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Quantum topological phase transitions in skyrmion crystals
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Topological order is important in many aspects of condensed matter physics and has been extended to bosonic
systems. In this Letter we report on the nontrivial topology of the magnon bands in two distinct quantum
skyrmion crystals appearing in zero external magnetic field. This is revealed by nonzero Chern numbers for some
of the bands. As a bosonic analog of the quantum anomalous Hall effect, we show that topological magnons can
appear in skyrmion crystals without explicitly breaking time-reversal symmetry with an external magnetic field.
By tuning the value of the easy-axis anisotropy at zero temperature, we find eight quantum topological phase
transitions signaled by discontinuous jumps in certain Chern numbers. We connect these quantum topological
phase transitions to gaps closing and reopening between magnon bands.
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Introduction. Topological order in fermionic condensed
matter systems lies at the heart of the understanding of
the quantum Hall effect (QHE) [1,2], the quantum anoma-
lous Hall effect (QAHE) [3,4], the quantum spin Hall effect
(QSHE) [5], and topological insulators (TIs) [6]. The QHE
involves explicit time-reversal symmetry breaking by an ex-
ternal magnetic field, while the QSHE and TIs are found
in time-reversal-symmetric systems [5–8]. The QAHE is a
special case, taking place in systems where time-reversal sym-
metry is spontaneously, and not explicitly, broken. It is thus
a manifestation of the QHE without the need for an exter-
nal magnetic field [4]. It was later shown that also bosonic
excitations may feature topological properties [9–12]. The
collective fluctuations of quantum spins, i.e., magnons, have
been shown to be topologically nontrivial in magnonic crys-
tals [9], dipolar magnetic thin films [10], and in ferromagnets
on the honeycomb lattice [13–17]. In the model used in
Refs. [13–15], next-nearest neighbor Dzyaloshinskii-Moriya
interaction (DMI) realizes a bosonic analog of the Haldane
model [3] in a system of insulating spins.

Even though analogies were proposed [13,17–20], topo-
logical magnon systems do not show direct equivalences of
the QHE, QAHE, and QSHE [5,6,15]. Since bosons obey
Bose-Einstein rather than Fermi-Dirac statistics, the Hall con-
ductivity is not quantized [15]. The authors of Ref. [11]
introduced the bosonic analog of a TI, a topological magnon
insulator. The nontrivial topology of the magnon bands gives
rise to chiral edge states within a bulk magnon gap. However,
since bosonic systems lack the concept of a Fermi surface, the
bulk is not guaranteed to be insulating with respect to spin
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currents [14]. Still, the chiral edge states resulting from topo-
logically nontrivial magnons allow the creation of magnon
currents that are insensitive to backscattering and disorder
[9,10]. These hold promising applications such as spin-current
splitters, waveguides, and interferometers [9,12]. In addition,
magnetoelastic coupling leads to chiral phonon transport in-
duced by the topological magnons [15].

The nontrivial real-space magnetic texture of skyrmions
means they are topologically protected [21,22]. Therefore,
skyrmions received a great deal of interest, and are being
explored for applications in magnetic memory technology,
unconventional computing, and numerous other applications
[22–35]. The reciprocal space topology held by the magnon
bands in skyrmion crystals (SkXs) was also explored [36–40],
and a topological phase transition driven by a magnetic field
was found in Ref. [38]. Furthermore, evidence of the nontriv-
ial topology of magnon bands in SkXs was observed in an
experiment [40].

In Ref. [41], we explored the quantum fluctuations of the
order parameter for quantum SkXs. Quantum skyrmions are
skyrmions with such a small size that the continuum limit
breaks down and the quantum nature of the individual spins is
not negligible [41–43]. In this Letter we reveal eight quantum
topological phase transitions (QTPTs) [7,44–46] driven by
a tunable easy-axis anisotropy in the same quantum SkXs
that are explored in Ref. [41]. These QTPTs are signaled by
discontinuous jumps in the Chern numbers [9] of the magnon
bands. Here, we consider QTPTs to be topological phase tran-
sitions occurring at zero temperature by tuning a parameter in
the Hamiltonian. The SkXs we consider are inspired by the
observation of a SkX containing nanometer-sized skyrmions
in a magnetic monolayer [47]. Since the SkXs are stabilized
in zero external magnetic field [41,47], the QTPTs occur in a
time-reversal-symmetric model. Instead, the magnetic order
of the SkX ground state (GS) spontaneously breaks time-
reversal symmetry, allowing nonzero Chern numbers [12]. In
that sense, our skyrmion system is analogous to the QAHE in
fermionic systems. This is in contrast to previous studies of
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FIG. 1. (a) The classical ground state of the skyrmion crystal SkX1, (b) its magnon spectrum at low K along with the Chern numbers of
each band, and (c) its magnon spectrum at high K along with the Chern numbers of each band. In (a), colors indicate the z component of the
unit vector determining the direction of the spin miz, while arrows show its projection on the xy plane. The spectra are plotted along the path
in the first Brillouin zone (1BZ) that is sketched in the middle. (d) Shows the four quantum topological phase transitions (QTPTs) found in
SkX1, where some Chern numbers show discontinuous jumps at the approximate values of K/J shown in gray. The calculated Chern numbers
are shown with markers, while dotted or dashed lines are included for illustration. (e)–(h) The same as (a)–(d), but for the distinct skyrmion
crystal SkX2. The parameters are D/J = 2.16,U/J = 0.35, S = 1, (a) K/J = 0.518, and (e) K/J = 0.519.

topological magnons in SkXs, where time-reversal symmetry
is explicitly broken by external magnetic fields [36–40].

As pointed out in Ref. [37], the bulk-edge correspondence
is not guaranteed unless the finite geometry contains an in-
teger number of unit cells. However, by letting the GS adapt
to a strip geometry, the authors of Refs. [36–38] found the
expected number and chirality [9] of edge states based on the
bulk Chern numbers in SkXs. Therefore, we will not explicitly
prove the existence of chiral edge states here. Assuming the
validity of the bulk-edge correspondence in a finite geometry,
the QTPTs could be used to switch chiral edge states on
and off.

Model. As in Ref. [41], we use the time-reversal-symmetric
Hamiltonian

H = Hex + HDM + HA + H4, (1)

where

Hex = −J
∑
〈i j〉

Si · S j, (2)

HDM =
∑
〈i j〉

Di j · (Si × S j ), (3)

HA = −K
∑

i

S2
iz, (4)

H4 =U
�∑

i jkl

[(Si · S j )(Sk · Sl ) + (Si · Sl )(S j · Sk )

− (Si · Sk )(S j · Sl )]. (5)

The spin operator Si, with magnitude S, pertains to lattice
site i on the triangular lattice. We consider a nearest-neighbor
ferromagnetic exchange interaction, J > 0. In Ref. [47], the
DMI between Fe atoms on the surface originates with the
strong spin-orbit coupling from the Ir atoms [23]. We as-
sume a similar effect in our model and set the DMI vector
to Di j = Dr̂i j×ẑ, where r̂i j is a unit vector from site i to
site j. Like in Ref. [41], we will discuss a tunable easy-
axis anisotropy K , motivated by the findings of Refs. [48,49]
where it was shown that applying mechanical strain can tune
the magnetic anisotropy. The Hamiltonian also contains the
four-spin interaction H4, acting between four sites that are
oriented counterclockwise and make diamonds of minimal
area [47,50]. The reduced Planck’s constant h̄ and the lattice
constant a are set to 1.

We refer to Refs. [41,51] for details of the two distinct
SkX GSs, which are separated by a quantum phase transition
(QPT) at K = Kt with Kt/J ∈ (0.518, 0.519). The classical
GSs of SkX1 and SkX2 are shown in Figs. 1(a) and 1(e)
for K/J = 0.518 and K/J = 0.519, respectively. By including
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quantum corrections in a calculation of the expectation value
of the Hamiltonian, it is found that 〈H〉 is lower than the clas-
sical GS energy. Hence, quantum skyrmions are energetically
preferred over their corresponding classical GSs [41,51]. The
introduction of the Holstein-Primakoff transformation via ro-
tated coordinates [52] involves approximations whose validity
are discussed in Refs. [41,51]. Possible corrections to our pre-
dictions due to the ignored magnon-magnon interactions are
discussed in Refs. [12,37]. Dipolar interactions were shown
to affect the high-energy magnon bands of SkXs in Ref. [39].
Since we consider a magnetic monolayer, dipolar interactions
are not expected to have significant effects [23,47]. The study
of dipolar interactions is also beyond the scope of this Letter.
For these reasons, they are excluded from our model.

The diagonalization of the system to obtain the magnon
bands [53] is shown in detail in Refs. [41,51]. We take
the transformation matrices Tk and the magnon bands Ek,n

as inputs in this Letter. The 15 magnon bands are num-
bered from top to bottom in terms of energy. The first
Brillouin zone (1BZ) is the same for all 15 sublattices in both
SkX1 and SkX2 and we define the points � = (0, 0), X =
(52π/135, 0), M = (π/5, π/3

√
3), S = (2π/135, 2π/3

√
3),

and Y = (0,−2π/3
√

3) in the 1BZ [41,51]. These points and
the 1BZ are sketched in Fig. 1.

Chern numbers. Let �n be a matrix whose nth diago-
nal element is 1 and all other matrix elements are zero,
�n,i, j = δinδ jn. From this, we define a projection matrix Pk,n =
T −1

k �nTk. The bosonic nature of the magnons is encoded in the
paraunitary transformation matrix [41,51,53]. Then the Berry
curvature of the nth band is given by [2,9]

Bn(k) = iεμνTr
[(

δkμ
Pk,n

)
Pk,n

(
δkν

Pk,n
)]

, (6)

where εμν is the Levi-Civita tensor and μ, ν ∈ {x, y}. The
Chern number of the nth band is its Berry curvature integrated
over the 1BZ

Cn = 1

2π

∫
1BZ

dkBn(k). (7)

It can be shown that the Chern numbers are integers, given
that the bands are isolated [9]. Here, we calculate the Chern
numbers using numerical approximations to the integral. We
consider equally spaced discretizations and adaptive quadra-
tures [51,54]. When the numerical results are found to
approach integers upon increasing the density of k points, we
present the Chern numbers as integers.

Quantum topological phase transitions. In Figs. 1(b) and
1(c) we show the magnon spectrum in SkX1 for K = 0 and for
K/J = 0.518, i.e., close to the QPT to SkX2. The Chern num-
bers of the 15 bands are given at both values of K and it is clear
that some of them have changed due to the change in easy-axis
anisotropy. In Fig. 1(d) we plot these as a function of K ,
revealing four QTPTs. Ek,4 and Ek,5 first cross at the Y point
for the specific value K = K1, where K1/J is in the interval
(0.20, 0.21). They also cross at the � point for K/J = K2/J ∈
(0.22, 0.23). The gap between the bands closes and reopens,
and their Chern numbers change, signaling QTPTs. Ek,1 and
Ek,2 cross at the Y point for K/J = K3/J ∈ (0.26, 0.27). The
two Chern numbers annihilate, and both bands are topologi-
cally trivial for K > K3. Finally, the gap between Ek,8 and Ek,9

closes between the � point and the X point for K/J = K4/J ∈

(0.28, 0.29). Only Ek,9 remains topologically nontrivial when
the gap reopens for K > K4. In SkX1, the magnon band with
lowest energy is topologically trivial, while the band with
second lowest energy is topologically nontrivial. For ferro-
magnetic SkXs in an external magnetic field, the band with
third lowest energy is topologically nontrivial while the two
bands with lower energy are topologically trivial [36,38–40].

Figures 1(e) and 1(f) show the magnon spectrum in SkX2
for K/J = 0.519 and K/J = 0.85. Despite the plethora of
closely avoided crossings, all the bands are isolated at these
values of K , and all 15 Chern numbers are well defined. Notice
that in all cases the sum of the Chern numbers of all bands is
zero, as expected [9]. It is clear that the Chern numbers have
changed from the spectrum of SkX1 at K/J = 0.518 to the
spectrum of SkX2 at K/J = 0.519. We do not view this as a
QTPT since it is not due to gaps closing and reopening in the
magnon spectrum. Rather, the magnon spectra are different
from the outset since they arise from two distinct SkXs.

In Fig. 1(g) we plot the Chern numbers that change when
tuning K in SkX2. We find four QTPTs. The gap between
Ek,9 and Ek,10 closes between � and Y for K/J = K5/J ∈
(0.61, 0.62). Once the gap reopens, Ek,9 has become topolog-
ically nontrivial, while C10 = −1 has jumped to C10 = −2.
Ek,10 and Ek,11 cross between � and Y for K/J = K6/J ∈
(0.63, 0.64). C10 jumps back to −1, allowing Ek,11 to become
topologically nontrivial for K > K6. The gap between Ek,3 and
Ek,4 closes between � and Y for K/J = K7/J ∈ (0.71, 0.72).
Once the gap reopens at K > K7 they are both topologically
trivial. Finally, Ek,8 and Ek,9 cross at k ≈ (±0.32, 0.10) for
K/J = K8/J ∈ (0.79, 0.80) and are left topologically trivial
for K > K8.

Gap closing and Berry curvature. In Fig. 2(a) we go
into detail of the two band crossings of Ek,4 and Ek,5

in SkX1. For K < K1 we have C4 = −2,C5 = 2. Then, at
K = K1 the gap between Ek,4 and Ek,5 at the Y point
closes, �Y

4,5 = 0, and the two Chern numbers are unde-
fined [9]. For K > K1 the gap reopens and C4 = −1,C5 =
1, i.e., the bands remain topologically nontrivial. For K =
K2 the gap closes at the � point ��

4,5 = 0. When the
gap reopens for K > K2 both bands have become topolog-
ically trivial. The dependence of these two gaps on the
easy-axis anisotropy is shown in Fig. 2(b). It appears the
two gaps close with an approximately linear dependence
on K .

The Berry curvatures of Ek,4 and Ek,5 are shown in
Fig. 2(c). At K = 0, B4(k) has extended negative valleys,
giving rise to a negative Chern number. For K/J = 0.22, ��

4,5
is small and so there is a sharp negative valley in B4(k) around
k = �. Again, this gives rise to a negative Chern number. At
K/J = 0.3, the Berry curvature contains both positive peaks
and negative valleys, which cancel each other out in the in-
tegral and lead to zero Chern number. The arguments are
similar for B5(k) and C5. From these figures, it is clear that the
gap closings involve an exchange of Berry curvature between
the bands. Also, the Berry curvature of a given band has its
largest absolute values where the band has the smallest gap
to neighboring bands. Similar figures and arguments can be
extended to the remaining six QTPTs discussed in this Letter.
Notice that each time two bands cross and undergo a QTPT,
the sum of their Chern numbers is preserved, as expected [2].

L032025-3



KRISTIAN MÆLAND AND ASLE SUDBØ PHYSICAL REVIEW RESEARCH 4, L032025 (2022)

FIG. 2. (a) Plots of Ek,4 and Ek,5 in SkX1 at varying K showing how the gap at Y closes at K = K1 where there is a QTPT, and C4 =
−2,C5 = 2 at K < K1 goes to C4 = −1,C5 = 1 at K1 < K < K2 once the gap reopens. Also, the gap closes at the � point for K = K2, and
once it reopens, the two bands are topologically trivial. (b) The gap between Ek,4 and Ek,5 at the Y (�) point is shown in blue (orange), with
circles (crosses) at the calculated values. (c) The Berry curvatures of bands Ek,4 and Ek,5 shown for the three values of K in (a) where the
bands are isolated. The 1BZ is indicated in black and the Berry curvatures are plotted with 201 points in each direction. The parameters are
D/J = 2.16,U/J = 0.35, and S = 1.

Predicted edge states. The predicted number of edge states
within the gap between the bands Ek,n and Ek,n+1 is

νn =
15∑

n′=n+1

Cn′ . (8)

The chiral edge states propagate clockwise (counterclock-
wise) for positive (negative) νn [9]. For instance, we predict
a clockwise edge state within the bulk band gap between
Ek,13 and Ek,14 in SkX1. Let SkX3 be the result of applying
the time-reversal operator, i.e., flipping all spins, to SkX1. In
Ref. [41], we mentioned that since the Hamiltonian in Eq. (1)
is time-reversal symmetric, SkX1 and SkX3 are degenerate
in energy. It was also mentioned that the two states can ap-
pear concurrently, separated by domain walls. SkX3 has the
same magnon spectrum as SkX1, while the Chern numbers
change sign. At the interface between two topologically non-
trivial systems A and B, with νn = νA and νn = νB in the
same energy interval, one expects |νA − νB| edge states [36].
Therefore, along a domain wall between SkX1 and SkX3, we

predict two chiral edge states within the gap between Ek,13 and
Ek,14.

Conclusion. We found eight quantum topological phase
transitions in two distinct skyrmion crystals that are stabilized
in a time-reversal-symmetric model. Time-reversal symmetry
is spontaneously broken by the magnetic ordering of the
skyrmions, and therefore nonzero Chern numbers of the
magnon bands are possible. This is a bosonic analog of the
quantum anomalous Hall effect. The quantum topological
phase transitions, driven by a tunable easy-axis anisotropy
at zero temperature, are signaled by jumps in the Chern
numbers. We illustrated how the closing and subsequent
reopening of the gaps between magnon bands leads to these
jumps in the Chern numbers, and how the Berry curvature
depends on these gaps.
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