models showed signs of overfitting, by having a consid-
erably higher training F1-score that test F1-score, regularization in the form of dropout was tested.
In this experiment, dropout layers were added after each dense layer, except the last classification
layer.

5.2.3 Splitting visual and audio features

As audio and visual features are intuitively quite different, it would be reasonable to attempt train-
ing models where the video representation was learned on the visual and audio features separately,
before being concatenated into one representation. The term ”two stream” will be used from now
on to address the case when visual and audio features are separated. These experiments were
performed on the average and learnable pooling models. They were not performed on RNN and
Transformer models because of the lengthy training time of such models. In [1], better results were
attained by concatenating the visual and audio features before training so this was done in this
project as well.

5.2.4 Gradient clipping

The first attempt at training a RNN model using GRU layers yielded a performance that decreased
with every epoch. This problem was suspected to be caused by exploding gradients [5]. An attempt
to attended this problem was made by applying gradient clipping [47] to the optimizer, which is
a method that scales down the gradient during training in the cases where it becomes too large.
The clip-value used for gradient clipping was 5.

5.2.5 Context Gating

As suggested in [1], context gating can have a positive impact on the performance of pooling
models. In this project, average and learnable pooling models were trained with and without
context gating to see if this indeed is the case. Context Gating was implemented as a custom
layer. For this the open source code from [49] was used. The Context Gating layer was applied
after the pooling and classification modules of average and learnable pooling models. An example
of this is shown in figure 13.
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Figure 13: Learnable pooling architecture with context gating

Example of a two stream learnable pooling architecture with context gating.

5.3 Best model

The best performing model was designed by combining the best dense layer configuration from
average pooling models for video classification, with the best sequential or learnable pooling method
for video representation.
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6 Results

Table 4: Average pooling results on the video level dataset

hidden layer units epochs minutes per epoch F1-train F1-test

0 35 10 0.728 0.718

576 14 5 0.787 0.770

576-288 13 4 0.782 0.765

2304 9 12 0.814 0.778

2304-1152 8 9 0.823 0.776

3862 8 22 0.823 0.780

3862-1931 7 21 0.841 0.778

6000 8 36 0.837 0.780

6000-3000 6 37 0.850 0.779

2304-1152-576 7 8 0.813 0.773

2304-4608 7 29 0.850 0.777

2304-4608-2304 6 25 0.841 0.777

2304-4608-9216 6 76 0.877 0.772

1152-1152-1152-1152 8 9 0.803 0.772

Experiments adding hidden dense layers to average pooling models trained on the video-level
dataset.

Table 5: Two stream average pooling results on the video level dataset

hidden layer units epochs minutes per epoch F1-train F1-test

visual:2048
audio:256

8 9 0.815 0.776

visual:2048-4096
audio:256-512

7 28 0.841 0.777

visual:1024-1024-1024
audio:128-128-128

8 8 0.806 0.774

Experiments adding hidden dense layers to average pooling models trained on the video level
dataset, where the layers learn from visual and audio features separately.
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Table 6: Average pooling results on the frame-level dataset

hidden layer units gating epochs minutes per epoch F1-train F1-test

0 No 29 7 0.730 0.708

0 Yes 18 18 0.806 0.760

2304-1152 No 8 9 0.823 0.761

2304-1152 Yes 8 18 0.814 0.761

3862 No 8 9 0.819 0.766

3862 Yes 10 24 0.827 0.768

2304-4608 No 7 29 0.850 0.763

2304-4608 Yes 7 28 0.822 0.764

6000-3000 No 6 14 0.841 0.763

6000-3000 Yes 7 31 0.834 0.763

2304-4608-9216 No 5 52 0.834 0.763

2304-4608-9216 Yes 6 49 0.827 0.759

Experiments adding hidden dense layers and Context Gating to average pooling models on the
frame-level dataset.

Table 7: Average pooling results with dropout on the frame level dataset

hidden layer units gating dropout rate epochs minutes per epoch F1-train F1-test

2304-4608-9216 Yes 0.25 9 39 0.812 0.770

2304-4608-9216 No 0.35 13 43 0.809 0.777

6000-3000 Yes 0.25 9 19 0.820 0.772

6000-3000 No 0.35 9 17 0.805 0.777

Results of adding dropout layers to average pooling models trained on the frame-level dataset,
that had a high training F1-score.
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Table 8: LSTM model results

LSTM layers layer units epochs minutes per epoch F1-train F1-test

1 200 4 101 0.640 0.647

1 500 5 487 0.680 0.687

2 1024 5 1387 0.760 0.746

Results of experiments using LSTM layers.

Table 9: GRU model results

GRU layers layer units gradient clipping epochs minutes per epoch F1-train F1-test

2 1200 No 6 1166 0.0 0.0

2 1200 Yes 4 1431 0.664 0.670

2 400 No 8 476 0.780 0.753

Results of experiments using GRU layers.

Figure 14: GRU unstable learning process graph

Graph showing the learning process of the GRU models from the first two rows of table 9 with(pink)
and without(orange) gradient clipping. The vertical axis represents the training F1-score, and the
horizontal axis represents the number of epochs minus 1.
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Figure 15: GRU stable learning process graph

Graph showing the learning process of the GRU model in the third row of table 9. The learning
rate for this model was lowered from 0.001 to 0.0001. The vertical axis represents the training
F1-score, and the horizontal axis represents the number of epochs minus 1.

Table 10: Transformer model hyperparameter tuning

heads dense units in transformer epochs minutes per epoch F1-train F1-test

1 10 2 882 0.708 0.718

1 50 2 683 0.702 0.714

3 10 2 1077 0.721 0.730

Results of tuning of the number of heads and number of dense units in the transformer model.

Table 11: Transformer model results

heads dense units in transformer epochs minutes per epoch F1-train F1-test

3 10 6 953 0.765 0.758

Transformer model that includes a video classification module.
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Table 12: DBoF model results

clusters two stream gating epochs minutes per epoch F1-train F1-test

2048 No No 6 82 0.783 0.746

2048 Yes No 6 99 0.790 0.751

2048 No Yes 6 85 0.782 0.746

4096 Yes No 6 171 0.792 0.751

4096 Yes Yes 6 184 0.794 0.753

6500 Yes No 6 367 0.789 0.750

Results of experiments using DBoF pooling layers.

Table 13: NetVLAD model results

clusters two stream gating epochs minutes per epoch F1-train F1-test

100 Yes No 5 83 0.828 0.763

100 Yes Yes 5 98 0.824 0.767

256 Yes Yes 6 438 0.860 0.759

Results of experiments using NetVLAD pooling layers.

Table 14: NetFV model results

clusters two stream gating epochs minutes per epoch F1-train F1-test

60 Yes No 6 111 0.817 0.760

60 Yes Yes 7 121 0.832 0.764

128 Yes Yes 6 247 0.828 0.761

Results of experiments using NetFV pooling layers.
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Table 15: Best model results

gating epochs minutes per epoch F1-train F1-test test precision test recall

No 7 140 0.842 0.754 0.788 0.723

Yes 6 104 0.837 0.778 0.825 0.734

Results of combining the dense layer and dropout configuration from the last row of table 7, with
the NetVLAD pooling layers in the third row of table 13, with and without context gating.

7 Discussion

There are many different ways of performing pooling on a tensor. This project explores four such
methods and shows the results in tables 6,12,13 and 14. As mentioned, all learnable pooling models
use the dense layer configuration in the third and fourth row of 6, which yields a test F1-score of
0.761. Knowing this we can rank the pooling methods by their highest test F1-score where DBoF
has 0.753 which is the lowest. The second best is the NetFV pooling with 0.764, and the best test
F1-score for pooling models was achieved by NetVLAD with 0.767. It was expected that learnable
pooling methods would make a more informative video representation than average pooling, and
we observe that this is the case for learnable pooling models other than DBoF. This shows that
a pooling method can be learned and used for better performance instead of a trivial method like
average pooling.

For average pooling, the results of splitting the visual and audio features are shown in table 5. No
noticeable improvement from the models in 4 were observed. For learnable pooling models, the
results are shown in the first two rows of 12. Splitting the visual and audio features improved the
test F1-score by 0.7%, so this model design was used in all other learnable pooling models.

The effect of context gating varies among the different models. In table 6, we observe that context
gating improves the test F1-score in the range 0-0.3%, with the exception of the logistic model
which experiences a 7% improvement, which is likely due to context gating adding complexity to
the already underfitting logistic model. For the DBoF models in table 12, we observe an example of
context gating decreasing the F1-score by 0.7% when comparing the second and third row, and an
example of it increasing the F1-score by 0.3% when comparing the fourth and fifth row. For both
the NetVLAD and NetFV models in tables 13 and 14, we observe a 0.5% increase in test F1-score
in both cases when adding context gating. In general there was no large increase in computational
time when adding context gating to a model, so based on the results where dropout was not used,
context gating is a positive addition to average pooling and learnable pooling methods, with the
exception of DBoF where the addition of context gating did not provide reliable improvements.

Table 7 shows the results of adding dropout to two average pooling models that yielded a high
training F1-score in table 4. Firstly, dropout with a dropout rate of 0.25 was added to two
architectures that also used context gating, yielding roughly a 1.3% improvement from the results
in table 6. In the last 4 rows of table 6 it was observed that context gating had a nearly regularizing
effect in the sense that it lowered the training F1-score, so because of this, another experiment
was done where the context gating was removed and the dropout rate was increased to 0.35. This
resulted in an even better improvement of around 1.8%. This experiment resulted in the best
video-level model that would be combined with the best learnable pooling method to create the
model with best performance.

In this project the attempts at using RNNs yield the lowest performances. The result of the
first attempt at training a GRU model, shown in the first row of table 9, yielded an unstable
learning process where the F1-score started decreasing after the third epoch as seen in 14. This
was suspected to be caused by exploding gradients so gradient clipping was tested in the second
row. Although adding gradient clipping did increase the training F1-score, it did not solve the
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problem of decreasing performance. It was then speculated that the choice of architecture and
a too high learning rate caused the model to converge quickly to a suboptimal solution, so for a
third attempt, the learning rate and the number of units in the GRU layers were lowered. This
configuration did not encounter the same problem and the result of this is shown in the third row
of table 9, and the learning process can be seen in figure 15. We observe that the less complex
GRU model yields a test F1-score of 0.753, which is higher than that of the best LSTM model
which was 0.746.

Inspired by their performance in the field of natural language processing, transformer models
were used in this project. We observe in tables 8,9,11 that the transformer models yield the best
performance among the sequential models, which is a test F1-score of 0.758, even though little
parameter tuning was done in this project. The hyperparameter tuning for the transformer models
is shown in table 10. It can be seen in the second row that increasing the number of dense units
did not improve the performance. The third row shows that increasing the number of self attention
heads significantly improves performance. With this little tuning, it is very likely that the model’s
performance can be improved upon. Based on the results, the transformer encoder is a viable
method for video classification tasks.

Using what was learned in the mentioned results, the best model was designed by combining the
NetVLAD pooling method from the second row of table 13 with the dense and dropout layer
configuration from the third and fourth row of table 7. The results of this are shown in table
15, where a test F1-score of 0.778 is achieved. This is the highest test F1-score in this project
using a learnable pooling method, but unexpectedly, it is only slightly higher then the best score
for average pooling, showing that, although simple, average pooling can provide an informative
representation of the frames in a video. In table 15, the test precision and test recall are included.
We observe that the precision is significantly higher than the recall. A high precision means that
the labels that the model predicts are often the true labels while a low recall means that often not
all the true labels are among the models predicted labels. This was expected because as a result
of the dataset being imbalanced, some labels appear in very few videos which makes it hard for a
model to learn to classify them.

Although the project explored different deep learning models and different methods of improving
their performance, more time could have been spent on systematic hyperparameter tuning, espe-
cially for sequence models. It is likely possible to increase the individual model performances by
further hyperparameter tuning, and adjustments to the network architectures.

Tables 4 and 6 show the results of similar average pooling models applied to different amounts of
data. From those tables, on average, increasing the data amount from 30% to 100% yields roughly
a 1.8% increase in test F1-score. This is a considerable improvement in performance compared
to other attempts at improving the models, and highlights that using more data is a powerful
tool in deep learning. Based on these results, it is reasonable to believe that the use of the whole
dataset would give a larger performance boost to all models than slight changes to architectures or
hyperparameters. There is also the possibility that the performance of the sequential and learnable
pooling models scales differently with more data. For example, the performance of sequential
models in this project is worse that pooling models, but that could have been different if the whole
frame-level dataset was used. Based on this, a desirable way of improving model performance in
future works would be to utilize more of the frame-level dataset.

The tables in the result section include the average number of minutes spent on training one epoch,
as it would be interesting to include the training time in the considerations when comparing the
performances of different models. Unfortunately these results have a high margin of error. This
is because the computations were ran on a server that distributes computational resources equally
among students that are using it. Consequently, the computing speed at a time would depend on
how many students are using the server simultaneously. An example of this can be seen in table
10 when comparing the minutes per epoch in the first two rows. The second row has a higher
complexity in the form of having more units in the dense layers of the transformer encoder, so it is
expected to have a longer training time, but instead the epochs in the second row were computed
23% faster. The same thing happens when comparing the third row of 10 and the result in 11.
The model in 11 has two additional dense layers to train between the transformer encoder and the
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classification layer, but on average computes each epoch 12% faster. In general the results show
that the slowest models were the sequential models, followed by learnable pooling models, and the
fastest were the average pooling models, which was expected.

8 Conclusion

The objective of this project was to to implement and experiment with different types of deep
learning models that can learn from the Youtube-8M dataset, and compare their performances.
This was done by implementing RNNs and Transformer models which are variants of sequential
methods, and Average pooling, DBoF, NetVLAD, and NetFV which are variants of pooling meth-
ods. Experiments with hyperparameter tuning, network architecture, regularization and context
gating were done to explore ways of improving individual model performance. Among sequential
models, the newer Transformer model outperformed more classical temporal approaches like the
LSTM and GRU, although little hyperparameter tuning was performed on these models due to the
lengthy computational times. In this project, with the exception of DBoF models, pooling based
models are observed to have better performance than the best sequential model, and among these
NetVLAD reached the highest testing F1-score of 0.778. Dropout proved to be a powerful tool at
increasing the performance of overfitting models, and in general, context gating showed to have a
positive effect on performance of pooling models, with the exception when it was combined with
DBoF models and dropout layers.

It is worth noting that the frame-level models were implemented on a small subset of an highly
imbalanced dataset. This resulted in many labels having less that a hundred samples to learn
from, making it unlikely for the models trained in this project to classify them in multi-label
video classification. Because of this, although it should be possible to increase the individual
model performances by more systematic hyperparameter tuning, and adjustments to the network
architectures, it is reasonable to believe that the most significant improvement would likely be
attained if the whole frame-level dataset was utilized, which is left for future work. In addition
to this, future work should also focus on exploring ways to ensemble the best models into one for
optimal performance.
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