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Abstract: In this paper, a novel method is proposed for the incorporation of data-driven machine
learning techniques into process optimization. Such integration improves the computational time
required for calculations during optimization and benefits the online application of advanced control
algorithms. The proposed method is illustrated via the chemical absorption-based postcombustion
CO2 capture process, which plays an important role in the reduction of CO2 emissions to address
climate challenges. These processes simulated in a software environment are typically based on
first-principle models and calculate physical properties from basic physical quantities such as mass
and temperature. Employing first-principle models usually requires a long computation time, making
process optimization and control challenging. To overcome this challenge, in this study, machine
learning algorithms are used to simulate the postcombustion CO2 capture process. The extreme
gradient boosting (XGBoost) and support vector regression (SVR) algorithms are employed to build
models for prediction of carbon capture rate (CR) and specific reboiler duty (SRD). The R2 (a statistical
measure that represents the fitness) of these models is, on average, greater than 90% for all the cases.
XGBoost and SVR take 0.022 and 0.317 s, respectively, to predict CR and SRD of 1318 cases, whereas
the first-principal process simulation model needs 3.15 s to calculate one case. The models built by
XGBoost are employed in the optimization methods, such as an agent-based approach represented
by the particle swarm optimization and stochastic technique indicated by the simulated annealing,
to find specific optimal operating conditions. The most economical case, in which the CR is 72.2%
and SRD is 4.3 MJ/kg, is obtained during optimization. The results show that computations with
the data-driven models incorporated in the optimization technique are faster than first-principle
modeling approaches. Thus, the application of machine learning techniques in the optimization of
carbon capture technologies is demonstrated successfully.

Keywords: postcombustion carbon capture; machine learning; process optimization; data-driven
process modeling

1. Introduction

According to the World Meteorological Organization (WMO), the world experienced
the warmest weather on record because of greenhouse gas emissions (GHG) in the last
decade (2011–2020). The temperature difference between the preindustrial baseline (1850–
1900) and global mean surface temperature in 2020 has reached 1.2 ◦C [1]. The action
is on call for addressing climate changes as reported in this report. To avoid the worst
climate impact, carbon capture and storage (CCS) technologies have been developed. CCS
is the process of capturing CO2 before it enters the atmosphere, transporting and storing
it for centuries or millennia [2]. Currently, the most mature technology is CO2 capture,
which can be realized through precombustion capture, oxy-fuel combustion capture, and
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postcombustion capture (PCC) [3]. From an economic and practical perspective, PCC is
preferred, as it can be retrofitted to an existing plant. Many research efforts now focus
on topics within the PCC process, such as process simulation, solvent degradation, and
equipment design. This study also contributes to the simulation of PCC process in order to
better control and optimize the process efficiency. This technology is a process that consists
of the chemical absorption and thermal-stripping route. The CO2 in the flue gas stream is
captured by an absorbent solvent, such as monoethanolamine (MEA) and diethanolamine
(DEA) in the chemical absorption process. In the stripping process, the CO2-loaded solvent
is sent to a stripper, the pure CO2 is released, and the absorbent solvent is regenerated [4].

The PCC process studied in this paper is with 30 wt% MEA chemical solvent because
it is regarded as the benchmark solvent in academic work and industrial research. In order
to study the process behavior of the PCC process, the first-principal model simulation is
widely used. The process simulation software, such as Aspen HYSYSr, Aspen Plusr,
gPROMSr, and CO2SIMr are used to build models to calculate the mass flow rate of
stream, temperature, pressure, and other physical quantities in PCC for analytical pur-
poses [5–8]. Øi investigated the difference between equilibrium and rate-based models built
by Aspen HYSYSr and Aspen Plusr. It is reported that the rate-based models in software
are close to the equilibrium model when calculating CO2-removal efficiency as a function
of circulation rate, number of column stages, and inlet temperature [9]. In general, PCC
process simulations are developed by using first-principle models and compared for the
accuracy of these models with real plants. In addition, some studies improve the accuracy
of simulation models. To improve a simulation model’s predictions for experimental and
pilot results, Spek et al. upgraded the software package by using the regression of activated
2-amino-2-methyl-1-propanol(AMP)–piperazine (PZ) binary interaction parameters [10].
Luo et al. built a steady-state model, which is rate-based for the MEA-based PCC process.
This model is validated against thermodynamic and physical properties over a wide range
of pressures, temperatures, and CO2 loadings [11]. Dutta et al. built an equilibrium-based
absorber model by using the reduced stage efficiencies in order to reduce the computational
time for simulation. This model is used to predict operating conditions within an accepted
range [12]. Nonetheless, the implementation of further optimization and control based
on first-principle simulation model is challenged as the time required for solving differ-
ential and algebraic equations in this simulation model is approximately 4 s for one case.
Therefore, the alternative modeling method must be investigated and machine learning
turned out to be a promising one. Fernandez et al. has proven that the machine learning
techniques can be used to recognize high-performing metal-organic framework materials
in the CO2 capture process [13]. Venkatraman et al. used the machine learning technique
to model structure–property relationships between molecular structures of cations and
anions and their CO2 solubilities in the ionic liquid (IL)-based CO2 capture process [14].
Ahmadi et al. investigated the possibility of using an artificial neural network (ANN) and
least squares support vector machine (LSSVM) approaches to predict the viscosity and
thermal conductivity of CO2. Both methods are proven to be effective [15]. In order to
change the CO2 capture rate quickly and smoothly in a wide operating range, Wu et al.
performed a nonlinearity analysis of the multimodel predictive control strategy for solvent-
based postcombustion CO2 capture plants [16]. Rahimi et al. discussed how machine
learning implementations have improved the carbon capture process in absorption- and
adsorption-based approaches, ranging from the molecular to the process level. In particular,
the application of reinforcement learning to obtain the optimized operating parameters is
highlighted [17]. Shalaby et al. applied Matérn Gaussian process regression (GPR), rational
quadratic GPR, squared exponential GPR models, and a feed-forward ANN model in pre-
dicting the output parameters of the PCC process simulation in gPROMSr. The system’s
energy requirement, capture rate, and the purity of the condenser outlet stream are accu-
rately predicted [18]. Shahsavand et al. applied the backpropagation multilayer perceptron
(BPMLP) and the radial basis function (RBF) neural networks to understand packed ab-
sorption processes, especially the absorption of CO2 from the air by various alkanolamine
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solutions [19]. The result showed that the RBF networks perform more adequately than
the MLP network for filtering noise and capturing the real trend. Chan et al. used the
neural network rule extraction algorithm to reveal that the steam flow rate through reboiler,
reboiler pressure, and the CO2 concentration in the flue gas are the three most significant
parameters of the CO2 production rate [20]. Li et al. predicted the CO2 capture rate by
applying the bootstrap aggregated extreme learning machine (ELM) to build models based
on the data collected from the gPROMSr simulation model. The ELM model performs
well as it has a small mean square error (MSE) and reduces computational time [21]. The
possibility of the application of machine learning technique has been demonstrated through
research in the literature. However, the extreme gradient boosting (XGBoost) and support
vector regression (SVR) have not been investigated yet. This study aims to fill this research
gap of application of new algorithms. A mature machine learning-based modeling method
is introduced in this paper. Additionally, these advanced machine learning techniques are
applied in the context of process optimization. In this study, the process modeling approach
is data driven with the application of new algorithms (XGBoost and SVR) that improve
the prediction accuracy of PCC process parameters. In addition, the faster computational
time of these data-driven techniques to model the PCC process is advantageous during
optimization and control studies.

In the literature, the application of data-driven models for the optimization and
control of the energy systems has been investigated [22,23]. Mirlekar et al. employed the
autoregressive model with the exogenous inputs (ARX) method in the development of
biologically inspired optimal control strategy (BIOCS) for implementation on a subsystem
of a CO2 capture process [23]. Saboori et al. studied the application of particle swarm
optimization (PSO) in a multistage generation expansion planning (GEP) which includes
nuclear units, renewable energy units, and different fossil fuel-fired units equipped with
CCS [24]. Amar et al. used the genetic algorithm (GA), PSO, and artificial bee colony
(ABC) to optimize the radial basis function neural network (RBFNN) models employed
for modeling of CO2 solubility in brine [25]. Simulated annealing (SA) has also been
investigated in the study of the PCC process. SA is an optimization method based on the
analogy between the simulation of the annealing of solids and solving large combinatorial
optimization problems [26]. Mores et al. developed an optimized radial basis function
based on grid search coupled with SA and tenfold cross-validation algorithms. This
intelligent correlation model was used to predict the mass transfer coefficient for CO2
capture with NaOH solution in different types of rotating packed beds [27]. Dashti et al.
presented unique computational models to estimate CO2 solubility in commonly used
amines. A series of models, including the genetic algorithm-adaptive neurofuzzy inference
system (GA-ANFIS), PSO-ANFIS, coupled simulated annealing-least squares support
vector machine (CSA-LSSVM) and RBF neural networks were developed to estimate CO2
equilibrium absorption capacity in 12 aqueous amine solutions [28]. In this paper, a
systematic method is proposed to study the application of the machine learning technique
for reducing computational time in the simulation of the PCC process. The PCC process
simulation model is developed in Aspen HYSYSr in order to generate original data for
the study. The characteristics of the datasets are summarized and analyzed before the
application of machine learning. XGBoost and SVR algorithms are employed for building
data-driven models with the objective of predicting the CO2 CR and specific reboiler
duty (SRD) in the PCC process. These models are further incorporated into optimization
techniques represented by PSO and SA. Thus, the optimal process operating conditions are
obtained. In general, the SRD increases with the CR, whereas the cost-effective situation
deals with higher CR and lower SRD. Therefore, the optimized operating condition would
be the one with relatively high CR and low SRD. Such an integration would help in
improving online advanced control implementation and dynamic optimization of the
process. The paper is organized as follows. The method is described in Section 2; the
implementation results are discussed in Section 3; and in Section 4, the summary and
conclusions are presented.
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2. Method

In this section, the PCC process simulation, the machine learning algorithms incorpo-
rated into the optimization methods and the optimization techniques are described. The
workflow diagram considered in this study is shown in Figure 1. The large amount of data
required for machine learning from a pilot plant is unavailable. To overcome this challenge,
a steady-state process simulation model of the PCC is set up in Aspen HYSYSr [12]. This
model is used for generating the raw data for data-driven modeling purposes. These data
are summarized and analyzed, and then the XGBoost and SVR algorithms are applied to
develop data-driven models. The assessment indicators, such as coefficient of determina-
tion (R2) and MSE, are used to measure model performance. In the model validation step,
a new dataset is generated specifically for validation purposes. The data-driven models are
further used in optimization for searching the optimal operating conditions, such as the
largest CR or lowest SRD. The PSO and SA are adopted to perform optimization.

Figure 1. Workflow diagram of the proposed method for data-driven process modeling and
optimization.

2.1. PCC Process Simulation Model

The steady-state simulation model of the PCC process used in this study is shown in
Figure 2. There are two main process operations in the PCC. One is the absorption chemical
process with the solvent, and the other one is the desorption of CO2 from the loaded solvent
and regeneration of the lean solvent. The flue gas stream is absorbed by the lean amine
stream in the absorber column. The depleted flue gas, which does not contain CO2, is then
released from the top of the column into the atmosphere and the CO2-loaded MEA stream
(shown as the rich MEA stream in Figure 2) leaves the absorber from the bottom, followed
by a heat exchanger and a stripper column. In the stripper, the stripping vapor goes up
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and condenses at the cooler and condenser on the top. The condensate containing the
regenerated solvent is recycled back to the stripper. The CO2 separated (shown as CO2 for
compression in Figure 2) is sent to the compressor and further processed for transportation
or storage. Lean amine is recycled back to the absorber. This lean amine stream heats the
CO2-loaded MEA stream from the absorber in the heat exchanger.

Figure 2. Schematic of chemical absorption process representing postcombustion CO2 capture (PCC).

Flue gas mass flow rate, lean amine mass flow rate, CO2 molar fraction in flue gas,
lean amine loading, and rich amine loading are initially selected as independent variables.
The control variable method is used for data generation. Each variable is selected as the
control variable, and its value is changed in a stepwise manner while the other variables are
held constant. The capture rate and specific reboiler duty of simulated cases are recorded
and collected for further analysis and application. A base case, the main parameters of
which are calibrated with industrial data, are listed in Tables 1 and 2 [29]. Here, lean
amine loading is referred to the mole ratio of acid gas to the solvent from the bottom of the
stripping column which is lean in acid gas. Rich amine loading is referred to the mole ratio
of acid gas to the solvent from the bottom of the absorber column which is rich in acid gas.
The reboiler duty is the amount of heat required to regenerate solvent.

Table 1. Parameters in base case.

Stream Mass Flow Rate
(kg/s) Temperature (K) Pressure (bar)

Lean amine 0.642 313.7 1.703
Flue gas 0.158 332.4 1.033

Table 2. Base case values.

Stream Value

Lean amine loading (-) 0.281
Rich amine loading (-) 0.488

Capture rate (-) 0.763
Reboiler duty (MJ/kg) 5.958

The main components in the lean amine stream are H2O, CO2 and MEA. In the flue gas
stream, the main compositions are H2O, CO2 and N2. Mass fractions of lean amine stream
and molar fraction of compositions in the flue gas are listed in Table 3. A script in Python 3.8
connected to the process simulation model in the Aspen HYSYSr file is specifically written
for the implementation of changing values of controlled variables. The step size, upper and
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lower limits, and number of collected data samples for each variable are listed in Table 4. In
total, 4393 cases are simulated to generate the raw data by controlling and changing values
of different variables. In the next subsection, the machine learning techniques employed to
develop data-driven PCC process models are discussed.

Table 3. Stream composition in base case.

Compositions Lean Amine Mass Fraction Flue Gas Molar Fraction

H2O 0.633 0.033
CO2 0.062 0.167
MEA 0.305 -

N2 - 0.801

Table 4. Data collection information.

Unit Lower Limit Upper Limit Step Size Total Samples

Flue gas mass flow rate kg/s 0.108 0.262 0.0001 1543
Lean amine mass flow rate kg/s 0.452 2.004 0.01 1553

CO2 molar fraction in flue gas - 0.167 0.226 0.0004 150
Lean loading - 0.028 0.524 0.0005 1147

2.2. Machine Learning Techniques
2.2.1. Extreme Gradient Boosting

XGBoost, also known as extreme gradient boosting, was launched in 2016. It is a
decision tree-based ensemble machine learning algorithm that uses a gradient boosting
framework [30]. The evolution route of the XGBoost algorithm is shown in Figure 3, and
the instruction starts from the decision tree.

Figure 3. Schematic of evolution from decision tree to XGBoost.

Decision tree is a nonparametric supervised learning method used for classification
and regression. A decision tree usually consists of three main parts: the root node, decision
nodes, and leaf nodes. The root node is a point at which to start the model. The decision
node is a judgment node, a conditional judgement; for example, “lean amine loading is
above 0.3 or not”, and “flue gas flow rate is larger than 0.38 kg/s or smaller than 0.25 kg/s”
exist in a decision node. The different answer to the judgment node leads to different nodes
in the next level. The calculation is perfomed to cross-decision nodes until it reaches the
leaf node, the last level of the decision tree. The leaf node is the result of the calculation.

Bagging, short for “bootstrap aggregating”, is an ensemble learning method. In this
method, a certain number of samples are randomly picked from the sample pool with
replacement. After multiple selections, (for regression problems) the average of the multiple
results, (for classification problems) or the result most voted, is the final result. A sample
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can be chosen more than one time in the bagging method. Bagging can effectively reduce
variance in noisy datasets.

Random forest is a bagging-based algorithm. As known from previous decision tree
introduction, characteristics are chosen to be the judgement base in the decision node. In
random forest, bagging is used to choose characteristics to form decision trees. All these
trees come together to be the “forest”, and the final result comes from the average or the
most voted of all tree results.

Boosting is a family of algorithms that convert weak learners into strong learners. At
first, training data are used to build a basic learner, and then the wrong prediction samples
are focused. The errors are corrected and used to build a stronger learner. This “correct”
step is repeated until a model emerges that has an error within acceptable range.

Gradient boosting, which is also called gradient boosting or gradient tree boosting, was
developed by Friedman [31]. Three basic elements, a loss function to be optimized, a weak
learner to make predictions, and an additive model to add weak learners to minimize the
loss function, are included in the gradient-boosting algorithm. Squared error is used as loss
function for regression problem and logarithmic loss is used for classification problems. In
gradient boosting, the decision tree is the weak learner. A decision tree could be constrained
in different ways, including maximum number of layers, nodes, and leaf nodes. Each time,
a new decision tree is added for minimizing the loss function and the existing trees remain
unchanged.

XGBoost is a decision-tree-based ensemble machine learning algorithm. It takes the
bootstrap sample 1 to build model 1, then takes the bootstrap sample 2 to build model 2,
which leads a smaller regularized objective function than model 1. Then it iterates until the
final model and result are produced. The regularized objective function is

L(φ) = ∑
i

l(ŷi, yi) + ∑
k

Ω( fk), (1)

where Ω( f ) = γT + 1
2 λ‖w‖2. L(φ) is the objective in minimization problem. It is the sum-

mation of convex loss function represented as ∑i l(ŷi, yi) and regularization item denoted
as ∑k Ω( fk). Here, yi and ŷi stand for targeted value and predicted value, respectively. λ
and γ are hyperparameter constants. T is the number of leaf nodes. w is the predicted
value of the leaf node. The data from the PCC process simulation is used in this machine
learning method. The tasks of predicting capture rate and SRD are regression problems
solvable by the XGBoost algorithm.

2.2.2. Support Vector Regression

Support vector machine (SVM) is commonly used for solving classification problems.
In a few regression applications, SVR is used. In an SVR model, a line or a hyperplane
(when the data has higher dimensions) is searched to fit the data. The users have the
freedom to decide the acceptable error. In a two-dimensional space, assume the line to fit
the data is

|Yi − αXi| ≤ ε. (2)

For a classical linear regression, the objective is to minimize the squared error of
original values and predicted values. In the SVR model, the objective (f) is to minimize the
coefficients, the l2-norm of the coefficient vector, which is shown as follows [32]:

f = MIN(
1
2
‖α‖2 +

n

∑
i=1

C|ξi|). (3)

Here, Yi stands for the targeted value, Xi represents the feature value, and α denotes
coefficients. ξ is the differences between y value of outliers to the closest hyperplane. In
SVR models, kernel functions are used to transform input data to the required form of
processing data. There are different kinds of kernels: the Gaussian kernel, the radial basis
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function, the sigmoid kernel, and the polynomial kernel. The advantages of SVR is that
its computational complexity does not depend on the dimensionality of the input space.
Moreover, it has excellent generalization capability with high prediction accuracy [33]. The
SVR algorithm is an alternative way to build models for predicting CR and SRD in the
PCC process.

2.2.3. Model Performance Assessment

Three indicators, R2, MSE, and cross-validation score, are used to evaluate the perfor-
mance of data-driven models:

A. Coefficient of determination (R2)

R-squared (R2) is a statistical measure that represents how much the variance for a
dependent variable can be explained by independent variables in a regression model. In
general, a higher R2 indicates a better regression effect. The formula of R2 is

R2 = 1− SSR
SST

= 1− ∑(yi − ŷi)
2

∑(yi − ȳ)2 . (4)

SSR represents the sum squared regression, SST represents the total sum of squares.
In Equations (4) and (5), yi and ŷi have the same meaning as in Equation (1). The yi is
real value, ŷi is the predicted value, ȳ is the average of the actual y, and q is the number
of observations.

B. Mean Square Error

MSE is the average squared distance between the actual and predicted values. The
formula is

MSE =
∑(yt − ŷt)2

q
. (5)

C. Cross-validation score

Cross-validation is a technique for detecting overfitting or assessing the generalized
ability of the model. Overfitting means a model fits well and has high accuracy with the
training data, while it has low accuracy against the test or unseen data. Generalization
refers to a model’s ability to adapt properly to new or unseen data that are drawn from the
same distribution as the one used to create the model. A model that is overfitting has a low
generalized ability. When cross-validation is used, datasets are separated into several folds
evenly. At each turn, one fold is selected as a test fold whereas the others are training folds.
This method is useful as it gives the algorithm different subsets of data to train on. In this
study, the cross-validation score is the average value of R2 of all testing folds. In the next
subsection, optimization techniques associated with machine learning incorporation are
explained. Specifically, the agent-based and stochastic optimization methods used in this
study are illustrated.

2.3. Optimization Algorithms
2.3.1. Particle Swarm Optimization

PSO is an agent-based search optimization technique inspired by the migration be-
havior of birds proposed by Kennedy et al. [34]. Assume there are N particles subject to
random initialization in a swarm. These particles have random positions and velocities
in a D-dimensional search space, and they move at a certain speed toward the objective
location inside the whole space. For each particle, the new velocity is updated based on its
own historical experience and the group general experience. Assume the D-dimensional
position vector of the i -th particle is

Si = (Si1, Si2, Si3, ..., SiN), i = 1, 2, ..., N. (6)
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The velocity vector of i-th particle is

Vi = (Vi1, Vi2, Vi3, ..., ViN), i = 1, 2, ..., N. (7)

The equations used to update the position and velocity of each particle are

vk+1
id = mvk

id + c1r1(pk
id − sk

id) + c2r2(pk
gd − sk

id) (8)

sk+1
id = sk

id + rvk+1
id . (9)

The equation to update the speed of each particle consists of three parts. The vid
and sid are the velocity and position of the i-th particle in the d-th dimension, k and k + 1
represent the current and next iterations. The first part, mvk

id, is the exploration, and m is an
inertia factor of fixed value. The second part c1r1(pk

id − sk
id) represents self-learning, and

the third part, c2r2(pk
gd − sk

gd), represents group learning. c1 and c2 are learning factors,
r1 and r2 are random numbers within the range [0, 1]. pid and pgd are the most satisfied
positions searched by the i-th particle and the whole group. The pid and pgd are recorded as

Pbest = (Pi1, Pi2, Pi3, ..., PiN), i = 1, 2, ..., N (10)

Gbest = (Gi1, Gi2, Gi3, ..., GiN), i = 1, 2, ..., N. (11)

The PSO is a heuristic algorithm and available for this case to search for the optimized
operating conditions in PCC within the XGBoost models.

2.3.2. Simulated Annealing

SA is a stochastic optimization algorithm based on Monte Carlo iterative solution
strategy introduced by S. Kirkpatrick et al. in 1983 [35]. The main idea of this method is to
introduce the annealing in solids into traditional optimization problems. A temperature, τ,
is set for the control of the whole optimal solution searching process. Assume there is a
initial solution ψ for the goal function E(ψ), and random perturbations are added to this
solution to generate the new solution. For these two solutions, if the new solution is better
than old one, it is accepted. If it is not, it is not to be given up. Instead, Metropolis criteria
is used to decide whether the new solution will be accepted or not. In Metropolis criteria,
the probability of accepting the new solution is

P =

{
1 E(ψ + 1) < E(ψ)

exp(− (E(ψ+1)−E(ψ))
τ ) E(ψ + 1) ≥ E(ψ).

(12)

After deciding to accept the new solution or not, the number of iterations are confirmed.
If the end condition is not met, the temperature is adjusted slowly, and a new solution
is regenerated. The SA optimization method is versatile as it does not rely on restrictive
properties of the models. It is also used for optimization in this study to search for the
optimal operating conditions. Note that all the data-driven model development and
optimization studies in this paper are carried out by using Python script and subroutines
on an Intel Core i7 (Sandy bridge) 2.30 GHz processor. In the next section, the data analysis
result, the prediction performance of built models, and the optimization results are shown
and discussed.

3. Results
3.1. Data Analysis and Model Development

Data analysis aims at having an overview of the datasets by investigating the relations
between selected variables. The Pearson correlation coefficient which measures the linear
correlation between variables is used. Given the paired dataset (Z11,Z21),(Z12,Z22),...,(Z1n,Z2n),
the formula of Pearson correlation coefficient RZ1,Z2 is
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RZ1,Z2 =
∑n

i=1(Z1i − Z1)(Z2i − Z2)√
∑n

i=1(Z1i − Z1)2
√

∑n
i=1(Z2i − Z2)2

, (13)

where Z1 and Z2 are the average values of variables Z1 and Z2. Figure 4 shows Pearson
correlation coefficients between distinct variables in this study.

Figure 4. Plot of data correlation coefficients.

In Figure 4, the correlation coefficients of different variables considered in this study are
shown in the grid format. The grid color is proportional to the correlation coefficient. The
color tends to be greener with smaller values, whereas the blue color corresponds to a larger
value. For example, the grids intersected by lean amine flow rate and the flue gas flow rate
show the correlation coefficient is −0.17, and the color is light green. This means that these
two variables are slightly inverse related. The correlation coefficient between rich amine
loading and lean amine loading is 0.62, which shows they have positive linear relationships
and that the rich amine loading is influenced by the lean amine loading. Therefore, rich
amine loading is not included as an input variable. A general understanding of the datasets
is obtained by this Pearson correlation coefficient method. Note that nonlinear relations are
not taken into account here.

A detailed analysis showing the relationship between dependent and independent
variables is shown in Figure 5. In this section, Depleted flue gas(To atmosphere), CO2 for
compression, and Rich MEA refer to the gas stream from the absorber, the captured CO2
stream out from the stripper, and the loaded amine stream out from absorber, as shown in
Figure 2, which depicts the simulation model. In Figure 5, the solid line denotes smoothed
data and solid dots representing original data obtained from process simulation models.
Figure 5a includes the capture rate and the flue gas flow rate of 1543 process simulation
cases with a downward trend. This shows that the capture rate and the flue gas flow rate are
inversely proportional. The highest point represents a case in which the flue gas flow rate
is 0.108 kg/s and the capture rate is 0.874; the lowest one indicates a case in which the flue
gas flow rate is 0.262 kg/s and the capture rate is 0.556. The CO2 entering the absorber in a
time unit increases with the flue gas mass flow rate. Due to the solvent quantity limitation
and increased inflow of CO2, the capture rate is lower, and more CO2 is released into the
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atmosphere through Depleted flue gas (To atmosphere) stream. Therefore, the capture rate
is smaller. Toward the left side of this plot, where the flue gas flow rate is close to 0.262,
the capture rate fluctuates. This could be because of the model instability. In Figure 5a,
the relation between the SRD and the flue gas flow rate is inversely proportional. Because
SRD is the reboiler duty divided by the mass of CO2 in CO2 for compression stream, the
SRD decreases as the CO2 in CO2 for compression stream goes up and the reboiler duty goes
down. In Figure 5b, the capture rate grows with the lean amine flow rate. This is because
the CO2 entering the rich stream increases with the lean amine flow rate. In Figure 5b,
the trend of CO2 in the rich MEA stream is upward due to increase in the lean MEA flow
rate and CR. Consequently, the reboiler duty is larger as the stream enters the stripper that
contains more MEA. The SRD increases in a similar manner. The rise in CO2 molar fraction
in flue gas results in the increase in CO2 in the stream that is released into the atmosphere
and the Rich MEA stream, but the increment in Depleted flue gas (To atmosphere) is larger
while the increment in Rich MEA stream is smaller. This provides an explanation for the
lower CR values in this case. The reboiler duty of the stripper is lower, resulting in a lower
SRD. Lean amine loading is changed with the mass flow rate of CO2 in the lean amine.
Because the lean amine loading is larger, CO2 in the Depleted flue gas (To atmosphere) stream
increases, and the capture rate decreases. Reboiler duty and SRD are lower accordingly.
From Figure 5, it is observed that the SRD fluctuates due to the instability in the reboiler
duty. In general, data smoothing is a way to remove the fluctuations or disturbances.
The data smoothing is implemented via methods such as simple exponential, moving
average, exponential moving average, and Holt–Winters smoothing methods. However,
the expected improvement is not observed while using the smoothed data to develop the
model. For the consideration of keeping original information, the following models are
developed by using the raw data without smoothing.

(a) (b)

(c) (d)

Figure 5. Plots of original data collected and smoothed curve for each independent variable and
dependent variable. (a) Flue gas flow rate vs. capture rate/specific reboiler duty. (b) Lean amine flow
rate vs. capture rate/specific reboiler duty. (c) CO2 molar fraction in flue gas vs. capture rate/specific
reboiler duty. (d) Lean amine loading vs. capture rate/specific reboiler duty.
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3.2. Validation Results

The 4393 data samples are randomly divided into training datasets and test datasets
with a division ratio of 7:3. The data-driven models are built based on training datasets.
The predicted values based on independent variables in test datasets are compared with the
original values to measure the model performance. The four indicators, cross-validation
score, MSE, and R2, are used for assessing model performances. The model which is built
by XGBoost for predicting capture rate had a cross-validation average score of 0.9995, R2

of 0.9996, and MSE of 0.0000. Figure 6a depicts the plot of the model results obtained
by employing the XGBoost machine learning algorithm. In particular, the difference
between predicted CR and tested CR in terms of the error represented by black solid dots
is shown. Most points are distributed around the horizontal line y = 0. This means that
the predicted values are close to the original values, which indicates the model has an
accurate prediction. This aligns well with the high R2 of 0.9996. One possibility to lead to
the high R2 is the overfitting. To validate this accuracy, cross-validation is performed to
check the existence of the overfitting. In addition, the SVR algorithm is implemented to
develop the other model for comparison purposes. The SVR models show accurate/similar
prediction performance when compared with XGBoost model. If the SVR models show
different prediction performances, then it can be concluded that the XGBoost models show
better prediction abilities. Consequently, four models are built to predict capture rate and
SRD individually by employing XGBoost and SVR algorithms, respectively. The closer the
dots are to the y = 0, the better performance the model has. The qualities of both XGBoost
and SVR models are observed in Figure 6. In particular, the XGBoost model shows better
performance in predicting CR and SRD when compared with the SVR model as the error
plot is less scattered. When using the XGBoost to predict the capture rate, the model has the
highest prediction accuracy among the four models. The model using the SVR algorithm to
predict the capture rate has the most scattered pattern, which illustrates the lowest accuracy.
In Table 5, the performance of distinct models are summarized.

(a) (b)

(c) (d)

Figure 6. Plots of errors for model prediction. (a) Error of capture rate prediction (XGBoost). (b) Error
of SRD prediction (XGBoost). (c) Error of capture rate prediction (SVR). (d) Error of SRD prediction
(SVR). All errors for model prediction are based on original data.
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Table 5. Model assessment in terms of model validation and verification. The cross-validation score
is the average value of R2 of all testing folds. Validation R2 and Validation MSE are the values during
the model validation. After validation, 78 cases different from training and test datasets are used for
verification. The verification R2 and verification MSE are the results of model performance assessment
during verification.

Assessment XGBoost
Predict CR

XGBoost
Predict SRD

SVR Predict
CR

SVR Predict
SRD

cross-validation score 0.9995 0.9934 0.8573 0.9620
Validation R2 0.9996 0.9930 0.8418 0.9622

Validation MSE 0.0000 0.0595 0.0041 0.3231
Verification R2 0.9170 0.8077 0.8793 0.8716

Verification MSE 0.0029 0.4043 0.0042 0.2700

3.3. Verification Results

The verification of the developed models is performed by simulating 78 cases with
the consideration of variables within the same range, as shown in Table 4 during process
simulation. These cases are different from the cases in training datasets and test datasets.
This verification dataset can include more data samples; however, the number of data
samples is restricted due to the operational range where the process model is developed.
The verification results of models are shown in Table 5.

It is assumed that the models are available when the independent variables are within
certain ranges shown in Table 4. The availability of developed models in all cases or outside
the range is a subject investigation. From Table 5, it is seen that the XGBoost models show
R2 of 91.70% in predicting capture rate and 80.77% in predicting SRD, whereas the R2 of
SVR models are 87.93% in predicting capture rate and 87.16% in predicting SRD. The model
results are discussed as follows.

(1) In general, data-driven modeling is implemented via data collection, data analysis,
variables selection, modeling and verification. It is noted that data collection and data
analysis are steps that precede the variable selection. In this order, the related variables are
kept, and unrelated variables are discarded. However, in this study, the order is slightly
different due to data availability. The data are not preprovided and are generated by using
process simulation. Hence, it is unrealistic to produce datasets that include all variables
in process simulation models. Thus, the variable selection is conducted first for ensuring
the working efficiency. The variables are chosen mainly based on previous research and
industrial experience.

(2) Figure 5b–d have fluctuations, and Figure 5c has breakpoints. This is due to the
instability of the process simulation models. The variables in these first-principal models
include multiple differential and algebraic equations. Therefore, the same inputs lead to
outputs with slight differences due to steady-state multiplicity.

(3) The amount of the original data samples is more than 4000, only 70% of the data
samples are used to train the model and the step size between different samples are small,
which may not differentiate much. Therefore, the model still has room for improvement if
more data samples are included in training datasets.

(4) In many applications, the XGBoost algorithm has shown high accuracy of pre-
dictions. In this study, training and test datasets are synthetic data generated by the
steady-state simulation. Therefore, these data have certain mathematic expressions because
they come from the same simulation process model. Consequently, it is possible that the R2

of the model can reach 99%. The other reasons for this high accuracy are the complexity
of the prediction task, the number of training datasets, and the possibility of overfitting,
which has mentioned before.
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3.4. Optimization Results

In this section, the optimization results of the PCC process simulation are explained.
In general, the SRD increases with the capture rate. However, the lower SRD and higher
capture rate are favorable. Therefore, three cases are investigated corresponding to the
maximum capture rate, the lowest SRD, and the one with a tradeoff between capture rate
and SRD respectively. The objective functions are shown in Equations (14)–(16). We have

f (x) = CR(x) (14)

f (x) = SRD(x) (15)

f (x) =
SRD(x)

SRDupperlimit
− CR(x)

CRupperlimit
, (16)

where the SRD(x) and CR(x) are the SRD and CR predicted by the XGBoost model based on
the vector x, which represents the operating conditions. In the tradeoff case, the capture rate
and the SRD are scaled to have a similar unit as they are not within the same ranges. The
implementation of the agent-based and stochastic optimization involve many iterations.
At each iteration, the values of different variables obtained by running process simulation
are desired. It takes the process simulation model 3.15 s to predict the CR and SVR for
1 case. On the other hand, the data-driven models developed by using the XGBoost and
SVR algorithms require 0.022 s and 0.217 s for predicting the CR and SVD for 1318 cases.
The reduction of the prediction time has a positive effect on the optimization. During the
application of the PSO algorithm, a swarm of 10 particles and 1500 number of iterations are
considered. The operating conditions for the three specific objectives mentioned above are
searched. The maximum capture rate reaches 95.98%, and the lowest SRD is 3.720 MJ/kg.
The tradeoff case shows the minimal value of fitness in Equation (16) as −0.530. The
detailed results are shown in Table 6. For the tradeoff case, the CR is lower than the CR of
76.3% in the base case and the SRD is 1.7 MJ/kg less than the 5.9 MJ/kg in the base case
with the decrease of 28.2%.

Table 6. Optimized operating conditions for PSO algorithm implementation. Case 1: Find the
operating conditions that resulted in the largest CR without leveraging the value of SRD. Case 2:
Find the operating conditions corresponding to the smallest SRD without leveraging the value of CR.
Case 3: A trade-off case, it aims to find a relatively high CR and low SRD.

Operating
Conditions Case 1: Largest CR Case 2: Smallest

SRD
Case 3: Trade-Off

Case

flue gas flow rate 0.158 0.26 0.18
lean amine flow rate 0.606 0.46 0.46
CO2 molar fraction 0.167 0.21 0.200
lean amine loading 0.028 0.45 0.309

CR 0.960 0.550 0.722
SRD 19.029 3.720 4.3

The results obtained from the SA algorithm implementation are different from the
PSO algorithm. For the SA algortihm, the initial temperature τ of 1000 °C, 300 iterations are
considered. The searched operating points are depicted in Table 7. The largest capture rate is
94.87%, smaller than the 95.98% in the PSO algorithm. The SA method is better in searching
the smallest SRD operating point. The operating point found by SA is 3.624 MJ/kg, is
smaller than the 3.720 MJ/kg in the PSO algorithm. In the tradeoff case, a CR of 70.08%
and SRD of 4.079 MJ/kg are obtained by employing SA. Compared with the base case,
which has a CR of 76.3% and an SRD of 5.9 MJ/kg, although the CR was 6.22% lower, the
SRD decreased by 1.83 MJ/kg, which accounts for 31.02% of 5.9 MJ/kg. The fitness f(x) in
Equation (16) with this operating point is −0.518. As this value is larger than −0.530 in the
PSO algorithm, the tradeoff operating points in the PSO performs better.
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Table 7. Optimized operating conditions for SA algorithm implementation. Case 1: Find the operating
conditions that resulted in the largest CR without leveraging the value of SRD. Case 2: Find the
operating conditions corresponding to the smallest SRD without leveraging the value of CR. Case 3:
A trade-off case, aims to find a relatively high CR and low SRD.

Operating
Conditions Case 1: Largest CR Case 2: Smallest

SRD
Case 3: Trade-Off

Case

flue gas flow rate 0.143 0.261 0.163
lean amine flow rate 1.914 0.460 0.474
CO2 molar fraction 0.166 0.218 0.201
lean amine loading 0.079 0.409 0.339

CR 0.949 0.550 0.701
SRD 13.540 3.624 4.079

The operating points with the largest CR found by PSO and SA are quite different,
whereas those with the smallest SRD and tradeoff case are similar. For the operating
conditions corresponding to the lowest SRD, despite the other conditions being similar, lean
amine loading reduces the value from 0.45 to 0.409, and the SRD reduces from 3.720 MJ/kg
to 3.624 MJ/kg. This may not align with the trend shown in Figure 5c. These two operating
points happen to be in the fluctuation part, where the decrease of lean amine loading leads
to a lower SRD. This is possible in the case that the change of lean amine loading is small.
The reason for this trend reversal is due to the three other parameters (flue gas flow rate,
lean amine flow rate, CO2 molar fraction in flue gas) in these operating cases being similar
rather than exactly the same. The change of the other three parameters may also influence
the SRD. The tradeoff cases searched by PSO and SA are similar, the differences between
values are less than 0.05, for example, and the flue gas flow rate is 0.18 kg/s and 0.162 kg/s,
less than 0.02 kg/s. By combining these two algorithms, it is seen that the largest capture
rate is 95.98%, and the lowest SRD is 3.624 MJ/kg. The tradeoff point, which has a balance
between the larger capture rate and the lower SRD, is with flue gas flow rate 0.18 kg/s,
lean amine flow rate 0.46 kg/s, CO2 molar fraction 0.201, and lean amine loading 0.309.
The corresponding capture rate is 72.2% and specific reboiler duty is 4.3 MJ/kg. In the next
section, the conclusions of this paper are presented.

4. Conclusions

In this paper, the application of machine learning techniques such as XGBoost and
SVR for the PCC process model simulation was demonstrated successfully. First, the
energy efficiency indicators and parameters associated with the PCC process model were
identified. Machine learning algorithms were then applied to build models to predict
CR and SRD. The models were used in optimization routines, and adequate operating
conditions are characterized. The data-driven models showed high accuracy in predicting
the capture rate and energy requirement in the reboiler of the PCC model. The XGBoost
model had the accuracy of 99.9% and 99.3% for predicting CR and SRD based on the
validation datasets. The SVR model showed 84.1% and 96.2% in CR and SRD prediction,
respectively. The computation time for XGBoost and SVR models was approximately 90%
lower when compared with the first-principle-based process model. Thus, the data-driven
models showed improved performance in the time-efficient aspect. The goal of developing
time-efficient models by machine learning techniques was achieved. The data-driven
model were incorporated in optimization methods such as PSO and SA. The largest capture
rate reached was found to be 96.0%, and the corresponding specific reboiler duty was
19.0 MJ/kg. The lowest specific reboiler duty was 3.6 MJ/kg; however, it had a low capture
rate of 55.0%. The ideal operating condition was flue gas flow rate as 0.18 kg/s, lean amine
flow rate as 0.46 kg/s, CO2 molar fraction in flue gas as 0.20, and lean amine loading as 0.31.
The corresponding CR and SRD are 72.2% and 4.3 MJ/kg, respectively. In this case, the CR
decreases 4.1% lower and SRD dwindles 1.7 MJ/kg compared with the base case. Thus,
the application of machine learning techniques was demonstrated as useful in process
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optimization considering PCC process simulation. The advantage of fast model predictions
by using data-driven techniques can be extended in the application of advanced online
control and optimization methods. Processes with fast dynamics, in which the control
makes calculations within a second, are required to benefit from the proposed method.
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Nomenclature and Abbreviations
The following nopmenclature and abbreviations are used in this manuscript:

XGBoost eXtreme Gradient Boosting
SVR Support Vector Regression
CR Capture Rate
SRD Specific Reboiler Duty
R2 Coefficient of determination
WMO World Meteorological Organization
GHG Greenhouse Gas Emissions
CCS Carbon capture and storage
PCC Post-combustion capture
MEA Monoethanolamine
DEA Di-EthanolAmine
AMP 2-amino-2-methyl-1-propanol
PZ Piperazine
IL Ionic Liquid
ANN Artificial Neural Network
LSSVM Least Squares Support Vector Machine
GPR Gaussian Process Regression
BPMLP Back Propagation Multi-Layer Perceptron
RBF Radial Basis Function
ELM Extreme Learning Machine
MSE Mean squared error
ARX Auto-Regressive model with eXogenous inputs
BIOCS Biologically Inspired Optimal Control Strategy
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PSO Particle Swarm Optimization
GEP Generation Expansion Planning
GA Genetic Algorithm
ABC Artificial Bee Colony
RBFNN Radial Basis Function Neural Network
SA Simulated Annealing
GA-ANFIS Genetic Algorithm-Adaptive Neuro Fuzzy Inference System
PSO-ANFIS Particle Swarm Optimization ANFIS
CSA-LSSVM Coupled Simulated Annealing-Least Squares Support Vector Machine
SVM Support Vector Machine
SST The total sum of squares
SSR The sum squared regress
MSE Mean squared error
SA Simulated Annealing
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